Knowledge

Pi backbonding

Source 📝

266: 254: 1005: 107: 115: 999: 205: 197: 1011: 278:
lengthening of the P–C distance is often hidden by an opposing effect: as the phosphorus lone pair is donated to the metal, P(lone pair)–R(bonding pair) repulsions decrease, which acts to shorten the P–C bond. The two effects have been deconvoluted by comparing the structures of pairs of metal-phosphine complexes that differ only by one electron. Oxidation of R
212:
As in metal–carbonyls, electrons are partially transferred from a d-orbital of the metal to antibonding molecular orbitals of the alkenes and alkynes. This electron transfer strengthens the metal–ligand bond and weakens the C–C bonds within the ligand. In the case of metal-alkenes and alkynes, the
122:
The electrons are partially transferred from a d-orbital of the metal to anti-bonding molecular orbitals of CO (and its analogs). This electron-transfer strengthens the metal–C bond and weakens the C–O bond. The strengthening of the M–CO bond is reflected in increases of the vibrational frequencies
277:
Phosphines accept electron density from metal p or d orbitals into combinations of P–C σ* antibonding orbitals that have π symmetry. When phosphines bond to electron-rich metal atoms, backbonding would be expected to lengthen P–C bonds as P–C σ* orbitals become populated by electrons. The expected
180:
can either be raised (for example, upon complexation with weak π-donor metals, such as Pt(II)) or lowered (for example, upon complexation with strong π-donor metals, such as Ni(0)). For the isocyanides, an additional parameter is the MC=N–C angle, which deviates from 180° in highly electron-rich
282:
P–M complexes results in longer M–P bonds and shorter P–C bonds, consistent with π-backbonding. In early work, phosphine ligands were thought to utilize 3d orbitals to form M–P pi-bonding, but it is now accepted that d-orbitals on phosphorus are not involved in bonding as they are too high in
165:, RNC, are another class of ligands that are capable of π-backbonding. In contrast with CO, the σ-donor lone pair on the C atom of isocyanides is antibonding in nature and upon complexation the CN bond is strengthened and the ν 303:
process with donation of electrons from the filled π-orbital or lone electron pair orbital of the ligand into an empty orbital of the metal (donor–acceptor bond), together with release (back donation) of electrons from an
123:
for the M–C bond (often outside of the range for the usual IR spectrophotometers). Furthermore, the M–CO bond length is shortened. The weakening of the C–O bond is indicated by a decrease in the wavenumber of the
745:
Fey, N.; Orpen, A. G.; Harvey, J. N. (2009). "Building ligand knowledge bases for organometallic chemistry: Computational description of phosphorus(III)-donor ligands and the metal–phosphorus bonds".
694:
Dunne, B. J.; Morris, R. B.; Orpen, A. G. (1991). "Structural systematics. Part 3. Geometry deformations in triphenylphosphine fragments: A test of bonding theories in phosphine complexes".
233:
to assume the character of a metallacyclopropane. Alkenes and alkynes with electronegative substituents exhibit greater π backbonding. Some strong π backbonding ligands are
1464: 95: 717:
Gilheany, D. G. (1994). "No d Orbitals but Walsh Diagrams and Maybe Banana Bonds: Chemical Bonding in Phosphines, Phosphine Oxides, and Phosphonium Ylides".
