Knowledge

Overlapping gene

Source 📝

464: 142: 707:
differ from prokaryotes in distribution of overlap types: while unidirectional (i.e., same-strand) overlaps are most common in prokaryotes, opposite or antiparallel-strand overlaps are more common in eukaryotes. Among the opposite-strand overlaps, convergent orientation is most common. Most studies of eukaryotic gene overlap have found that overlapping genes are extensively subject to genomic reorganization even in closely related species, and thus the presence of an overlap is not always well-conserved. Overlap with older or less taxonomically restricted genes is also a common feature of genes likely to have originated
387: 488: 246:(HBV), whose DNA genome contains numerous overlapping genes, showed the mean number of synonymous nucleotide substitutions per site in overlapping coding regions was significantly lower than that of non-overlapping regions. The same study showed that it was possible for some of these overlapping regions and their proteins to diverge significantly from the original when there's weak selection against amino acid change. The 770:
may be inappropriate for the detection of overlapping genes as they are reliant on already curated genes while overlapping genes are generally overlooked contain atypical sequence composition. Genome annotation standards are also often biased against feature overlaps, such as genes entirely contained
706:
Compared to prokaryotic genomes, eukaryotic genomes are often poorly annotated and thus identifying genuine overlaps is relatively challenging. However, examples of validated gene overlaps have been documented in a variety of eukaryotic organisms, including mammals such as mice and humans. Eukaryotes
119:
regions of the genome. It is believed that most overlapping genes, or genes whose expressible nucleotide sequences partially overlap with each other, evolved in part due to this mechanism, suggesting that each overlap is composed of one ancestral gene and one novel gene. Subsequently, overprinting is
680:
co-regulated. In prokaryotic genomes, unidirectional overlaps are most common, possibly due to the tendency of adjacent prokaryotic genes to share orientation. Among unidirectional overlaps, long overlaps are more commonly read with a one-nucleotide offset in reading frame (i.e., phase 1) and short
539:
longer than the measured length of its genome. Analysis of the fully sequenced 5386 nucleotide genome showed that the virus possessed extensive overlap between coding regions, revealing that some genes (like genes D and E) were translated from the same DNA sequences but in different reading frames.
719:
The precise functions of overlapping genes seems to vary across the domains of life but several experiments have shown that they are important for virus lifecycles through proper protein expression and stoichiometry as well as playing a role in proper protein folding. A version of
128:
organization of viruses, likely to greatly increase the number of potential expressible genes from a small set of viral genetic information. It is likely that overprinting is responsible for the generation of numerous novel proteins by viruses over the course of their
775:
markedly penalizes overlaps between predicted ORFs. However, rapid advancement of genome-scale protein and RNA measurement tools along with increasingly advanced prediction algorithms have revealed an avalanche of overlapping genes and ORFs within numerous genomes.
454:
than older members, but the older members are also more disordered than other proteins, presumably as a way of alleviating the increased evolutionary constraints posed by overlap. Overlaps are more likely to originate in proteins that already have high disorder.
800:
is also used to identify genomic regions containing overlapping transcripts. It has been utilized to identify 180,000 alternate ORFs within previously annotated coding regions found in humans. Newly discovered ORFs such as these are verified using a variety of
757:
to deliver large human genes such as CFTR81. Therefore, it is suggested that overlapping genes evolved as a means to overcome these physical constraints, increasing genetic diversity by utilizing only the existing sequence rather than increasing genome length.
70:, gene overlap is almost always defined as mRNA transcript overlap. Specifically, a gene overlap in eukaryotes is defined when at least one nucleotide is shared between the boundaries of the primary mRNA transcripts of two or more genes, such that a DNA base 619:
and less restrictive genome sizes. The lower mutation rate of DNA viruses facilitates greater genomic novelty and evolutionary exploration within a structurally constrained genome and may be the primary driver of the evolution of overlapping genes.
591:
geometry. However, other studies dispute this conclusion and argue that the distribution of overlaps in viral genomes is more likely to reflect overprinting as the evolutionary origin of overlapping viral genes. Overprinting is a common source of
560:
was shown to express a novel protein that induces lysis of E. coli by inhibiting biosynthesis of its cell wall, suggesting that de novo protein creation through the process of overprinting can be a significant factor in the evolution of
284:
are encoded by overlapping genes that form a 549 nt coding region, and p19 is shown to be under positive selection while p22 is under purifying selection. Additional examples are mentioned in studies involving overlapping genes of the
1378:
Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (April 1981). "Sequence and organization of the human mitochondrial genome".
241:
change is favored. Overlapping genes are reasoned to evolve under strict constraints as a single nucleotide substitution is able to alter the structure and function of the two proteins simultaneously. A study on the
667:
genomes typically find that around one third of bacterial genes are overlapped, though usually only by a few base pairs. Most studies of overlap in bacterial genomes find evidence that overlap serves a function in
233:
Studies on overlapping genes suggest that their evolution can be summarized in two possible models. In one model, the two proteins encoded by their respective overlapping genes evolve under similar
225:
occurs when the shared sequences use different reading frames. This can occur in "phase 1" or "phase 2", depending on whether the reading frames are offset by 1 or 2 nucleotides. Because a
1800:"Sequence analysis of Potato leafroll virus isolates reveals genetic stability, major evolutionary events and differential selection pressure between overlapping reading frame products" 215:
occurs when the shared sequences use the same reading frame. This is also known as "phase 0". Unidirectional genes with phase 0 overlap are not considered distinct genes, but rather as
734:
size limitations. Dramatic viability loss was observed in viruses with genomes engineered to be longer than the wild-type genome. Increasing the single-stranded DNA genome length of
615:
or in separate capsids, are more likely to contain an overlapping sequence than non-segmented viruses. RNA viruses have fewer overlapping genes than DNA viruses which possess lower
35:
partially overlaps with the expressible nucleotide sequence of another gene. In this way, a nucleotide sequence may make a contribution to the function of one or more
1575:
Rogozin IB, Spiridonov AN, Sorokin AV, Wolf YI, Jordan I, Tatusov RL, Koonin EV (May 2002). "Purifying and directional selection in overlapping prokaryotic genes".
611:
contain overlapping coding sequences. Segmented viruses in particular, or viruses with their genome split into separate pieces and packaged either all in the same
168:
end of another gene on the same strand. This arrangement can be symbolized with the notation → → where arrows indicate the reading frame from start to end.
2365:
Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes JC, Hutchison CA, Slocombe PM, Smith M (1977). "Nucleotide sequence of bacteriophage ΦX174 DNA".
426:, who identified a candidate gene that may have arisen by this mechanism. Some de novo genes originating in this way may not remain overlapping, but 467:
Overlapping genes in the bacteriophage ΦX174 genome. There are 11 genes in this genome (A, A*, B-H, J, K). Genes B, K, E overlap with genes A, C, D.
264:
The second model suggests that the two proteins and their respective overlap genes evolve under opposite selection pressures: one frame experiences
2607:"Finally, a Role Befitting A star : Strongly Conserved, Unessential Microvirus A* Proteins Ensure the Product Fidelity of Packaging Reactions" 572: 4367:"Viral Proteins Originated De Novo by Overprinting Can Be Identified by Codon Usage: Application to the "Gene Nursery" of Deltaretroviruses" 3220:
Cock PJ, Whitworth DE (19 March 2007). "Evolution of Gene Overlaps: Relative Reading Frame Bias in Prokaryotic Two-Component System Genes".
2663: 1321:"Viral Proteins Originated De Novo by Overprinting Can Be Identified by Codon Usage: Application to the "Gene Nursery" of Deltaretroviruses" 4186:"Targeted replacement of full-length CFTR in human airway stem cells by CRISPR-Cas9 for pan-mutation correction in the endogenous locus" 261:
compared to the overlap regions that were highly conserved among different HBV strains, which are absolutely essential for the process.
254:
and the pre-S1 region of a surface protein of HBV, for example, had a percentage of conserved amino acids of 30% and 40%, respectively.
4623:
Prensner JR, Enache OM, Luria V, Krug K, Clauser KR, Dempster JM, Karger A, Wang L, Stumbraite K, Wang VM, Botta G (28 January 2021).
3648:"Overlapping genes of Aedes aegypti: evolutionary implications from comparison with orthologs of Anopheles gambiae and other insects" 3371:
Fellner L, Simon S, Scherling C, Witting M, Schober S, Polte C, Schmitt-Kopplin P, Keim DA, Scherer S, Neuhaus K (18 December 2015).
4184:
Vaidyanathan S, Baik R, Chen L, Bravo DT, Suarez CJ, Abazari SM, Salahudeen AA, Dudek AM, Teran CA, Davis TH, Lee CM (March 2021).
2020:
Saha D, Podder S, Panda A, Ghosh TC (May 2016). "Overlapping genes: A significant genomic correlate of prokaryotic growth rates".
4525:"Decision letter: Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins" 269: 4300:"Overlapping genes and the proteins they encode differ significantly in their sequence composition from non-overlapping genes" 74:
at any point of the overlapping region would affect the transcripts of all genes involved. This definition includes 5′ and 3′
2175: 1290: 297:. This phenomenon of overlapping genes experiencing different selection pressures is suggested to be a consequence of a high 813:. Attempts at proof-by-synthesis are also performed to show beyond doubt the absence of any undiscovered overlapping genes. 1745:"Conserved and non-conserved regions in the Sendai virus genome: Evolution of a gene possessing overlapping reading frames" 378:
of the overlapping genes. Gene overlaps introduce novel evolutionary constraints on the sequences of the overlap regions.
1678:"Positive Selection or Free to Vary? Assessing the Functional Significance of Sequence Change Using Molecular Dynamics" 639:. In some cases overprinted proteins do have well-defined, but novel, three-dimensional structures; one example is the 463: 2193:"Birth of a unique enzyme from an alternative reading frame of the preexisted, internally repetitious coding sequence" 780:
methods have been essential in discovering numerous overlapping genes and include a combination of techniques such as
66:
transcripts, and is defined when these coding sequences share a nucleotide on either the same or opposite strands. In
50:. The current definition of an overlapping gene varies significantly between eukaryotes, prokaryotes, and viruses. In 3027:"Overlapping Genes Produce Proteins with Unusual Sequence Properties and Offer Insight into De Novo Protein Creation" 1533:
Normark S., Bergstrom S., Edlund T., Grundstrom T., Jaurin B., Lindberg F.P., Olsson O. (1983). "Overlapping genes".
