Knowledge

Phi X 174

Source 📝

292: 42: 60: 189: 323:ΦX174 encodes 11 genes, named as consecutive letters of the alphabet in the order they were discovered, with the exception of A* which is an alternative start codon within the large A genes. Only genes A* and K are thought to be non-essential, although there is some doubt about A* because its start codon could be changed to ATT but not any other sequence. It is now known that the ATT is still likely capable of producing protein within 707: 181: 694:
The ΦX174 genome was the first phage to be cloned in yeast, which provides a convenient drydock for genome modifications. ΦX174 was also the first genome to be fully decompressed, having all gene overlaps removed. The effect of these changes resulted in significantly reduced host attachment, protein
577:
protein complex. This translocates once around the genome and synthesizes a ssDNA from the positive original genome. ssDNA genomes to package into viruses are created from this by a rolling circle mechanism. This is the mechanism by which the double stranded supercoiled genome is nicked on the
568:
The DNA is ejected through a hydrophilic channel at the 5-fold vertex. It is understood that H protein resides in this area but experimental evidence has not verified its exact location. Once inside the host bacterium, replication of the ssDNA genome proceeds via
638:, especially the NC phage (e.g. NC1, NC7, NC11, NC16, NC37, NC5, NC41, NC56, NC51, etc.) and more distantly related to the G4-like phages and even more distantly related to the α3-like phage. Rokyta et al. 2006 presented a phylogenetic tree of their relationships. 622:. Based on recombination frequencies obtained in genetic crosses, a genetic map was constructed. Recombination in phi X174 is associated with high negative interference, i.e a positive correlation (negative interference) of recombinational events (see wikipedia 671:
due to its relatively small genome size in comparison to other organisms, its relatively balanced nucleotide content — about 23% G, 22% C, 24% A, and 31% T, i.e., 45% G+C and 55% A+T, see the accession NC_001422.1 for its 5,386 nucleotide long sequence.
582:(DNAP) to the site of cleavage. DNAP uses the negative strand as a template to make positive sense DNA. As it translocates around the genome it displaces the outer strand of already-synthesised DNA, which is immediately coated by 564:
H protein was required for optimal synthesis of other viral proteins. Mutations in H protein that prevent viral incorporation, can be overcome when excess amounts of protein B, the internal scaffolding protein, are supplied.
676:'s sequencing instruments use ΦX174 as a positive control, and a single Illumina sequencing run can cover the ΦX174 genome several million times over, making this very likely the most heavily sequenced genome in history. 350:
of ΦX174 was generated. Notable features of the ΦX174 transcriptome is a series of up to four relatively weak promoters in series with up to four Rho-independent (intrinsic) terminators and one Rho-dependent terminator.
334:
with eight out of 11 genes overlapping by at least one nucleotide. These overlaps have been shown to be non-essential although the refactored phage with all gene overlaps removed had decreased fitness from wild-type.
609:
rate of phiX174 is estimated to be 1.0 x 10 substitutions per base per round of copying, a value that is consistent with Drake's rule (0.003 mutations per genome per round of copying in DNA-based microorganisms).
1082:
Cherwa JE, Organtini LJ, Ashley RE, Hafenstein SL, Fane BA (September 2011). "In VITRO ASSEMBLY of the øX174 procapsid from external scaffolding protein oligomers and early pentameric assembly intermediates".
547:
content, making the protein structure very flexible and in addition, individual hydrogen atoms (the R group for glycines) are difficult to detect in protein crystallography. Additionally, H protein induces
266:
with collaborators identified the genes required to produce the enzymes to catalyze conversion of the single stranded form of the virus to the double stranded replicative form. In 2003, it was reported by
589:
As D protein is the most abundant gene transcript, it is the most abundant protein in the viral procapsid. Similarly, gene transcripts for F, J, and G are more abundant than for H as the
1194:"Alteration of the ATG start codon of the A protein of bacteriophage phi X174 into an ATT codon yields a viable phage indicating that A protein is not essential for phi X174 reproduction" 234:, from samples collected in Paris sewers. Its characterization and the study of its replication mechanism were carried out from the 1950s onwards. It was the first DNA-based 250:
used ΦX174 as a model to first prove that DNA synthesized in a test tube by purified enzymes could produce all the features of a natural virus, ushering in the age of
1355:
Wright BW, Ruan J, Molloy MP, Jaschke PR (November 2020). "Genome Modularization Reveals Overlapped Gene Topology Is Necessary for Efficient Viral Reproduction".
315:
is 44% and 95% of nucleotides belong to coding genes. Because of the balance base pattern of the genome, it is used as the control DNA for Illumina sequencers.