229:
bond is reflected in bending of the C–C–R angles which assume greater sp and sp character, respectively. Thus strong π backbonding causes a metal-alkene
633:
Orpen, A. G.; Connelly, N. G. (1990). "Structural systematics: the role of P–A σ* orbitals in metal–phosphorus π-bonding in redox-related pairs of M–PA
1098: 1254: 1297: 1216: 1143: 824: 147: 342: 181:
systems. Other ligands have weak π-backbonding abilities, which creates a labilization effect of CO, which is described by the
790: 678: 592: 525: 500: 425: 400: 373: 450: 1312: 1138: 327: 1404: 617: 475: 1570: 1439: 1434: 1399: 1063: 1565: 1449: 1444: 1429: 887: 1078: 1454: 1332: 914: 875: 865: 747: 153:
Many ligands other than CO are strong "backbonders". Nitric oxide is an even stronger π-acceptor than CO and ν
39:
on an adjacent ion or molecule. In this type of interaction, electrons from the metal are used to bond to the
1247: 870: 817: 1505: 308:
d orbital of the metal (which is of π-symmetry with respect to the metal–ligand axis) into the empty π*-
1510: 542: 1560: 1322: 1133: 1123: 1113: 1088: 1058: 1394: 1358: 1263: 1240: 904: 1165: 1068: 1040: 810: 1539: 1424: 158: 1459: 1209: 1170: 1204: 299:
A description of the bonding of π-conjugated ligands to a transition metal which involves a
1414: 1277: 1128: 1019: 882: 841: 230: 8: 1534: 1353: 1327: 1282: 1030: 894: 860: 337: 242: 234: 1194: 1348: 1302: 949: 666: 238: 265: 1529: 1500: 1490: 1419: 1180: 969: 929: 919: 786: 674: 613: 588: 562: 521: 496: 471: 446: 421: 396: 369: 322: 253: 1495: 1389: 1292: 1287: 1221: 961: 934: 778: 755: 727: 719: 699: 648: 554: 332: 130:
band(s) from that for free CO (2143 cm), for example to 2060 cm in Ni(CO)
48: 1368: 1363: 1199: 1073: 944: 639: 139: 91: 84: 44: 1485: 1384: 1108: 143: 68: 36: 32: 759: 558: 1554: 1480: 1157: 1117: 1050: 1004: 979: 852: 833: 566: 389:
Cotton, Frank Albert; Wilkinson, Geoffrey; Murillo, Carlos A., eds. (1999).
1232: 1103: 390: 363: 1409: 1189: 939: 703: 309: 731: 652: 208:π backbonding from electrons in metal center d-orbital to alkene's LUMO. 204: 182: 162: 80: 196: 106: 1521: 1317: 924: 899: 782: 368:(2nd ed.). Upper Saddle River, N.J: Prentice Hall. p. 338. 60: 52: 20: 775:
IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book")
610:
Basic Organometallic Chemistry: Concepts, Syntheses and Applications
468:
Basic Organometallic Chemistry: Concepts, Syntheses and Applications
200:σ bonding from electrons in alkene's HOMO to metal center d-orbital. 118:π backbonding from electrons in metal center d-orbital to CO's LUMO. 998: 176:. Depending on the balance of σ-bonding versus π-backbonding, the ν 114: 802: 300: 56: 28: 110:σ bonding from electrons in CO's HOMO to metal center d-orbital. 76: 72: 64: 40: 520:(3., compl. rev. and extended ed.). Weinheim: WILEY-VCH. 101: 541:
Zhao, Haitao; Ariafard, Alireza; Lin, Zhenyang (2006-08-01).
292: 585:
Organotransition metal chemistry: from bonding to catalysis
516:
Elschenbroich, Christoph; Elschenbroich, Christoph (2011).