451: 281: 3432:"New genes from non-coding sequence: the role of de novo protein-coding genes in eukaryotic evolutionary innovation" 3373:"Evidence for the recent origin of a bacterial protein-coding, overlapping orphan gene by evolutionary overprinting" 623:
Studies of overprinted viral genes suggest that their protein products tend to be accessory proteins which are not
402:
associated with blood cancers. This region contains numerous overlapping genes, several of which likely originated
120:
also believed to be a source of novel proteins, as de novo proteins coded by these novel genes usually lack remote
145:
Tandem out-of-phase overlap of the human mitochondrial genes ATP8 (+1 frame, in red) and ATP6 (+3 frame, in blue)
4680:
Cao X, Khitun A, Luo Y, Na Z, Phoodokmai T, Sappakhaw K, Olatunji E, Uttamapinant C, Slavoff SA (5 March 2020).
1847:
Stamenković GG, Ćirković VS, Šiljić MM, Blagojević JV, Knežević AM, Joksić ID, Stanojević MP (24 October 2016).
552:
of the original A protein but possessing a different function It was concluded that other undiscovered sites of
108:
while still preserving the function of the original gene. Overprinting has been hypothesized as a mechanism for
4571:"Faculty Opinions recommendation of Pervasive functional translation of noncanonical human open reading frames" 742:, believed to be the result of the strict physical constraints imposed by the finite capsid volume. Studies on 556:
could be hidden through the genome due to overlapping genes. An identified de novo gene of another overlapping
727:
has also been created where all gene overlaps were removed proving they were not necessary for replication.
101: 640: 492: 395: 277: 1435:
Fukuda Y, Nakayama Y, Tomita M (December 2003). "On dynamics of overlapping genes in bacterial genomes".
599:
The proportion of viruses with overlapping coding sequences within their genomes varies. Double-stranded
545: 149:
Genes may overlap in a variety of ways and can be classified by their positions relative to each other.
753:
showed that viral packaging is constrained by genetic cargo size limits, requiring the use of multiple
750: 302: 3815:"Genome Modularization Reveals Overlapped Gene Topology Is Necessary for Efficient Viral Reproduction" 301:
of nucleotide substitution with different effects on the two frames; the substitutions may be majorly
88:
refers to a type of overlap in which all or part of the sequence of one gene is read in an alternate
4609: 4555: 4509: 4463: 4298:
Pavesi A, Vianelli A, Chirico N, Bao Y, Blinkova O, Belshaw R, Firth A, Karlin D (19 October 2018).
4479:"Faculty Opinions recommendation of The RAST Server: rapid annotations using subsystems technology" 673: 496: 368: 141: 689:. Robustly validated examples of long overlaps in bacterial genomes are rare; in the well-studied 3869: 3322:"Large gene overlaps in prokaryotic genomes: result of functional constraints or mispredictions?" 2970:"New insights into the evolutionary features of viral overlapping genes by discriminant analysis" 1093:
Normark S, Bergström S, Edlund T, Grundström T, Jaurin B, Lindberg FP, Olsson O (December 1983).
754: 306: 4625:"Noncanonical open reading frames encode functional proteins essential for cancer cell survival" 418:
by mutations to introduce novel ORFs in alternate reading frames; he described the mechanism as
743: 677: 372: 216: 3074:
Abroi A (1 December 2015). "A protein domain-based view of the virosphere–host relationship".
685:
are more common for convergent genes; however, putative long overlaps have very high rates of
4596: 4542: 4496: 4450: 290: 265: 234: 32: 583:
toward small genome sizes mediated by the physical constraints of packaging the genome in a
411: 4752: 4693: 4378: 4311: 3969: 3909:"A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast" 3718: 3659: 3551: 3384: 3229: 2555: 2492: 2432: 2374: 2204: 2071: 1974: 1860: 1689: 1626: 1388: 1332: 1215: 1156: 810: 781: 553: 427: 8: 1094: 806: 286: 237:. The proteins and the overlap region are highly conserved when strong selection against 75: 4756: 4682:"Alt-RPL36 downregulates the PI3K-AKT-mTOR signaling pathway by interacting with TMEM24" 4382: 4315: 3973: 3722: 3663: 3555: 3388: 3233: 2559: 2496: 2436: 2378: 2208: 2075: 1978: 1864: 1693: 1630: 1546: 1392: 1336: 1219: 1160: 1110: 317:
Overlapping genes are particularly common in rapidly evolving genomes, such as those of
229:
is three nucleotides long, an offset of three nucleotides is an in-phase, phase 0 frame.
4783: 4740: 4716: 4681: 4657: 4584: 4409: 4366: 4342: 4299: 4275: 4223: 4210: 4185: 4161: 4109: 3870:"Translational Coupling Controls Expression and Function of the DrrAB Drug Efflux Pump" 3850: 3790: 3765: 3741: 3706: 3682: 3647: 3574: 3539: 3510: 3483: 3456: 3431: 3407: 3372: 3348: 3321: 3297: 3272: 3253: 3194: 3159: 3140: 3051: 3026: 3002: 2945: 2910: 2886: 2829: 2767: 2740: 2716: 2691: 2639: 2587: 2524: 2453: 2420: 2398: 2337: 2312: 2281: 2256: 2143: 2119:"A Simple Method for Estimating the Strength of Natural Selection on Overlapping Genes" 2118: 2094: 2059: 1997: 1962: 1943: 1930: 1913: 1889: 1780: 1720: 1677: 1658: 1412: 1355: 1320: 1070: 1035: 942: 909: 874: 845: 785: 636: 580: 334: 109: 4088: 4071: 4000: 3957: 3623: 3598: 3127: 2227: 2192: 1588: 1507: 1482: 1036:"Origin, Evolution and Stability of Overlapping Genes in Viruses: A Systematic Review" 1004: 971: 4788: 4770: 4721: 4662: 4644: 4588: 4414: 4396: 4347: 4329: 4280: 4262: 4227: 4215: 4166: 4148: 4101: 4093: 4052: 4044: 4040: 4005: 3987: 3938: 3930: 3889: 3854: 3842: 3834: 3814: 3795: 3746: 3687: 3628: 3579: 3515: 3461: 3412: 3353: 3302: 3245: 3199: 3181: 3132: 3091: 3056: 3007: 2989: 2950: 2932: 2891: 2873: 2834: 2816: 2772: 2721: 2644: 2626: 2579: 2571: 2516: 2508: 2458: 2390: 2342: 2286: 2232: 2171: 2148: 2099: 2037: 2002: 1935: 1894: 1876: 1829: 1821: 1772: 1764: 1725: 1707: 1650: 1642: 1592: 1550: 1512: 1452: 1404: 1360: 1286: 1251: 1246: 1233: 1203: 1184: 1179: 1144: 1122: 1114: 1075: 1057: 1009: 947: 929: 879: 686: 258: 121: 4113: 3257: 3144: 1784: 1662: 846:"Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic" 4778: 4760: 4711: 4703: 4652: 4636: 4574: 4528: 4482: 4436: 4433:"Supplemental Information 2: NCBI genome database accession information (PDF file)" 4404: 4386: 4337: 4319: 4270: 4254: 4205: 4197: 4156: 4140: 4083: 4036: 3995: 3977: 3920: 3881: 3826: 3785: 3777: 3736: 3726: 3677: 3667: 3618: 3610: 3569: 3559: 3505: 3495: 3451: 3443: 3402: 3392: 3343: 3333: 3292: 3284: 3237: 3189: 3171: 3122: 3083: 3046: 3038: 2997: 2981: 2940: 2922: 2881: 2865: 2824: 2808: 2762: 2752: 2711: 2703: 2634: 2618: 2591: 2563: 2528: 2500: 2448: 2440: 2402: 2382: 2332: 2324: 2276: 2268: 2222: 2212: 2138: 2130: 2089: 2079: 2029: 1992: 1982: 1947: 1925: 1884: 1868: 1811: 1756: 1715: 1697: 1634: 1584: 1542: 1502: 1494: 1444: 1416: 1396: 1350: 1340: 1278: 1241: 1223: 1174: 1164: 1106: 1065: 1047: 999: 991: 937: 921: 869: 859: 802: 730:
The retention and evolution of overlapping genes within viruses may also be due to
694: 557: 528: 520: 431: 345: 196:
ends of the two genes overlap on opposite strands. This can be written as ← →.
182:
ends of the two genes overlap on opposite strands. This can be written as → ←.
