Knowledge

Polarography

Source đź“ť

221:
there is initially a large increase in the surface area. As a consequence, the initial current is dominated by capacitive effects as charging of the rapidly increasing interface occurs. Toward the end of the drop life, there is little change in the surface area which diminishes the contribution of capacitance changes to the total current. At the same time, any redox process which occurs will result in faradaic current that decays approximately as the square root of time (due to the increasing dimensions of the Nernst diffusion layer). The exponential decay of the capacitive current is much more rapid than the decay of the faradaic current; hence, the faradaic current is proportionally larger at the end of the drop life. Unfortunately, this process is complicated by the continuously changing potential that is applied to the
204:
the current oscillations corresponding to the drops of Hg falling from the capillary. If the maximum currents of each drop were connected, a sigmoidal shape would result. The limiting current (the plateau on the sigmoid), is called the diffusion-limited current because diffusion is the principal contribution to the flux of the electroactive material at this point of the Hg drop life. More advanced varieties of polarography (see below) produce peaks (which allow for a better resolution of different chemical species) rather than the waves of classical polarography, and improve the detection limits, which in some cases can be as low as 10^-9 M.
234:
at the end of each drop lifetime (tast polarography). An even greater enhancement was the introduction of differential pulse polarography. Here, the current is measured before the beginning and before the end of short potential pulses. The latter are superimposed on the linear potential-time-function of the voltammetric scan. Typical amplitudes of these pulses range between 10 and 50 mV, whereas pulse duration is 20 to 50 ms. The difference between both current values is the analytical signal. This technique results in a 100 to 1000-fold improvement of the detection limit, because the capacitive component is effectively subtracted.
225:(the Hg drop) throughout the experiment. Because the potential changes during the drop lifetime (assuming typical experimental parameters of a 2 mV/s scan rate and a 4 s drop time, the potential can change by 8 mV from the beginning to the end of the drop), the charging of the interface (capacitive current) has a continuous contribution to the total current, even at the end of the drop when the surface area is not rapidly changing. As such, the typical signal to noise ratio of a polarographic experiment allows detection limits of only approximately 10 or 10 M. 213: 180: 148:, for which he won the Nobel prize in 1959. The main advantages of mercury as electrode material are as follows: 1) a large voltage window: ca. from +0.2 V to -1.8 V vs reversible hydrogen electrode (RHE). Hg electrode is particularly well-suited for studying electroreduction reactions. 2) very reproducible electrode surface, since mercury is liquid. 3) very easy cleaning of the electrode surface by making a new drop of mercury from a large Hg pool connected by a glass capillary. 167: 25: 233:
Dramatically better discrimination against the capacitive current can be obtained using the tast and pulse polarographic techniques. These have been developed with the introduction of analogue and digital electronic potentiostats. The first major improvement was obtained by measuring the current only
220:
There are limitations in particular for the classical polarography experiment for quantitative analytical measurements. Because the current is continuously measured during the growth of the Hg drop, there is a substantial contribution from capacitive current. As the Hg flows from the capillary end,
203:
of the working mercury drop electrode is linearly changed in time, and the electrode current is recorded at a certain time just before the mercury drop dislodges from a glass capillary from where the stream of mercury emerges. A plot of the current vs. potential in a polarography experiment shows
242:
Qualitative information can also be determined from the half-wave potential of the polarogram (the current vs. potential plot in a polarographic experiment). The value of the half-wave potential is related to the standard potential for the redox reaction being studied.
246:
This technique and especially the differential pulse anodic stripping voltammetry (DPASV) method can be used for environmental analysis, and especially for marine study for the characterisation of organic matter and metals interactions.
365: 492:
Nicholson, R. S.; Irving. Shain (1964-04-01). "Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems".
170:
The number of publications (journal articles comprise ca. 42,000 out 45,468 , patent count is only 992) about polarography according to SciFinderN database on 2023-01-18.