493:
Organotransition metal chemistry: from bonding to catalysis
67:
involved in π backbonding can be broken into three groups:
1465:
Arene complexes of univalent gallium, indium, and thallium
1010: 515: 191: 543:"In-depth insight into metal–alkene bonding interactions" 549:. Protagonists in Chemistry: Professor D.M.P. Mingos. 388: 169:
increased. At the same time, π-backbonding lowers the
671:
The Organometallic Chemistry of the Transition Metals
443:
The Organometallic Chemistry of the Transition Metals
83:. Compounds where π backbonding is prominent include 696:
Journal of the Chemical Society, Dalton Transactions
420:(2nd ed.). Pearson Prentice-Hall. p. 702. 286: 51:
with low oxidation states that have ligands such as
138:, and 1790 cm in the anion . For this reason, 772: 1552: 693: 587:. Sausalito (Calif.): University science books. 495:. Sausalito (Calif.): University science books. 415: 540: 744: 608:Elias, Anil J.; Gupta, B D (January 1, 2013). 466:Elias, Anil J.; Gupta, B D (January 1, 2013). 31:interaction between a filled (or half filled) 1248: 818: 777:. Oxford: Blackwell Scientific Publications. 632: 1262: 361: 248: 362:Miessler, Gary L.; Tarr, Donald A. (1999). 295:definition of back donation is as follows: 102:Metal carbonyls, nitrosyls, and isocyanides 1349:Oxidative addition / reductive elimination 1255: 1241: 825: 811: 607: 465: 47:and stabilizes the metal. It is common in 445:(6th ed.). Wiley. pp. 105–106. 416:Housecroft, C. E.; Sharpe, A. G. (2005). 1298:Polyhedral skeletal electron pair theory 1217:Polyhedral skeletal electron pair theory 716: 673:(5th ed.). Wiley. pp. 99–100. 665: 440: 264: 252: 203: 195: 148:infrared spectroscopy of metal carbonyls 142:is an important diagnostic technique in 113: 105: 96:molybdenum and iron dinitrogen complexes 35:of a transition metal atom and a vacant 773:McNaught, A. D.; Wilkinson, A. (2006). 637:complexes (A = R, Ar, OR; R = alkyl)". 582: 490: 192:Metal–alkene and metal–alkyne complexes 1553: 1236: 806: 578: 576: 16:Form of interaction between two atoms 1405:Transition metal fullerene complexes 612:(2nd ed.). Universities Press. 470:(2nd ed.). Universities Press. 601: 43:, which dissipates excess negative 13: 1440:Transition metal carbyne complexes 1435:Transition metal carbene complexes 1400:Transition metal indenyl complexes 832: 573: 14: 1582: 1450:Transition metal alkyne complexes 1445:Transition metal alkene complexes 484: 459: 395:(6th ed.). New York: Wiley. 287:IUPAC definition of Back Donation 1455:Transition-metal allyl complexes 1009: 1003: 997: 583:Hartwig, John Frederick (2010). 491:Hartwig, John Frederick (2010). 1430:Transition metal acyl complexes 766: 738: 710: 687: 659: 626: 534: 509: 434: 409: 382: 355: 1: 348: 441:Crabtree, Robert H. (2014). 392:Advanced inorganic chemistry 7: 1506:Shell higher olefin process 1313:Dewar–Chatt–Duncanson model 328:Dewar–Chatt–Duncanson model 316: 10: 1587: 1395:Cyclopentadienyl complexes 1359:β-hydride elimination 1333:Metal–ligand multiple bond 915:Metal–ligand multiple bond 150:discusses this in detail. 