93: 4579: 4570: 4024: 3110: 1270: 344:
By extension of an existing ORF upstream into a contiguous gene due to loss of an
96:. The alternative open reading frames (ORF) are thought to be created by critical 4391: 4324: 4242: 3731: 3087: 2969: 2084: 1702: 1345: 1282: 669: 562: 472: 399: 375: 130: 4624: 4441: 4432: 4258: 4201: 3925: 3908: 3273:"Origin and Length Distribution of Unidirectional Prokaryotic Overlapping Genes" 2985: 2664:"Scientists Just Found a Mysteriously Hidden 'Gene Within a Gene' in SARS-CoV-2" 2272: 1816: 1799: 698:, only four gene pairs are well validated as having long, overprinted overlaps. 4813: 4707: 4640: 2197:
Proceedings of the National Academy of Sciences of the United States of America
2033: 1448: 1149:
Proceedings of the National Academy of Sciences of the United States of America
925: 789: 777: 767: 690: 624: 386: 352: 294: 116: 97: 40: 4698: 3885: 3830: 3397: 3241: 2927: 2757: 1760: 4807: 4774: 4648: 4487: 4478: 4400: 4333: 4266: 4152: 4097: 4048: 3991: 3934: 3838: 3672: 3185: 3176: 2993: 2936: 2877: 2820: 2630: 2575: 2512: 2421:"Recognition of small interfering RNA by a viral suppressor of RNA silencing" 1880: 1825: 1768: 1744: 1711: 1646: 1237: 1118: 1061: 933: 747: 721: 681:
overlaps are more commonly read in phase 2. Long overlaps of greater than 60
628: 616: 536: 524: 504: 439: 394:
indicating the likely evolutionary trajectory of the gene-dense pX region in
359:
The use of the same nucleotide sequence to encode multiple genes may provide
298: 205: 89: 63: 59: 4765: 4533: 4524: 4243:"Gene Birth Contributes to Structural Disorder Encoded by Overlapping Genes" 3564: 3500: 3338: 2853: 2328: 2257:"Gene Birth Contributes to Structural Disorder Encoded by Overlapping Genes" 1532: 1228: 1169: 995: 771:
within another gene. Furthermore, some bioinformatics pipelines such as the
603:
have fewer than a quarter that contains them while almost three-quarters of
4792: 4725: 4666: 4418: 4351: 4284: 4219: 4170: 4009: 3982: 3942: 3893: 3846: 3799: 3750: 3691: 3632: 3583: 3519: 3465: 3447: 3416: 3357: 3306: 3249: 3203: 3136: 3095: 3060: 3011: 2954: 2895: 2869: 2838: 2776: 2725: 2707: 2668: 2648: 2480: 2462: 2346: 2290: 2217: 2152: 2103: 2041: 2006: 1987: 1939: 1898: 1833: 1776: 1729: 1596: 1516: 1456: 1364: 1079: 1013: 951: 883: 648: 584: 499:, a protein encoded by an overprinted gene. The protein specifically binds 443: 326: 36: 4105: 4025:"Packaging of the bacteriophage λ chromosome: Effect of chromosome length" 3781: 3288: 2606: 2583: 2520: 2236: 2168:
Evolution of Living Organisms: Evidence for a New Theory of Transformation
1654: 1554: 1408: 1255: 1188: 1126: 1052: 16:
A gene whose sequence partially overlaps the reading frame of another gene
4741:"Definitive demonstration by synthesis of genome annotation completeness" 4128: 4072:"Effects of genome size on bacteriophage phi X174 DNA packaging in vitro" 4056: 3907:
Jaschke PR, Lieberman EK, Rodriguez J, Sierra A, Endy D (December 2012).
3042: 2812: 2622: 2394: 2134: 1615:"Constrained evolution with respect to gene overlap of hepatitis B virus" 1613:
Mizokami M, Orito E, Ohba Ki, Ikeo K, Lau JY, Gojobori T (January 1997).
822: 793: 739: 644: 588: 541: 447: 435: 423: 273: 243: 4144: 2796: 2444: 1614: 1483:"Properties of overlapping genes are conserved across microbial genomes" 864: 438:. Which member of an overlapping gene pair is younger can be identified 124:
in databases. Overprinted genes are particularly common features of the
3614: 3025:
Rancurel C, Khosravi M, Dunker AK, Romero PR, Karlin D (29 July 2009).
1848: 1638: 1498: 632: 604: 549: 487: 338: 251: 247: 238: 51: 3436:
Philosophical Transactions of the Royal Society B: Biological Sciences
2543: 1872: 2567: 2504: 2386: 1963:"The origin of a novel gene through overprinting in Escherichia coli" 1400: 735: 682: 608: 600: 544:
within the genome replication gene A of ΦX174 was shown to express a
512: 511:
The existence of overlapping genes was first identified in the virus
391: 360: 67: 39:. Overlapping genes are present in and a fundamental feature of both 3111:"Size Selective Recognition of siRNA by an RNA Silencing Suppressor" 761: 1846: 664: 322: 71: 4739:
Jaschke PR, Dotson GA, Hung KS, Liu D, Endy D (12 November 2019).
724: 257:
However, these overlap regions are known to be less important for
2544:"Intragenic regulation of the synthesis of ΦX174 gene A proteins" 1676:
Allison JR, Lechner M, Hoeppner MP, Poole AM (12 February 2016).
969: 797: 772: 532: 523:
in 1977. Previous analysis of ΦX174, a small single-stranded DNA
475:, though with varying frequencies. They are especially common in 414:
proposed that one of the genes in the pair could have originated
125: 105: 2313:"Evolution of Viral Proteins Originated De Novo by Overprinting" 1092: 3906: 1377: 1319:
Pavesi A, Magiorkinis G, Karlin DG, Wilke CO (15 August 2013).
731: 612: 516: 364: 79: 47: 3813:
Wright BW, Ruan J, Molloy MP, Jaschke PR (20 November 2020).
1742: 850: 652: 576: 567: 500: 476: 351:
By generation of a novel ORF within an existing one due to a
337:(ORF) downstream into a contiguous gene due to the loss of a 318: 226: 193: 179: 165: 161: 55: 44: 3370: 3109:
Vargason JM, Szittya G, Burgyán J, Hall TM (December 2003).
3024: 1574: 1318: 3958:"Redundancy, antiredundancy, and the robustness of genomes" 3481: 2605:
Roznowski AP, Doore SM, Kemp SZ, Fane BA (6 January 2020).
1849:"Substitution rate and natural selection in parvovirus B19" 1675: 28: 3707:"De Novo Origin of Protein-Coding Genes in Murine Rodents" 3599:"Mammalian Overlapping Genes: The Comparative Perspective" 3108: 2911:"Gene overlapping and size constraints in the viral world" 2797:"Properties and abundance of overlapping genes in viruses" 2741:"Gene overlapping and size constraints in the viral world" 1960: 972:"Comparative study of overlapping genes in the genomes of 115:
from existing sequences, either older genes or previously
4183: 2060:"Evolutionary Dynamics of Overlapped Genes in Salmonella" 2058:
Luo Y, Battistuzzi F, Lin K, Gibas C (29 November 2013).
4297: 4622: 4364: 4022: 3812: 2858:
Proceedings of the Royal Society B: Biological Sciences
2696:
Proceedings of the Royal Society B: Biological Sciences
3537: 2851: 2689: 2604: 2057: 1204:"Origins of genes: "big bang" or continuous creation?" 1145:"Origins of genes: "big bang" or continuous creation?" 762:
Methods in identifying overlapping genes and ORFs
100:
within an expressible pre-existing gene, which can be
4365:
Pavesi A, Magiorkinis G, Karlin DG (15 August 2013).
3766:"Recent de novo origin of human protein-coding genes" 3705:
Murphy DN, McLysaght A, Carmel L (21 November 2012).
3704: 3319: 2364: 1612: 910:"Overlapping genes in natural and engineered genomes" 4738: 4023:
Feiss M, Fisher R, Crayton M, Egner C (March 1977).
2019: 1743:
Fujii Y, Kiyotani K, Yoshida T, Sakaguchi T (2001).
1434: 579:
genomes. Some studies attribute this observation to
575:
virus. Overlapping genes are particularly common in