196: 137: 192: 681: 272: 605: 578: 553: 528: 89: 61: 1003: 956: 622: 108: 68: 704: 266:), which is the substance reduced or oxidized at the dropping mercury electrode. The Ilkovic equation has the form 674: 840: 744: 724: 445: 46: 75: 779: 623:"Characterisation and modelling of marine dissolved organic matter interactions with major and trace cations" 191:
drop as a working electrode. In its most simple form polarography can be used to determine concentrations of
42: 159:
until the 1990s (see figure below), when it was supplanted by other methods that did not require the use of
875: 714: 595: 946: 895: 885: 621:
Louis, Yoann; Cédric Garnier; Véronique Lenoble; Dario Omanović; Stéphane Mounier; Ivanka Pižeta (2009).
57: 1008: 931: 820: 667: 133: 1013: 890: 951: 764: 759: 690: 440: 870: 845: 35: 784: 754: 709: 789: 398: 187:
Polarography is an electrochemical voltammetric technique that employs (dropping or static)
145: 983: 926: 152: 546:
Laboratory Techniques in Electroanalytical Chemistry, Second Edition, Revised and Expanded
82: 8: 900: 865: 815: 428: 255:
The Ilkovic equation is a relation used in polarography relating the diffusion current (
850: 739: 200: 941: 910: 830: 749: 729: 719: 645: 601: 574: 549: 524: 222: 188: 160: 129: 641: 151:
Polarography played a major role as an experimental tool in the advancement of both
637: 501: 474: 378: 156: 620: 971: 136:(DME) or a static mercury drop electrode (SMDE), which are useful for their wide 212: 179: 966: 141: 997: 961: 936: 835: 774: 465:
Reinmuth, W. H. (1961-11-01). "Theory of Stationary Electrode Polarography".
427:
The equation is named after the scientist who derived it, the Slovak chemist
659: 860: 649: 880: 810: 794: 125: 505: 478: 377:
is a constant which includes π and the density of mercury, and with the
905: 734: 825: 166: 24: 855: 518: 519:
Skoog, Douglas A.; Donald M. West; F. James Holler (1995-08-25).
407:
is the number of electrons exchanged in the electrode reaction,
543: 360:{\displaystyle I_{\text{d}}=knD^{1/3}m_{r}^{2/3}t^{1/6}c} 411:
is the mass flow rate of Hg through the capillary (mg/s)
571:
Electrochemical Methods: Fundamentals and Applications
491: 568: 275: 195:
species in liquids by measuring their mass-transport
544:
Kissinger, Peter; William R. Heineman (1996-01-23).
523:(7th ed.). Harcourt Brace College Publishers. 140:and renewable surfaces. It was invented in 1922 by 49:. Unsourced material may be challenged and removed. 359: 995: 569:Bard, Allen J.; Larry R. Faulkner (2000-12-18). 689: 675: 262:) and the concentration of the depolarizer ( 250: 682: 668: 237: 174: 109:Learn how and when to remove this message 464: 211: 178: 165: 423:is depolarizer concentration in mol/cm. 401:of the depolarizer in the medium (cm/s) 996: 663: 593: 521:Fundamentals of Analytical Chemistry 47:adding citations to reliable sources 18: 13: 14: 1025: 705:Adsorptive stripping voltammetry 594:Zoski, Cynthia G. (2007-02-07). 