Knowledge

Phylogenomics

Source 📝

85:, it applied to prediction of gene function. Before the use of phylogenomic techniques, predicting gene function was done primarily by comparing the gene sequence with the sequences of genes with known functions. When several genes with similar sequences but differing functions are involved, this method alone is ineffective in determining function. A specific example is presented in the paper "Gastronomic Delights: A movable feast". Gene predictions based on sequence similarity alone had been used to predict that 1349: 1026: 1361: 192:. Using this method, it is theoretically possible to create fully resolved phylogenetic trees, and timing constraints can be recovered more accurately. However, in practice this is not always the case. Due to insufficient data, multiple trees can sometimes be supported by the same data when analyzed using different methods. 113:
Traditional phylogenetic techniques have difficulty establishing differences between genes that are similar because of lateral gene transfer and those that are similar because the organisms shared an ancestor. By comparing large numbers of genes or entire genomes among many species, it is possible to
104:
was not in the same subfamily as those known to be involved in mismatch repair. Furthermore, he suggested that this "phylogenomic" approach could be used as a general method for prediction functions of genes. This approach was formally described in 1998. For reviews of this aspect of phylogenomics
38:
and genomics. Phylogenomics draws information by comparing entire genomes, or at least large portions of genomes. Phylogenetics compares and analyzes the sequences of single genes, or a small number of genes, as well as many other types of data. Four major areas fall under phylogenomics:
60:
The ultimate goal of phylogenomics is to reconstruct the evolutionary history of species through their genomes. This history is usually inferred from a series of genomes by using a genome evolution model and standard statistical inference methods (e.g.
95:. This prediction was based on the fact that this organism has a gene for which the sequence is highly similar to genes from other species in the "MutS" gene family which included many known to be involved in mismatch repair. However, Eisen noted that 134:. Often, such events are evolutionarily relevant. For example, multiple duplications of genes encoding degradative enzymes of certain families is a common adaptation in microbes to new nutrient sources. On the contrary, loss of genes is important in 99:
lacks other genes thought to be essential for this function (specifically, members of the MutL family). Eisen suggested a solution to this apparent discrepancy – phylogenetic trees of genes in the MutS family revealed that the gene found in
160:, and varying rates of evolution for different genes. By using entire genomes in these comparisons, the anomalies created from these factors are overwhelmed by the pattern of evolution indicated by the majority of the data. Through 151:
Traditional single-gene studies are effective in establishing phylogenetic trees among closely related organisms, but have drawbacks when comparing more distantly related organisms or microorganisms. This is because of
142:
events, which potentially duplicate all the genes in a genome at once, are drastic evolutionary events with great relevance in the evolution of many clades, and whose signal can be traced with phylogenomic methods.
214: 118:
of the organism. Using these methods, researchers were able to identify over 2,000 metabolic enzymes obtained by various eukaryotic parasites from lateral gene transfer.
164:, it has been discovered that most of the photosynthetic eukaryotes are linked and possibly share a single ancestor. Researchers compared 135 genes from 65 different 715:
Philippe H, Snell EA, Bapteste E, Lopez P, Holland PW, Casane D "Phylogenomics of eukaryotes: impact of missing data on large alignments
614:"The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes" 964: 126:
The comparison of complete gene sets for a group of organisms allows the identification of events in gene evolution such as
1159: 730: 1119: 822:"Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny" 1199: 1204: 1137: 1365: 1214: 1144: 361:
Simion P, Delsuc F, Phillipe H (2020). "2.1 To What Extent Current Limits of Phylogenomics Can Be Overcome?".
66: 663:
Delsuc F, Brinkmann H, Philippe H (May 2005). "Phylogenomics and the reconstruction of the tree of life".
1124: 1031: 987: 957: 1314: 1240: 189: 114:
identify transferred genes, since these sequences behave differently from what is expected given the
677: 473:"Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis" 920:
Philippe, Herve'; Delsuc, Frederic; Brinkmann, Henner; Lartillot, Nicolas (2005). "Phylogenomics".
139: 430:
Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, et al. (August 1997).
