Knowledge

Phi X 174

Source 📝

281: 31: 49: 178: 312:ΦX174 encodes 11 genes, named as consecutive letters of the alphabet in the order they were discovered, with the exception of A* which is an alternative start codon within the large A genes. Only genes A* and K are thought to be non-essential, although there is some doubt about A* because its start codon could be changed to ATT but not any other sequence. It is now known that the ATT is still likely capable of producing protein within 696: 170: 683:
The ΦX174 genome was the first phage to be cloned in yeast, which provides a convenient drydock for genome modifications. ΦX174 was also the first genome to be fully decompressed, having all gene overlaps removed. The effect of these changes resulted in significantly reduced host attachment, protein
566:
protein complex. This translocates once around the genome and synthesizes a ssDNA from the positive original genome. ssDNA genomes to package into viruses are created from this by a rolling circle mechanism. This is the mechanism by which the double stranded supercoiled genome is nicked on the
557:
The DNA is ejected through a hydrophilic channel at the 5-fold vertex. It is understood that H protein resides in this area but experimental evidence has not verified its exact location. Once inside the host bacterium, replication of the ssDNA genome proceeds via
627:, especially the NC phage (e.g. NC1, NC7, NC11, NC16, NC37, NC5, NC41, NC56, NC51, etc.) and more distantly related to the G4-like phages and even more distantly related to the α3-like phage. Rokyta et al. 2006 presented a phylogenetic tree of their relationships. 611:. Based on recombination frequencies obtained in genetic crosses, a genetic map was constructed. Recombination in phi X174 is associated with high negative interference, i.e a positive correlation (negative interference) of recombinational events (see wikipedia 660:
due to its relatively small genome size in comparison to other organisms, its relatively balanced nucleotide content — about 23% G, 22% C, 24% A, and 31% T, i.e., 45% G+C and 55% A+T, see the accession NC_001422.1 for its 5,386 nucleotide long sequence.
571:(DNAP) to the site of cleavage. DNAP uses the negative strand as a template to make positive sense DNA. As it translocates around the genome it displaces the outer strand of already-synthesised DNA, which is immediately coated by 553:
H protein was required for optimal synthesis of other viral proteins. Mutations in H protein that prevent viral incorporation, can be overcome when excess amounts of protein B, the internal scaffolding protein, are supplied.
665:'s sequencing instruments use ΦX174 as a positive control, and a single Illumina sequencing run can cover the ΦX174 genome several million times over, making this very likely the most heavily sequenced genome in history. 339:
of ΦX174 was generated. Notable features of the ΦX174 transcriptome is a series of up to four relatively weak promoters in series with up to four Rho-independent (intrinsic) terminators and one Rho-dependent terminator.
323:
with eight out of 11 genes overlapping by at least one nucleotide. These overlaps have been shown to be non-essential although the refactored phage with all gene overlaps removed had decreased fitness from wild-type.
598:
rate of phiX174 is estimated to be 1.0 x 10 substitutions per base per round of copying, a value that is consistent with Drake's rule (0.003 mutations per genome per round of copying in DNA-based microorganisms).
1071:
Cherwa JE, Organtini LJ, Ashley RE, Hafenstein SL, Fane BA (September 2011). "In VITRO ASSEMBLY of the øX174 procapsid from external scaffolding protein oligomers and early pentameric assembly intermediates".
536:
content, making the protein structure very flexible and in addition, individual hydrogen atoms (the R group for glycines) are difficult to detect in protein crystallography. Additionally, H protein induces
255:
with collaborators identified the genes required to produce the enzymes to catalyze conversion of the single stranded form of the virus to the double stranded replicative form. In 2003, it was reported by
578:
As D protein is the most abundant gene transcript, it is the most abundant protein in the viral procapsid. Similarly, gene transcripts for F, J, and G are more abundant than for H as the
1183:"Alteration of the ATG start codon of the A protein of bacteriophage phi X174 into an ATT codon yields a viable phage indicating that A protein is not essential for phi X174 reproduction" 223:, from samples collected in Paris sewers. Its characterization and the study of its replication mechanism were carried out from the 1950s onwards. It was the first DNA-based 239:
used ΦX174 as a model to first prove that DNA synthesized in a test tube by purified enzymes could produce all the features of a natural virus, ushering in the age of
1344:
Wright BW, Ruan J, Molloy MP, Jaschke PR (November 2020). "Genome Modularization Reveals Overlapped Gene Topology Is Necessary for Efficient Viral Reproduction".
304:
is 44% and 95% of nucleotides belong to coding genes. Because of the balance base pattern of the genome, it is used as the control DNA for Illumina sequencers.
