Knowledge

Optical transistor

Source 📝

285:. The cesium ensemble did not interact with light and was thus transparent. The length of a round trip between the cavity mirrors equaled an integer multiple of the wavelength of the incident light source, allowing the cavity to transmit the source light. Photons from the gate light field entered the cavity from the side, where each photon interacted with an additional "control" light field, changing a single atom's state to be resonant with the cavity optical field, which changing the field's resonance wavelength and blocking transmission of the source field, thereby "switching" the "device". While the changed atom remains unidentified, 161:. The capacitance of a transmission line is proportional to its length and it exceeds the capacitance of the transistors in a logic gate when its length is equal to that of a single gate. The charging of transmission lines is one of the main energy losses in electronic logic. This loss is avoided in optical communication where only enough energy to switch an optical transistor at the receiving end must be transmitted down a line. This fact has played a major role in the uptake of fiber optics for long-distance communication but is yet to be exploited at the microprocessor level. 39:. Light occurring on an optical transistor's input changes the intensity of light emitted from the transistor's output while output power is supplied by an additional optical source. Since the input signal intensity may be weaker than that of the source, an optical transistor amplifies the optical signal. The device is the optical analog of the 145:
It remains questionable whether optical processing can reduce the energy required to switch a single transistor to be less than that for electronic transistors. To realistically compete, transistors require a few tens of photons per operation. It is clear, however, that this is achievable in proposed
66:
inherently do not interact with each other, an optical transistor must employ an operating medium to mediate interactions. This is done without converting optical to electronic signals as an intermediate step. Implementations using a variety of operating mediums have been proposed and experimentally
183:
Logic level independent of loss - In optical communication, the signal intensity decreases over distance due to absorption of light in the fiber optic cable. Therefore, a simple intensity threshold cannot distinguish between on and off signals for arbitrary length interconnects. The system must
98:
A more elaborate application of optical transistors is the development of an optical digital computer in which signals are photonic (i.e., light-transmitting media) rather than electronic (wires). Further, optical transistors that operate using single photons could form an integral part of
164:
Besides the potential advantages of higher speed, lower power consumption and high compatibility with optical communication systems, optical transistors must satisfy a set of benchmarks before they can compete with electronics. No single design has yet satisfied all these criteria whilst
122:
The most commonly argued case for optical logic is that optical transistor switching times can be much faster than in conventional electronic transistors. This is due to the fact that the speed of light in an optical medium is typically much faster than the drift velocity of electrons in
289:
allows the gate photon to be retrieved from the cesium. A single gate photon could redirect a source field containing up to two photons before the retrieval of the gate photon was impeded, above the critical threshold for a positive
273:
silicon microrings placed in the path of an optical signal. Gate photons heat the silicon microring causing a shift in the optical resonant frequency, leading to a change in transparency at a given frequency of the optical
179:
Logic level restoration - The signal needs to be ‘cleaned’ by each transistor. Noise and degradations in signal quality must be removed so that they do not propagate through the system and accumulate to produce
901:
Andreakou, P.; Poltavtsev, S. V.; Leonard, J. R.; Calman, E. V.; Remeika, M.; Kuznetsova, Y. Y.; Butov, L. V.; Wilkes, J.; Hanson, M.; Gossard, A. C. (2014). "Optically controlled excitonic transistor".
142:. The more natural integration of all-optical signal processors with fiber-optics would reduce the complexity and delay in the routing and other processing of signals in optical communication networks. 83:
are used to transfer data, tasks such as signal routing are done electronically. This requires optical-electronic-optical conversion, which form bottlenecks. In principle, all-optical
193:
Several schemes have been proposed to implement all-optical transistors. In many cases, a proof of concept has been experimentally demonstrated. Among the designs are those based on:
998:
Ballarini, D.; De Giorgi, M.; Cancellieri, E.; Houdré, R.; Giacobino, E.; Cingolani, R.; Bramati, A.; Gigli, G.; Sanvitto, D. (2013). "All-optical polariton transistor".
184:
encode zeros and ones at different frequencies, use differential signaling where the ratio or difference in two different powers carries the logic signal to avoid errors.