1194: 992: 221: 1392: 1353: 1077: 950: 672: 34:
data and evolutionary reconstructions. It is a group of techniques within the larger fields of
1329: 1007: 933: 153: 53: 1166: 1072: 919: 525: 157: 8: 1209: 1091: 135: 87: 529: 1132: 1086: 1002: 897: 870: 846: 821: 797: 772: 698: 640: 613: 548: 513: 407: 382: 343: 292: 267: 231: 115: 62: 1387: 1060: 902: 851: 802: 753: 690: 645: 594: 553: 494: 453: 412: 347: 335: 315: 297: 702: 589: 572: 266:
Kumar S, Filipski AJ, Battistuzzi FU, Kosakovsky Pond SL, Tamura K (February 2012).
1149: 1103: 929: 892: 882: 841: 833: 792: 784: 745: 682: 635: 625: 584: 543: 533: 484: 443: 402: 394: 327: 287: 279: 127: 773:"Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes" 331: 105:
see Brown D, Sjölander K. Functional classification using phylogenomic inference.
1250: 820:
dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PC, Yang Z (September 2012).
538: 254: 1224: 573:"Phylogenomic inference of protein molecular function: advances and challenges" 78: 749: 1381: 1189: 1096: 973: 630: 226: 131: 35: 30:. The term has been used in multiple ways to refer to analysis that involves 887: 283: 1324: 1270: 1265: 1260: 1245: 1053: 1048: 906: 855: 837: 806: 788: 757: 694: 649: 598: 557: 339: 301: 185: 498: 457: 432:"The complete genome sequence of the gastric pathogen Helicobacter pylori" 416: 1319: 1012: 181: 398: 997: 489: 472: 318:(June 2008). "Evolution. Building the tree of life, genome by genome". 265: 173: 1334: 1298: 1293: 1288: 1183: 1065: 236: 201: 23: 686: 177: 27: 448: 431: 165: 108: 942: 1025: 770: 169: 31: 728: 146: 1154: 1082: 46:
Establishment and clarification of evolutionary relationships
729:
Jeffroy O, Brinkmann H, Delsuc F, Philippe H (April 2006).
362: 819: 771:
Burki F, Shalchian-Tabrizi K, Pawlowski J (August 2008).
429: 92: 611: 514:"Functional classification using phylogenomic inference" 662: 1021: 922:
Annual Review of Ecology, Evolution, and Systematics
360: 16:
Intersection of the fields of evolution and genomics
138:, such as in intracellular parasites or symbionts. 871:"Phylogenomics of strongylocentrotid sea urchins" 1379: 380: 731:"Phylogenomics: the beginning of incongruence?" 612:Whitaker JW, McConkey GA, Westhead DR (2009). 511: 109:Prediction and retracing lateral gene transfer 72: 958: 868: 381:Eisen JA, Kaiser D, Myers RM (October 1997). 813: 168:of photosynthetic organisms. These included 147:Establishment of evolutionary relationships 965: 951: 896: 886: 845: 796: 676: 639: 629: 588: 570: 547: 537: 488: 447: 406: 383:"Gastrogenomic delights: a movable feast" 291: 934:10.1146/annurev.ecolsys.35.112202.130205 255:BioMed Central | Fgenerated title --> 121: 376: 374: 314: 268:"Statistics and truth in phylogenomics" 1380: 946: 470: 22:is the intersection of the fields of 1360: 371: 869:Kober KM, Bernardi G (April 2013). 423: 188:. This has been referred to as the 13: 512:Brown D, Sjölander K (June 2006). 