559: 1938: 839:
Fiers W, Sinsheimer RL (October 1962). "The structure of the DNA of bacteriophage phi-X174. III. Ultracentrifugal evidence for a ring structure".
2155: 788:
Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, et al. (February 1977). "Nucleotide sequence of bacteriophage phi X174 DNA".
541:
of the bacterial host at high concentrations as the predicted N-terminal transmembrane helix easily pokes holes through the bacterial wall. By
1167: 1594:"Uncoupling the functions of a multifunctional protein: the isolation of a DNA pilot protein mutant that affects particle morphogenesis" 327:
Phage ΦX174 has been used to try to establish the absence of undiscovered genetic information through a "proof by synthesis" approach.
518:
on the bacterial host cell surface. H protein (or the DNA Pilot Protein) pilots the viral genome through the bacterial membrane of
562:
intermediate. This is done as the phage genome supercoils and the secondary structure formed by such supercoiling attracts a
235:
and Robert Sinsheimer had already demonstrated the physical, covalently closed circularity of ΦX174 DNA. Nobel prize winner
873:
National Library of Medicine Profiles in Science. The Arthur Kornberg Papers. "Creating Life in the Test Tube," 1959-1970.
2146: 1516:
Jazwinski SM, Lindberg AA, Kornberg A (July 1975). "The lipopolysaccharide receptor for bacteriophage phiX174 and S13".
1500: 280: 653: 1487:
Fane BA, Brentlinger KL, Burch AD, Chen M, Hafenstein S, Moore E, Novak CR, Uchiyama A (2006). "ɸX174 et al., the
1942: 1006:"Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides" 549:
domains which has a significant homology to known transcription factors. Additionally, it was determined that
874: 669: 582:
for these structural proteins is 5:5:5:1. The primosomes are protein complexes which attach/bind the enzyme
528:
helix. However, it has become apparent that H protein is a multifunctional protein. This is the only viral
48: 1635:"The expression of N-terminal deletion DNA pilot proteins inhibits the early stages of phiX174 replication" 532:
protein of ΦX174 to lack a crystal structure for a couple of reasons. It has low aromatic content and high
675:ΦX174 has also been modified to enable peptide display (phage display) from the viral capsid G protein. 376: 1682:
McKenna R, Xia D, Willingmann P, Ilag LL, Krishnaswamy S, Rossmann MG, et al. (January 1992).
575:
proteins. The A protein cleaves the complete genome every time it recognises the origin sequence.
2190: 264:
from synthesized oligonucleotides. The ΦX174 virus particle has also been successfully assembled
216: 1964: 1684:"Atomic structure of single-stranded DNA bacteriophage phi X174 and its functional implications" 729: 2160: 2108: 955:"Conversion of phiX174 viral DNA to double-stranded form by purified Escherichia coli proteins" 612: 30: 2185: 1230:
Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, et al. (April 2017).
608: 1181:
Baas PD, Liewerink H, van Teeffelen HA, van Mansfeld AD, van Boom JH, Jansz HS (June 1987).
1695: 1114:"A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast" 1017: 899: 797: 525: 43: 8: 506:
Identification of all ΦX174 proteins using mass spectrometry has recently been reported.
1895:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
1699: 1021: 903: 801: 2064: 2039: 2015: 1990: 1915: 1890: 1866: 1841: 1765: 1740: 1716: 1683: 1659: 1634: 1469: 1415: 1388: 1369: 1316: 1283: 1256: 1231: 1212: 1035: 917: 821: 762: 662: 515: 1817: 1792: 1569: 1552: 1048: 1005: 981: 954: 930: 887: 852: 2069: 2020: 1920: 1871: 1822: 1770: 1721: 1664: 1615: 1574: 1533: 1529: 1496: 1473: 1461: 1420: 1373: 1361: 1321: 1303: 1261: 1204: 1199: 1182: 1135: 1089: 1053: 986: 935: 856: 813: 767: 749: 709: 240: 220: 1857: 1216: 2059: 2051: 2010: 2002: 1910: 1902: 1861: 1853: 1812: 1804: 1760: 1752: 1711: 1703: 1654: 1646: 1605: 1564: 1525: 1451: 1410: 1400: 1353: 1311: 1295: 1251: 1243: 1194: 1125: 1081: 1043: 1025: 976: 966: 925: 907: 848: 825: 805: 757: 741: 320: 269: 211: 1808: 1162: 236: 2006: 1756: 1610: 1593: 1456: 1439: 1130: 1113: 2131: 2055: 2040:"Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing" 1393:
Proceedings of the National Academy of Sciences of the United States of America
1299: 1010:
Proceedings of the National Academy of Sciences of the United States of America
959:
Proceedings of the National Academy of Sciences of the United States of America
892:
Proceedings of the National Academy of Sciences of the United States of America
701: 657: 641: 568: 542: 390:
Inhibits host cell DNA replication; blocks superinfecting phage; not essential
244: 2091: 1357: 1085: 888:"Enzymatic synthesis of DNA, XXIV. Synthesis of infectious phage phi-X174 DNA" 2179: 1307: 753: 579: 484:
Binds to new single-stranded phage DNA; accompanies phage DNA into procapsid
336: 289: 202: 1842:"Horizontal gene transfer and the evolution of microvirid coliphage genomes" 1405: 1030: 971: 586:
on the template. Primosomes gives RNA primers for DNA synthesis to strands.
