Knowledge

Orlicz–Pettis theorem

Source 📝

2237: 743:
A more thorough discussion of the origins of the Orlicz–Pettis theorem and, in particular, of the paper can be found in. See also footnote 5 on p. 839 of and the comments at the end of Section 2.4 of the 2nd edition of the quoted book by Albiac and Kalton. Though in Polish, there is also an
727:
was only used to guarantee the existence of the weak limits of the considered series. Consequently, assuming the existence of those limits, which amounts to the assumption of the weak subseries convergence of the series, the same proof shows that the series in norm convergent. In other words, the
755:
proved a theorem, whose special case is the Orlicz–Pettis theorem in locally convex spaces. Later, a more direct proofs of the form (i) of the theorem in the locally convex case were provided by McArthur and Robertson.
764:
The theorem of Orlicz and Pettis had been strengthened and generalized in many directions. An early survey of this area of research is Kalton's paper. A natural setting for subseries convergence is that of an
642: 217: 975: 562: 272: 135: 1136:(in the original statement of the Andersen-Christensen theorem the assumption of sequential completeness is missing), which in turn extends the corresponding theorem of Kalton for a 483:
The history of the origins of the theorem is somewhat complicated. In numerous papers and books there are misquotations or/and misconceptions concerning the result. Assuming that
433: 919: 1257: 354: 1168: 841: 682: 379: 1718: 1134: 1050: 893: 736:
directly referred to Orlicz's theorem in Banach's book. Needing the result in order to show the coincidence of the weak and strong measures, he provided a proof. Also
1078: 995: 399: 1098: 1015: 1215: 84: 457: 1277: 1188: 861: 815: 789: 725: 702: 501: 477: 312: 292: 159: 53: 728:
version (i) of the Orlicz–Pettis theorem holds. The theorem in this form, openly credited to Orlicz, appeared in Banach's monograph in the last chapter
2126: 1053: 1723: 1657: 1566: 1962: 1789: 1674: 1652: 1561: 1346: 1326: 1952: 567: 2261: 2079: 1934: 1910: 791:
and a representative result of this area of research is the following theorem, called by Kalton the Graves-Labuda-Pachl Theorem.
56: 1802: 1605: 1891: 1782: 1757: 707:
After the paper was published, Orlicz realized that in the proof of the theorem the weak sequential completeness of
164: 1388: 2161: 1806: 1441: 924: 516: 226: 89: 1316:
Théorie des opérations linéaires, Monografje matematyczne, Warszawa 1932; Oeuvres. Vol. II}, PWN, Warszawa 1979.
1463: 1957: 1635: 1588: 404: 2240: 2013: 1947: 1775: 898: 1419: 1977: 1584:
Some results on Borel structures with applications to subseries convergence in Abelian topological groups
2222: 2176: 2100: 1982: 1220: 317: 2217: 2033: 1541: 1521: 1146: 820: 647: 2069: 1967: 1870: 459:
is weakly countably additive, then it is countably additive (in the original topology of the space
362: 2166: 1942: 1678: 1433: 1143:
The limitations for this kind of results are provided by the weak* topology of the Banach space
1107: 1023: 866: 2197: 2141: 2105: 1630: 1610: 1583: 1393: 752: 1904: 1259:) subseries convergence does not imply the subseries convergence in the F-norm of the space 1063: 980: 504: 436: 384: 29: 1900: 1501: 1083: 1000: 2180: 1562:
Universal Lusin measurability and subfamily summable families in Abelian topological groups
1193: 62: 25: 1767: 442: 8: 2146: 2084: 1798: 17: 2171: 2038: 1371: 1300: 1262: 1173: 846: 800: 774: 745: 733: 710: 687: 486: 462: 297: 277: 144: 38: 1458: 2151: 1753: 1366: 1295: 769: 21: 2156: 2074: 2043: 2023: 2008: 2003: 1998: 1409:
W. Orlicz, Collected works, Vol.1, PWN-Polish Scientific Publishers, Warszawa 1988.
1835: 740:
gave a proof (with a remark that it is similar to the original proof of Orlicz).