570: 1949: 850:
Fiers W, Sinsheimer RL (October 1962). "The structure of the DNA of bacteriophage phi-X174. III. Ultracentrifugal evidence for a ring structure".
2166: 799:
Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, et al. (February 1977). "Nucleotide sequence of bacteriophage phi X174 DNA".
552:
of the bacterial host at high concentrations as the predicted N-terminal transmembrane helix easily pokes holes through the bacterial wall. By
1178: 1605:"Uncoupling the functions of a multifunctional protein: the isolation of a DNA pilot protein mutant that affects particle morphogenesis" 338:
Phage ΦX174 has been used to try to establish the absence of undiscovered genetic information through a "proof by synthesis" approach.
529:
on the bacterial host cell surface. H protein (or the DNA Pilot Protein) pilots the viral genome through the bacterial membrane of
573:
intermediate. This is done as the phage genome supercoils and the secondary structure formed by such supercoiling attracts a
246:
and Robert Sinsheimer had already demonstrated the physical, covalently closed circularity of ΦX174 DNA. Nobel prize winner
884:
National Library of Medicine Profiles in Science. The Arthur Kornberg Papers. "Creating Life in the Test Tube," 1959-1970.
2157: 1527:
Jazwinski SM, Lindberg AA, Kornberg A (July 1975). "The lipopolysaccharide receptor for bacteriophage phiX174 and S13".
1511: 291: 664: 1498:
Fane BA, Brentlinger KL, Burch AD, Chen M, Hafenstein S, Moore E, Novak CR, Uchiyama A (2006). "ɸX174 et al., the
1953: 1017:"Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides" 560:
domains which has a significant homology to known transcription factors. Additionally, it was determined that
17: 885: 680: 593:
for these structural proteins is 5:5:5:1. The primosomes are protein complexes which attach/bind the enzyme
539:
helix. However, it has become apparent that H protein is a multifunctional protein. This is the only viral
59: 1646:"The expression of N-terminal deletion DNA pilot proteins inhibits the early stages of phiX174 replication" 543:
protein of ΦX174 to lack a crystal structure for a couple of reasons. It has low aromatic content and high
686:ΦX174 has also been modified to enable peptide display (phage display) from the viral capsid G protein. 387: 1693:
McKenna R, Xia D, Willingmann P, Ilag LL, Krishnaswamy S, Rossmann MG, et al. (January 1992).
586:
proteins. The A protein cleaves the complete genome every time it recognises the origin sequence.
2201: 275:
from synthesized oligonucleotides. The ΦX174 virus particle has also been successfully assembled
227: 1975: 1695:"Atomic structure of single-stranded DNA bacteriophage phi X174 and its functional implications" 740: 2171: 2119: 966:"Conversion of phiX174 viral DNA to double-stranded form by purified Escherichia coli proteins" 623: 41: 2196: 1241:
Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, et al. (April 2017).
619: 1192:
Baas PD, Liewerink H, van Teeffelen HA, van Mansfeld AD, van Boom JH, Jansz HS (June 1987).
1706: 1125:"A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast" 1028: 910: 808: 536: 54: 8: 517:
Identification of all ΦX174 proteins using mass spectrometry has recently been reported.
1906:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
1710: 1032: 914: 812: 2075: 2050: 2026: 2001: 1926: 1901: 1877: 1852: 1776: 1751: 1727: 1694: 1670: 1645: 1480: 1426: 1399: 1380: 1327: 1294: 1267: 1242: 1223: 1046: 928: 832: 773: 673: 526: 1828: 1803: 1580: 1563: 1059: 1016: 992: 965: 941: 898: 863: 2080: 2031: 1931: 1882: 1833: 1781: 1732: 1675: 1626: 1585: 1544: 1540: 1507: 1484: 1472: 1431: 1384: 1372: 1332: 1314: 1272: 1215: 1210: 1193: 1146: 1100: 1064: 997: 946: 867: 824: 778: 760: 720: 251: 231: 1868: 1227: 2070: 2062: 2021: 2013: 1921: 1913: 1872: 1864: 1823: 1815: 1771: 1763: 1722: 1714: 1665: 1657: 1616: 1575: 1536: 1462: 1421: 1411: 1364: 1322: 1306: 1262: 1254: 1205: 1136: 1092: 1054: 1036: 987: 977: 936: 918: 859: 836: 816: 768: 752: 331: 280: 222: 1819: 1173: 247: 2017: 1767: 1621: 1604: 1467: 1450: 1141: 1124: 2142: 2066: 2051:"Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing" 1404:
Proceedings of the National Academy of Sciences of the United States of America
1310: 1021:
Proceedings of the National Academy of Sciences of the United States of America
970:
Proceedings of the National Academy of Sciences of the United States of America
903:
Proceedings of the National Academy of Sciences of the United States of America
712: 668: 652: 579: 553: 401:
Inhibits host cell DNA replication; blocks superinfecting phage; not essential
255: 2102: 1368: 1096: 899:"Enzymatic synthesis of DNA, XXIV. Synthesis of infectious phage phi-X174 DNA" 2190: 1318: 764: 590: 495:
Binds to new single-stranded phage DNA; accompanies phage DNA into procapsid
347: 300: 213: 1853:"Horizontal gene transfer and the evolution of microvirid coliphage genomes" 1416: 1041: 982: 597:
on the template. Primosomes gives RNA primers for DNA synthesis to strands.