2073: 2024: 1924: 1906: 1875: 1826: 1774: 1668: 1619: 1578: 1465: 1424: 1365: 1325: 1265: 1139: 1093: 1057: 912: 860: 771: 745: 624: 257: 252: 232: 133: 121: 109: 97: 85: 73: 1725: 1537: 1208: 990: 939: 730:"Vladimir Sertić: forgotten pioneer of virology and bacteriophage therapy" 567:
positive strand by a virus-encoded A protein, also attracting a bacterial
2140: 1650: 1389:"Definitive demonstration by synthesis of genome annotation completeness" 1247: 1112:
Jaschke PR, Lieberman EK, Rodriguez J, Sierra A, Endy D (December 2012).
817: 546: 248: 228: 206: 177: 1282:
Wright, Bradley W.; Molloy, Mark P.; Jaschke, Paul R. (5 October 2021).
379:; ligates ends of linear phage DNA to form single-stranded circular DNA 260:
group that the genome of ΦX174 was the first to be completely assembled
1039: 301: 297: 1633:
Ruboyianes MV, Chen M, Dubrava MS, Cherwa JE, Fane BA (October 2009).
1232:"Measurements of translation initiation from all 64 codons in E. coli" 1180: 734:
Notes and Records: the Royal Society Journal of the History of Science
1707: 921: 809: 563: 399: 2102: 2125: 1891:"Experimental evolution of viruses: Microviridae as a model system" 595: 583: 1790: 1791:
Benbow RM, Hutchison CA, Fabricant JD, Sinsheimer RL (May 1971).
533: 349: 1991:"PhiXing-it, displaying foreign peptides on bacteriophage ΦX174" 1004:
Smith HO, Hutchison CA, Pfannkoch C, Venter JC (December 2003).
1387:
Jaschke PR, Dotson GA, Hung KS, Liu D, Endy D (November 2019).
1111: 1070: 529: 520: 224: 1989:
Christakos KJ, Chapman JA, Fane BA, Campos SK (January 2016).
1003: 538: 438: 60: 1840:
Rokyta DR, Burch CL, Caudle SB, Wichman HA (February 2006).
1440:"A high-resolution map of bacteriophage ϕX174 transcription" 695: 426:
External scaffolding protein involved in procapsid assembly
404:
Internal scaffolding protein involved in procapsid assembly
1988: 1632: 1495:(2nd ed.). New York: Oxford Univ. Press. p. 130. 572: 319:
The first half of the ΦX174 genome features high levels of
1229: 215:. This virus was isolated in 1935 by Nicolas Bulgakov in 169: 1681: 1515: 885: 293: 1839: 1486: 1343: 284:
Genome of the bacteriophage ΦX174 showing its 11 genes
272:
can be fully decompressed and still remain functional.
886:
Goulian M, Kornberg A, Sinsheimer RL (December 1967).
1553:"The HMMTOP transmembrane topology prediction server" 1284:"Overlapping genes in natural and engineered genomes" 787: 728:
Lacković, Zdravko; Toljan, Karlo (20 December 2020).
2038:
Ando H, Lemire S, Pires DP, Lu TK (September 2015).