2018: 1972: 1920: 1915: 1886: 1845: 2207: 2059: 1860: 1101: 1100:. This is a generalization of an analogical result for a sequentially complete 977:
is universally measurable. Then the subseries convergence for both topologies
737: 2255: 2212: 2136: 1865: 1850: 1840: 766: 1480: 2202: 1855: 1825: 1626: 1137: 1522:
Universal measurability and summable families in topological vector spaces
2131: 2121: 2028: 1830: 2064: 1896: 1434:
Sur les applications linéaires faiblement compacts d'espaces du type
1631:
Subseries convergence in topological groups and vector measures
637:{\displaystyle \sum _{n=1}^{\infty }|x^{*}(x_{n})|<\infty } 1653:
On the Orlicz-Pettis property in non-locally convex F-spaces
1797: 748:, Orlicz’s first PhD-student, still in the occupied Lwów. 1675:
The Orlicz-Pettis theorem fails for Lumer's Hardy spaces
1481:
On unconditional convergence in topological vector spaces
1389:
Essays on the Orlicz-Petts theorem, I (The two theorems)
744:
adequate comment on page 284 of the quoted monograph of
1140:
group, a theorem that triggered this series of papers.
1420:"Władysław Orlicz - the Mathematics Genealogy Project" 1056:
group, then the conclusion of the theorem is true for
1681: 1265: 1223: 1196: 1176: 1149: 1110: 1086: 1066: 1026: 1003: 983: 927: 901: 869: 849: 823: 803: 777: 713: 690: 650: 570: 519: 489: 465: 445: 407: 387: 365: 320: 300: 280: 229: 219:
are convergent. The theorem says that, equivalently,
167: 147: 92: 65: 41: 1367:
Beiträge zur Theorie der Orthogonalentwicklungen II
1296:
Beiträge zur Theorie der Orthogonalentwicklungen II
2127:Spectral theory of ordinary differential equations 1712: 1271: 1251: 1209: 1182: 1162: 1128: 1092: 1072: 1044: 1009: 989: 969: 913: 887: 855: 835: 809: 783: 719: 696: 676: 636: 556: 495: 471: 451: 427: 393: 373: 348: 306: 286: 266: 211: 153: 129: 78: 47: 2253: 1724:Proceedings of the American Mathematical Society 1658:Proceedings of the American Mathematical Society 1567:Proceedings of the American Mathematical Society 212:{\displaystyle \sum _{k=1}^{\infty }~x_{n_{k}}} 759: 503:is weakly sequentially complete Banach space, 1783: 1747: 1582:N. J. M. Andersen and J. P. R. Christensen, 970:{\displaystyle j:(X,\alpha )\to (X,\beta )} 684:, then the series is (norm) convergent in 557:{\displaystyle \sum _{n=1}^{\infty }~x_{n}} 267:{\displaystyle \sum _{n=1}^{\infty }~x_{n}} 130:{\displaystyle \sum _{n=1}^{\infty }~x_{n}} 1790: 1776: 1742:. Państwowe Wydawnictwo Naukowe, Warszawa. 1737: 32:(Pettis) with values in abstract spaces. 2080:Group algebra of a locally compact group 1748:Albiac, Fernando; Kalton, Nigel (2016). 564:is weakly unconditionally Cauchy, i.e., 356:), then it is (subseries) convergent; or 1606:Measure, Category and Convergent Series 57:locally convex topological vector space 2254: 428:{\displaystyle \mu :\mathbf {A} \to X} 1771: 1750:Topics in Banach space theory, 2nd ed 914:{\displaystyle \alpha \subset \beta } 1542:A note on the Orlicz-Pettis Theorem 294:(i.e., is subseries convergent in 13: 1155: 843:two Hausdorff group topologies on 732:in which no proofs were provided. 