14: 1404: 972: 1359: 1348: 1347: 1200:Phylogenetic comparative methods 1024: 826:Proceedings. Biological Sciences 364:Phylogenetics in the Genomic Era 1205:Phylogenetic niche conservatism 913: 862: 764: 722: 709: 656: 605: 272:Molecular Biology and Evolution 564: 505: 464: 354: 308: 259: 248: 1: 590:10.1093/bioinformatics/bth021 332:10.1126/science.320.5884.1716 242: 67:maximum likelihood estimation 571:Sjölander K (January 2004). 539:10.1371/journal.pcbi.0020077 195: 7: 1125:Phylogenetic reconciliation 1032:Evolutionary biology portal 988:Computational phylogenetics 207: 73:Prediction of gene function 43:Prediction of gene function 10: 1409: 518:PLOS Computational Biology 1343: 1315:Phylogenetic nomenclature 1307: 1281: 1233: 1175: 1112: 1041: 1019: 980: 750:10.1016/j.tig.2006.02.003 719:2004 Sep;21(9):1740-52. . 52:Prediction and retracing 875:BMC Evolutionary Biology 665:Nature Reviews. Genetics 631:10.1186/gb-2009-10-4-r36 367:. pp. 2.1.1–2.1.34. 218:(phylogenomics software) 140:Whole genome duplication 1195:Molecular phylogenetics 1145:Distance-matrix methods 993:Molecular phylogenetics 888:10.1186/1471-2148-13-88 471:Eisen JA (March 1998). 222:Microbial phylogenetics 190:Plants+HC+SAR megagroup 1215:Phylogenetics software 1129:Probabilistic methods 1078:Long branch attraction 838:10.1098/rspb.2012.0683 789:10.1098/rsbl.2008.0224 91:can repair mismatched 1008:Evolutionary taxonomy 284:10.1093/molbev/msr202 154:lateral gene transfer 122:Gene family evolution 54:lateral gene transfer 49:Gene family evolution 1167:Three-taxon analysis 1073:Phylogenetic network 1210:Phylogenetic signal 832:(1742): 3491–3500. 530:2006PLSCB...2...77B 399:10.1038/nm1097-1076 326:(5884): 1716–1717. 136:reductive evolution 88:Helicobacter pylori 1138:Bayesian inference 1133:Maximum likelihood 738:Trends in Genetics 490:10.1101/gr.8.3.163 232:Sequence alignment 81:originally coined 63:Bayesian inference 1375: 1374: 1120:Maximum parsimony 1113:Inference methods 1061:Phylogenetic tree 442:(6642): 539–547. 393:(10): 1076–1078. 1400: 1363: 1362: 1351: 1350: 1150:Neighbor-joining 1104:Ghost population 1034: 1029: 1028: 967: 960: 953: 944: 943: 938: 937: 917: 911: 910: 900: 890: 866: 860: 859: 849: 817: 811: 810: 800: 768: 762: 761: 735: 726: 720: 713: 707: 706: 680: 660: 654: 653: 643: 633: 609: 603: 602: 592: 568: 562: 561: 551: 541: 509: 503: 502: 492: 468: 462: 461: 451: 427: 421: 420: 410: 378: 369: 368: 358: 352: 351: 312: 306: 305: 295: 263: 257: 252: 128:gene duplication 1408: 1407: 1403: 1402: 1401: 1399: 1398: 1397: 1378: 1377: 1376: 1371: 1339: 1303: 1277: 1251:Symplesiomorphy 1229: 1171: 1108: 1037: 1030: 1023: 1017: 981:Relevant fields 976: 971: 941: 918: 914: 867: 863: 818: 814: 777:Biology Letters 769: 765: 733: 727: 723: 714: 710: 687:10.1038/nrg1603 678:10.1.1.333.1615 661: 657: 610: 606: 569: 565: 510: 506: 477:Genome Research 469: 465: 428: 424: 387:Nature Medicine 379: 372: 359: 355: 313: 309: 264: 260: 253: 249: 245: 210: 198: 149: 124: 111: 75: 17: 12: 11: 5: 1406: 1396: 1395: 1390: 1373: 1372: 1370: 1369: 1357: 1344: 1341: 1340: 1338: 1337: 1332: 1327: 1322: 1317: 1311: 1309: 1305: 1304: 1302: 1301: 1296: 1291: 1285: 1283: 1279: 1278: 1276: 1275: 1274: 1273: 1268: 