1386: 691: 1281: 1931: 1738: 316:and therefore this gene may in fact be essential. 2037: 1939:"Using a PhiX Control for HiSeq® Sequencing Runs" 1153: 1151: 1149: 16:A single-stranded DNA virus that infects bacteria 2177: 684:expression dysregulation, and heat sensitivity. 524:bacteria most likely via a predicted N-terminal 1591: 838: 1741:"Point mutation rate of bacteriophage PhiX174" 1739:Cuevas JM, Duffy S, Sanjuán R (October 2009). 1146: 952: 727: 618: 1786: 1784: 1168:National Center for Biotechnology Information 668:ΦX174 is also used to test the resistance of 1888: 1550: 1437: 227:to be sequenced. This work was completed by 1592:Cherwa JE, Young LN, Fane BA (March 2011). 832: 473:DNA pilot protein (or minor spike protein) 1781: 946: 29: 2063: 2014: 1914: 1865: 1816: 1764: 1715: 1658: 1609: 1568: 1455: 1414: 1404: 1315: 1255: 1198: 1129: 1047: 1029: 980: 970: 929: 911: 761: 635: 514:Infection begins when G protein binds to 2089: 279: 176: 168: 545:, this protein contains four predicted 268:. In 2012, it was shown how its highly 2178: 1793:"Genetic Map of Bacteriophage phiX174" 1551:Tusnády GE, Simon I (September 2001). 1163:"Complete genome: accession NC_001422" 292:has a sense circular single-stranded 2107: 2106: 1339: 1337: 1335: 1277: 1275: 953:Wickner S, Hurwitz J (October 1974). 1889:Wichman HA, Brown CJ (August 2010). 1438:Logel DY, Jaschke PR (August 2020). 1107: 1105: 1103: 783: 781: 678: 495:Optimizes burst size; not essential 38:Electron micrograph of phage ΦX174 13: 1332: 1272: 623:ΦX174 is closely related to other 509: 14: 2202: 2083: 1100: 778: 694: 647: 602: 589: 330: 47: 2031: 1982: 1957: 1882: 1858:10.1128/JB.188.3.1134-1142.2006 1833: 1732: 1675: 1626: 1585: 1570:10.1093/bioinformatics/17.9.849 1544: 1509: 1480: 1431: 1380: 1223: 1174: 1171:. Retrieved on 30 January 2016. 644:in many evolution experiments. 231:and his team in 1977. In 1962, 173:Structure of phage ΦX174 capsid 1064: 997: 879: 867: 721: 1: 1965:"PPE-Info – Standard Details" 1157:Enterobacteria phage phiX174 853:10.1016/S0022-2836(62)80031-X 715: 670:personal protective equipment 652:ΦX174 is regularly used as a 187:Phix174­micro­virus 2117:Enterobacteria phage phiX174 2090:Goodsell D (February 2000). 1809:10.1128/JVI.7.5.549-558.1971 1530:10.1016/0042-6822(75)90197-x 1200:10.1016/0014-5793(87)81030-x 1074:Journal of Molecular Biology 841:Journal of Molecular Biology 7: 2007:10.1016/j.virol.2015.11.021 1757:10.1534/genetics.109.106005 1611:10.1016/j.virol.2010.12.026 1457:10.1016/j.virol.2020.05.008 1131:10.1016/j.virol.2012.09.020 687: 619:Phylogenetics and diversity 607:PhiX174 is able to undergo 501: 343: 183:Sins­heimer­virus 10: 2207: 2056:10.1016/j.cels.2015.08.013 1941:. Illumina. Archived from 1300:10.1038/s41576-021-00417-w 377:rolling circle replication 205:is a single-stranded DNA ( 2147:Escherichia virus phiX174 2115: 1358:10.1021/acssynbio.0c00323 1086:10.1016/j.jmb.2011.07.070 640:ΦX174 has been used as a 375:Nicks RF DNA to initiate 275: 42: 37: 28: 21: 1491:". In Calender R (ed.). 307: 2092:"Bacteriophage phiX174" 1846:Journal of Bacteriology 1406:10.1073/pnas.1905990116 1288:Nature Reviews Genetics 1031:10.1073/pnas.2237126100 972:10.1073/pnas.71.10.4120 672:to bloodborne viruses. 