172:
Fan-out - Transistor output must be in the correct form and of sufficient power to operate the inputs of at least two transistors. This implies that the input and output
1198:
Varghese, L. T.; Fan, L.; Wang, J.; Gan, F.; Wang, X.; Wirth, J.; Niu, B.; Tansarawiput, C.; Xuan, Y.; Weiner, A. M.; Qi, M. (2012). "A Silicon Optical Transistor".
665:
Chen, W.; Beck, K. M.; Bucker, R.; Gullans, M.; Lukin, M. D.; Tanji-Suzuki, H.; Vuletic, V. (2013). "All-Optical Switch and Transistor Gated by One Stored Photon".
110:
Optical transistors could in theory be impervious to the high radiation of space and extraterrestrial planets, unlike electronic transistors which suffer from
1094:
Jin, C.-Y.; Johne, R.; Swinkels, M.; Hoang, T.; Midolo, L.; van Veldhoven, P.J.; Fiore, A. (Nov 2014). "Ultrafast non-local control of spontaneous emission".
779:
Gorniaczyk, H.; Tresp, C.; Schmidt, J.; Fedder, H.; Hofferberth, S. (2014). "Single-Photon Transistor Mediated by Interstate Rydberg Interactions".
158: 955:
Kuznetsova, Y. Y.; Remeika, M.; High, A. A.; Hammack, A. T.; Butov, L. V.; Hanson, M.; Gossard, A. C. (2010). "All-optical excitonic transistor".
43:
that forms the basis of modern electronic devices. Optical transistors provide a means to control light using only light and has applications in
1059:
Arkhipkin, V. G.; Myslivets, S. A. (2013). "All-optical transistor using a photonic-crystal cavity with an active Raman gain medium".
1155:
Piccione, B.; Cho, C. H.; Van Vugt, L. K.; Agarwal, R. (2012). "All-optical active switching in individual semiconductor nanowires".
149:
Perhaps the most significant advantage of optical over electronic logic is reduced power consumption. This comes from the absence of
197: 1215: 237:). Indirect excitons, which are created by light and decay to emit light, strongly interact due to their dipole alignment. 840:
Tiarks, D.; Baur, S.; Schneider, K.; DĂŒrr, S.; Rempe, G. (2014). "Single-Photon Transistor Using a Förster Resonance".
17: 415:
Hui, Dandan; Alqattan, Husain; Zhang, Simin; Pervak, Vladimir; Chowdhury, Enam; Hassan, Mohammed Th. (2023-02-24).
525:
Neumeier, L.; Leib, M.; Hartmann, M. J. (2013). "Single-Photon Transistor in Circuit Quantum Electrodynamics".
88: 472:
Jin, C.-Y.; Wada, O. (March 2014). "Photonic switching devices based on semiconductor nano-structures".
319: 51:
networks. Such technology has the potential to exceed the speed of electronics, while conserving more
1372: 84: 76: 48: 1255: 1367: 304: 103:
where they can be used to selectively address individual units of quantum information, known as
234: 67:
demonstrated. However, their ability to compete with modern electronics is currently limited.
586:
Hong, F. Y.; Xiong, S. J. (2008). "Single-photon transistor using microtoroidal resonators".
324: 59:(attosecond =10^-18 second), which paves the way to develop ultrafast optical transistors. 1333: 1278: 1164: 1113: 1068: 1017: 964: 921: 859: 798: 745: 684: 637: 595: 544: 491: 394: 309: 286: 36: 8: 1269:
Volz, J.; Rauschenbeutel, A. (2013). "Triggering an Optical Transistor with One Photon".
726:
Clader, B. D.; Hendrickson, S. M. (2013). "Microresonator-based all-optical transistor".