2084: 2035: 1935: 1917: 1886: 1837: 1785: 1679: 1630: 1589: 1476: 1435: 1376: 1336: 1276: 1150: 1104: 1068: 923: 871: 782: 756: 635: 268: 263: 243: 144: 132: 120: 108: 96: 84: 1736: 1548: 1219: 1001: 950: 741:"Vladimir Sertić: forgotten pioneer of virology and bacteriophage therapy" 578:
positive strand by a virus-encoded A protein, also attracting a bacterial
2151: 1661: 1400:"Definitive demonstration by synthesis of genome annotation completeness" 1258: 1123:
Jaschke PR, Lieberman EK, Rodriguez J, Sierra A, Endy D (December 2012).
828: 557: 259: 239: 217: 188: 1293:
Wright, Bradley W.; Molloy, Mark P.; Jaschke, Paul R. (5 October 2021).
390:; ligates ends of linear phage DNA to form single-stranded circular DNA 271:
group that the genome of ΦX174 was the first to be completely assembled
1050: 312: 308: 1644:
Ruboyianes MV, Chen M, Dubrava MS, Cherwa JE, Fane BA (October 2009).
1243:"Measurements of translation initiation from all 64 codons in E. coli" 1191: 745:
Notes and Records: the Royal Society Journal of the History of Science
1718: 932: 820: 574: 410: 2113: 2136: 1902:"Experimental evolution of viruses: Microviridae as a model system" 606: 594: 1801: 1802:
Benbow RM, Hutchison CA, Fabricant JD, Sinsheimer RL (May 1971).
544: 360: 2002:"PhiXing-it, displaying foreign peptides on bacteriophage ΦX174" 1015:
Smith HO, Hutchison CA, Pfannkoch C, Venter JC (December 2003).
1398:
Jaschke PR, Dotson GA, Hung KS, Liu D, Endy D (November 2019).
1122: 1081: 540: 531: 235: 2000:
Christakos KJ, Chapman JA, Fane BA, Campos SK (January 2016).
1014: 549: 449: 71: 1851:
Rokyta DR, Burch CL, Caudle SB, Wichman HA (February 2006).
1451:"A high-resolution map of bacteriophage ϕX174 transcription" 706: 437:
External scaffolding protein involved in procapsid assembly
415:
Internal scaffolding protein involved in procapsid assembly
1999: 1643: 1506:(2nd ed.). New York: Oxford Univ. Press. p. 130. 583: 330:
The first half of the ΦX174 genome features high levels of
1240: 226:. This virus was isolated in 1935 by Nicolas Bulgakov in 180: 1692: 1526: 896: 304: 1850: 1497: 1354: 295:
Genome of the bacteriophage ΦX174 showing its 11 genes
283:
can be fully decompressed and still remain functional.
897:
Goulian M, Kornberg A, Sinsheimer RL (December 1967).
1564:"The HMMTOP transmembrane topology prediction server" 1295:"Overlapping genes in natural and engineered genomes" 798: 739:
Lacković, Zdravko; Toljan, Karlo (20 December 2020).
2049:
Ando H, Lemire S, Pires DP, Lu TK (September 2015).