630: 181:Schematic drawing of a 160:Escherichia virus ΦX174 23:Escherichia virus ΦX174 1907:10.1098/rstb.2010.0053 1236:Nucleic Acids Research 913:10.1073/pnas.58.6.2321 746:10.1098/rsnr.2019.0010 636:Experimental evolution 613:crossover interference 285: 190: 174: 2096:Molecule of the Month 1346:ACS Synthetic Biology 609:genetic recombination 451:Major capsid protein 283: 219:'s laboratory at the 209:) virus that infects 180: 172: 1651:10.1128/JVI.01077-09 526:transmembrane domain 462:Major spike protein 44:Virus classification 1700:1992Natur.355..137M 1639:Journal of Virology 1399:(48): 24206–24213. 1161:, complete genome. 1022:2003PNAS..10015440S 904:1967PNAS...58.2321G 802:1977Natur.265..687S 516:lipopolysaccharides 1901:(1552): 2495–501. 1493:The Bacteriophages 1248:10.1093/nar/gkx070 560:negative sense DNA 286: 270:overlapping genome 191: 175: 111:Malgrandaviricetes 2171: 2170: 2109:Taxon identifiers 1945:on 9 January 2019 1352:(11): 3079–3090. 710:Bacteriophage MS2 679:Synthetic Biology 499: 498: 348:ΦX174 encodes 11 241:synthetic biology 221:Pasteur Institute 167: 166: 2198: 2164: 2163: 2151: 2150: 2149: 2136: 2135: 2134: 2104: 2103: 2099: 2078: 2077: 2067: 2035: 2029: 2028: 2018: 1986: 1980: 1979: 1977: 1975: 1961: 1955: 1954: 1952: 1950: 1935: 1929: 1928: 1918: 1886: 1880: 1879: 1869: 1837: 1831: 1830: 1820: 1788: 1779: 1778: 1768: 1736: 1730: 1729: 1719: 1708:10.1038/355137a0 1694:(6356): 137–43. 1679: 1673: 1672: 1662: 1630: 1624: 1623: 1613: 1589: 1583: 1582: 1572: 1548: 1542: 1541: 1513: 1507: 1506: 1484: 1478: 1477: 1459: 1435: 1429: 1428: 1418: 1408: 1384: 1378: 1377: 1341: 1330: 1329: 1319: 1279: 1270: 1269: 1259: 1242:(7): 3615–3626. 1227: 1221: 1220: 1202: 1178: 1172: 1155: 1144: 1143: 1133: 1109: 1098: 1097: 1068: 1062: 1061: 1051: 1033: 1001: 995: 994: 984: 974: 950: 944: 943: 933: 915: 883: 877: 871: 865: 864: 836: 830: 829: 810:10.1038/265687a0 796:(5596): 687–95. 785: 776: 775: 765: 725: 704: 699: 698: 654:positive control 423:240 in procapsid 355: 354: 296:genome of 5,386 243:. In 1972–1974, 212:Escherichia coli 52: 51: 33: 19: 18: 2206: 2205: 2201: 2200: 2199: 2197: 2196: 2195: 2176: 2175: 2172: 2167: 2159: 2154: 2145: 2144: 2139: 2130: 2129: 2124: 2111: 2086: 2081: 2036: 2032: 1987: 1983: 1973: 1971: 1963: 1962: 1958: 1948: 1946: 1937: 1936: 1932: 1887: 1883: 1838: 1834: 1789: 1782: 1737: 1733: 1680: 1676: 1631: 1627: 1590: 1586: 1549: 1545: 1514: 1510: 1503: 1485: 1481: 1436: 1432: 1385: 1381: 1342: 1333: 1280: 1273: 1228: 1224: 1179: 1175: 1156: 1147: 1110: 1101: 1069: 1065: 1016:(26): 15440–5. 1002: 998: 951: 947: 884: 880: 872: 868: 837: 833: 786: 779: 726: 722: 718: 700: 693: 690: 681: 650: 638: 633: 621: 605: 592: 512: 510:Infection Cycle 504: 346: 333: 310: 278: 237:Arthur Kornberg 217:Félix d'Hérelle 163: 147:Sinsheimervirus 46: 17: 12: 11: 5: 2204: 2194: 2193: 2191:Bacteriophages 2188: 2169: 2168: 2166: 2165: 2152: 2137: 2121: 2119: 2113: 2112: 2101: 2100: 2085: 2084:External links 2082: 2080: 2079: 2050:(3): 187–196. 2030: 1981: 1956: 1930: 1881: 1852:(3): 1134–42. 1832: 1780: 1731: 1674: 1645:(19): 9952–6. 