631: 587: 536: 314:with respect to its weak topology 274:is weakly subseries convergent in 246: 184: 109: 14: 2273: 1546:Indagationes Mathematicae (N. S.) 1526:Indagationes Mathematicae (N. S.) 1459:On a theorem of Orlicz and Pettis 2236: 2235: 2162:Topological quantum field theory 1252:{\displaystyle \sigma (X,X^{*})} 415: 367: 349:{\displaystyle \sigma (X,X^{*})} 2262:Theorems in functional analysis 1667: 1645: 1620: 1598: 1576: 1554: 1534: 1514: 1494: 1473: 1451: 1442:Canadian Journal of Mathematics 1327:On integration in vector spaces 1163:{\displaystyle \ell ^{\infty }} 1707: 1701: 1692: 1682: 1464:Pacific Journal of Mathematics 1426: 1412: 1403: 1381: 1359: 1339: 1319: 1310: 1288: 1246: 1227: 1123: 1111: 1039: 1027: 964: 952: 949: 946: 934: 882: 870: 836:{\displaystyle \alpha ,\beta } 677:{\displaystyle x^{*}\in X^{*}} 624: 620: 607: 593: 419: 343: 324: 1: 1958:Uniform boundedness principle 1636:Israel Journal of Mathematics 1589:Israel Journal of Mathematics 1282: 1170:and the examples of F-spaces 1738:Alexiewicz, Andrzej (1969). 644:for each linear functional 374:{\displaystyle \mathbf {A} } 7: 1713:{\displaystyle (LH)^{p}(B)} 1485:Proc. Roy. Soc. Edinburgh A 1347:Uniformity in linear spaces 1217:such that the weak (i.e., 1052:is a sequentially complete 760:Orlicz-Pettis type theorems 24:(Orlicz) or, equivalently, 10: 2278: 2101:Invariant subspace problem 1387:W. Filter and I. Labuda, 1129:{\displaystyle (X,\beta )} 1045:{\displaystyle (X,\beta )} 895:is sequentially complete, 888:{\displaystyle (X,\beta )} 2231: 2190: 2114: 2093: 2052: 1991: 1933: 1879: 1821: 1814: 1502:The Orlicz-Pettis theorem 1060:Hausdorff group topology 401:-algebra of sets and let 2070:Spectrum of a C*-algebra 1506:Contemporary Mathematics 817:be an Abelian group and 161:), if all its subseries 2167:Noncommutative geometry 1351:Trans. Amer. Math. Soc. 1331:Trans. Amer. Math. Soc. 1073:{\displaystyle \alpha } 990:{\displaystyle \alpha } 394:{\displaystyle \sigma } 2223:Tomita–Takesaki theory 2198:Approximation property 2142:Calculus of variations 1714: 1394:Real Analysis Exchange 1273: 1253: 1211: 1184: 1164: 1130: 1094: 1093:{\displaystyle \beta } 1074: 1046: 1011: 1010:{\displaystyle \beta } 991: 971: 915: 889: 857: 837: 811: 785: 721: 698: 678: 638: 591: 558: 540: 497: 473: 453: 429: 395: 375: 350: 308: 288: 268: 250: 213: 188: 155: 131: 113: 80: 49: 2218:Banach–Mazur distance 2181:Generalized functions 1715: 1274: 1254: 1212: 1210:{\displaystyle X^{*}} 1190:with separating dual 1185: 1165: 1131: 1095: 1075: 1047: 1020:As a consequence, if 1012: 992: 972: 916: 890: 858: 838: 812: 786: 722: 699: 679: 639: 571: 559: 520: 507:proved the following 498: 474: 454: 437:additive set function 430: 396: 376: 351: 309: 289: 269: 230: 214: 168: 156: 132: 93: 81: 79:{\displaystyle X^{*}} 50: 1963:Kakutani fixed-point 1948:Riesz representation 1740:Analiza Funkcjonalna 1679: 1400:, 1990-91, 393--403. 