134:and 1981 cm in Cr(CO) 1519: 1473: 1460:Transition metal carbides 1377: 1341: 1270: 1179: 1156: 1087: 1049: 1029: 1018: 995: 978: 960: 851: 840: 760:10.1016/j.ccr.2008.04.017 559:10.1016/j.ica.2005.12.013 249:Metal-phosphine complexes 1571:Organometallic chemistry 1264:Organometallic chemistry 213:strengthening of the M–C 159:metal–nitrosyl chemistry 157:is a diagnostic tool in 144:metal–carbonyl chemistry 1425:Half sandwich compounds 547:Inorganica Chimica Acta 1566:Coordination chemistry 1540:Bioinorganic chemistry 314: 312:orbital of the ligand. 274: 262: 209: 201: 119: 111: 71:and nitrogen analogs, 1511:Ziegler–Natta process 1415:Metal tetranorbornyls 297: 268: 256: 207: 199: 117: 109: 1520:Related branches of 1278:Crystal field theory 905:Coordinate (dipolar) 704:10.1039/dt9910000653 1535:Inorganic chemistry 1354:Migratory insertion 1328:Agostic interaction 1283:Ligand field theory 1079:C–H···O interaction 861:Electron deficiency 732:10.1021/cr00029a008 667:Crabtree, Robert H. 653:10.1021/om00118a048 418:Inorganic Chemistry 365:Inorganic chemistry 338:Ligand field theory 243:hexafluoro-2-butyne 235:tetrafluoroethylene 1420:Sandwich compounds 1378:Types of compounds 1303:Isolobal principle 1064:Resonance-assisted 275: 263: 239:tetracyanoethylene 210: 202: 120: 112: 1548: 1547: 1530:Organic chemistry 1501:Olefin metathesis 1491:Grignard reaction 1390:Grignard reagents 1230: 1229: 1181:Electron counting 1152: 1151: 1041:London dispersion 993: 992: 970:Metal aromaticity 792:978-0-9678550-9-7 748:Coord. Chem. Rev. 680:978-0-470-25762-3 594:978-1-891389-53-5 553:(11): 3527–3534. 527:978-3-527-29390-2 502:978-1-891389-53-5 427:978-0-130-39913-7 402:978-0-471-19957-1 375:978-0-13-841891-5 323:Bridging carbonyl 273:P–M π backbonding 49:transition metals 1578: 1561:Chemical bonding 1496:Monsanto process 1293:d electron count 1288:18-electron rule 1257: 1250: 1243: 1234: 1233: 1222:Jemmis mno rules 1074:Dihydrogen bonds 1027: 1026: 1013: 1007: 1001: 935:Hyperconjugation 849: 848: 827: 820: 813: 804: 803: 797: 796: 783:10.1351/goldbook 770: 764: 763: 754:(5–6): 704–722. 742: 736: 735: 726:(5): 1339–1374. 714: 708: 707: 691: 685: 684: 663: 657: 656: 647:(4): 1206–1210. 630: 624: 623: 605: 599: 598: 580: 571: 570: 538: 532: 531: 513: 507: 506: 488: 482: 481: 463: 457: 456: 452:978-1-11813807-6 438: 432: 431: 413: 407: 406: 386: 380: 379: 359: 343:Pi-donor ligands 333:18-electron rule 1586: 1585: 1581: 1580: 1579: 1577: 1576: 1575: 1551: 1550: 1549: 1544: 1515: 1469: 1385:Gilman reagents 1373: 1369:Carbometalation 1364:Transmetalation 1337: 1266: 1261: 1231: 1226: 1175: 1148: 1091: 1083: 1045: 1032: 1022: 1014: 1008: 1002: 989: 974: 956: 844: 836: 831: 801: 800: 793: 771: 767: 743: 739: 715: 711: 692: 688: 681: 664: 660: 640:Organometallics 636: 631: 627: 620: 606: 602: 595: 581: 574: 539: 535: 528: 518:Organometallics 514: 510: 503: 489: 485: 478: 464: 460: 453: 439: 435: 428: 414: 410: 403: 387: 383: 376: 360: 356: 351: 319: 289: 281: 272: 260: 251: 228: 224: 220: 216: 194: 179: 175: 168: 156: 140:IR spectroscopy 137: 133: 129: 104: 88: 53:carbon monoxide 17: 12: 11: 5: 1584: 1574: 1573: 1568: 1563: 1546: 1545: 1543: 1542: 1537: 