503: 329: 245: 127: 80: 1337: 1282: 1168: 1117: 1072: 1021: 968: 925: 863: 802: 749: 688: 641: 599: 548: 495: 206:
or microresonator, where the transmission is controlled by a weaker flux of gate photons
1302: 1243: 1226: 1137: 1103: 1041: 1007: 937: 911: 883: 849: 822: 788: 761: 735: 708: 674: 568: 534: 507: 481: 449: 416: 389: 241: 111: 92: 1294: 1231: 1211: 1180: 1129: 1033: 980: 875: 814: 765: 700: 560: 511: 454: 436: 44: 1306: 1141: 1045: 887: 826: 572: 1341: 1286: 1221: 1203: 1172: 1121: 1076: 1025: 972: 941: 929: 871: 867: 810: 806: 753: 712: 692: 645: 603: 556: 552: 499: 444: 428: 255: 100: 354: 339: 52: 264:
modulates cavity properties in time domain for quantum information applications.
1080: 607: 384: 314: 203: 131: 1361: 650: 440: 261: 226: 210: 209:
in free space, i.e., without a resonator, by addressing strongly interacting
1290: 1207: 757: 696: 1298: 1235: 1184: 1176: 1133: 1125: 1037: 984: 879: 818: 704: 564: 458: 432: 417:"Ultrafast optical switching and data encoding on synthesized light fields" 230: 165:
outperforming speed and power consumption of state of the art electronics.
976: 344: 282: 150: 32: 270:-based cavities employing polaritonic interactions for optical switching 1029: 622: 349: 173: 154: 56: 40: 1346: 1321: 933: 334: 281:
atoms trapped by means of optical tweezers and laser-cooled to a few
249: 222: 997: 267: 157:. In electronics, the transmission line needs to be charged to the 1108: 1012: 916: 854: 793: 740: 679: 539: 486: 87:
and routing is achievable using optical transistors arranged into
364: 218: 63: 900: 75:
Optical transistors could be used to improve the performance of
55:. The fastest demonstrated all-optical switching signal is 900 379: 374: 369: 278: 146:
single-photon transistors for quantum information processing.
139: 104: 95:
to compensate for signal attenuation along transmission lines.
359: 954: 778: 135: 1154: 293:
in a concentrated water solution containing iodide anions
91:. The same devices could be used to create new types of 839: 248:) where, similar to exciton-based optical transistors, 414: 277:
a dual-mirror optical cavity that holds around 20,000
1322:"An ultra-fast liquid switch for terahertz radiation" 1319: 1093: 664: 524: 1268: 1197: 1058: 176:, beam shapes and pulse shapes must be compatible. 725: 252:facilitate effective interactions between photons 1359: 623:"Are optical transistors the logical next step?" 1320:Buchmann, A.; Hoberg, C.; Novelli, F. (2022). 126:Optical transistors can be directly linked to 117: 1200:Frontiers in Optics 2012/Laser Science XXVIII 728:Journal of the Optical Society of America B 130:whereas electronics requires coupling via 1345: 1225: 1107: 1011: 915: 853: 792: 739: 678: 649: 585: 538: 485: 448: 258:cavities with an active Raman gain medium 35:, is a device that switches or amplifies 198:electromagnetically induced transparency 471: 31:, also known as an optical switch or a 14: 1360: 1202:. Vol. 2012. pp. FW6C.FW66. 