3271:Fonseca MM, Harris DJ, Posada D (5 November 2013). 3270: 2478: 908:Wright BW, Molloy MP, Jaschke PR (5 October 2021). 907: 3533: 3531: 3529: 3484:"Overlapping genes in the human and mouse genomes" 3160:"Overlapping genes: a window on gene evolvability" 2479:Barrell BG, Air GM, Hutchison CA (November 1976). 2310: 450:. Younger members of the pair tend to have higher 3540:"Birth and death of gene overlaps in vertebrates" 3429: 1961:Delaye L, DeLuna A, Lazcano A, Becerra A (2008). 4805: 3763: 2852:Chirico N, Vianelli A, Belshaw R (7 July 2010). 2690:Chirico N, Vianelli A, Belshaw R (7 July 2010). 4745:Proceedings of the National Academy of Sciences 4129:"Effect of Genome Size on AAV Vector Packaging" 3962:Proceedings of the National Academy of Sciences 3955: 3526: 2418: 1570: 1568: 1566: 1564: 1528: 1526: 1480: 1476: 1474: 1472: 1470: 1468: 1466: 1208:Proceedings of the National Academy of Sciences 844:Nelson, Chase W, et al. (1 October 2020). 843: 4679: 3645: 3596: 3423: 2419:Ye K, Malinina L, Patel DJ (3 December 2003). 2360: 2358: 2356: 2306: 2304: 2302: 2300: 2250: 2248: 2246: 1914:"Stability and Evolution of Overlapping Genes" 1430: 1428: 1426: 1277:, Cambridge University Press, pp. 76–90, 4069: 3867: 3477: 3475: 3219: 3102: 3018: 2908: 2738: 2541: 2311:Sabath N, Wagner A, Karlin D (19 July 2012). 1905: 1797: 1371: 1314: 1312: 1310: 1308: 965: 963: 961: 839: 837: 738:by >1% results in almost complete loss of 4126: 3764:Knowles DG, McLysaght A (2 September 2009). 3757: 3364: 3313: 3264: 3215: 3213: 2794: 2732: 2683: 1561: 1523: 1463: 1138: 1136: 200:Overlapping genes can also be classified by 4240: 3956:Krakauer DC, Plotkin JB (29 January 2002). 3698: 3639: 3157: 2655: 2353: 2297: 2254: 2243: 2159: 2053: 2051: 1954: 1423: 635:distributions and high levels of intrinsic 519:was the first DNA genome ever sequenced by 3590: 3538:Makałowska I, Lin CF, Hernandez K (2007). 3472: 3430:McLysaght A, Guerzoni D (31 August 2015). 3151: 3067: 2481:"Overlapping genes in bacteriophage φX174" 2414: 2412: 1305: 1268: 1201: 1142: 970:Y. Fukuda, M. Tomita et T. Washio (1999). 958: 834: 811:catalytically dead Cas9 (dCas9) disruption 631:. Overprinted proteins often have unusual 627:to viral proliferation, but contribute to 4782: 4764: 4715: 4697: 4656: 4578: 4568: 4532: 4486: 4440: 4408: 4390: 4341: 4323: 4274: 4209: 4160: 4087: 3999: 3981: 3924: 3789: 3740: 3730: 3681: 3671: 3622: 3573: 3563: 3509: 3499: 3455: 3406: 3396: 3347: 3337: 3320:Pallejà A, Harrington ED, Bork P (2008). 3296: 3210: 3193: 3175: 3126: 3050: 3001: 2944: 2926: 2885: 2828: 2766: 2756: 2715: 2638: 2452: 2336: 2280: 2226: 2216: 2184: 2142: 2093: 2083: 2013: 1996: 1986: 1929: 1888: 1815: 1719: 1701: 1506: 1354: 1344: 1271:"In search of the origins of viral genes" 1245: 1227: 1178: 1168: 1133: 1069: 1051: 1003: 941: 873: 863: 548:with an identical coding sequence to the 458: 3868:Pradhan P, Li W, Kaur P (January 2009). 2661: 2116: 2110: 2048: 1911: 672:, permitting the overlapped genes to be 651:and a novel binding mode in recognizing 486: 462: 385: 140: 4522: 4127:Wu Z, Yang H, Colosi P (January 2010). 2795:Schlub TE, Holmes EC (1 January 2020). 2409: 381: 4806: 4070:Aoyama A, Hayashi M (September 1985). 2967: 2165: 1033: 329:. They may originate in three ways: 4476: 3158:Huvet M, Stumpf MP (1 January 2014). 3073: 2790: 2788: 2786: 2474: 2472: 1608: 1606: 1269:Gibbs A, Keese PK (19 October 1995), 1202:Keese PK, Gibbs A (15 October 1992). 1143:Keese PK, Gibbs A (15 October 1992). 3597:Veeramachaneni V (1 February 2004). 3482:C. Sanna, W. Li et L. Zhang (2008). 2190: 1798:Guyader S, Ducray DG (1 July 2002). 1029: 1027: 1025: 1023: 903: 901: 899: 897: 895: 893: 565:of viruses. Another example is the 434:, contributing to the prevalence of 367:size and due to the opportunity for 2909:Brandes N, Linial M (21 May 2016). 2739:Brandes N, Linial M (21 May 2016). 2117:Wei X, Zhang J (31 December 2014). 1547:10.1146/annurev.ge.17.120183.002435 1111:10.1146/annurev.ge.17.120183.002435 535:produced during infection required 446:distribution, or by less optimized 13: 4241:Willis S, Masel J (19 July 2018). 2783: 2469: 2255:Willis S, Masel J (19 July 2018). 1931:10.1111/j.0014-3820.2000.tb00075.x 1603: 1275:Molecular Basis of Virus Evolution 164:end of one gene overlaps with the 14: 4825: 1020: 890: 305:for one frame while mostly being 136: 4569:Bazzini A, Wu Q (6 March 2020). 2542:LINNEY E, HAYASHI M (May 1974). 503:produced as part of the plant's 422:. It was later substantiated by 204:, which describe their relative 4732: 4673: 4616: 4562: 4523:Ben-Tal N, ed. (23 June 2017). 4516: 4470: 4425: 4358: 4291: 4234: 4177: 4120: 4076:Journal of Biological Chemistry 4063: 4016: 3949: 3900: 3861: 3806: 3646:Behura SK, Severson DW (2013). 2961: 2902: 2845: 2662:Dockrill P (11 November 2020). 2598: 2535: 2317:Molecular Biology and Evolution 1840: 1791: 1736: 1669: 711:in a given eukaryotic lineage. 471:Overlapping genes occur in all 3222:Journal of Molecular Evolution 2854:"Why genes overlap in viruses" 2692:"Why genes overlap in viruses" 1619:Journal of Molecular Evolution 1481:Johnson Z, Chisholm S (2004). 1262: 1195: 1086: 658: 363:advantage due to reduction in 92:from another gene at the same 1: 4580:10.3410/f.737484924.793572056 4089:10.1016/s0021-9258(17)39144-5 3128:10.1016/S0092-8674(03)00984-X 1589:10.1016/S0168-9525(02)02649-5 828: 766:Standardized methods such as 701: 663:Estimates of gene overlap in 452:intrinsic structural disorder 4392:10.1371/journal.pcbi.1003162 4325:10.1371/journal.pone.0202513 4041:10.1016/0042-6822(77)90425-1 3874:Journal of Molecular Biology 3732:10.1371/journal.pone.0048650 3277:G3: Genes, Genomes, Genetics 3088:10.1016/j.biochi.2015.08.008 2123:Genome Biology and Evolution 2085:10.1371/journal.pone.0081016 1703:10.1371/journal.pone.0147619 1346:10.1371/journal.pcbi.1003162 1283:10.1017/cbo9780511661686.008 641:RNA silencing suppressor p19 493:RNA silencing suppressor p19 442:either by a more restricted 396:human T-lymphotropic virus 1 333:By extension of an existing 312: 7: 4259:10.1534/genetics.118.301249 4202:10.1016/j.ymthe.2021.03.023 3926:10.1016/j.virol.2012.09.020 2986:10.1016/j.virol.2020.03.007 2273:10.1534/genetics.118.301249 1817:10.1099/0022-1317-83-7-1799 1804:Journal of General Virology 816: 714: 609:single-stranded DNA genomes 527:that infected the bacteria 10: 4830: 4708:10.1038/s41467-020-20841-6 4641:10.1038/s41587-020-00806-2 4371:PLOS Computational Biology 2034:10.1016/j.gene.2016.02.002 1449:10.1016/j.gene.2003.09.021 1325:PLOS Computational Biology 926:10.1038/s41576-021-00417-w 482: 4699:10.1101/2020.03.04.977314 4477:Ahmed N (27 March 2009). 4442:10.7717/peerj.6447/supp-2 3886:10.1016/j.jmb.2008.11.027 3831:10.1021/acssynbio.0c00323 3398:10.1186/s12862-015-0558-z 3242:10.1007/s00239-006-0180-1 2928:10.1186/s13062-016-0128-3 2758:10.1186/s13062-016-0128-3 1912:Krakauer DC (June 2000). 1535:Annual Review of Genetics 1099:Annual Review of Genetics 647:, which has both a novel 268:while the other is under 4488:10.3410/f.1157743.618965 3673:10.1186/1471-2148-13-124 3652:BMC Evolutionary Biology 3544:BMC Evolutionary Biology 3377:BMC Evolutionary Biology 3177:10.1186/1471-2164-15-721 1967:BMC Evolutionary Biology 1034:Pavesi A (26 May 2021). 744:adeno-associated viruses 507:defense against viruses. 