1532: 1526: 1524: 1517: 1516: 1514: 1513: 1508: 1503: 1498: 1493: 1488: 1486:Cativa process 1483: 1477: 1475: 1471: 1470: 1468: 1467: 1462: 1457: 1452: 1447: 1442: 1437: 1432: 1427: 1422: 1417: 1412: 1407: 1402: 1397: 1392: 1387: 1381: 1379: 1375: 1374: 1372: 1371: 1366: 1361: 1356: 1351: 1345: 1343: 1339: 1338: 1336: 1335: 1330: 1325: 1320: 1315: 1310: 1305: 1300: 1295: 1290: 1285: 1280: 1274: 1272: 1268: 1267: 1260: 1259: 1252: 1245: 1237: 1228: 1227: 1225: 1224: 1219: 1214: 1213: 1212: 1207: 1202: 1197: 1186: 1184: 1177: 1176: 1174: 1173: 1168: 1162: 1160: 1154: 1153: 1150: 1149: 1147: 1146: 1141: 1136: 1131: 1126: 1121: 1111: 1106: 1101: 1095: 1093: 1085: 1084: 1082: 1081: 1076: 1071: 1066: 1061: 1055: 1053: 1047: 1046: 1044: 1043: 1037: 1035: 1024: 1020:Intermolecular 1016: 1015: 996: 994: 991: 990: 988: 987: 984: 982: 976: 975: 973: 972: 966: 964: 958: 957: 955: 954: 953: 952: 947: 937: 932: 927: 922: 917: 912: 907: 902: 897: 892: 891: 890: 880: 879: 878: 873: 868: 857: 855: 846: 842:Intramolecular 838: 837: 834:Chemical bonds 830: 829: 822: 815: 807: 799: 798: 791: 765: 737: 709: 686: 679: 658: 634: 625: 619:978-8173718748 618: 600: 593: 572: 533: 526: 508: 501: 483: 477:978-8173718748 476: 458: 451: 433: 426: 408: 401: 381: 374: 353: 352: 350: 347: 346: 345: 340: 335: 330: 325: 318: 315: 288: 285: 279: 270: 258: 250: 247: 226: 222: 218: 214: 193: 190: 177: 173: 166: 154: 146:. The article 135: 131: 127: 103: 100: 86: 15: 9: 6: 4: 3: 2: 1583: 1572: 1569: 1567: 1564: 1562: 1559: 1558: 1556: 1541: 1538: 1536: 1533: 1531: 1528: 1527: 1525: 1523: 1518: 1512: 1509: 1507: 1504: 1502: 1499: 1497: 1494: 1492: 1489: 1487: 1484: 1482: 1481:Carbonylation 1479: 1478: 1476: 1472: 1466: 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1428: 1426: 1423: 1421: 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1382: 1380: 1376: 1370: 1367: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1346: 1344: 1340: 1334: 1331: 1329: 1326: 1324: 1321: 1319: 1316: 1314: 1311: 1309: 1308:π backbonding 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1289: 1286: 1284: 1281: 1279: 1276: 1275: 1273: 1269: 1265: 1258: 1253: 1251: 1246: 1244: 1239: 1238: 1235: 1223: 1220: 1218: 1215: 1211: 1208: 1206: 1203: 1201: 1198: 1196: 1195:Hückel's rule 1193: 1192: 1191: 1188: 1187: 1185: 1182: 1178: 1172: 1169: 1167: 1164: 1163: 1161: 1159: 1158:Bond cleavage 1155: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1124:Intercalation 1122: 1119: 1115: 1114:Metallophilic 1112: 1110: 1107: 1105: 1102: 1100: 1097: 1096: 1094: 1090: 1086: 1080: 1077: 1075: 1072: 1070: 1067: 1065: 1062: 1060: 1057: 1056: 1054: 1052: 1048: 1042: 1039: 1038: 1036: 1034: 1031:Van der Waals 1028: 1025: 1021: 1017: 1012: 1006: 1000: 986: 985: 983: 981: 977: 971: 968: 967: 965: 963: 959: 951: 948: 946: 943: 942: 941: 938: 936: 933: 931: 928: 926: 923: 921: 918: 916: 913: 911: 908: 906: 903: 901: 898: 896: 893: 889: 886: 885: 884: 881: 877: 874: 872: 869: 867: 864: 863: 862: 859: 858: 856: 854: 850: 847: 843: 839: 835: 828: 823: 821: 816: 814: 809: 808: 805: 794: 788: 784: 780: 776: 769: 761: 757: 753: 750: 749: 741: 