Knowledge

Polish space

Source đź“ť

387:. An alternative approach, equivalent to the one given here, is first to define "Polish metric space" to mean "complete separable metric space", and then to define a "Polish space" as the topological space obtained from a Polish metric space by 320:. The problem of determining whether a metrizable space is completely metrizable is more difficult. Topological spaces such as the open unit interval (0,1) can be given both complete metrics and incomplete metrics generating their topology. 363: 452:) if it is the image of a Polish space under a continuous mapping. So every Lusin space is Suslin. In a Polish space, a subset is a Suslin space if and only if it is a 639:
is an open mapping. As a result, it is a remarkable fact about Polish groups that Baire-measurable mappings (i.e., for which the preimage of any open set has the
381:
giving rise to the same topology, but no one of these is singled out or distinguished. A Polish space with a distinguished complete metric is called a
338:
A second characterization follows from Alexandrov's theorem. It states that a separable metric space is completely metrizable if and only if it is a
1146: 900: 620: 1233: 573:
that is also a Polish space, in other words homeomorphic to a separable complete metric space. There are several classic results of
1098: 1069: 1204: 1174: 1130: 987: 55:
subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians—
317: 1223: 316:
There are numerous characterizations that tell when a second-countable topological space is metrizable, such as
973: 1196: 1162: 1086: 105:. Additionally, some spaces that are not complete metric spaces in the usual metric may be Polish; e.g., the 647:
is a universal Polish group, in the sense that every Polish group is isomorphic to a closed subgroup of it.
208: 128: 31: 643:) that are homomorphisms between them are automatically continuous. The group of homeomorphisms of the 72: 67:
and others. However, Polish spaces are mostly studied today because they are the primary setting for
1228: 666: 102: 237:
is uncountable, it can be written as the disjoint union of a perfect set and a countable open set.
1080: 992: 473:
countable intersections or countable unions of Suslin subspaces of a Hausdorff topological space,
341: 526: 68: 522: 1184: 961: 688: 624: 582: 331:. A separable metric space is completely metrizable if and only if the second player has a 127:
that preserves the Borel structure. In particular, every uncountable Polish space has the
8: 512: 290: 1189: 1140: 1036: 949: 894: 80: 1005: 708: 147: 1200: 1170: 1126: 1094: 1065: 969: 640: 505: 388: 304: 300: 120: 34: 1057: 1028: 1000: 941: 924: 908: 578: 457: 332: 161: 20: 1166: 1154: 1090: 1050:
Diffusions, Markov Processes, and Martingales, Volume 1: Foundations, 2nd Edition
983: 916: 534: 426: 378: 286: 91: 28: 714: 449: 324: 224: 76: 42: 678:
The group of isometries of a separable complete metric space is a Polish group
422:
A subspace of a Lusin space is a Lusin space if and only if it is a Borel set.
323:
There is a characterization of complete separable metric spaces in terms of a
1217: 1020: 933: 882: 662: 574: 530: 509: 409: 296:
countable intersections of Polish subspaces of a Hausdorff topological space,
106: 64: 627:
due to Kuratowski: a continuous injective homomorphism of a Polish subgroup
56: 644: 585:
on homomorphisms between Polish groups. Firstly, Banach's argument applies
538: 501: 374: 328: 248: 98: 94: 45: 38: 435:
The disjoint union of a countable number of Lusin spaces is a Lusin space.
373:
Although Polish spaces are metrizable, they are not in and of themselves
228: 116: 1123:
Gradient Flows in Metric Spaces and in the Space of Probability Measures
1120: 672:
The group of homeomorphisms of a compact metric space is a Polish group.
1062:
Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures
1040: 1015: 953: 928: 453: 60: 675:
The product of a countable number of Polish groups is a Polish group.
655: 124: 87: 52: 49: 1032: 945: 283:
products and disjoint unions of countable families of Polish spaces,
1016:"On continuity and openness of homomorphisms in topological groups" 432:
The product of a countable number of Lusin spaces is a Lusin space.
988:"Group extensions and cohomology for locally compact groups. III" 75:. Polish spaces are also a convenient setting for more advanced 525:. Since a probability measure is globally finite, and hence a 425:
Any countable union or intersection of Lusin subspaces of a
412:) if some stronger topology makes it into a Polish space. 853: 778:, pp. 94, 102, Lemma 4 and Corollary 1 of Theorem 5. 415:
There are many ways to form Lusin spaces. In particular:
658:
with a countable number of components are Polish groups.