1397: 702: 1292: 1942: 1749: 327:and therefore this gene may in fact be essential. 2048: 1950:"Using a PhiX Control for HiSeq® Sequencing Runs" 1164: 1162: 1160: 27:A single-stranded DNA virus that infects bacteria 2188: 695:expression dysregulation, and heat sensitivity. 535:bacteria most likely via a predicted N-terminal 1602: 849: 1752:"Point mutation rate of bacteriophage PhiX174" 1750:Cuevas JM, Duffy S, Sanjuán R (October 2009). 1157: 963: 738: 629: 1797: 1795: 1179:National Center for Biotechnology Information 679:ΦX174 is also used to test the resistance of 1899: 1561: 1448: 238:to be sequenced. This work was completed by 1603:Cherwa JE, Young LN, Fane BA (March 2011). 843: 484:DNA pilot protein (or minor spike protein) 1792: 957: 40: 2074: 2025: 1925: 1876: 1827: 1775: 1726: 1669: 1620: 1579: 1466: 1425: 1415: 1326: 1266: 1209: 1140: 1058: 1040: 991: 981: 940: 922: 772: 646: 525:Infection begins when G protein binds to 2100: 290: 187: 179: 556:, this protein contains four predicted 279:. In 2012, it was shown how its highly 14: 2189: 1804:"Genetic Map of Bacteriophage phiX174" 1562:Tusnády GE, Simon I (September 2001). 1174:"Complete genome: accession NC_001422" 303:has a sense circular single-stranded 2118: 2117: 1350: 1348: 1346: 1288: 1286: 964:Wickner S, Hurwitz J (October 1974). 1900:Wichman HA, Brown CJ (August 2010). 1449:Logel DY, Jaschke PR (August 2020). 1118: 1116: 1114: 794: 792: 689: 506:Optimizes burst size; not essential 49:Electron micrograph of phage ΦX174 24: 1343: 1283: 634:ΦX174 is closely related to other 520: 25: 2213: 2094: 1111: 789: 705: 658: 613: 600: 341: 58: 2042: 1993: 1968: 1893: 1869:10.1128/JB.188.3.1134-1142.2006 1844: 1743: 1686: 1637: 1596: 1581:10.1093/bioinformatics/17.9.849 1555: 1520: 1491: 1442: 1391: 1234: 1185: 1182:. Retrieved on 30 January 2016. 655:in many evolution experiments. 242:and his team in 1977. In 1962, 184:Structure of phage ΦX174 capsid 1075: 1008: 890: 878: 732: 13: 1: 1976:"PPE-Info – Standard Details" 1168:Enterobacteria phage phiX174 864:10.1016/S0022-2836(62)80031-X 726: 681:personal protective equipment 663:ΦX174 is regularly used as a 198:Phix174­micro­virus 2128:Enterobacteria phage phiX174 2101:Goodsell D (February 2000). 1820:10.1128/JVI.7.5.549-558.1971 1541:10.1016/0042-6822(75)90197-x 1211:10.1016/0014-5793(87)81030-x 1085:Journal of Molecular Biology 852:Journal of Molecular Biology 7: 2018:10.1016/j.virol.2015.11.021 1768:10.1534/genetics.109.106005 1622:10.1016/j.virol.2010.12.026 1468:10.1016/j.virol.2020.05.008 1142:10.1016/j.virol.2012.09.020 698: 630:Phylogenetics and diversity 618:PhiX174 is able to undergo 512: 354: 194:Sins­heimer­virus 10: 2218: 2067:10.1016/j.cels.2015.08.013 1952:. Illumina. Archived from 1311:10.1038/s41576-021-00417-w 388:rolling circle replication 216:is a single-stranded DNA ( 2158:Escherichia virus phiX174 2126: 1369:10.1021/acssynbio.0c00323 1097:10.1016/j.jmb.2011.07.070 651:ΦX174 has been used as a 386:Nicks RF DNA to initiate 286: 53: 48: 39: 32: 1502:". In Calender R (ed.). 318: 2103:"Bacteriophage phiX174" 1857:Journal of Bacteriology 1417:10.1073/pnas.1905990116 1299:Nature Reviews Genetics 1042:10.1073/pnas.2237126100 983:10.1073/pnas.71.10.4120 683:to bloodborne viruses. 