733: 729: 725: 722: 721: 713: 705: 701: 697: 690: 682: 676: 672: 668: 662: 654: 650: 646: 642: 641: 629: 621: 615: 611: 604: 596: 590: 586: 579: 577: 568: 564: 560: 556: 552: 548: 544: 537: 529: 523: 519: 512: 504: 498: 494: 487: 479: 473: 469: 462: 454: 448: 444: 437: 429: 423: 419: 412: 404: 398: 394: 393: 385: 377: 371: 367: 366: 358: 354: 344: 341: 339: 336: 334: 331: 329: 326: 324: 321: 320: 313: 311: 307: 302: 296: 294: 284: 267: 261:P–M σ bonding 255: 246: 244: 240: 236: 232: 206: 198: 189: 187: 185: 172: 164: 160: 151: 149: 145: 141: 126: 116: 108: 99: 97: 93: 89: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 25:π backbonding 22: 1474:Applications 1410:Metallocenes 1307: 1200:Baird's rule 920:Charge-shift 909: 883:Hypervalence 774: 768: 751: 746: 740: 723: 718: 712: 695: 689: 670: 661: 644: 638: 628: 609: 603: 584: 550: 546: 536: 517: 511: 492: 486: 467: 461: 442: 436: 417: 411: 391: 384: 364: 357: 305: 298: 290: 276: 211: 183: 170: 152: 124: 121: 92:Zeise's salt 24: 18: 1323:spin states 1190:Aromaticity 1166:Heterolysis 1144:Salt bridge 1089:Noncovalent 1059:Low-barrier 940:Aromaticity 930:Conjugation 910:Pi backbond 310:antibonding 163:Isocyanides 1555:Categories 1271:Principles 1118:aurophilic 1099:Mechanical 720:Chem. Rev. 349:References 81:phosphines 61:phosphines 1522:chemistry 1342:Reactions 1318:Hapticity 1210:spherical 1171:Homolysis 1134:Cation–pi 1109:Chalcogen 1069:Symmetric 925:Hapticity 567:0020-1693 291:The full 69:carbonyls 29:π-bonding 21:chemistry 1139:Anion–pi 1129:Stacking 1051:Hydrogen 962:Metallic 853:Covalent 845:(strong) 669:(2009). 317:See also 301:synergic 283:energy. 1104:Halogen 950:bicyclo 895:Agostic 698:: 653. 231:complex 221:and M–C 77:alkynes 73:alkenes 65:ligands 57:olefins 37:orbital 33:orbital 1205:Möbius 1033:forces 1023:(weak) 789:  677:  616:  591:  565:  524:  499:  474:  449:  424:  399:  372:  241:, and 186:effect 94:, and 85:Ni(CO) 79:, and 63:. The 45:charge 41:ligand 1183:rules 1092:other 980:Ionic 888:3c–4e 876:8c–2e 871:4c–2e 866:3c–2e 293:IUPAC 59:, or 27:is a 945:homo 900:Bent 787:ISBN 675:ISBN 614:ISBN 589:ISBN 563:ISSN 522:ISBN 497:ISBN 472:ISBN 447:ISBN 422:ISBN 397:ISBN 370:ISBN 75:and 779:doi 756:doi 752:253 728:doi 700:doi 649:doi 555:doi 551:359 184:cis 19:In 1557:: 785:. 724:94 643:. 575:^ 561:. 545:. 245:. 237:, 188:. 178:CN 174:CN 167:CN 161:. 155:NO 128:CO 98:. 90:, 55:, 23:, 1256:e 1249:t 1242:v 1120:) 1116:( 826:e 819:t 812:v 795:. 781:: 762:. 758:: 734:. 730:: 706:. 702:: 683:. 655:. 651:: 645:9 635:3 622:. 597:. 569:. 557:: 530:. 505:. 480:. 455:. 430:. 405:. 378:. 306:n 280:3 271:3 269:R 259:3 257:R 227:2 225:R 223:2 219:4 217:R 215:2 171:ν 136:6 132:4 125:ν 87:4

Index

chemistry
π-bonding
orbital
orbital
ligand
charge
transition metals
carbon monoxide
olefins
phosphines
ligands
carbonyls
alkenes
alkynes
phosphines
Ni(CO)4
Zeise's salt
molybdenum and iron dinitrogen complexes


IR spectroscopy
metal–carbonyl chemistry
infrared spectroscopy of metal carbonyls
metal–nitrosyl chemistry
Isocyanides
cis effect


complex
tetrafluoroethylene

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.