470:
countable products and disjoint unions of Suslin spaces,
911:(1989). "IX. Use of Real Numbers in General Topology". 529:, every probability measure on a Radon space is also a 179:
is Polish (under the induced topology) if and only if
344: 185:
is the intersection of a sequence of open subsets of
829: 619:is continuous. Secondly, there is a version of the 394: 1188: 865: 357: 231:and a countable set. Further, if the Polish space 1121:Ambrosio, L., Gigli, N. & SavarĂ©, G. (2005). 913:Elements of Mathematics: General Topology, Part 2 365:subset of its completion in the original metric. 1215: 1047: 889:. Monografie Matematyczne (in French). Warsaw. 164:(by virtue of being separable and metrizable). 1145:: CS1 maint: multiple names: authors list ( 1183: 923: 847: 1078: 1048:Rogers, L. C. G.; Williams, David (1994). 960: 899:: CS1 maint: location missing publisher ( 859: 739: 1004: 929:"Einige Sätze ueber topologische Gruppen" 706: 607:Polish, then any Borel homomorphism from 467:closed or open subsets of a Suslin space, 86:Common examples of Polish spaces are the 1125:. Basel: ETH ZĂĽrich, Birkhäuser Verlag. 1056: 907: 811: 799: 787: 775: 766:, p. 102, Corollary 1 to Theorem 5. 763: 751: 727: 240:Every Polish space is homeomorphic to a 1153: 368: 307:the standard topology of the real line. 1216: 1013: 881: 871: 835: 151:are generalizations of Polish spaces. 982: 823: 555:Every Suslin space is a Radon space. 483:They have the following properties: 217:is Polish then any closed subset of 802:, p. 95, Corollary of Lemma 5. 476:continuous images of Suslin spaces, 444:A Hausdorff topological space is a 419:Every Polish space is a Lusin space 404:A Hausdorff topological space is a 311: 13: 1114: 141: 19:In the mathematical discipline of 14: 1245: 1006:10.1090/S0002-9947-1976-0414775-X 661:The unitary group of a separable 601:are separable metric spaces with 589:to non-Abelian Polish groups: if 463:The following are Suslin spaces: 277:closed subsets of a Polish space, 273:The following spaces are Polish: 135: 1234:Science and technology in Poland 1191:Classical Descriptive Set Theory 1079:Srivastava, Sashi Mohan (1998). 887:ThĂ©orie des opĂ©rations linĂ©aires 558: 487:Every Suslin space is separable. 479:Borel subsets of a Suslin space. 439: 395:Generalizations of Polish spaces 377:; each Polish space admits many 841: 817: 491: 399: 289:spaces that are metrizable and 280:open subsets of a Polish space, 269:is the set of natural numbers). 805: 793: 781: 769: 757: 745: 733: 721: 707:Gemignani, Michael C. (1967). 700: 1: 1197:Graduate Texts in Mathematics 1163:Graduate Texts in Mathematics 1087:Graduate Texts in Mathematics 694: 318:Urysohn's metrization theorem 154: 1159:An Invitation to C*-Algebras 1052:. John Wiley & Sons Ltd. 129:cardinality of the continuum 7: 1199:. Vol. 156. Springer. 1064:. Oxford University Press. 682: 358:{\displaystyle G_{\delta }} 73:Borel equivalence relations 10: 1252: 1165:. Vol. 39. New York: 826:, p. 8, Proposition 5 633:onto another Polish group 119:Polish spaces, there is a 713:. Internet Archive. USA: 263:is the unit interval and 71:, including the study of 667:strong operator topology 209:Cantor–Bendixson theorem 993:Trans. Amer. Math. Soc. 790:, pp. 95, Lemma 6. 654:All finite dimensional 567:is a topological group 1224:Descriptive set theory 1082:A Course on Borel Sets 1014:Pettis, B. J. (1950). 527:locally finite measure 359: 223:can be written as the 160:Every Polish space is 69:descriptive set theory 360: 291:countable at infinity 32:completely metrizable 689:Standard Borel space 669:) is a Polish group. 625:closed graph theorem 621:open mapping theorem 369:Polish metric spaces 342: 327:known as the strong 717:. pp. 142–143. 