641: 192:Schematic drawing of a 171:Escherichia virus ΦX174 34:Escherichia virus ΦX174 1918:10.1098/rstb.2010.0053 1247:Nucleic Acids Research 924:10.1073/pnas.58.6.2321 757:10.1098/rsnr.2019.0010 647:Experimental evolution 624:crossover interference 296: 201: 185: 2107:Molecule of the Month 1357:ACS Synthetic Biology 620:genetic recombination 462:Major capsid protein 294: 230:'s laboratory at the 220:) virus that infects 191: 183: 1662:10.1128/JVI.01077-09 537:transmembrane domain 473:Major spike protein 55:Virus classification 1711:1992Natur.355..137M 1650:Journal of Virology 1410:(48): 24206–24213. 1172:, complete genome. 1033:2003PNAS..10015440S 915:1967PNAS...58.2321G 813:1977Natur.265..687S 527:lipopolysaccharides 1912:(1552): 2495–501. 1504:The Bacteriophages 1259:10.1093/nar/gkx070 571:negative sense DNA 297: 281:overlapping genome 202: 186: 122:Malgrandaviricetes 2182: 2181: 2120:Taxon identifiers 1956:on 9 January 2019 1363:(11): 3079–3090. 721:Bacteriophage MS2 690:Synthetic Biology 510: 509: 359:ΦX174 encodes 11 252:synthetic biology 232:Pasteur Institute 178: 177: 16:(Redirected from 2209: 2175: 2174: 2162: 2161: 2160: 2147: 2146: 2145: 2115: 2114: 2110: 2089: 2088: 2078: 2046: 2040: 2039: 2029: 1997: 1991: 1990: 1988: 1986: 1972: 1966: 1965: 1963: 1961: 1946: 1940: 1939: 1929: 1897: 1891: 1890: 1880: 1848: 1842: 1841: 1831: 1799: 1790: 1789: 1779: 1747: 1741: 1740: 1730: 1719:10.1038/355137a0 1705:(6356): 137–43. 1690: 1684: 1683: 1673: 1641: 1635: 1634: 1624: 1600: 1594: 1593: 1583: 1559: 1553: 1552: 1524: 1518: 1517: 1495: 1489: 1488: 1470: 1446: 1440: 1439: 1429: 1419: 1395: 1389: 1388: 1352: 1341: 1340: 1330: 1290: 1281: 1280: 1270: 1253:(7): 3615–3626. 1238: 1232: 1231: 1213: 1189: 1183: 1166: 1155: 1154: 1144: 1120: 1109: 1108: 1079: 1073: 1072: 1062: 1044: 1012: 1006: 1005: 995: 985: 961: 955: 954: 944: 926: 894: 888: 882: 876: 875: 847: 841: 840: 821:10.1038/265687a0 807:(5596): 687–95. 796: 787: 786: 776: 736: 715: 710: 709: 665:positive control 434:240 in procapsid 366: 365: 307:genome of 5,386 254:. In 1972–1974, 223:Escherichia coli 63: 62: 44: 30: 29: 21: 2217: 2216: 2212: 2211: 2210: 2208: 2207: 2206: 2187: 2186: 2183: 2178: 2170: 2165: 2156: 2155: 2150: 2141: 2140: 2135: 2122: 2097: 2092: 2047: 2043: 1998: 1994: 1984: 1982: 1974: 1973: 1969: 1959: 1957: 1948: 1947: 1943: 1898: 1894: 1849: 1845: 1800: 1793: 1748: 1744: 1691: 1687: 1642: 1638: 1601: 1597: 1560: 1556: 1525: 1521: 1514: 1496: 1492: 1447: 1443: 1396: 1392: 1353: 1344: 1291: 1284: 1239: 1235: 1190: 1186: 1167: 1158: 1121: 1112: 1080: 1076: 1027:(26): 15440–5. 1013: 1009: 962: 958: 895: 891: 883: 879: 848: 844: 797: 790: 737: 733: 729: 711: 704: 701: 692: 661: 649: 644: 632: 616: 603: 523: 521:Infection Cycle 515: 357: 344: 321: 289: 248:Arthur Kornberg 228:Félix d'Hérelle 174: 158:Sinsheimervirus 57: 28: 23: 22: 15: 12: 11: 5: 2215: 2205: 2204: 2202:Bacteriophages 2199: 2180: 2179: 2177: 2176: 2163: 2148: 2132: 2130: 2124: 2123: 2112: 2111: 2096: 2095:External links 2093: 2091: 2090: 2061:(3): 187–196. 2041: 1992: 1967: 1941: 1892: 1863:(3): 1134–42. 1843: 1791: 1742: 1685: 1656:(19): 9952–6. 