1263: 1221: 1194: 1174: 1147: 1108: 1084: 1064: 1024: 1001: 981: 925: 899: 867: 847: 821: 801: 775: 711: 688: 648: 568: 517: 487: 463: 452:{\displaystyle \mu } 443: 405: 385: 363: 318: 298: 278: 227: 165: 145: 139:subseries convergent 90: 63: 39: 26:countable additivity 2147:Functional calculus 2106:Mahler's conjecture 2085:Von Neumann algebra 1799:Functional analysis 1611:Real Anal. Exchange 921:, and the identity 18:functional analysis 2172:Riemann hypothesis 1871:Topological vector 1710: 1664:(1987), 492--–496. 1372:Studia Mathematica 1301:Studia Mathematica 1269: 1249: 1207: 1180: 1160: 1126: 1090: 1070: 1042: 1007: 987: 967: 911: 885: 853: 833: 807: 781: 717: 694: 674: 634: 554: 493: 469: 449: 425: 391: 371: 346: 304: 284: 264: 209: 151: 127: 76: 45: 2249: 2248: 2152:Integral operator 1929: 1928: 1617:(2017), 411--428. 1595:(1973), 414--420. 1491:(1969), 145--157. 1479:A.P. Robertson, 1470:(1967), 297--302. 1448:(1953), 129--173. 1378:(1929), 241–255. 1307:(1929), 241–255. 1272:{\displaystyle X} 1183:{\displaystyle X} 856:{\displaystyle X} 810:{\displaystyle X} 784:{\displaystyle X} 770:topological group 720:{\displaystyle X} 697:{\displaystyle X} 543: 496:{\displaystyle X} 472:{\displaystyle X} 307:{\displaystyle X} 287:{\displaystyle X} 253: 191: 154:{\displaystyle X} 116: 48:{\displaystyle X} 22:convergent series 2269: 2239: 2238: 2157:Jones polynomial 2075:Operator algebra 1819: 1818: 1792: 1785: 1778: 1769: 1768: 1763: 1743: 1731: 1730:(1990), 957–963. 1719: 1717: 1716: 1711: 1700: 1699: 1671: 1665: 1649: 1643: 1642:(1971), 402-412. 1624: 1618: 1602: 1596: 1580: 1574: 1558: 1552: 1538: 1532: 1518: 1512: 1498: 1492: 1477: 1471: 1455: 1449: 1432:A.Grothendieck, 1430: 1424: 1423: 1416: 1410: 1407: 1401: 1385: 1379: 1363: 1357: 1356:(1938), 305–356. 1343: 1337: 1336:(1938), 277–304. 1323: 1317: 1314: 1308: 1292: 1278: 1276: 1275: 1270: 1258: 1256: 1255: 1250: 1245: 1244: 1216: 1214: 1213: 1208: 1206: 1205: 1189: 1187: 1186: 1181: 1169: 1167: 1166: 1161: 1159: 1158: 1135: 1133: 1132: 1127: 1099: 1097: 1096: 1091: 1079: 1077: 1076: 1071: 1051: 1049: 1048: 1043: 1016: 1014: 1013: 1008: 996: 994: 993: 988: 976: 974: 973: 968: 920: 918: 917: 912: 894: 892: 891: 886: 862: 860: 859: 854: 842: 840: 839: 834: 816: 814: 813: 808: 790: 788: 787: 782: 726: 724: 723: 718: 703: 701: 700: 695: 683: 681: 680: 675: 673: 672: 660: 659: 643: 641: 640: 635: 627: 619: 618: 606: 605: 596: 590: 585: 563: 561: 560: 555: 553: 552: 541: 539: 534: 502: 500: 499: 494: 478: 476: 475: 470: 458: 456: 455: 450: 434: 432: 431: 426: 418: 400: 398: 397: 392: 380: 378: 377: 372: 370: 355: 353: 352: 347: 342: 341: 313: 311: 310: 305: 293: 291: 290: 285: 273: 271: 270: 265: 263: 262: 251: 249: 244: 223:(i) If a series 218: 216: 215: 210: 208: 207: 206: 205: 189: 187: 182: 160: 158: 157: 152: 136: 134: 133: 128: 126: 125: 114: 112: 107: 85: 83: 82: 77: 75: 74: 54: 52: 51: 46: 2277: 2276: 2272: 2271: 2270: 2268: 2267: 2266: 2252: 2251: 2250: 2245: 2227: 2191:Advanced topics 2186: 2110: 2089: 2048: 2014:Hilbert–Schmidt 1987: 1978:Gelfand–Naimark 1925: 1875: 1810: 1796: 1760: 1734: 1695: 1691: 1680: 1677: 1676: 1672: 1668: 1650: 1646: 1625: 1621: 1603: 1599: 1581: 1577: 1573:(1979), 45--50. 