620: 153:in the connections between individual 240:a system of microcavity polaritons ( 24: 188: 25: 1384: 1313: 1262: 1191: 1148: 1087: 1052: 991: 948: 894: 70: 872:10.1103/PhysRevLett.113.053602 833: 811:10.1103/PhysRevLett.113.053601 772: 719: 658: 614: 579: 557:10.1103/PhysRevLett.111.063601 518: 504:10.1088/0022-3727/47/13/133001 465: 408: 101:quantum information processing 13: 1: 401: 221:(composed of bound pairs of 89:photonic integrated circuits 7: 297: 118:Comparison with electronics 10: 1389: 1081:10.1103/PhysRevA.88.033847 608:10.1103/PhysRevA.78.013812 320:Parallel optical interface 621:Miller, D. A. B. (2010). 85:digital signal processing 77:fiber-optic communication 49:fiber-optic communication 651:10.1038/nphoton.2009.240 1291:10.1126/science.1242905 1208:10.1364/FIO.2012.FW6C.6 904:Applied Physics Letters 842:Physical Review Letters 781:Physical Review Letters 758:10.1364/JOSAB.30.001329 697:10.1126/science.1238169 527:Physical Review Letters 305:Optical network on chip 1177:10.1038/nnano.2012.144 1126:10.1038/nnano.2014.190 433:10.1126/sciadv.adf1015 168:The criteria include: 1157:Nature Nanotechnology 1096:Nature Nanotechnology 1000:Nature Communications 395:Electronic components 325:Optical communication 217:a system of indirect 41:electronic transistor 977:10.1364/OL.35.001587 474:Journal of Physics D 310:Optical interconnect 287:quantum interference 1338:2022APLP....7l1302B 1283:2013Sci...341..725V 1169:2012NatNa...7..640P 1118:2014NatNa...9..886J 1073:2013PhRvA..88c3847A 1022:2013NatCo...4.1778B 969:2010OptL...35.1587K 926:2014ApPhL.104i1101A 864:2014PhRvL.113e3602T 803:2014PhRvL.113e3601G 750:2013JOSAB..30.1329C 689:2013Sci...341..768C 642:2010NaPho...4....3M 600:2008PhRvA..78a3812H 549:2013PhRvL.111f3601N 496:2014JPhD...47m3001J 390:Electrical elements 330:Optical fiber cable 246:optical microcavity 79:networks. Although 1332:(121302): 121302. 1030:10.1038/ncomms2734 242:exciton-polaritons 128:fiber-optic cables 112:Single-event upset 93:optical amplifiers 81:fiber-optic cables 29:optical transistor 1347:10.1063/5.0130236 1217:978-1-55752-956-5 1061:Physical Review A 934:10.1063/1.4866855 588:Physical Review A 45:optical computing 18:Optical switching 16:(Redirected from 1380: 1373:Transistor types 1352: 1351: 1349: 1317: 1311: 1310: 1266: 1260: 1259: 1253: 1249: 1247: 1239: 1229: 1195: 1189: 1188: 1152: 1146: 1145: 1111: 1091: 1085: 1084: 1056: 1050: 1049: 1015: 995: 989: 988: 952: 946: 945: 919: 898: 892: 891: 857: 837: 831: 830: 796: 776: 770: 769: 743: 723: 717: 716: 682: 673:(6147): 768–70. 662: 656: 655: 653: 630:Nature Photonics 627: 618: 612: 611: 583: 577: 576: 542: 522: 516: 515: 489: 469: 463: 462: 452: 421:Science Advances 412: 256:photonic crystal 123:semiconductors. 21: 1388: 1387: 1383: 1382: 1381: 1379: 1378: 1377: 1368:Optoelectronics 1358: 1357: 1356: 1355: 1318: 1314: 1277:(6147): 725–6. 1267: 1263: 1251: 1250: 1241: 1240: 1218: 1196: 1192: 1153: 1149: 1102:(11): 886–890. 1092: 1088: 1057: 1053: 996: 992: 953: 949: 899: 895: 838: 834: 777: 773: 724: 720: 663: 659: 625: 619: 615: 584: 580: 523: 519: 470: 466: 427:(8): eadf1015. 413: 409: 404: 399: 355:Optical physics 340:Optoelectronics 300: 191: 189:Implementations 120: 73: 37:optical signals 23: 22: 15: 12: 11: 5: 1386: 1376: 1375: 1370: 1354: 1353: 1312: 1261: 1252:|journal= 1216: 1190: 1147: 1086: 1051: 990: 963:(10): 1587–9. 