1636: 1595: 1568:Bioinformatics 1554: 1519: 1513:978-0195148503 1512: 1490: 1441: 1390: 1342: 1305:(3): 154–168. 1282: 1233: 1184: 1156: 1110: 1074: 1007: 976:(10): 4120–4. 956: 889: 877: 842: 788: 751:(4): 567–578. 730: 728: 725: 724: 723: 717: 716: 713:Viruses portal 700: 697: 691: 688: 669:DNA sequencing 660: 657: 653:model organism 648: 645: 643: 640: 631: 628: 615: 612: 602: 599: 580:DNA polymerase 554:bioinformatics 522: 519: 514: 511: 508: 507: 504: 501: 497: 496: 493: 490: 486: 485: 482: 479: 475: 474: 471: 468: 464: 463: 460: 457: 453: 452: 446: 443: 439: 438: 435: 432: 428: 427: 426:DNA packaging 424: 421: 417: 416: 413: 407: 403: 402: 399: 396: 392: 391: 384: 381: 377: 376: 373: 370: 356: 353: 343: 340: 320: 317: 288: 285: 269:Craig Venter's 256:Jerard Hurwitz 176: 175: 168: 166: 162: 161: 154: 150: 149: 142: 138: 137: 130: 126: 125: 118: 114: 113: 106: 102: 101: 94: 90: 89: 82: 75: 74: 69: 65: 64: 51: 50: 46: 45: 37: 36: 26: 18:Phi-X174 phage 9: 6: 4: 3: 2: 2214: 2203: 2200: 2198: 2195: 2194: 2192: 2185: 2173: 2168: 2164: 2159: 2153: 2149: 2144: 2138: 2134: 2133: 2131: 2129: 2125: 2121: 2116: 2108: 2104: 2099: 2098: 2086: 2082: 2077: 2072: 2068: 2064: 2060: 2056: 2052: 2045: 2037: 2033: 2028: 2023: 2019: 2015: 2011: 2007: 2003: 1996: 1981: 1977: 1971: 1955: 1951: 1945: 1937: 1933: 1928: 1923: 1919: 1915: 1911: 1907: 1903: 1896: 1888: 1884: 1879: 1874: 1870: 1866: 1862: 1858: 1854: 1847: 1839: 1835: 1830: 1825: 1821: 1817: 1814:(5): 549–58. 1813: 1809: 1805: 1798: 1796: 1787: 1783: 1778: 1773: 1769: 1765: 1761: 1757: 1753: 1746: 1738: 1734: 1729: 1724: 1720: 1716: 1712: 1708: 1704: 1700: 1696: 1689: 1681: 1677: 1672: 1667: 1663: 1659: 1655: 1651: 1647: 1640: 1632: 1628: 1623: 1618: 1614: 1610: 1606: 1599: 1591: 1587: 1582: 1577: 1574:(9): 849–50. 1573: 1569: 1565: 1558: 1550: 1546: 1542: 1538: 1535:(1): 268–82. 1534: 1530: 1523: 1515: 1509: 1505: 1501: 1494: 1486: 1482: 1478: 1474: 1469: 1464: 1460: 1456: 1452: 1445: 1437: 1433: 1428: 1423: 1418: 1413: 1409: 1405: 1401: 1394: 1386: 1382: 1378: 1374: 1370: 1366: 1362: 1358: 1351: 1349: 1347: 1338: 1334: 1329: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1289: 1287: 1278: 1274: 1269: 1264: 1260: 1256: 1252: 1248: 1244: 1237: 1229: 1225: 1221: 1217: 1212: 1207: 1204:(1): 119–25. 1203: 1199: 1195: 1188: 1181: 1180: 1175: 1171: 1165: 1163: 1161: 1152: 1148: 1143: 1138: 1135:(2): 278–84. 1134: 1130: 1126: 1119: 1117: 1115: 1106: 1102: 1098: 1094: 1091:(3): 387–96. 1090: 1086: 1078: 1070: 1066: 1061: 1056: 1052: 1048: 1043: 1038: 1034: 1030: 1026: 1022: 1018: 1011: 1003: 999: 994: 989: 984: 979: 975: 971: 967: 960: 952: 948: 943: 938: 934: 930: 925: 920: 916: 912: 909:(6): 2321–8. 908: 904: 900: 893: 887: 881: 873: 869: 865: 861: 858:(4): 424–34. 857: 853: 846: 838: 834: 830: 826: 822: 818: 814: 810: 806: 802: 795: 793: 784: 780: 775: 770: 766: 762: 758: 754: 750: 746: 742: 735: 731: 722: 719: 718: 714: 708: 703: 696: 687: 684: 682: 677: 675: 670: 666: 659:Biotechnology 656: 654: 639: 637: 627: 625: 621: 614:Recombination 611: 608: 601:Mutation rate 598: 596: 592: 591:stoichiometry 587: 585: 581: 576: 572: 566: 563: 559: 555: 551: 546: 542: 538: 534: 533: 528: 518: 505: 502: 499: 498: 494: 491: 488: 487: 483: 480: 477: 476: 