1263: 1255: 1254: 1253: 1248: 1237: 1235: 1231: 1230: 1228: 1227: 1225:Phylogeography 1222: 1217: 1212: 1207: 1202: 1197: 1192: 1187: 1179: 1177: 1176:Current topics 1173: 1172: 1170: 1169: 1164: 1163: 1162: 1157: 1152: 1142: 1141: 1140: 1135: 1127: 1122: 1116: 1114: 1110: 1109: 1107: 1106: 1101: 1100: 1099: 1089: 1080: 1075: 1070: 1069: 1068: 1058: 1057: 1056: 1045: 1043: 1042:Basic concepts 1039: 1038: 1036: 1035: 1020: 1018: 1016: 1015: 1010: 1005: 1000: 995: 990: 984: 982: 978: 977: 970: 969: 962: 955: 947: 940: 939: 912: 861: 812: 783:(4): 366–369. 763: 744:(4): 225–231. 721: 708: 671:(5): 361–375. 655: 618:Genome Biology 604: 583:(2): 170–179. 577:Bioinformatics 563: 504: 483:(3): 163–167. 463: 422: 370: 353: 307: 278:(2): 457–472. 258: 246: 244: 241: 240: 239: 234: 229: 224: 219: 209: 206: 205: 204: 197: 194: 148: 145: 123: 120: 110: 107: 79:Jonathan Eisen 74: 71: 58: 57: 50: 47: 44: 15: 9: 6: 4: 3: 2: 1405: 1394: 1393:Phylogenetics 1391: 1389: 1386: 1385: 1383: 1368: 1367: 1358: 1356: 1355: 1346: 1345: 1342: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1318: 1316: 1313: 1312: 1310: 1306: 1300: 1297: 1295: 1292: 1290: 1287: 1286: 1284: 1280: 1272: 1269: 1267: 1264: 1262: 1259: 1258: 1256: 1252: 1249: 1247: 1244: 1243: 1242: 1239: 1238: 1236: 1232: 1226: 1223: 1221: 1220:Phylogenomics 1218: 1216: 1213: 1211: 1208: 1206: 1203: 1201: 1198: 1196: 1193: 1191: 1190:DNA barcoding 1188: 1186: 1185: 1181: 1180: 1178: 1174: 1168: 1165: 1161: 1160:Least squares 1158: 1156: 1153: 1151: 1148: 1147: 1146: 1143: 1139: 1136: 1134: 1131: 1130: 1128: 1126: 1123: 1121: 1118: 1117: 1115: 1111: 1105: 1102: 1098: 1097:Ghost lineage 1095: 1094: 1093: 1090: 1088: 1084: 1081: 1079: 1076: 1074: 1071: 1067: 1064: 1063: 1062: 1059: 1055: 1052: 1051: 1050: 1047: 1046: 1044: 1040: 1033: 1027: 1022: 1014: 1011: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 985: 983: 979: 975: 974:Phylogenetics 968: 963: 961: 956: 954: 949: 948: 945: 935: 931: 927: 923: 916: 908: 904: 899: 894: 889: 884: 880: 876: 872: 865: 857: 853: 848: 843: 839: 835: 831: 827: 823: 816: 808: 804: 799: 794: 790: 786: 782: 778: 774: 767: 759: 755: 751: 747: 743: 739: 732: 725: 718: 717:Mol Biol Evol 712: 704: 700: 696: 692: 688: 684: 679: 674: 670: 666: 659: 651: 647: 642: 637: 632: 627: 623: 619: 615: 608: 600: 596: 591: 586: 582: 578: 574: 567: 559: 555: 550: 545: 540: 535: 531: 527: 523: 519: 515: 508: 500: 496: 491: 486: 482: 478: 474: 467: 459: 455: 450: 449:10.1038/41483 445: 441: 437: 433: 426: 418: 414: 409: 404: 400: 396: 392: 388: 384: 377: 375: 366: 365: 357: 349: 345: 341: 337: 333: 329: 325: 321: 317: 311: 303: 299: 294: 289: 285: 281: 277: 273: 269: 262: 256: 251: 247: 238: 235: 233: 230: 228: 227:Phylogenetics 225: 223: 220: 217: 216: 215:Archaeopteryx 212: 211: 203: 200: 199: 193: 191: 187: 183: 179: 175: 171: 167: 163: 162:phylogenomics 159: 155: 144: 141: 137: 133: 132:gene deletion 129: 119: 117: 106: 103: 98: 94: 90: 89: 84: 83:phylogenomics 80: 70: 68: 64: 55: 51: 48: 45: 42: 41: 40: 37: 36:phylogenetics 33: 29: 25: 21: 20:Phylogenomics 