497:tomato bushy stunt virus 98:nucleotide substitutions 58:overlap must be between 4766:10.1073/pnas.1905990116 4534:10.7554/elife.27860.082 3565:10.1186/1471-2148-7-193 3501:10.1186/1471-2164-9-169 3339:10.1186/1471-2164-9-335 1761:10.1023/a:1008130318633 1229:10.1073/pnas.89.20.9489 1170:10.1073/pnas.89.20.9489 914:Nature Reviews Genetics 217:alternative start sites 4604:Cite journal requires 4550:Cite journal requires 4504:Cite journal requires 4458:Cite journal requires 3983:10.1073/pnas.032668599 3448:10.1098/rstb.2014.0332 2968:Pavesi A (July 2020). 2870:10.1098/rspb.2010.1052 2708:10.1098/rspb.2010.1052 2218:10.1073/pnas.81.8.2421 1988:10.1186/1471-2148-8-31 587:, particularly one of 542:alternative start site 508: 468: 459:Taxonomic distribution 407: 146: 113:emergence of new genes 4686:Nature Communications 3819:ACS Synthetic Biology 3782:10.1101/gr.095026.109 3289:10.1534/g3.113.005652 2329:10.1093/molbev/mss179 2191:Ohno S (April 1984). 1053:10.3390/genes12060809 996:10.1093/nar/27.8.1847 978:Mycoplasma pneumoniae 974:Mycoplasma genitalium 554:polypeptide synthesis 531:, suggested that the 490: 466: 406:through overprinting. 389: 309:for the other frame. 291:potato leafroll virus 223:Out-of-phase overlaps 144: 4629:Nature Biotechnology 3043:10.1128/JVI.00595-09 2623:10.1128/jvi.01593-19 805:techniques, such as 782:bottom-up proteomics 382:Origins of new genes 131:evolutionary history 76:untranslated regions 4757:2019PNAS..11624206J 4751:(48): 24206–24213. 4383:2013PLSCB...9E3162P 4316:2018PLoSO..1302513P 4145:10.1038/mt.2009.255 4082:(20): 11033–11038. 3974:2002PNAS...99.1405K 3723:2012PLoSO...748650M 3664:2013BMCEE..13..124B 3556:2007BMCEE...7..193M 3389:2015BMCEE..15..283F 3234:2007JMolE..64..457C 3037:(20): 10719–10736. 3031:Journal of Virology 2864:(1701): 3809–3817. 2702:(1701): 3809–3817. 2611:Journal of Virology 2560:1974Natur.249..345L 2497:1976Natur.264...34B 2445:10.1038/nature02213 2437:2003Natur.426..874Y 2379:1977Natur.265..687S 2209:1984PNAS...81.2421O 2076:2013PLoSO...881016L 1979:2008BMCEE...8...31D 1865:2016NatSR...635759S 1694:2016PLoSO..1147619A 1631:1997JMolE..44S..83M 1393:1981Natur.290..457A 1337:2013PLSCB...9E3162P 1220:1992PNAS...89.9489K 1161:1992PNAS...89.9489K 1095:"Overlapping Genes" 865:10.7554/eLife.59633 270:purifying selection 235:selection pressures 104:to express a novel 33:nucleotide sequence 3615:10.1101/gr.1590904 3442:(1678): 20140332. 2813:10.1093/ve/veaa009 2170:. Academic Press. 2166:Grassé PP (1977). 2135:10.1093/gbe/evu294 1853:Scientific Reports 1639:10.1007/pl00000061 1577:Trends in Genetics 1499:10.1101/gr.2433104 786:ribosome profiling 596:genes in viruses. 581:selective pressure 509: 469: 412:Pierre-Paul Grassé 408: 335:open reading frame 266:positive selection 147: 78:(UTRs) along with 31:whose expressible 4190:Molecular Therapy 4133:Molecular Therapy 3825:(11): 3079–3090. 3776:(10): 1752–1759. 2554:(5455): 345–348. 2431:(6968): 874–878. 2323:(12): 3767–3780. 2177:978-1-4832-7409-6 1873:10.1038/srep35759 1387:(5806): 457–465. 1292:978-0-521-45533-6 1214:(20): 9489–9493. 984:Nucleic Acids Res 768:genome annotation 674:transcriptionally 607:and viruses with 546:truncated protein 440:bioinformatically 244:hepatitis B virus 219:of the same gene. 4821: 4797: 4796: 4786: 4768: 4736: 4730: 4729: 4719: 4701: 4677: 4671: 4670: 4660: 4620: 4614: 4613: 4607: 4602: 4600: 4592: 4582: 4566: 4560: 4559: 4553: 4548: 4546: 4538: 4536: 4520: 4514: 4513: 4507: 4502: 4500: 4492: 4490: 4474: 4468: 4467: 4461: 4456: 4454: 4446: 4444: 4429: 4423: 4422: 4412: 4394: 4362: 4356: 4355: 4345: 4327: 4310:(10): e0202513. 4295: 4289: 4288: 4278: 4238: 4232: 4231: 4213: 4181: 4175: 4174: 4164: 4124: 4118: 4117: 4091: 4067: 4061: 4060: 4020: 4014: 4013: 4003: 3985: 3968:(3): 1405–1409. 3953: 3947: 3946: 3928: 3904: 3898: 3897: 3865: 3859: 3858: 3810: 3804: 3803: 3793: 3761: 3755: 3754: 3744: 3734: 3702: 3696: 3695: 3685: 3675: 3643: 3637: 3636: 3626: 3594: 3588: 3587: 3577: 3567: 3535: 3524: 3523: 3513: 3503: 3479: 3470: 3469: 3459: 3427: 3421: 3420: 3410: 3400: 3368: 3362: 3361: 3351: 3341: 3317: 3311: 3310: 3300: 3268: 3262: 3261: 3217: 3208: 3207: 3197: 3179: 3155: 3149: 3148: 3130: 3106: 3100: 3099: 3071: 3065: 3064: 3054: 3022: 3016: 3015: 3005: 2965: 2959: 2958: 2948: 2930: 2906: 2900: 2899: 2889: 2849: 2843: 2842: 2832: 2792: 2781: 2780: 2770: 2760: 2736: 2730: 2729: 2719: 2687: 2681: 2680: 2678: 2676: 2659: 2653: 2652: 2642: 2602: 2596: 2595: 2568:10.1038/249345a0 2539: 2533: 2532: 2505:10.1038/264034a0 2476: 2467: 2466: 2456: 2416: 2407: 2406: 2387:10.1038/265687a0 2373:(5596): 687–95. 2362: 2351: 2350: 2340: 2308: 2295: 2294: 2284: 2252: 2241: 2240: 2230: 2220: 2188: 2182: 2181: 2163: 2157: 2156: 2146: 2114: 2108: 2107: 2097: 2087: 2055: 2046: 2045: 2017: 2011: 2010: 2000: 1990: 1958: 1952: 1951: 1933: 1909: 1903: 1902: 1892: 1844: 1838: 1837: 1819: 1810:(7): 1799–1807. 1795: 1789: 1788: 1740: 1734: 1733: 1723: 1705: 1673: 1667: 1666: 1610: 1601: 1600: 1572: 1559: 1558: 1530: 1521: 1520: 1510: 1478: 1461: 1460: 1432: 1421: 1420: 1401:10.1038/290457a0 1375: 1369: 1368: 1358: 1348: 1316: 1303: 1302: 1301: 1299: 1266: 1260: 1259: 1249: 1231: 1199: 1193: 1192: 1182: 1172: 1140: 1131: 1130: 1090: 1084: 1083: 1073: 1055: 1031: 1018: 1017: 1007: 990:(8): 1847–1853. 967: 956: 955: 945: 905: 888: 887: 877: 867: 841: 803:reverse genetics 695:Escherichia coli 537:coding sequences 529:Escherichia coli 521:Frederick Sanger 432:gene duplication 428:subfunctionalize 346:initiation codon 213:In-phase overlap 60:coding sequences 21:overlapping gene 4829: 4828: 4824: 4823: 4822: 4820: 4819: 4818: 4804: 4803: 4800: 4737: 4733: 4678: 4674: 4621: 4617: 4605: 4603: 4594: 4593: 4567: 4563: 4551: 4549: 4540: 4539: 4521: 4517: 4505: 4503: 4494: 4493: 4475: 4471: 4459: 4457: 4448: 4447: 4431: 4430: 4426: 4377:(8): e1003162. 4363: 4359: 4296: 4292: 4239: 4235: 4182: 4178: 4125: 4121: 4068: 4064: 4021: 4017: 3954: 3950: 3905: 3901: 3866: 3862: 3811: 3807: 3770:Genome Research 3762: 3758: 3703: 3699: 3644: 3640: 3603:Genome Research 3595: 3591: 3536: 3527: 3480: 3473: 3428: 3424: 3369: 3365: 3318: 3314: 3269: 3265: 3218: 3211: 3156: 3152: 3107: 3103: 3072: 3068: 3023: 3019: 2966: 2962: 2907: 2903: 2850: 2846: 2801:Virus Evolution 2793: 2784: 2737: 2733: 2688: 2684: 2674: 2672: 2660: 2656: 2603: 2599: 2540: 2536: 2491:(5581): 34–41. 2477: 2470: 2417: 2410: 2363: 2354: 2309: 2298: 2253: 2244: 2189: 2185: 2178: 2164: 2160: 2115: 2111: 2056: 2049: 2018: 2014: 1959: 1955: 1910: 1906: 1845: 1841: 1796: 1792: 1741: 1737: 1688:(2): e0147619. 1674: 1670: 1625:(S1): S83–S90. 1611: 1604: 1573: 1562: 1531: 1524: 1493:(11): 2268–72. 1479: 1464: 1433: 1424: 1376: 1372: 1331:(8): e1003162. 1317: 1306: 1297: 1295: 1293: 1267: 1263: 1200: 1196: 1155:(20): 9489–93. 1141: 1134: 1091: 1087: 1032: 1021: 968: 959: 906: 891: 842: 835: 831: 819: 764: 717: 704: 678:translationally 670:gene regulation 661: 485: 473:domains of life 461: 400:deltaretrovirus 384: 369:transcriptional 315: 276:, the proteins 139: 17: 12: 11: 5: 4827: 4817: 4816: 4799: 4798: 4731: 4672: 4635:(6): 697–704. 