417:is the drop lifetime in seconds, 23: 642:10.1016/j.marenvres.2008.12.002 228: 216:HeyrovskĂ˝'s Polarograph and DME 34:needs additional citations for 957:Faraday's laws of electrolysis 841:Hanging mercury drop electrode 745:Differential pulse voltammetry 725:Cathodic stripping voltammetry 614: 587: 562: 537: 512: 485: 458: 446:Hanging mercury drop electrode 207: 1: 780:Rotated electrode voltammetry 630:Marine Environmental Research 451: 876:Rotating ring-disk electrode 715:Anodic stripping voltammetry 597:Handbook of Electrochemistry 199:. In such an experiment the 7: 896:Standard hydrogen electrode 886:Saturated calomel electrode 434: 16:Method of chemical analysis 10: 1030: 821:Dropping mercury electrode 134:dropping mercury electrode 1004:Electroanalytical methods 980: 919: 891:Silver chloride electrode 803: 697: 691:Electroanalytical methods 765:Normal pulse voltammetry 760:Linear sweep voltammetry 441:Electroanalytical method 251:Quantitative information 871:Rotating disk electrode 846:Ion selective electrode 390:607 for average current 386:708 for maximal current 238:Qualitative information 183:HeyrovskĂ˝'s Polarograph 932:Butler–Volmer equation 785:Squarewave voltammetry 755:Hydrodynamic technique 710:Amperometric titration 384:has been evaluated at 361: 217: 184: 175:Principle of operation 171: 947:Debye–HĂĽckel equation 790:Staircase voltammetry 573:(2 ed.). Wiley. 399:diffusion coefficient 362: 215: 182: 169: 984:Analytical Chemistry 927:Activity coefficient 600:. Elsevier Science. 494:Analytical Chemistry 467:Analytical Chemistry 273: 153:Analytical Chemistry 43:improve this article 901:Ultramicroelectrode 866:Reference electrode 816:Auxiliary electrode 548:(2 ed.). CRC. 506:10.1021/ac60210a007 479:10.1021/ac60180a004 335: 851:Mercury coulometer 740:Cyclic voltammetry 357: 313: 218: 185: 172: 146:Jaroslav HeyrovskĂ˝ 1009:Mercury (element) 991: 990: 942:Cottrell equation 911:Working electrode 831:Electrolytic cell 750:Electrogravimetry 730:Chronoamperometry 720:Bulk electrolysis 607:978-0-444-51958-0 580:978-0-471-04372-0 555:978-0-8247-9445-3 530:978-0-03-005938-4 473:(12): 1793–1794. 283: 223:working electrode 197:limiting currents 130:working electrode 119: 118: 111: 93: 1021: 1014:Czech inventions 684: 677: 670: 661: 660: 654: 653: 627: 618: 612: 611: 591: 585: 584: 566: 560: 559: 541: 535: 534: 516: 510: 509: 489: 483: 482: 462: 379:Faraday constant 366: 364: 363: 358: 353: 352: 348: 334: 330: 321: 312: 311: 307: 285: 284: 281: 157:Electrochemistry 114: 107: 103: 100: 94: 92: 51: 27: 19: 1029: 1028: 1024: 1023: 1022: 1020: 1019: 1018: 994: 993: 992: 987: 976: 972:Nernst equation 915: 804:Instrumentation 799: 693: 688: 658: 657: 625: 619: 615: 608: 592: 588: 581: 567: 563: 556: 542: 538: 531: 517: 513: 490: 486: 463: 459: 454: 437: 344: 340: 336: 326: 322: 317: 303: 299: 295: 280: 276: 274: 271: 270: 261: 253: 240: 231: 210: 177: 138:cathodic ranges 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 1027: 1017: 1016: 1011: 1006: 989: 988: 981: 978: 977: 975: 974: 969: 967:Ionic strength 964: 959: 954: 949: 944: 939: 934: 929: 923: 921: 917: 916: 914: 913: 908: 903: 898: 893: 888: 883: 878: 873: 868: 863: 858: 853: 848: 843: 838: 833: 828: 823: 818: 813: 807: 805: 801: 800: 798: 797: 792: 787: 782: 777: 772: 767: 762: 757: 752: 747: 742: 737: 732: 727: 722: 717: 712: 707: 701: 699: 695: 694: 687: 686: 679: 672: 664: 656: 655: 636:(2): 100–107. 613: 606: 586: 579: 561: 554: 536: 529: 511: 500:(4): 706–723. 