1364: 1352: 1325:Sister group 1308:Nomenclature 1271:Autapomorphy 1266:Synapomorphy 1246:Plesiomorphy 1234:Group traits 1219: 1182: 1054:Cladogenesis 1049:Phylogenesis 925: 921: 915: 878: 874: 864: 829: 825: 815: 780: 776: 766: 741: 737: 724: 716: 711: 668: 664: 658: 621: 617: 607: 580: 576: 566: 521: 517: 507: 480: 476: 466: 439: 435: 425: 390: 386: 363: 356: 323: 319: 310: 275: 271: 261: 250: 213: 186:cryptomonads 161: 150: 125: 112: 101: 96: 86: 82: 76: 59: 19: 18: 1320:Crown group 1282:Group types 1013:Systematics 928:: 541–562. 182:haptophytes 158:convergence 1382:Categories 998:Cladistics 624:(4): R36. 524:(6): e77. 243:References 178:rhizarians 174:alveolates 1335:Supertree 1299:Polyphyly 1294:Paraphyly 1289:Monophyly 1261:Apomorphy 1241:Primitive 1184:PhyloCode 1066:Cladogram 673:CiteSeerX 348:206580993 316:Pennisi E 237:Supertree 202:PhylomeDB 196:Databases 102:H. pylori 97:H. pylori 24:evolution 1388:Genomics 1354:Category 1257:Derived 1003:Taxonomy 907:23617542 856:22628470 807:18522922 758:16490279 703:16379422 695:15861208 650:19368726 599:14734307 558:16846248 340:18583591 302:21873298 208:See also 116:taxonomy 28:genomics 1366:Commons 1092:Lineage 898:3637829 847:3396900 798:2610160 641:2688927 549:1484587 526:Bibcode 499:9521918 458:9252185 417:9334711 408:3155951 320:Science 293:3258035 166:species 905:  895:  881:: 88. 854:  844:  805:  795:  756:  701:  693:  675:  648:  638:  597:  556:  546:  497:  456:  436:Nature 415:  405:  346:  338:  300:  290:  170:plants 32:genome 1330:Basal 1155:UPGMA 1087:Grade 1083:Clade 734:(PDF) 699:S2CID 344:S2CID 77:When 903:PMID 852:PMID 803:PMID 754:PMID 691:PMID 646:PMID 595:PMID 554:PMID 495:PMID 454:PMID 413:PMID 336:PMID 298:PMID 184:and 69:). 65:or 26:and 1085:vs 930:doi 893:PMC 883:doi 842:PMC 834:doi 830:279 793:PMC 785:doi 746:doi 683:doi 636:PMC 626:doi 585:doi 544:PMC 534:doi 485:doi 444:doi 440:388 403:PMC 395:doi 328:doi 324:320 288:PMC 280:doi 130:or 93:DNA 1384:: 926:36 924:. 901:. 891:. 879:13 877:. 873:. 850:. 840:. 828:. 824:. 801:. 791:. 779:. 775:. 752:. 742:22 740:. 736:. 697:. 689:. 681:. 667:. 644:. 634:. 622:10 620:. 616:. 593:. 581:20 579:. 575:. 552:. 542:. 532:. 520:. 516:. 493:. 479:. 475:. 452:. 438:. 434:. 411:. 401:. 389:. 385:. 373:^ 342:. 334:. 322:. 296:. 286:. 276:29 274:. 270:. 180:, 176:, 172:, 156:, 966:e 959:t 952:v 936:. 932:: 909:. 885:: 858:. 836:: 809:. 787:: 781:4 760:. 748:: 705:. 685:: 669:6 652:. 628:: 601:. 587:: 560:. 536:: 528:: 522:2 501:. 487:: 481:8 460:. 446:: 419:. 397:: 391:3 350:. 330:: 304:. 282:: 56:.

Index

evolution
genomics
genome
phylogenetics
lateral gene transfer
Bayesian inference
maximum likelihood estimation
Jonathan Eisen
Helicobacter pylori
DNA
taxonomy
gene duplication
gene deletion
reductive evolution
Whole genome duplication
lateral gene transfer
convergence
species
plants
alveolates
rhizarians
haptophytes
cryptomonads
Plants+HC+SAR megagroup
PhylomeDB
Archaeopteryx
Microbial phylogenetics
Phylogenetics
Sequence alignment
Supertree

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.