4615: 4606:|journal= 4561: 4552:|journal= 4515: 4506:|journal= 4469: 4460:|journal= 4424: 4357: 4290: 4253:(1): 303–313. 4233: 4196:(1): 223–237. 4176: 4119: 4062: 4035:(1): 281–293. 4015: 3948: 3919:(2): 278–284. 3899: 3880:(3): 831–842. 3860: 3805: 3756: 3717:(11): e48650. 3697: 3638: 3609:(2): 280–286. 3589: 3525: 3471: 3422: 3363: 3312: 3263: 3228:(4): 457–462. 3209: 3150: 3121:(7): 799–811. 3101: 3066: 3017: 2960: 2915:Biology Direct 2901: 2844: 2807:(1): veaa009. 2782: 2745:Biology Direct 2731: 2682: 2654: 2597: 2534: 2468: 2408: 2352: 2296: 2267:(1): 303–313. 2242: 2183: 2176: 2158: 2129:(1): 381–390. 2109: 2070:(11): e81016. 2047: 2028:(2): 143–147. 2012: 1953: 1924:(3): 731–739. 1904: 1839: 1790: 1735: 1668: 1602: 1583:(5): 228–232. 1560: 1522: 1462: 1422: 1370: 1304: 1291: 1261: 1194: 1132: 1105:(1): 499–525. 1085: 1019: 957: 920:(3): 154–168. 889: 832: 830: 827: 826: 825: 818: 815: 798:RNA sequencing 790:DNA sequencing 763: 760: 716: 713: 703: 700: 691:model organism 660: 657: 617:mutation rates 484: 481: 460: 457: 383: 380: 357: 356: 353:point mutation 349: 342: 314: 311: 303:non-synonymous 295:parvovirus B19 250:domain of the 231: 230: 220: 206:reading frames 198: 197: 183: 169: 154:Unidirectional 138: 137:Classification 135: 15: 9: 6: 4: 3: 2: 4826: 4815: 4812: 4811: 4809: 4802: 4794: 4790: 4785: 4780: 4776: 4772: 4767: 4762: 4758: 4754: 4750: 4746: 4742: 4735: 4727: 4723: 4718: 4713: 4709: 4705: 4700: 4695: 4691: 4687: 4683: 4676: 4668: 4664: 4659: 4654: 4650: 4646: 4642: 4638: 4634: 4630: 4626: 4619: 4611: 4598: 4590: 4586: 4581: 4576: 4572: 4565: 4557: 4544: 4535: 4530: 4526: 4519: 4511: 4498: 4489: 4484: 4480: 4473: 4465: 4452: 4443: 4438: 4434: 4428: 4420: 4416: 4411: 4406: 4402: 4398: 4393: 4388: 4384: 4380: 4376: 4372: 4368: 4361: 4353: 4349: 4344: 4339: 4335: 4331: 4326: 4321: 4317: 4313: 4309: 4305: 4301: 4294: 4286: 4282: 4277: 4272: 4268: 4264: 4260: 4256: 4252: 4248: 4244: 4237: 4229: 4225: 4221: 4217: 4212: 4207: 4203: 4199: 4195: 4191: 4187: 4180: 4172: 4168: 4163: 4158: 4154: 4150: 4146: 4142: 4138: 4134: 4130: 4123: 4115: 4111: 4107: 4103: 4099: 4095: 4090: 4085: 4081: 4077: 4073: 4066: 4058: 4054: 4050: 4046: 4042: 4038: 4034: 4030: 4026: 4019: 4011: 4007: 4002: 3997: 3993: 3989: 3984: 3979: 3975: 3971: 3967: 3963: 3959: 3952: 3944: 3940: 3936: 3932: 3927: 3922: 3918: 3914: 3910: 3903: 3895: 3891: 3887: 3883: 3879: 3875: 3871: 3864: 3856: 3852: 3848: 3844: 3840: 3836: 3832: 3828: 3824: 3820: 3816: 3809: 3801: 3797: 3792: 3787: 3783: 3779: 3775: 3771: 3767: 3760: 3752: 3748: 3743: 3738: 3733: 3728: 3724: 3720: 3716: 3712: 3708: 3701: 3693: 3689: 3684: 3679: 3674: 3669: 3665: 3661: 3657: 3653: 3649: 3642: 3634: 3630: 3625: 3620: 3616: 3612: 3608: 3604: 3600: 3593: 3585: 3581: 3576: 3571: 3566: 3561: 3557: 3553: 3549: 3545: 3541: 3534: 3532: 3530: 3521: 3517: 3512: 3507: 3502: 3497: 3493: 3489: 3485: 3478: 3476: 3467: 3463: 3458: 3453: 3449: 3445: 3441: 3437: 3433: 3426: 3418: 3414: 3409: 3404: 3399: 3394: 3390: 3386: 3382: 3378: 3374: 3367: 3359: 3355: 3350: 3345: 3340: 3335: 3331: 3327: 3323: 3316: 3308: 3304: 3299: 3294: 3290: 3286: 3282: 3278: 3274: 3267: 3259: 3255: 3251: 3247: 3243: 3239: 3235: 3231: 3227: 3223: 3216: 3214: 3205: 3201: 3196: 3191: 3187: 3183: 3178: 3173: 3169: 3165: 3161: 3154: 3146: 3142: 3138: 3134: 3129: 3124: 3120: 3116: 3112: 3105: 3097: 3093: 3089: 3085: 3081: 3077: 3070: 3062: 3058: 3053: 3048: 3044: 3040: 3036: 3032: 3028: 3021: 3013: 3009: 3004: 2999: 2995: 2991: 2987: 2983: 2979: 2975: 2971: 2964: 2956: 2952: 2947: 2942: 2938: 2934: 2929: 2924: 2920: 2916: 2912: 2905: 2897: 2893: 2888: 2883: 2879: 2875: 2871: 2867: 2863: 2859: 2855: 2848: 2840: 2836: 2831: 2826: 2822: 2818: 2814: 2810: 2806: 2802: 2798: 2791: 2789: 2787: 2778: 2774: 2769: 2764: 2759: 2754: 2750: 2746: 2742: 2735: 2727: 2723: 2718: 2713: 2709: 2705: 2701: 2697: 2693: 2686: 2671: 2670: 2665: 2658: 2650: 2646: 2641: 2636: 2632: 2628: 2624: 2620: 2616: 2612: 2608: 2601: 2593: 2589: 2585: 2581: 2577: 2573: 2569: 2565: 2561: 2557: 2553: 2549: 2545: 2538: 2530: 2526: 2522: 2518: 2514: 2510: 2506: 2502: 2498: 2494: 2490: 2486: 2482: 2475: 2473: 2464: 2460: 2455: 2450: 2446: 2442: 2438: 2434: 2430: 2426: 2422: 2415: 2413: 2404: 2400: 2396: 2392: 2388: 2384: 2380: 2376: 2372: 2368: 2361: 2359: 2357: 2348: 2344: 2339: 2334: 2330: 2326: 2322: 2318: 2314: 2307: 2305: 2303: 2301: 2292: 2288: 2283: 2278: 2274: 2270: 2266: 2262: 2258: 2251: 2249: 2247: 2238: 2234: 2229: 2224: 2219: 2214: 2210: 2206: 2203:(8): 2421–5. 2202: 2198: 2194: 2187: 2179: 2173: 2169: 2162: 2154: 2150: 2145: 2140: 2136: 2132: 2128: 2124: 2120: 2113: 2105: 2101: 2096: 2091: 2086: 2081: 2077: 2073: 2069: 2065: 2061: 2054: 2052: 2043: 2039: 2035: 2031: 2027: 2023: 2016: 2008: 2004: 1999: 1994: 1989: 1984: 1980: 1976: 1972: 1968: 1964: 1957: 1949: 1945: 1941: 1937: 1932: 1927: 1923: 1919: 1915: 1908: 1900: 1896: 1891: 1886: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1850: 1843: 1835: 1831: 1827: 1823: 1818: 1813: 1809: 1805: 1801: 1794: 1786: 1782: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1750: 1746: 1739: 1731: 1727: 1722: 1717: 1713: 1709: 1704: 1699: 1695: 1691: 1687: 1683: 1679: 1672: 1664: 1660: 1656: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1624: 1620: 1616: 1609: 1607: 1598: 1594: 1590: 1586: 1582: 1578: 1571: 1569: 1567: 1565: 1556: 1552: 1548: 1544: 1540: 1536: 1529: 1527: 1518: 1514: 1509: 1504: 1500: 1496: 1492: 1488: 1484: 1477: 1475: 1473: 1471: 1469: 1467: 1458: 1454: 1450: 1446: 1442: 1438: 1431: 1429: 1427: 1418: 1414: 1410: 1406: 1402: 1398: 1394: 1390: 1386: 1382: 1374: 1366: 1362: 1357: 1352: 1347: 1342: 1338: 1334: 1330: 1326: 1322: 1315: 1313: 1311: 1309: 1294: 1288: 1284: 1280: 1276: 1272: 1265: 1257: 1253: 1248: 1243: 1239: 1235: 1230: 1225: 1221: 1217: 1213: 1209: 1205: 1198: 1190: 1186: 1181: 1176: 1171: 1166: 1162: 1158: 1154: 1150: 1146: 1139: 1137: 1128: 1124: 1120: 1116: 1112: 1108: 1104: 1100: 1096: 1089: 1081: 1077: 1072: 1067: 1063: 1059: 1054: 1049: 1045: 1041: 1037: 1030: 1028: 1026: 1024: 1015: 1011: 1006: 1001: 997: 993: 989: 985: 981: 979: 975: 966: 964: 962: 953: 949: 944: 939: 935: 931: 927: 923: 919: 915: 911: 904: 902: 900: 898: 896: 894: 885: 881: 876: 871: 866: 861: 857: 853: 852: 847: 840: 838: 833: 824: 821: 820: 814: 812: 808: 804: 799: 795: 791: 787: 783: 779: 778:Proteogenomic 774: 773:RAST pipeline 769: 759: 756: 752: 749: 748:gene delivery 745: 741: 737: 733: 728: 726: 723: 722:bacteriophage 712: 710: 699: 697: 696: 692: 688: 687:misannotation 684: 679: 675: 671: 666: 656: 654: 650: 646: 645:Tombusviruses 642: 638: 634: 630: 629:pathogenicity 626: 621: 618: 614: 610: 606: 602: 597: 595: 590: 586: 582: 578: 574: 570: 569: 564: 563:pathogenicity 559: 555: 551: 547: 543: 538: 534: 530: 526: 525:bacteriophage 522: 518: 514: 506: 505:RNA silencing 502: 498: 494: 489: 480: 478: 474: 465: 456: 453: 449: 445: 441: 437: 433: 429: 425: 421: 417: 413: 405: 401: 397: 393: 388: 379: 377: 376:co-regulation 374: 373:translational 370: 366: 362: 354: 350: 347: 343: 340: 336: 332: 331: 330: 328: 324: 320: 310: 308: 304: 300: 296: 292: 288: 283: 279: 275: 274:tombusviruses 271: 267: 262: 260: 256: 253: 249: 245: 240: 236: 228: 224: 221: 218: 214: 211: 210: 209: 207: 203: 195: 192:overlap: the 191: 187: 184: 181: 178:overlap: the 177: 173: 170: 167: 163: 160:overlap: the 159: 155: 152: 151: 150: 143: 134: 132: 127: 123: 118: 114: 112: 107: 103: 99: 95: 91: 90:reading frame 87: 83: 81: 77: 73: 69: 65: 61: 57: 53: 49: 46: 42: 38: 37:gene products 34: 30: 26: 22: 4801: 4748: 4744: 4734: 4689: 4685: 4675: 4632: 4628: 4618: 4597:cite journal 4564: 4543:cite journal 4518: 4497:cite journal 4472: 4451:cite journal 4427: 4374: 4370: 4360: 4307: 4303: 4293: 4250: 4246: 4236: 4193: 4189: 4179: 4139:(1): 80–86. 