1625: 1584: 1557:Bioinformatics 1543: 1508: 1502:978-0195148503 1501: 1479: 1430: 1379: 1331: 1294:(3): 154–168. 1271: 1222: 1173: 1145: 1099: 1063: 996: 965:(10): 4120–4. 945: 878: 866: 831: 777: 740:(4): 567–578. 719: 717: 714: 713: 712: 706: 705: 702:Viruses portal 689: 686: 680: 677: 658:DNA sequencing 649: 646: 642:model organism 637: 634: 632: 629: 620: 617: 604: 601: 591: 588: 569:DNA polymerase 543:bioinformatics 511: 508: 503: 500: 497: 496: 493: 490: 486: 485: 482: 479: 475: 474: 471: 468: 464: 463: 460: 457: 453: 452: 449: 446: 442: 441: 435: 432: 428: 427: 424: 421: 417: 416: 415:DNA packaging 413: 410: 406: 405: 402: 396: 392: 391: 388: 385: 381: 380: 373: 370: 366: 365: 362: 359: 345: 342: 332: 329: 309: 306: 277: 274: 258:Craig Venter's 245:Jerard Hurwitz 165: 164: 157: 155: 151: 150: 143: 139: 138: 131: 127: 126: 119: 115: 114: 107: 103: 102: 95: 91: 90: 83: 79: 78: 71: 64: 63: 58: 54: 53: 40: 39: 35: 34: 26: 25: 15: 9: 6: 4: 3: 2: 2203: 2192: 2189: 2187: 2184: 2183: 2181: 2174: 2162: 2157: 2153: 2148: 2142: 2138: 2133: 2127: 2123: 2122: 2120: 2118: 2114: 2110: 2105: 2097: 2093: 2088: 2087: 2075: 2071: 2066: 2061: 2057: 2053: 2049: 2045: 2041: 2034: 2026: 2022: 2017: 2012: 2008: 2004: 2000: 1996: 1992: 1985: 1970: 1966: 1960: 1944: 1940: 1934: 1926: 1922: 1917: 1912: 1908: 1904: 1900: 1896: 1892: 1885: 1877: 1873: 1868: 1863: 1859: 1855: 1851: 1847: 1843: 1836: 1828: 1824: 1819: 1814: 1810: 1806: 1803:(5): 549–58. 1802: 1798: 1794: 1787: 1785: 1776: 1772: 1767: 1762: 1758: 1754: 1750: 1746: 1742: 1735: 1727: 1723: 1718: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1678: 1670: 1666: 1661: 1656: 1652: 1648: 1644: 1640: 1636: 1629: 1621: 1617: 1612: 1607: 1603: 1599: 1595: 1588: 1580: 1576: 1571: 1566: 1563:(9): 849–50. 1562: 1558: 1554: 1547: 1539: 1535: 1531: 1527: 1524:(1): 268–82. 1523: 1519: 1512: 1504: 1498: 1494: 1490: 1483: 1475: 1471: 1467: 1463: 1458: 1453: 1449: 1445: 1441: 1434: 1426: 1422: 1417: 1412: 1407: 1402: 1398: 1394: 1390: 1383: 1375: 1371: 1367: 1363: 1359: 1355: 1351: 1347: 1340: 1338: 1336: 1327: 1323: 1318: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1278: 1276: 1267: 1263: 1258: 1253: 1249: 1245: 1241: 1237: 1233: 1226: 1218: 1214: 1210: 1206: 1201: 1196: 1193:(1): 119–25. 1192: 1188: 1184: 1177: 1170: 1169: 1164: 1160: 1154: 1152: 1150: 1141: 1137: 1132: 1127: 1124:(2): 278–84. 1123: 1119: 1115: 1108: 1106: 1104: 1095: 1091: 1087: 1083: 1080:(3): 387–96. 1079: 1075: 1067: 1059: 1055: 1050: 1045: 1041: 1037: 1032: 1027: 1023: 1019: 1015: 1011: 1007: 1000: 992: 988: 983: 978: 973: 968: 964: 960: 956: 949: 941: 937: 932: 927: 923: 919: 914: 909: 905: 901: 898:(6): 2321–8. 897: 893: 889: 882: 876: 870: 862: 858: 854: 850: 847:(4): 424–34. 846: 842: 835: 827: 823: 819: 815: 811: 807: 803: 799: 795: 791: 784: 782: 773: 769: 764: 759: 755: 751: 747: 743: 739: 735: 731: 724: 720: 711: 708: 707: 703: 697: 692: 685: 676: 673: 671: 666: 664: 659: 655: 648:Biotechnology 645: 643: 628: 626: 616: 614: 610: 603:Recombination 600: 597: 590:Mutation rate 587: 585: 581: 580:stoichiometry 576: 574: 570: 565: 561: 555: 552: 548: 544: 540: 535: 531: 527: 523: 522: 517: 507: 494: 491: 488: 487: 483: 480: 477: 476: 472: 469: 466: 465: 461: 458: 455: 454: 