472: 469: 466: 465: 461: 458: 455: 454: 451: 447: 444: 441: 440: 436: 433: 430: 429: 425: 422: 419: 418: 414: 412: 408: 405: 404: 400: 397: 394: 393: 389: 385: 382: 379: 378: 374: 371: 368: 367: 364: 362: 352: 349: 348:transcriptome 346:In 2020, the 342:Transcriptome 339: 336: 333: 328: 326: 316: 314: 311:. The genome 310: 306: 302: 301:bacteriophage 293: 284: 282: 278: 274: 270: 265: 261: 257: 253: 249: 245: 241: 237: 233: 229: 225: 224: 219: 215: 214:bacteriophage 211: 207: 199: 195: 190: 182: 173: 172: 167: 164: 163: 160: 159: 155: 152: 151: 148: 147: 143: 140: 139: 136: 135: 131: 128: 127: 124: 123: 119: 116: 115: 112: 111: 107: 104: 103: 100: 99: 95: 92: 91: 88: 87: 83: 80: 77: 76: 73: 70: 67: 66: 61: 56: 52: 47: 43: 38: 35: 31: 19: 2197:Microviridae 2184: 2127: 2106: 2058: 2055:Cell Systems 2054: 2044: 2009: 2005: 1995: 1983:. Retrieved 1980:wwwn.cdc.gov 1979: 1970: 1958:. Retrieved 1954:the original 1944: 1909: 1905: 1895: 1860: 1856: 1846: 1811: 1807: 1762:(2): 747–9. 1759: 1755: 1745: 1702: 1698: 1688: 1653: 1649: 1639: 1612: 1608: 1598: 1571: 1567: 1557: 1532: 1528: 1522: 1503: 1500:Microviridae 1499: 1493: 1458: 1454: 1444: 1407: 1403: 1393: 1360: 1356: 1302: 1298: 1250: 1246: 1236: 1201: 1198:FEBS Letters 1197: 1187: 1177: 1169: 1132: 1128: 1088: 1084: 1077: 1024: 1020: 1010: 973: 969: 959: 906: 902: 892: 880: 855: 851: 845: 804: 800: 748: 744: 734: 693: 685: 678: 662: 650: 636:microviridae 633: 617: 604: 588: 567: 561: 530: 524: 516: 492:60 in virion 481:12 in virion 470:60 in virion 459:60 in virion 358: 345: 337: 332:gene overlap 329: 324: 322: 298: 276: 272: 264:Reed Wickner 244:Walter Fiers 221: 209: 205: 203: 197: 193: 170: 169: 157: 156: 146:Microviridae 145: 134:Petitvirales 133: 121: 110:Phixviricota 109: 97: 86:Monodnaviria 85: 78: 68:(unranked): 33: 2152:Wikispecies 2109:. RCSB-PDB. 1615:(1): 9–14. 558:coiled-coil 309:nucleotides 260:Sue Wickner 240:Fred Sanger 98:Sangervirae 2191:Categories 1985:8 February 1170:sensu lato 727:References 448:Host cell 313:GC-content 2012:: 242–8. 1960:8 January 1485:219459208 1461:: 47–56. 1385:222300240 1319:1471-0064 765:0035-9149 575:primosome 411:procapsid 375:Function 206:phi X 174 165:Species: 93:Kingdom: 2172:11459739 2143:Q1063448 2137:Wikidata 2085:26973885 2036:26655242 2006:Virology 1936:20643739 1887:16428417 1838:16789129 1786:19652180 1756:Genetics 1680:19640994 1631:21227478 1609:Virology 1590:11590105 1529:Virology 1477:32560904 1455:Virology 1436:31719208 1377:33044064 1337:34611352 1277:28334756 1228:24174007 1151:23079106 1129:Virology 1105:21840317 1069:14657399 872:13945085 783:33177747 699:See also 674:Illumina 607:mutation 595:helicase 513:Proteome 361:proteins 355:Proteins 277:in vitro 273:in vitro 200:) virion 141:Family: 105:Phylum: 2076:4785837 2027:6191337 1927:2935103 1878:1347346 1808:J Virol 1777:2766332 1737:1370343 1728:4167681 1707:Bibcode 1671:2748053 1549:1094681 1427:6883844 1328:8490965 1268:5397182 1220:2954853 1051:3149024 1029:Bibcode 1002:4610569 951:4873588 911:Bibcode 837:4206886 809:Bibcode 774:7653334 562:de novo 545:glycine 369:Protein 325:E. coli 153:Genus: 129:Order: 117:Class: 2083:  2073:  2034:  2024:  1934:  1924:  1885:  1875:  1836:  1829:356162 