4136: 4132: 4122: 4079: 4075: 4065: 4032: 4028: 4018: 3965: 3961: 3951: 3916: 3912: 3902: 3877: 3873: 3863: 3822: 3818: 3808: 3773: 3769: 3759: 3714: 3710: 3700: 3655: 3651: 3641: 3606: 3602: 3592: 3547: 3543: 3494:(169): 169. 3491: 3488:BMC Genomics 3487: 3439: 3435: 3425: 3380: 3376: 3366: 3329: 3326:BMC Genomics 3325: 3315: 3283:(1): 19–27. 3280: 3276: 3266: 3225: 3221: 3167: 3164:BMC Genomics 3163: 3153: 3118: 3114: 3104: 3079: 3075: 3069: 3034: 3030: 3020: 2977: 2973: 2963: 2918: 2914: 2904: 2861: 2857: 2847: 2804: 2800: 2748: 2744: 2734: 2699: 2695: 2685: 2673:. Retrieved 2669:ScienceAlert 2667: 2657: 2614: 2610: 2600: 2551: 2547: 2537: 2488: 2484: 2428: 2424: 2370: 2366: 2320: 2316: 2264: 2260: 2200: 2196: 2186: 2167: 2161: 2126: 2122: 2112: 2067: 2063: 2025: 2021: 2015: 1970: 1966: 1956: 1921: 1917: 1907: 1859:(1): 35759. 1856: 1852: 1842: 1807: 1803: 1793: 1755:(1): 47–52. 1752: 1748: 1738: 1685: 1681: 1671: 1622: 1618: 1580: 1576: 1538: 1534: 1490: 1486: 1440: 1436: 1384: 1380: 1373: 1328: 1324: 1296:, retrieved 1274: 1264: 1211: 1207: 1197: 1152: 1148: 1102: 1098: 1088: 1043: 1039: 987: 983: 977: 973: 917: 913: 855: 849: 794:perturbation 765: 729: 718: 708: 705: 693: 662: 649:protein fold 622: 605:retroviridae 598: 593: 585:viral capsid 571:gene in the 566: 510: 470: 444:phylogenetic 436:orphan genes 420:overprinting 419: 415: 409: 403: 361:evolutionary 358: 327:mitochondria 316: 293:, and human 287:Sendai virus 263: 255: 232: 222: 212: 201: 199: 189: 185: 175: 171: 157: 153: 148: 110: 86:Overprinting 85: 84: 24: 20: 18: 3082:: 231–243. 2675:11 November 1749:Virus Genes 1541:: 499–525. 1443:: 181–187. 823:Nested gene 807:CRISPR-Cas9 740:infectivity 659:Prokaryotes 601:RNA viruses 589:icosahedral 448:codon usage 424:Susumu Ohno 398:(HTLV1), a 259:replication 52:prokaryotes 4692:(1): 508. 3658:(1): 124. 3550:(1): 193. 3383:(1): 283. 3332:(1): 335. 3170:(1): 721. 1487:Genome Res 1298:3 December 1046:(6): 809. 829:References 702:Eukaryotes 683:base pairs 633:amino acid 573:SARS-CoV 2 558:gene locus 550:C-terminus 430:following 339:stop codon 307:synonymous 252:polymerase 239:amino acid 172:Convergent 117:non-coding 68:eukaryotes 4775:0027-8424 4649:1087-0156 4589:215850701 4401:1553-7358 4334:1932-6203 4267:1943-2631 4228:232761334 4153:1525-0016 4098:0021-9258 4049:0042-6822 3992:0027-8424 3935:0042-6822 3855:222300240 3839:2161-5063 3186:1471-2164 3076:Biochimie 2994:0042-6822 2980:: 51–66. 2937:1745-6150 2921:(1): 26. 2878:0962-8452 2821:2057-1577 2751:(1): 26. 2631:0022-538X 2576:0028-0836 2513:1476-4687 1973:(1): 31. 1918:Evolution 1881:2045-2322 1826:0022-1317 1769:0920-8569 1712:1932-6203 1647:0022-2844 1238:0027-8424 1119:0066-4197 1062:2073-4425 934:1471-0064 665:bacterial 643:found in 625:essential 479:genomes. 410:In 1977, 392:cladogram 313:Evolution 186:Divergent 4808:Category 4793:31719208 4726:33479206 4667:33510483 4419:23966842 4352:30339683 4304:PLOS ONE 4285:30026186 4247:Genetics 4220:33794364 4171:19904234 4114:32443408 4029:Virology 4010:11818563 3943:23079106 3913:Virology 3894:19063901 3847:33044064 3800:19726446 3751:23185269 3711:PLOS ONE 3692:23777277 3633:14762064 3584:17939861 3520:18410680 3466:26323763 3417:26677845 3358:18627618 3307:24192837 3258:21612308 3250:17479344 3204:25159814 3145:12993441 3137:14697199 3096:26296474 3061:19640978 3012:32452417 2974:Virology 2955:27209091 2896:20610432 2839:32071766 2777:27209091 2726:20610432 2649:31666371 2463:14661029 2347:22821011 2291:30026186 2261:Genetics 2153:25552532 2104:24312259 2064:PLOS ONE 2042:26853049 2007:18226237 1940:10937248 1899:27775080 1834:12075102 1785:12869504 1777:11210938 1730:26871901 1682:PLOS ONE 1663:22644652 1597:12047938 1517:15520290 1457:14659892 1365:23966842 1080:34073395 1014:10101192 952:34611352 884:33001029 817:See also 715:Function 637:disorder 533:proteins 515:, whose 323:bacteria 122:homologs 72:mutation 62:but not 41:cellular 4784:6883844 4753:Bibcode 4717:7820019 4694:bioRxiv 4658:8195866 4410:3744397 4379:Bibcode 4343:6195259 4312:Bibcode 4276:6116962 4211:8753290 4162:2839202 4106:3161888 3970:Bibcode 3791:2765279 3742:3504067 3719:Bibcode 3683:3689595 3660:Bibcode 3575:2151771 3552:Bibcode 3511:2335118 3457:4571571 3408:4683798 3385:Bibcode 3349:2478687 3298:3887535 3230:Bibcode 3195:4161906 3052:2753099 3003:7157939 2946:4875738 2887:2992710 2830:7017920 2768:4875738 2717:2992710 2640:6955274 2592:4175651 2584:4601823 2556:Bibcode 2529:4264796 2521:1004533 2493:Bibcode 2454:4694583 2433:Bibcode 2403:4206886 2375:Bibcode 2338:3494269 2282:6116962 2237:6585807 2205:Bibcode 2144:4316641 2095:3843671 2072:Bibcode 1998:2268670 1975:Bibcode 1948:8818055 1890:5075947 1861:Bibcode 1721:4752228 1690:Bibcode 1655:9071016 1627:Bibcode 1555:6198955 1417:4355527 1409:7219534 1389:Bibcode 1356:3744397 1333:Bibcode 1256:1329098 1216:Bibcode 1189:1329098 1157:Bibcode 1127:6198955 1071:8227390 943:8490965 875:7655111 755:vectors 751:vectors 709:de novo 594:de novo 483:Viruses 416:de novo 404:de novo 319:viruses 190:tail-on 126:genomic 111:de novo 106:protein 102:induced 80:introns 56:viruses 48:genomes 27:) is a 4791:  4781:  4773:  4724:  4714:  4696:  4665:  4655:  4647:  4587:  4417:  4407:  4399:  4350:  4340:  4332:  4283:  4273:  4265:  4226:  4218:  4208:  4169:  4159:  4151:  4112:  4104:  4096:  4057:841861 4055:  4047:  4008:  4001:122203 3998:  3990:  3941:  3933:  3892:  3853:  3845:  3837:  3798:  3788:  3749:  3739:  3690:  3680:  3631:  3624:327103 3621:  3582:  3572:  3518:  3508:  3464:  3454:  3415:  3405:  3356:  3346:  3305:  3295:  3256:  3248:  3202:  3192:  3184:  3143:  3135:  3094:  3059:  3049:  3010:  3000:  2992:  2953:  2943:  2935:  2894:  2884:  2876:  2837:  2827:  2819:  2775:  2765:  2724:  2714:  2647:  2637:  2629:  2590:  2582:  2574:  2548:Nature 2527:  2519:  2511:  2485:Nature 2461:  2451:  2425:Nature 2401:  2395:870828 2393:  2367:Nature 2345:  2335:  2289:  2279:  2235:  2228:345072 2225:  2174:  2151:  2141:  2102:  2092:  2040:  2005:  1995:  1946:  1938:  1897:  1887:  1879:  1832:  1824:  1783:  1775:  1767:  1728:  1718:  1710:  1661:  1653:  1645:  1595:  1553:  1515:  1508:525685 1505:  1455:  1415:  1407:  1381:Nature 1363:  1353:  1289:  1254:  1244:  1236:  1187:  1177:  1125:  1117:  1078:  1068:  1060:  1012:  1005:148392 1002:  950:  940:  932:  882:  872:  792:, and 732:capsid 653:siRNAs 613:capsid 517:genome 501:siRNAs 365:genome 325:, and 248:spacer 202:phases 176:end-on 158:tandem 4814:Genes 4585:S2CID 4224:S2CID 4110:S2CID 3851:S2CID 3254:S2CID 3141:S2CID 2617:(2). 