957:Optics Letters 947: 893: 832: 771: 718: 657: 613: 578: 517: 480:(13): 133001. 464: 406: 405: 403: 400: 398: 397: 392: 387: 385:Semiconductors 382: 377: 372: 367: 362: 357: 352: 347: 342: 337: 332: 327: 322: 317: 315:Optical switch 312: 307: 301: 299: 296: 295: 294: 291: 275: 271: 265: 259: 253: 238: 233:with a static 215: 214: 213: 211:Rydberg states 207: 204:optical cavity 190: 187: 186: 185: 181: 177: 159:signal voltage 132:photodetectors 119: 116: 72: 69: 9: 6: 4: 3: 2: 1385: 1374: 1371: 1369: 1366: 1365: 1363: 1348: 1343: 1339: 1335: 1331: 1327: 1326:APL Photonics 1323: 1316: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1265: 1257: 1245: 1237: 1233: 1228: 1223: 1219: 1213: 1209: 1205: 1201: 1194: 1186: 1182: 1178: 1174: 1170: 1166: 1163:(10): 640–5. 1162: 1158: 1151: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1110: 1105: 1101: 1097: 1090: 1082: 1078: 1074: 1070: 1067:(3): 033847. 1066: 1062: 1055: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1014: 1009: 1005: 1001: 994: 986: 982: 978: 974: 970: 966: 962: 958: 951: 943: 939: 935: 931: 927: 923: 918: 913: 910:(9): 091101. 909: 905: 897: 889: 885: 881: 877: 873: 869: 865: 861: 856: 851: 848:(5): 053602. 847: 843: 836: 828: 824: 820: 816: 812: 808: 804: 800: 795: 790: 787:(5): 053601. 786: 782: 775: 767: 763: 759: 755: 751: 747: 742: 737: 733: 729: 722: 714: 710: 706: 702: 698: 694: 690: 686: 681: 676: 672: 668: 661: 652: 647: 643: 639: 635: 631: 624: 617: 609: 605: 601: 597: 594:(1): 013812. 593: 589: 582: 574: 570: 566: 562: 558: 554: 550: 546: 541: 536: 533:(6): 063601. 532: 528: 521: 513: 509: 505: 501: 497: 493: 488: 483: 479: 475: 468: 460: 456: 451: 446: 442: 438: 434: 430: 426: 422: 418: 411: 407: 396: 393: 391: 388: 386: 383: 381: 378: 376: 373: 371: 368: 366: 363: 361: 358: 356: 353: 351: 348: 346: 343: 341: 338: 336: 333: 331: 328: 326: 323: 321: 318: 316: 313: 311: 308: 306: 303: 302: 292: 288: 284: 280: 276: 272: 269: 266: 263: 262:cavity switch 260: 257: 254: 251: 247: 243: 239: 236: 235:dipole moment 232: 231:quantum wells 228: 224: 220: 216: 212: 208: 205: 201: 200: 199: 196: 195: 194: 182: 178: 175: 171: 170: 169: 166: 162: 160: 156: 152: 147: 143: 141: 137: 133: 129: 124: 115: 113: 108: 106: 102: 96: 94: 90: 86: 82: 78: 68: 65: 60: 58: 54: 50: 46: 42: 38: 34: 30: 19: 1329: 1325: 1315: 1274: 1270: 1264: 1199: 1193: 1160: 1156: 1150: 1099: 1095: 1089: 1064: 1060: 1054: 1003: 999: 993: 960: 956: 950: 907: 903: 896: 845: 841: 835: 784: 780: 774: 731: 727: 721: 670: 666: 660: 633: 629: 616: 591: 587: 581: 530: 526: 520: 477: 473: 467: 424: 420: 410: 192: 167: 163: 148: 144: 125: 121: 109: 97: 74: 71:Applications 61: 28: 26: 734:(5): 1329. 345:Electronics 283:microkelvin 174:wavelengths 155:logic gates 151:capacitance 57:attoseconds 33:light valve 1362:Categories 636:(1): 3–5. 