1559: 1555: 1539: 1535: 1519: 1515: 1511:(1980), 91–100. 1499: 1495: 1478: 1474: 1456: 1452: 1431: 1427: 1418: 1417: 1413: 1408: 1404: 1386: 1382: 1364: 1360: 1344: 1340: 1324: 1320: 1315: 1311: 1293: 1289: 1285: 1264: 1261: 1260: 1240: 1236: 1222: 1219: 1218: 1201: 1197: 1195: 1192: 1191: 1175: 1172: 1171: 1154: 1150: 1148: 1145: 1144: 1109: 1106: 1105: 1085: 1082: 1081: 1065: 1062: 1061: 1025: 1022: 1021: 1002: 999: 998: 982: 979: 978: 926: 923: 922: 900: 897: 896: 868: 865: 864: 848: 845: 844: 822: 819: 818: 802: 799: 798: 776: 773: 772: 762: 712: 709: 708: 689: 686: 685: 668: 664: 655: 651: 649: 646: 645: 623: 614: 610: 601: 597: 592: 586: 575: 569: 566: 565: 548: 544: 535: 524: 518: 515: 514: 488: 485: 484: 464: 461: 460: 444: 441: 440: 414: 406: 403: 402: 386: 383: 382: 366: 364: 361: 360: 337: 333: 319: 316: 315: 299: 296: 295: 279: 276: 275: 258: 254: 245: 234: 228: 225: 224: 201: 197: 196: 192: 183: 172: 166: 163: 162: 146: 143: 142: 121: 117: 108: 97: 91: 88: 87: 70: 66: 64: 61: 60: 55:be a Hausdorff 40: 37: 36: 12: 11: 5: 2275: 2265: 2264: 2247: 2246: 2244: 2243: 2232: 2229: 2228: 2226: 2225: 2220: 2215: 2210: 2208:Choquet theory 2205: 2200: 2194: 2192: 2188: 2187: 2185: 2184: 2174: 2169: 2164: 2159: 2154: 2149: 2144: 2139: 2134: 2129: 2124: 2118: 2116: 2112: 2111: 2109: 2108: 2103: 2097: 2095: 2091: 2090: 2088: 2087: 2082: 2077: 2072: 2067: 2062: 2060:Banach algebra 2056: 2054: 2050: 2049: 2047: 2046: 2041: 2036: 2031: 2026: 2021: 2016: 2011: 2006: 2001: 1995: 1993: 1989: 1988: 1986: 1985: 1983:Banach–Alaoglu 1980: 1975: 1970: 1965: 1960: 1955: 1950: 1945: 1939: 1937: 1931: 1930: 1927: 1926: 1924: 1923: 1918: 1913: 1911:Locally convex 1908: 1894: 1889: 1883: 1881: 1877: 1876: 1874: 1873: 1868: 1863: 1858: 1853: 1848: 1843: 1838: 1833: 1828: 1822: 1816: 1812: 1811: 1795: 1794: 1787: 1780: 1772: 1766: 1765: 1758: 1745: 1733: 1732: 1709: 1706: 1703: 1698: 1694: 1690: 1687: 1684: 1666: 1644: 1619: 1597: 1575: 1560:W. H. Graves, 1553: 1550:(1979), 35-37. 1533: 1531:(1979), 27-34. 1513: 1500:Nigel Kalton, 1493: 1472: 1457:C.W. McArthur 1450: 1425: 1411: 1402: 1380: 1358: 1338: 1318: 1309: 1286: 1284: 1281: 1268: 1248: 1243: 1239: 1235: 1232: 1229: 1226: 1204: 1200: 1179: 1157: 1153: 1125: 1122: 1119: 1116: 1113: 1089: 1069: 1041: 1038: 1035: 1032: 1029: 1006: 986: 966: 963: 960: 957: 954: 951: 948: 945: 942: 939: 936: 933: 930: 910: 907: 904: 884: 881: 878: 875: 872: 852: 832: 829: 826: 806: 780: 761: 758: 716: 693: 671: 667: 663: 658: 654: 633: 630: 626: 622: 617: 613: 609: 604: 600: 595: 589: 584: 581: 578: 574: 551: 547: 538: 533: 530: 527: 523: 492: 481: 480: 468: 448: 424: 421: 417: 413: 410: 390: 369: 357: 345: 340: 336: 332: 329: 326: 323: 303: 283: 261: 257: 248: 243: 240: 237: 233: 204: 200: 195: 186: 181: 178: 175: 171: 150: 124: 120: 111: 106: 103: 100: 96: 73: 69: 44: 9: 6: 4: 3: 2: 2274: 2263: 2260: 2259: 2257: 2242: 2234: 