710:Elementary Topology 513:probability measure 384:Polish metric space 79:, in particular in 37:; that is, a space 16:Concept in topology 968:. Academic Press. 814:, pp. 197–199 552:is a Radon space. 533:. In particular a 355: 303:with the topology 301:irrational numbers 173:of a Polish space 81:probability theory 1100:978-0-387-98412-4 1058:Schwartz, Laurent 925:Freudenthal, Hans 909:Bourbaki, Nicolas 641:property of Baire 506:topological space 456:(an image of the 429:is a Lusin space. 121:Borel isomorphism 35:topological space 1241: 1229:General topology 1210: 1194: 1180: 1155:Arveson, William 1150: 1144: 1136: 1110: 1108: 1107: 1075: 1053: 1044: 1010: 1008: 984:Moore, Calvin C. 979: 957: 920: 904: 898: 890: 875: 869: 863: 857: 851: 848:Freudenthal 1936 845: 839: 833: 827: 821: 815: 809: 803: 797: 791: 785: 779: 773: 767: 761: 755: 749: 743: 737: 731: 725: 719: 718: 704: 638: 632: 618: 612: 606: 600: 594: 587:mutatis mutandis 572: 551: 520: 458:Suslin operation 379:complete metrics 364: 362: 361: 356: 354: 353: 333:winning strategy 312:Characterization 268: 262: 256: 246: 236: 222: 216: 203: 196: 190: 184: 178: 172: 162:second countable 115:Between any two 111: 21:general topology 1251: 1250: 1244: 1243: 1242: 1240: 1239: 1238: 1214: 1213: 1207: 1177: 1167:Springer-Verlag 1138: 1137: 1133: 1117: 1115:Further reading 1105: 1103: 1101: 1091:Springer-Verlag 1072: 1033:10.2307/1969471 976: 966:Topology Vol. I 946:10.2307/1968686 917:Springer-Verlag 892: 891: 878: 870: 866: 860:Kuratowski 1966 858: 854: 846: 842: 834: 830: 822: 818: 810: 806: 798: 794: 786: 782: 774: 770: 762: 758: 750: 746: 740:Srivastava 1998 738: 734: 726: 722: 705: 701: 697: 685: 634: 628: 614: 608: 602: 596: 590: 568: 561: 541: 516: 508:on which every 494: 442: 427:Hausdorff space 402: 397: 371: 349: 345: 343: 340: 339: 314: 287:locally compact 264: 258: 252: 247:-subset of the 245: 241: 232: 218: 212: 202: 198: 192: 186: 180: 174: 168: 157: 109: 17: 12: 11: 5: 1249: 1248: 1237: 1236: 1231: 1226: 1212: 1211: 1205: 1181: 1175: 1151: 1131: 1116: 1113: 1112: 1111: 1099: 1076: 1071:978-0195605167 1070: 1054: 1045: 1027:(2): 293–308. 1011: 980: 974: 962:Kuratowski, K. 958: 921: 905: 883:Banach, Stefan 877: 876: 864: 862:, p. 400. 852: 840: 828: 816: 804: 792: 780: 768: 756: 744: 732: 720: 715:Addison-Wesley 698: 696: 693: 692: 691: 684: 681: 680: 679: 676: 673: 670: 659: 560: 557: 500:, named after 493: 490: 489: 488: 481: 480: 477: 474: 471: 468: 450:Mikhail Suslin 441: 438: 437: 436: 433: 430: 423: 420: 401: 398: 396: 393: 370: 367: 352: 348: 335:in this game. 313: 310: 309: 308: 297: 294: 284: 281: 278: 271: 270: 243: 238: 225:disjoint union 205: 200: 191:(i. e., 165: 156: 153: 77:measure theory 15: 9: 6: 4: 3: 2: 1247: 1246: 1235: 1232: 1230: 1227: 1225: 1222: 1221: 1219: 1208: 1206:0-387-94374-9 1202: 1198: 1193: 1192: 1186: 1182: 1178: 1176:0-387-90176-0 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1142: 1134: 1132:3-7643-2428-7 1128: 1124: 1119: 1118: 1102: 1096: 1092: 1088: 1084: 1083: 1077: 1073: 1067: 1063: 1059: 1055: 1051: 1046: 1042: 1038: 1034: 1030: 1026: 1023: 1022: 1021:Ann. of Math. 1017: 1012: 1007: 1002: 998: 995: 994: 989: 985: 981: 977: 971: 967: 963: 959: 955: 951: 947: 943: 939: 936: 935: 934:Ann. of Math. 930: 926: 922: 919:. 3540193723. 918: 914: 910: 906: 902: 896: 888: 884: 880: 879: 873: 868: 861: 856: 849: 844: 838:, p. 23. 