450: 447: 444: 443: 440: 436: 433: 430: 429: 425: 422: 419: 418: 414: 411: 408: 407: 403: 401: 397: 394: 393: 389: 386: 383: 382: 378: 374: 371: 368: 367: 363: 360: 357: 356: 353: 351: 341: 338: 337:transcriptome 335:In 2020, the 331:Transcriptome 328: 325: 322: 317: 315: 305: 303: 300:. The genome 299: 295: 291: 290:bacteriophage 282: 273: 271: 267: 263: 259: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 214: 213: 208: 204: 203:bacteriophage 200: 196: 188: 184: 179: 171: 162: 161: 156: 153: 152: 149: 148: 144: 141: 140: 137: 136: 132: 129: 128: 125: 124: 120: 117: 116: 113: 112: 108: 105: 104: 101: 100: 96: 93: 92: 89: 88: 84: 81: 80: 77: 76: 72: 69: 66: 65: 62: 59: 56: 55: 50: 45: 41: 36: 32: 27: 24: 20: 2186:Microviridae 2173: 2116: 2095: 2047: 2044:Cell Systems 2043: 2033: 1998: 1994: 1984: 1972:. Retrieved 1969:wwwn.cdc.gov 1968: 1959: 1947:. Retrieved 1943:the original 1933: 1898: 1894: 1884: 1849: 1845: 1835: 1800: 1796: 1751:(2): 747–9. 1748: 1744: 1734: 1691: 1687: 1677: 1642: 1638: 1628: 1601: 1597: 1587: 1560: 1556: 1546: 1521: 1517: 1511: 1492: 1489:Microviridae 1488: 1482: 1447: 1443: 1433: 1396: 1392: 1382: 1349: 1345: 1291: 1287: 1239: 1235: 1225: 1190: 1187:FEBS Letters 1186: 1176: 1166: 1158: 1121: 1117: 1077: 1073: 1066: 1013: 1009: 999: 962: 958: 948: 895: 891: 881: 869: 844: 840: 834: 793: 789: 737: 733: 723: 682: 674: 667: 651: 639: 625:microviridae 622: 606: 593: 577: 556: 550: 519: 513: 505: 481:60 in virion 470:12 in virion 459:60 in virion 448:60 in virion 347: 334: 326: 321:gene overlap 318: 313: 311: 287: 265: 261: 253:Reed Wickner 233:Walter Fiers 210: 198: 194: 192: 186: 182: 159: 158: 146: 145: 135:Microviridae 134: 123:Petitvirales 122: 110: 99:Phixviricota 98: 86: 75:Monodnaviria 74: 67: 57:(unranked): 22: 2141:Wikispecies 2098:. RCSB-PDB. 1604:(1): 9–14. 547:coiled-coil 298:nucleotides 249:Sue Wickner 229:Fred Sanger 87:Sangervirae 2180:Categories 1974:8 February 1159:sensu lato 716:References 437:Host cell 302:GC-content 2001:: 242–8. 1949:8 January 1474:219459208 1450:: 47–56. 1374:222300240 1308:1471-0064 754:0035-9149 564:primosome 400:procapsid 364:Function 195:phi X 174 154:Species: 82:Kingdom: 2161:11459739 2132:Q1063448 2126:Wikidata 2074:26973885 2025:26655242 1995:Virology 1925:20643739 1876:16428417 1827:16789129 1775:19652180 1745:Genetics 1669:19640994 1620:21227478 1598:Virology 1579:11590105 1518:Virology 1466:32560904 1444:Virology 1425:31719208 1366:33044064 1326:34611352 1266:28334756 1217:24174007 1140:23079106 1118:Virology 1094:21840317 1058:14657399 861:13945085 772:33177747 688:See also 663:Illumina 596:mutation 584:helicase 502:Proteome 350:proteins 344:Proteins 266:in vitro 262:in vitro 189:) virion 130:Family: 94:Phylum: 2065:4785837 2016:6191337 1916:2935103 1867:1347346 1797:J Virol 1766:2766332 1726:1370343 1717:4167681 1696:Bibcode 1660:2748053 1538:1094681 1416:6883844 1317:8490965 1257:5397182 1209:2954853 1040:3149024 1018:Bibcode 991:4610569 940:4873588 900:Bibcode 826:4206886 798:Bibcode 763:7653334 551:de novo 534:glycine 358:Protein 314:E. coli 142:Genus: 118:Order: 106:Class: 2072:  2062:  2023:  2013:  1923:  1913:  1874:  1864:  1825:  1818:356162 1815:  