484: 456: 455: 453: 450: 449: 448: 443: 436: 433: 429:DionĂ˝z IlkoviÄŤ 425: 424: 418: 412: 402: 392: 368: 367: 356: 351: 347: 343: 339: 333: 329: 325: 320: 316: 310: 306: 302: 298: 294: 291: 288: 279: 259: 252: 249: 239: 236: 230: 227: 209: 206: 176: 173: 117: 116: 58:"Polarography" 31: 29: 22: 15: 9: 6: 4: 3: 2: 1026: 1015: 1012: 1010: 1007: 1005: 1002: 1001: 999: 986: 985: 979: 973: 970: 968: 965: 963: 962:Half-reaction 960: 958: 955: 953: 950: 948: 945: 943: 940: 938: 937:Cell notation 935: 933: 930: 928: 925: 924: 922: 918: 912: 909: 907: 904: 902: 899: 897: 894: 892: 889: 887: 884: 882: 879: 877: 874: 872: 869: 867: 864: 862: 859: 857: 854: 852: 849: 847: 844: 842: 839: 837: 836:Galvanic cell 834: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 808: 806: 802: 796: 793: 791: 788: 786: 783: 781: 778: 776: 775:Potentiometry 773: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 733: 731: 728: 726: 723: 721: 718: 716: 713: 711: 708: 706: 703: 702: 700: 696: 692: 685: 680: 678: 673: 671: 666: 665: 662: 651: 647: 643: 639: 635: 631: 624: 617: 609: 603: 599: 598: 590: 582: 576: 572: 565: 557: 551: 547: 540: 532: 526: 522: 515: 507: 503: 499: 495: 488: 480: 476: 472: 468: 461: 457: 447: 444: 442: 439: 438: 432: 431:(1907–1980). 430: 422: 419: 416: 413: 410: 406: 403: 400: 396: 393: 391: 387: 383: 380: 376: 373: 372: 371: 354: 349: 345: 341: 337: 331: 327: 323: 318: 314: 308: 304: 300: 296: 292: 289: 286: 277: 269: 268: 267: 265: 258: 248: 244: 235: 226: 224: 214: 205: 202: 198: 194: 193:electroactive 190: 181: 168: 164: 162: 158: 154: 149: 147: 143: 139: 135: 131: 127: 124:is a type of 123: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: â€“  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 982: 952:Double layer 861:Potentiostat 770:Polarography 769: 633: 629: 616: 596: 589: 570: 564: 545: 539: 520: 514: 497: 493: 487: 470: 466: 460: 426: 420: 414: 408: 404: 394: 389: 385: 381: 374: 369: 263: 256: 254: 245: 241: 232: 229:Improvements 219: 186: 150: 142:Czechoslovak 122:Polarography 121: 120: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 881:Salt bridge 795:Voltammetry 208:Limitations 126:voltammetry 998:Categories 906:Voltameter 811:Amperostat 735:Coulometry 698:Techniques 452:References 128:where the 69:newspapers 826:Electrode 201:potential 99:June 2019 856:pH meter 650:19135243 435:See also 370:where: 144:chemist 397:is the 189:mercury 161:mercury 83:scholar 920:Theory 648:  604:  577:  552:  527:  85:  78:  71:  64:  56:  626:(PDF) 132:is a 90:JSTOR 76:books 646:PMID 602:ISBN 575:ISBN 550:ISBN 525:ISBN 388:and 155:and 62:news 638:doi 502:doi 475:doi 45:by 1000:: 644:. 634:67 632:. 628:. 498:36 496:. 471:33 469:. 163:. 683:e 676:t 669:v 652:. 640:: 610:. 583:. 558:. 533:. 508:. 504:: 481:. 477:: 421:c 415:t 409:m 405:n 395:D 382:F 375:k 355:c 350:6 346:/ 342:1 338:t 332:3 328:/ 324:2 319:r 315:m 309:3 305:/ 301:1 297:D 293:n 290:k 287:= 282:d 278:I 264:c 260:d 257:I 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Polarography"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
voltammetry
working electrode
dropping mercury electrode
cathodic ranges
Czechoslovak
Jaroslav HeyrovskĂ˝
Analytical Chemistry
Electrochemistry
mercury


mercury
electroactive
limiting currents
potential

working electrode
Faraday constant
diffusion coefficient

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