837: 832: 825: 820: 813: 812:Bourbaki 1989 808: 801: 800:Schwartz 1973 796: 789: 788:Schwartz 1973 784: 777: 776:Schwartz 1973 772: 765: 764:Schwartz 1973 760: 753: 752:Schwartz 1973 748: 741: 736: 730:, p. 197 729: 728:Bourbaki 1989 724: 716: 712: 711: 703: 699: 690: 687: 686: 677: 674: 671: 668: 664: 663:Hilbert space 660: 657: 653: 652: 651: 648: 646: 642: 637: 631: 626: 622: 617: 611: 605: 599: 593: 588: 584: 580: 576: 571: 566: 559:Polish groups 556: 553: 549: 545: 540: 536: 532: 531:Radon measure 528: 524: 523:inner regular 519: 514: 511: 507: 503: 499: 486: 485: 484: 478: 475: 472: 469: 466: 465: 464: 461: 459: 455: 451: 448:(named after 447: 440:Suslin spaces 434: 431: 428: 424: 421: 418: 417: 416: 413: 411: 410:Nikolai Lusin 408:(named after 407: 392: 390: 386: 385: 380: 376: 375:metric spaces 366: 350: 346: 336: 334: 330: 326: 321: 319: 306: 302: 298: 295: 292: 288: 285: 282: 279: 276: 275: 274: 267: 261: 255: 251:(that is, of 250: 239: 235: 230: 226: 221: 215: 210: 206: 195: 189: 183: 177: 171: 166: 163: 159: 158: 152: 150: 149: 144: 143: 142:Suslin spaces 138: 137: 132: 130: 126: 123:; that is, a 122: 118: 113: 108: 107:open interval 104: 100: 96: 93: 89: 84: 82: 78: 74: 70: 66: 62: 58: 54: 51: 47: 44: 40: 36: 33: 30: 26: 22: 1190: 1158: 1122: 1104:. Retrieved 1081: 1061: 1049: 1024: 1019: 996: 991: 965: 940:(1): 46–56. 937: 932: 912: 886: 867: 855: 850:, p. 54 843: 831: 819: 807: 795: 783: 771: 759: 754:, p. 94 747: 742:, p. 55 735: 723: 709: 702: 649: 645:Hilbert cube 635: 629: 615: 609: 603: 597: 591: 586: 569: 565:Polish group 564: 562: 554: 547: 543: 539:metric space 517: 502:Johann Radon 497: 495: 492:Radon spaces 482: 462: 446:Suslin space 445: 443: 414: 405: 403: 400:Lusin spaces 391:the metric. 383: 382: 372: 337: 329:Choquet game 322: 315: 272: 265: 259: 253: 249:Hilbert cube 233: 219: 213: 193: 187: 181: 175: 169: 148:Radon spaces 146: 140: 136:Lusin spaces 134: 133: 114: 99:Cantor space 95:Banach space 85: 46:metric space 39:homeomorphic 25:Polish space 24: 18: 1185:Kechris, A. 872:Pettis 1950 836:Banach 1932 579:Freudenthal 498:Radon space 406:Lusin space 299:the set of 229:perfect set 167:A subspace 117:uncountable 112:is Polish. 103:Baire space 48:that has a 1218:Categories 1106:2008-12-04 975:012429202X 824:Moore 1976 695:References 665:(with the 656:Lie groups 650:Examples: 583:Kuratowski 454:Suslin set 389:forgetting 305:induced by 155:Properties 101:, and the 61:Kuratowski 57:SierpiĹ„ski 1141:cite book 895:cite book 537:complete 535:separable 351:δ 125:bijection 92:separable 88:real line 50:countable 29:separable 1187:(1995). 1157:(1981). 1060:(1973). 999:: 1–33. 986:(1976). 964:(1966). 927:(1936). 885:(1932). 683:See also 257:, where 43:complete 1041:1969471 954:1968686 623:or the 504:, is a 1203:  1173:  1129:  1097:  1068:  1039:  972:  952:  575:Banach 204:-set). 145:, and 110:(0, 1) 97:, the 90:, any 65:Tarski 1037:JSTOR 950:JSTOR 510:Borel 227:of a 211:) If 197:is a 53:dense 41:to a 27:is a 1201:ISBN 1171:ISBN 1147:link 1127:ISBN 1095:ISBN 1066:ISBN 970:ISBN 901:link 595:and 581:and 325:game 23:, a 1029:doi 1001:doi 997:221 942:doi 613:to 521:is 515:on 460:). 1220:: 1195:. 1169:. 1161:. 1143:}} 1139:{{ 1093:. 1089:. 1085:. 1035:. 1025:51 1018:. 990:. 948:. 938:37 931:. 915:. 897:}} 893:{{ 577:, 563:A 546:, 496:A 139:, 131:. 83:. 63:, 59:, 1209:. 1179:. 1149:) 1135:. 1109:. 1074:. 1043:. 1031:: 1009:. 1003:: 978:. 956:. 944:: 903:) 874:. 636:H 630:G 616:H 610:G 604:G 598:H 592:G 570:G 550:) 548:d 544:M 542:( 518:M 347:G 293:, 266:N 260:I 254:I 244:δ 242:G 234:X 220:X 214:X 207:( 201:δ 199:G 194:Q 188:P 182:Q 176:P 170:Q

Index

general topology
separable
completely metrizable
topological space
homeomorphic
complete
metric space
countable
dense
Sierpiński
Kuratowski
Tarski
descriptive set theory
Borel equivalence relations
measure theory
probability theory
real line
separable
Banach space
Cantor space
Baire space
open interval
uncountable
Borel isomorphism
bijection
cardinality of the continuum
Lusin spaces
Suslin spaces
Radon spaces
second countable

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