2233: 2230: 2224: 2221: 2219: 2216: 2214: 2213:Weak topology 2211: 2209: 2206: 2204: 2201: 2199: 2196: 2195: 2193: 2189: 2182: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2137:Index theorem 2135: 2133: 2130: 2128: 2125: 2123: 2120: 2119: 2117: 2113: 2107: 2104: 2102: 2099: 2098: 2096: 2094:Open problems 2092: 2086: 2083: 2081: 2078: 2076: 2073: 2071: 2068: 2066: 2063: 2061: 2058: 2057: 2055: 2051: 2045: 2042: 2040: 2037: 2035: 2032: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2007: 2005: 2002: 2000: 1997: 1996: 1994: 1990: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1941: 1940: 1938: 1936: 1932: 1922: 1919: 1917: 1914: 1912: 1909: 1906: 1902: 1898: 1895: 1893: 1890: 1888: 1885: 1884: 1882: 1878: 1872: 1869: 1867: 1864: 1862: 1859: 1857: 1854: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1829: 1827: 1824: 1823: 1820: 1817: 1813: 1808: 1804: 1800: 1793: 1788: 1786: 1781: 1779: 1774: 1773: 1770: 1761: 1759:9783319315553 1755: 1751: 1746: 1741: 1736: 1735: 1729: 1726: 1725: 1720: 1704: 1696: 1688: 1685: 1673:M. Nawrocki, 1670: 1663: 1660: 1659: 1654: 1651:M. Nawrocki, 1648: 1641: 1638: 1637: 1632: 1628: 1623: 1616: 1613: 1612: 1607: 1601: 1594: 1591: 1590: 1585: 1579: 1572: 1569: 1568: 1563: 1557: 1551: 1549: 1543: 1540:J. K. Pachl, 1537: 1530: 1527: 1523: 1517: 1510: 1507: 1503: 1497: 1490: 1486: 1482: 1476: 1469: 1466: 1465: 1460: 1454: 1447: 1444: 1443: 1438: 1437: 1429: 1421: 1415: 1406: 1399: 1396: 1395: 1390: 1384: 1377: 1374: 1373: 1368: 1362: 1355: 1352: 1348: 1342: 1335: 1332: 1328: 1325:B.J. Pettis, 1322: 1313: 1306: 1303: 1302: 1297: 1291: 1287: 1280: 1266: 1241: 1237: 1233: 1230: 1224: 1202: 1198: 1177: 1151: 1141: 1139: 1120: 1117: 1114: 1103: 1087: 1067: 1059: 1055: 1036: 1033: 1030: 1018: 1017:is the same. 1004: 984: 961: 958: 955: 943: 940: 937: 931: 928: 908: 905: 902: 879: 876: 873: 850: 830: 827: 824: 804: 796: 792: 778: 771: 768: 757: 754: 749: 747: 741: 739: 735: 731: 714: 705: 691: 669: 665: 661: 656: 652: 628: 615: 611: 602: 598: 582: 579: 576: 572: 549: 545: 531: 528: 525: 521: 513:If a series 512: 508: 506: 490: 466: 446: 438: 422: 411: 408: 388: 358: 338: 334: 330: 327: 321: 301: 281: 259: 255: 241: 238: 235: 231: 222: 221: 220: 202: 198: 193: 179: 176: 173: 169: 148: 140: 122: 118: 104: 101: 98: 94: 71: 67: 58: 42: 33: 31: 27: 23: 19: 16:A theorem in 2203:Balanced set 2177:Distribution 2115:Applications 1968:Krein–Milman 1953:Closed graph 1752:. Springer. 1749: 1739: 1727: 1722: 1669: 1661: 1656: 1647: 1639: 1634: 1627:N. J. Kalton 1622: 1614: 1609: 1600: 1592: 1587: 1578: 1570: 1565: 1556: 1547: 1545: 1536: 1528: 1525: 1520:Iwo Labuda, 1516: 1508: 1505: 1496: 1488: 1484: 1475: 1467: 1462: 1453: 1445: 1440: 1435: 1428: 1414: 1405: 1397: 1392: 1383: 1375: 1370: 1361: 1353: 1350: 1345:N. Dunford, 1341: 1333: 1330: 1321: 1312: 1304: 1299: 1290: 1142: 1080:weaker than 1057: 1019: 794: 793: 763: 753:Grothendieck 750: 742: 729: 706: 510: 509: 482: 138: 86:. A series 34: 15: 2132:Heat kernel 2122:Hardy space 2029:Trace class 