1773:  1763:  1724:  1714:  1688:Nature 1667:  1657:  1618:  1577:  1536:  1499:  1472:  1464:  1423:  1413:  1372:  1364:  1324:  1314:  1306:  1264:  1254:  1215:  1207:  1138:  1092:  1056:  1049:307586 1046:  1038:  989:  982:434340 979:  938:  931:223838 928:  920:  859:  824:  818:870828 816:  790:Nature 770:  760:  752:  530:capsid 521:E.coli 398:60 in 361:Copies 276:Genome 251:, and 225:genome 2156:IRMNG 1470:S2CID 1370:S2CID 1213:S2CID 1036:JSTOR 922:58720 918:JSTOR 822:S2CID 539:lysis 439:lysis 308:Genes 288:This 207:ssDNA 199:ΦX174 185:(aka 68:Realm 61:Virus 2070:PMID 2021:PMID 1976:2019 1951:2019 1921:PMID 1872:PMID 1823:PMID 1771:PMID 1722:PMID 1665:PMID 1616:PMID 1575:PMID 1534:PMID 1497:ISBN 1462:PMID 1421:PMID 1362:PMID 1322:PMID 1304:ISSN 1262:PMID 1205:PMID 1136:PMID 1090:PMID 1054:PMID 987:PMID 936:PMID 875:link 857:PMID 814:PMID 768:PMID 750:ISSN 631:Uses 594:The 573:SSBP 197:(or 193:The 2060:PMC 2052:doi 2011:PMC 2003:doi 1999:488 1911:PMC 1903:doi 1899:365 1862:PMC 1854:doi 1850:188 1813:PMC 1805:doi 1761:PMC 1753:doi 1749:183 1712:PMC 1704:doi 1692:355 1655:PMC 1647:doi 1606:doi 1602:411 1565:doi 1526:doi 1452:doi 1448:547 1411:PMC 1401:doi 1397:116 1354:doi 1312:PMC 1296:doi 1252:PMC 1244:doi 1195:doi 1191:218 1126:doi 1122:434 1082:doi 1078:412 1044:PMC 1026:doi 1014:100 977:PMC 967:doi 926:PMC 908:doi 849:doi 806:doi 794:265 758:PMC 742:doi 656:in 615:). 294:DNA 2182:: 2158:: 2143:: 2128:: 2094:. 2068:. 2058:. 2046:. 2042:. 2019:. 2009:. 1997:. 1993:. 1967:. 1919:. 1909:. 1897:. 1893:. 1870:. 1860:. 1848:. 1844:. 1821:. 1811:. 1799:. 1795:. 1783:^ 1769:. 1759:. 1747:. 1743:. 1720:. 1710:. 1702:. 1690:. 1686:. 1663:. 1653:. 1643:83 1641:. 1637:. 1614:. 1600:. 1596:. 1573:. 1561:17 1559:. 1555:. 1532:. 1522:66 1520:. 1468:. 1460:. 1446:. 1442:. 1419:. 1409:. 1395:. 1391:. 1368:. 1360:. 1348:. 1334:^ 1320:. 1310:. 1302:. 1292:23 1290:. 1286:. 1274:^ 1260:. 1250:. 1240:45 1238:. 1234:. 1211:. 1203:. 1189:. 1185:. 1165:, 1148:^ 1134:. 1120:. 1116:. 1102:^ 1088:. 1076:. 1052:. 1042:. 1034:. 1024:. 1012:. 1008:. 985:. 975:. 963:71 961:. 957:. 934:. 924:. 916:. 906:. 896:58 894:. 890:. 855:. 843:. 820:. 812:. 804:. 792:. 780:^ 766:. 756:. 748:. 738:74 736:. 732:. 384:A* 352:. 247:, 201:) 70:: 2076:. 2054:: 2048:1 2027:. 2005:: 1978:. 1953:. 1927:. 1905:: 1878:. 1856:: 1829:. 1807:: 1801:7 1777:. 1755:: 1728:. 1706:: 1698:: 1671:. 1649:: 1622:. 1608:: 1581:. 1567:: 1540:. 1528:: 1505:. 1476:. 1454:: 1427:. 1403:: 1376:. 1356:: 1350:9 1328:. 1298:: 1268:. 1246:: 1219:. 1197:: 1142:. 1128:: 1096:. 1084:: 1060:. 1028:: 1020:: 993:. 969:: 942:. 910:: 902:: 863:. 851:: 845:5 828:. 808:: 800:: 774:. 744:: 492:— 489:K 478:J 467:H 456:G 445:F 434:— 431:E 420:D 412:— 409:C 395:B 387:— 372:— 369:A

Index


Virus classification
Edit this classification
Virus
Monodnaviria
Sangervirae
Phixviricota
Malgrandaviricetes
Petitvirales
Microviridae
Sinsheimervirus


bacteriophage
ssDNA
Escherichia coli
Félix d'Hérelle
Pasteur Institute
genome
Fred Sanger
Walter Fiers
Arthur Kornberg
synthetic biology
Jerard Hurwitz
Sue Wickner
Reed Wickner
Craig Venter's
overlapping genome

bacteriophage

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.