2588:S2CID 2525:S2CID 2399:S2CID 1944:S2CID 1781:S2CID 1659:S2CID 1413:S2CID 1247:50157 1180:50157 1040:Genes 851:eLife 736:ΦX174 725:ΦX174 577:viral 568:ORF3d 513:ΦX174 495:from 477:viral 272:. In 227:codon 94:locus 45:viral 4789:PMID 4771:ISSN 4722:PMID 4663:PMID 4645:ISSN 4610:help 4556:help 4510:help 4464:help 4415:PMID 4397:ISSN 4348:PMID 4330:ISSN 4281:PMID 4263:ISSN 4216:PMID 4167:PMID 4149:ISSN 4102:PMID 4094:ISSN 4053:PMID 4045:ISSN 4006:PMID 3988:ISSN 3939:PMID 3931:ISSN 3890:PMID 3843:PMID 3835:ISSN 3796:PMID 3747:PMID 3688:PMID 3629:PMID 3580:PMID 3516:PMID 3462:PMID 3413:PMID 3354:PMID 3303:PMID 3246:PMID 3200:PMID 3182:ISSN 3133:PMID 3115:Cell 3092:PMID 3057:PMID 3008:PMID 2990:ISSN 2951:PMID 2933:ISSN 2892:PMID 2874:ISSN 2835:PMID 2817:ISSN 2773:PMID 2722:PMID 2677:2020 2645:PMID 2627:ISSN 2580:PMID 2572:ISSN 2517:PMID 2509:ISSN 2459:PMID 2391:PMID 2343:PMID 2287:PMID 2233:PMID 2172:ISBN 2149:PMID 2100:PMID 2038:PMID 2022:Gene 2003:PMID 1936:PMID 1895:PMID 1877:ISSN 1830:PMID 1822:ISSN 1773:PMID 1765:ISSN 1726:PMID 1708:ISSN 1651:PMID 1643:ISSN 1593:PMID 1551:PMID 1513:PMID 1453:PMID 1437:Gene 1405:PMID 1361:PMID 1300:2021 1287:ISBN 1252:PMID 1234:ISSN 1185:PMID 1123:PMID 1115:ISSN 1076:PMID 1058:ISSN 1010:PMID 976:and 948:PMID 930:ISSN 880:PMID 809:and 676:and 491:The 371:and 299:rate 280:and 64:mRNA 54:and 43:and 29:gene 23:(or 4779:PMC 4761:doi 4749:116 4712:PMC 4704:doi 4653:PMC 4637:doi 4575:doi 4529:doi 4483:doi 4437:doi 4405:PMC 4387:doi 4338:PMC 4320:doi 4271:PMC 4255:doi 4251:210 4206:PMC 4198:doi 4157:PMC 4141:doi 4084:doi 4080:260 4037:doi 3996:PMC 3978:doi 3921:doi 3917:434 3882:doi 3878:385 3827:doi 3786:PMC 3778:doi 3737:PMC 3727:doi 3678:PMC 3668:doi 3619:PMC 3611:doi 3570:PMC 3560:doi 3506:PMC 3496:doi 3452:PMC 3444:doi 3440:370 3403:PMC 3393:doi 3344:PMC 3334:doi 3293:PMC 3285:doi 3238:doi 3190:PMC 3172:doi 3123:doi 3119:115 3084:doi 3080:119 3047:PMC 3039:doi 2998:PMC 2982:doi 2978:546 2941:PMC 2923:doi 2882:PMC 2866:doi 2862:277 2825:PMC 2809:doi 2763:PMC 2753:doi 2712:PMC 2704:doi 2700:277 2635:PMC 2619:doi 2564:doi 2552:249 2501:doi 2489:264 2449:PMC 2441:doi 2429:426 2383:doi 2371:265 2333:PMC 2325:doi 2277:PMC 2269:doi 2265:210 2223:PMC 2213:doi 2139:PMC 2131:doi 2090:PMC 2080:doi 2030:doi 2026:582 1993:PMC 1983:doi 1926:doi 1885:PMC 1869:doi 1812:doi 1757:doi 1716:PMC 1698:doi 1635:doi 1585:doi 1543:doi 1503:PMC 1495:doi 1445:doi 1441:323 1397:doi 1385:290 1351:PMC 1341:doi 1279:doi 1242:PMC 1224:doi 1175:PMC 1165:doi 1107:doi 1066:PMC 1048:doi 1000:PMC 992:doi 938:PMC 922:doi 870:PMC 860:doi 746:as 540:An 282:p22 278:p19 188:or 174:or 156:or 25:OLG 19:An 4810:: 4787:. 4777:. 4769:. 4759:. 4747:. 4743:. 4720:. 4710:. 4702:. 4690:12 4688:. 4684:. 4661:. 4651:. 4643:. 4633:39 4631:. 4627:. 4601:: 4599:}} 4595:{{ 4583:. 4573:. 4547:: 4545:}} 4541:{{ 4527:. 4501:: 4499:}} 4495:{{ 4481:. 4455:: 4453:}} 4449:{{ 4435:. 4413:. 4403:. 4395:. 4385:. 4373:. 4369:. 4346:. 4336:. 4328:. 4318:. 4308:13 4306:. 4302:. 4279:. 4269:. 4261:. 4249:. 4245:. 4222:. 4214:. 4204:. 4194:30 4192:. 4188:. 4165:. 4155:. 4147:. 4137:18 4135:. 4131:. 4108:. 4100:. 4092:. 4078:. 4074:. 4051:. 4043:. 4033:77 4031:. 4027:. 4004:. 3994:. 3986:. 3976:. 3966:99 3964:. 3960:. 3937:. 3929:. 3915:. 3911:. 3888:. 3876:. 3872:. 3849:. 3841:. 3833:. 3821:. 3817:. 3794:. 3784:. 3774:19 3772:. 3768:. 3745:. 3735:. 3725:. 3713:. 3709:. 3686:. 3676:. 3666:. 3656:13 3654:. 3650:. 3627:. 3617:. 3607:14 3605:. 3601:. 3578:. 3568:. 3558:. 3546:. 3542:. 3528:^ 3514:. 3504:. 3490:. 3486:. 3474:^ 3460:. 3450:. 3438:. 3434:. 3411:. 3401:. 3391:. 3381:15 3379:. 3375:. 3352:. 3342:. 3328:. 3324:. 3301:. 3291:. 3279:. 3275:. 3252:. 3244:. 3236:. 3226:64 3224:. 3212:^ 3198:. 3188:. 3180:. 3168:15 3166:. 3162:. 3139:. 3131:. 3117:. 3113:. 3090:. 3078:. 3055:. 3045:. 3035:83 3033:. 3029:. 3006:. 2996:. 2988:. 2976:. 2972:. 2949:. 2939:. 2931:. 2919:11 2917:. 2913:. 2890:. 2880:. 2872:. 2860:. 2856:. 2833:. 2823:. 2815:. 2803:. 2799:. 2785:^ 2771:. 2761:. 2749:11 2747:. 2743:. 2720:. 2710:. 2698:. 2694:. 2666:. 2643:. 2633:. 2625:. 2615:94 2613:. 2609:. 2586:. 2578:. 2570:. 2562:. 2550:. 2546:. 2523:. 2515:. 2507:. 2499:. 2487:. 2483:. 2471:^ 2457:. 2447:. 2439:. 2427:. 2423:. 2411:^ 2397:. 2389:. 2381:. 2369:. 2355:^ 2341:. 2331:. 2321:29 2319:. 2315:. 2299:^ 2285:. 2275:. 2263:. 2259:. 2245:^ 2231:. 2221:. 2211:. 2201:81 2199:. 2195:. 2147:. 2137:. 2125:. 2121:. 2098:. 2088:. 2078:. 2066:. 2062:. 2050:^ 2036:. 2024:. 2001:. 1991:. 1981:. 1969:. 1965:. 1942:. 1934:. 1922:54 1920:. 1916:. 1893:. 1883:. 1875:. 1867:. 1855:. 1851:. 1828:. 1820:. 1808:83 1806:. 1802:. 1779:. 1771:. 1763:. 1753:22 1751:. 1747:. 1724:. 1714:. 1706:. 1696:. 1686:11 1684:. 1680:. 1657:. 1649:. 1641:. 1633:. 1623:44 1621:. 1617:. 1605:^ 1591:. 1581:18 1579:. 1563:^ 1549:. 1539:17 1537:. 1525:^ 1511:. 1501:. 1491:14 1489:. 1485:. 1465:^ 1451:. 1439:. 1425:^ 1411:. 1403:. 1395:. 1383:. 1359:. 1349:. 1339:. 1327:. 1323:. 1307:^ 1285:, 1273:, 1250:. 1240:. 1232:. 1222:. 1212:89 1210:. 1206:. 1183:. 1173:. 1163:. 1153:89 1151:. 1147:. 1135:^ 1121:. 1113:. 1103:17 1101:. 1097:. 1074:. 1064:. 1056:. 1044:12 1042:. 1038:. 1022:^ 1008:. 998:. 988:27 986:. 982:. 960:^ 946:. 936:. 928:. 918:23 916:. 912:. 892:^ 878:. 868:. 858:. 854:. 848:. 836:^ 796:. 788:, 784:, 655:. 390:A 321:, 289:, 208:: 194:5' 180:3' 166:5' 162:3' 133:. 82:. 4795:. 4763:: 4755:: 4728:. 4706:: 4669:. 4639:: 4612:) 4608:( 4591:. 4577:: 4558:) 4554:( 4537:. 4531:: 4512:) 4508:( 4491:. 4485:: 4466:) 4462:( 4445:. 4439:: 4421:. 4389:: 4381:: 4375:9 4354:. 4322:: 4314:: 4287:. 4257:: 4230:. 4200:: 4173:. 4143:: 4116:. 4086:: 4059:. 4039:: 4012:. 3980:: 3972:: 3945:. 3923:: 3896:. 3884:: 3857:. 3829:: 3823:9 3802:. 3780:: 3753:. 3729:: 3721:: 3715:7 3694:. 3670:: 3662:: 3635:. 3613:: 3586:. 3562:: 3554:: 3548:7 3522:. 3498:: 3492:9 3468:. 3446:: 3419:. 3395:: 3387:: 3360:. 3336:: 3330:9 3309:. 3287:: 3281:4 3260:. 3240:: 3232:: 3206:. 3174:: 3147:. 3125:: 3098:. 3086:: 3063:. 3041:: 3014:. 2984:: 2957:. 2925:: 2898:. 2868:: 2841:. 2811:: 2805:6 2779:. 2755:: 2728:. 2706:: 2679:. 2651:. 2621:: 2594:. 2566:: 2558:: 2531:. 2503:: 2495:: 2465:. 2443:: 2435:: 2405:. 2385:: 2377:: 2349:. 2327:: 2293:. 2271:: 2239:. 2215:: 2207:: 2180:. 2155:. 2133:: 2127:7 2106:. 2082:: 2074:: 2068:8 2044:. 2032:: 2009:. 1985:: 1977:: 1971:8 1950:. 1928:: 1901:. 1871:: 1863:: 1857:6 1836:. 1814:: 1787:. 1759:: 1732:. 1700:: 1692:: 1665:. 1637:: 1629:: 1599:. 1587:: 1557:. 1545:: 1519:. 1497:: 1459:. 1447:: 1419:. 1399:: 1391:: 1367:. 1343:: 1335:: 1329:9 1281:: 1258:. 1226:: 1218:: 1191:. 1167:: 1159:: 1129:. 1109:: 1082:. 1050:: 1016:. 994:: 980:" 954:. 924:: 886:. 862:: 856:9 355:. 348:; 341:;

Index

gene
nucleotide sequence
gene products
cellular
viral
genomes
prokaryotes
viruses
coding sequences
mRNA
eukaryotes
mutation
untranslated regions
introns
reading frame
locus
nucleotide substitutions
induced
protein
de novo emergence of new genes
non-coding
homologs
genomic
evolutionary history

3'
5'
3'
5'
reading frames

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.