402:References 350:Transistor 250:polaritons 244:inside an 229:in double 1254:ignored ( 1244:cite book 1109:1311.2233 1013:1201.4071 917:1310.7842 855:1404.3061 794:1404.2876 766:119220800 741:1210.0814 680:1401.3194 540:1211.7215 512:118513312 487:1308.2389 441:2375-2548 335:Photonics 223:electrons 1307:35684657 1299:23950521 1236:28133636 1185:22941404 1142:28467862 1134:25218324 1046:11160378 1038:23653190 1006:: 1778. 985:20479817 888:14870149 880:25126919 827:20939989 819:25126918 705:23828886 573:29256835 565:23971573 459:36812316 298:See also 268:nanowire 219:excitons 1334:Bibcode 1279:Bibcode 1271:Science 1227:5269724 1165:Bibcode 1114:Bibcode 1069:Bibcode 1018:Bibcode 965:Bibcode 942:5556763 922:Bibcode 860:Bibcode 799:Bibcode 746:Bibcode 713:6641361 685:Bibcode 667:Science 638:Bibcode 596:Bibcode 545:Bibcode 492:Bibcode 450:9946343 365:Photons 274:supply. 180:errors. 64:photons 1305:  1297:  1234:  1224:  1214:  1183:  1140:  1132:  1044:  1036:  983:  940:  886:  878:  825:  817:  764:  711:  703:  571:  563:  510:  457:  447:  439:  380:Diodes 375:Lasers 370:Optics 279:cesium 202:in an 140:lasers 105:qubits 62:Since 1303:S2CID 1138:S2CID 1104:arXiv 1042:S2CID 1008:arXiv 938:S2CID 912:arXiv 884:S2CID 850:arXiv 823:S2CID 789:arXiv 762:S2CID 736:arXiv 709:S2CID 675:arXiv 626:(PDF) 569:S2CID 535:arXiv 508:S2CID 482:arXiv 360:Light 290:gain. 227:holes 53:power 1295:PMID 1256:help 1232:PMID 1212:ISBN 1181:PMID 1130:PMID 1034:PMID 981:PMID 876:PMID 815:PMID 701:PMID 561:PMID 455:PMID 437:ISSN 225:and 136:LEDs 134:and 47:and 1342:doi 1287:doi 1275:341 1222:PMC 1204:doi 1173:doi 1122:doi 1077:doi 1026:doi 973:doi 930:doi 908:104 868:doi 846:113 807:doi 785:113 754:doi 693:doi 671:341 646:doi 604:doi 553:doi 531:111 500:doi 445:PMC 429:doi 138:or 27:An 1364:: 1340:. 1328:. 1324:. 1301:. 1293:. 1285:. 1273:. 1248:: 1246:}} 1242:{{ 1230:. 1220:. 1210:. 1179:. 1171:. 1159:. 1136:. 1128:. 1120:. 1112:. 1098:. 1075:. 1065:88 1063:. 1040:. 1032:. 1024:. 1016:. 1002:. 979:. 971:. 961:35 959:. 936:. 928:. 920:. 906:. 882:. 874:. 866:. 858:. 844:. 821:. 813:. 805:. 797:. 783:. 760:. 752:. 744:. 732:30 730:. 707:. 699:. 691:. 683:. 669:. 644:. 632:. 628:. 602:. 592:78 590:. 567:. 559:. 551:. 543:. 529:. 506:. 498:. 490:. 478:47 476:. 453:. 443:. 435:. 423:. 419:. 114:. 107:. 1350:. 1344:: 1336:: 1330:7 1309:. 1289:: 1281:: 1258:) 1238:. 1206:: 1187:. 1175:: 1167:: 1161:7 1144:. 1124:: 1116:: 1106:: 1100:9 1083:. 1079:: 1071:: 1048:. 1028:: 1020:: 1010:: 1004:4 987:. 975:: 967:: 944:. 932:: 924:: 914:: 890:. 870:: 862:: 852:: 829:. 809:: 801:: 791:: 768:. 756:: 748:: 738:: 715:. 695:: 687:: 677:: 654:. 648:: 640:: 634:4 610:. 606:: 598:: 575:. 555:: 547:: 537:: 514:. 502:: 494:: 484:: 461:. 431:: 425:9 20:)

Index

Optical switching
light valve
optical signals
electronic transistor
optical computing
fiber-optic communication
power
attoseconds
photons
fiber-optic communication
fiber-optic cables
digital signal processing
photonic integrated circuits
optical amplifiers
quantum information processing
qubits
Single-event upset
fiber-optic cables
photodetectors
LEDs
lasers
capacitance
logic gates
signal voltage
wavelengths
electromagnetically induced transparency
optical cavity
Rydberg states
excitons
electrons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