1943:Hahn–Banach 1905:Topological 1604:I. Labuda, 1365:W. Orlicz, 1294:W. Orlicz, 20:concerning 2065:C*-algebra 1880:Properties 1283:References 1054:K-analytic 863:such that 746:Alexiewicz 59:with dual 2039:Unbounded 2034:Transpose 1992:Operators 1921:Separable 1916:Reflexive 1901:Algebraic 1887:Barrelled 1242:∗ 1225:σ 1203:∗ 1156:∞ 1152:ℓ 1121:β 1088:β 1068:α 1037:β 1005:β 985:α 962:β 950:→ 944:α 909:β 906:⊂ 903:α 880:β 831:β 825:α 730:Remarques 670:∗ 662:∈ 657:∗ 632:∞ 603:∗ 588:∞ 573:∑ 537:∞ 522:∑ 505:W. Orlicz 447:μ 420:→ 409:μ 389:σ 359:(ii) Let 339:∗ 322:σ 247:∞ 232:∑ 185:∞ 170:∑ 110:∞ 95:∑ 72:∗ 2256:Category 2241:Category 2053:Algebras 1935:Theorems 1892:Complete 1861:Schwartz 1807:glossary 1102:analytic 795:Theorem. 511:Theorem. 30:measures 2044:Unitary 2024:Nuclear 2009:Compact 2004:Bounded 1999:Adjoint 1973:Min–max 1866:Sobolev 1851:Nuclear 1841:Hilbert 1836:Fréchet 1801: ( 1104:group 767:Abelian 738:Dunford 2019:Normal 1856:Orlicz 1846:Hölder 1826:Banach 1815:Spaces 1803:topics 1756:  1138:Polish 734:Pettis 542:  435:be an 252:  190:  115:  1831:Besov 1615:32(2) 1398:16(2) 1058:every 439:. If 381:be a 2179:(or 1897:Dual 1754:ISBN 1436:C(K) 997:and 797:Let 629:< 141:(in 137:is 35:Let 1728:109 1662:101 1483:, 751:In 28:of 2258:: 1805:– 1721:, 1655:, 1640:10 1633:, 1629:, 1608:, 1593:15 1586:, 1571:73 1564:, 1548:82 1544:, 1529:82 1524:, 1504:, 1489:68 1487:, 1468:22 1461:, 1439:, 1391:, 1369:, 1354:44 1349:, 1334:44 1298:, 1279:. 704:. 479:). 2183:) 1907:) 1903:/ 1899:( 1809:) 1791:e 1784:t 1777:v 1764:. 1762:. 1744:. 1708:) 1705:B 1702:( 1697:p 1693:) 1689:H 1686:L 1683:( 1509:2 1446:3 1422:. 1376:1 1329:, 1305:1 1267:X 1247:) 1238:X 1234:, 1231:X 1228:( 1199:X 1178:X 1124:) 1118:, 1115:X 1112:( 1040:) 1034:, 1031:X 1028:( 965:) 959:, 956:X 953:( 947:) 941:, 938:X 935:( 932:: 929:j 883:) 877:, 874:X 871:( 851:X 828:, 805:X 779:X 715:X 692:X 666:X 653:x 625:| 621:) 616:n 612:x 608:( 599:x 594:| 583:1 580:= 577:n 550:n 546:x 532:1 529:= 526:n 491:X 467:X 423:X 416:A 412:: 368:A 344:) 335:X 331:, 328:X 325:( 302:X 282:X 260:n 256:x 242:1 239:= 236:n 203:k 199:n 194:x 180:1 177:= 174:k 149:X 123:n 119:x 105:1 102:= 99:n 68:X 43:X

Index

functional analysis
convergent series
countable additivity
measures
locally convex topological vector space
additive set function
W. Orlicz
Pettis
Dunford
Alexiewicz
Grothendieck
Abelian
topological group
K-analytic
analytic
Polish
Beiträge zur Theorie der Orthogonalentwicklungen II
Studia Mathematica
On integration in vector spaces
Uniformity in linear spaces
Beiträge zur Theorie der Orthogonalentwicklungen II
Studia Mathematica
Essays on the Orlicz-Petts theorem, I (The two theorems)
Real Analysis Exchange
"Władysław Orlicz - the Mathematics Genealogy Project"
Sur les applications linéaires faiblement compacts d'espaces du type C(K)
Canadian Journal of Mathematics
On a theorem of Orlicz and Pettis
Pacific Journal of Mathematics
On unconditional convergence in topological vector spaces

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.