1826:  1784:  1774:  1735:  1725:  1699:Nature 1678:  1668:  1629:  1588:  1547:  1510:  1483:  1475:  1434:  1424:  1383:  1375:  1335:  1325:  1317:  1275:  1265:  1226:  1218:  1149:  1103:  1067:  1060:307586 1057:  1049:  1000:  993:434340 990:  949:  942:223838 939:  931:  870:  835:  829:870828 827:  801:Nature 781:  771:  763:  541:capsid 532:E.coli 409:60 in 372:Copies 287:Genome 262:, and 236:genome 2167:IRMNG 1481:S2CID 1381:S2CID 1224:S2CID 1047:JSTOR 933:58720 929:JSTOR 833:S2CID 550:lysis 450:lysis 319:Genes 299:This 218:ssDNA 210:ΦX174 196:(aka 79:Realm 72:Virus 2081:PMID 2032:PMID 1987:2019 1962:2019 1932:PMID 1883:PMID 1834:PMID 1782:PMID 1733:PMID 1676:PMID 1627:PMID 1586:PMID 1545:PMID 1508:ISBN 1473:PMID 1432:PMID 1373:PMID 1333:PMID 1315:ISSN 1273:PMID 1216:PMID 1147:PMID 1101:PMID 1065:PMID 998:PMID 947:PMID 886:link 868:PMID 825:PMID 779:PMID 761:ISSN 642:Uses 605:The 584:SSBP 208:(or 204:The 2071:PMC 2063:doi 2022:PMC 2014:doi 2010:488 1922:PMC 1914:doi 1910:365 1873:PMC 1865:doi 1861:188 1824:PMC 1816:doi 1772:PMC 1764:doi 1760:183 1723:PMC 1715:doi 1703:355 1666:PMC 1658:doi 1617:doi 1613:411 1576:doi 1537:doi 1463:doi 1459:547 1422:PMC 1412:doi 1408:116 1365:doi 1323:PMC 1307:doi 1263:PMC 1255:doi 1206:doi 1202:218 1137:doi 1133:434 1093:doi 1089:412 1055:PMC 1037:doi 1025:100 988:PMC 978:doi 937:PMC 919:doi 860:doi 817:doi 805:265 769:PMC 753:doi 667:in 626:). 305:DNA 2193:: 2169:: 2154:: 2139:: 2105:. 2079:. 2069:. 2057:. 2053:. 2030:. 2020:. 2008:. 2004:. 1978:. 1930:. 1920:. 1908:. 1904:. 1881:. 1871:. 1859:. 1855:. 1832:. 1822:. 1810:. 1806:. 1794:^ 1780:. 1770:. 1758:. 1754:. 1731:. 1721:. 1713:. 1701:. 1697:. 1674:. 1664:. 1654:83 1652:. 1648:. 1625:. 1611:. 1607:. 1584:. 1572:17 1570:. 1566:. 1543:. 1533:66 1531:. 1479:. 1471:. 1457:. 1453:. 1430:. 1420:. 1406:. 1402:. 1379:. 1371:. 1359:. 1345:^ 1331:. 1321:. 1313:. 1303:23 1301:. 1297:. 1285:^ 1271:. 1261:. 1251:45 1249:. 1245:. 1222:. 1214:. 1200:. 1196:. 1176:, 1159:^ 1145:. 1131:. 1127:. 1113:^ 1099:. 1087:. 1063:. 1053:. 1045:. 1035:. 1023:. 1019:. 996:. 986:. 974:71 972:. 968:. 945:. 935:. 927:. 917:. 907:58 905:. 901:. 866:. 854:. 831:. 823:. 815:. 803:. 791:^ 777:. 767:. 759:. 749:74 747:. 743:. 395:A* 363:. 258:, 212:) 81:: 2087:. 2065:: 2059:1 2038:. 2016:: 1989:. 1964:. 1938:. 1916:: 1889:. 1867:: 1840:. 1818:: 1812:7 1788:. 1766:: 1739:. 1717:: 1709:: 1682:. 1660:: 1633:. 1619:: 1592:. 1578:: 1551:. 1539:: 1516:. 1487:. 1465:: 1438:. 1414:: 1387:. 1367:: 1361:9 1339:. 1309:: 1279:. 1257:: 1230:. 1208:: 1153:. 1139:: 1107:. 1095:: 1071:. 1039:: 1031:: 1004:. 980:: 953:. 921:: 913:: 874:. 862:: 856:5 839:. 819:: 811:: 785:. 755:: 503:— 500:K 489:J 478:H 467:G 456:F 445:— 442:E 431:D 423:— 420:C 406:B 398:— 383:— 380:A 20:)

Index

Phi-X174 phage

Virus classification
Edit this classification
Virus
Monodnaviria
Sangervirae
Phixviricota
Malgrandaviricetes
Petitvirales
Microviridae
Sinsheimervirus


bacteriophage
ssDNA
Escherichia coli
Félix d'Hérelle
Pasteur Institute
genome
Fred Sanger
Walter Fiers
Arthur Kornberg
synthetic biology
Jerard Hurwitz
Sue Wickner
Reed Wickner
Craig Venter's
overlapping genome

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.