Knowledge

Nuclear pore

Source 📝

619:, where the nucleus remains intact, changes in the permeability barrier of the nuclear envelope (NE) are attributed to alterations within the NPC. These changes facilitate the entry of mitotic regulators into the nucleus. Studies in Aspergillys nidulans suggest that the NPC composition appears to be effeveted by the mitotiv kinase NIMA. NIMA potentially phosphorylates nucleoporins Nup98 and Gle2/Rae1, leading to NPC remodeling. This remodeling allows the nuclear entry of the protein complex cdc2/cyclinB and various other proteins, including soluble tubulin. The NPC scaffold remains intact throughout the whole closed mitosis. This seems to preserver the integrity of NE. 351: 31: 533: 578:(NE) formation using electron microscopy. During the interphase of the cell cycle the formation of the prepore would happen within the nucleus, each component being transported in through existing NPCs. These Nups would bind to an importin, once formed, preventing the assembly of a prepore in the cytoplasm. Once transported into the nucleus Ran GTP would bind to the importin and cause it to release the cargo. This Nup would be free to form a prepore. The binding of 601:
unknown in vivo. In metazoans (which undergo open mitosis) the NE degrades quickly after the loss of the peripheral Nups. The reason for this may be due to the change in the NPC's architecture. This change may make the NPC more permeable to enzymes involved in the degradation of the NE such as cytoplasmic tubulin, as well as allowing the entry of key mitotic regulator proteins. In organisms that undergo a semi-open mitosis such as the filamentous fungus
566:. It is then inserted into the double membrane close to the chromatin. This, in turn, leads to the fusing of that membrane. Around this protein complex others eventually bind forming the NPC. This method is possible during every phase of mitosis as the double membrane is present around the chromatin before the membrane fusion proteins complex can insert. Post mitotic cells could form a membrane first with pores being inserted into after formation. 43: 482:, where GTP hydrolysis occurs, releasing the NES-containing protein. The resulting CRM1-RanGDP complex returns to the nucleus, where RanGEFs catalyze the exchange of GDP for GTP on Ran, replenishing the system's energy source. This entire process is energy-dependent and consumes one GTP molecule. Notably, the export activity mediated by CRM1 can be inhibited by compounds like 359: 374:
Nuclear pore complex (NPC) serves highly regulated gateway for the transport of molecules between the nucleus and the cytoplasm. This intricate system enables the selective passage for molecules including proteins, RNA, and signaling molecules, ensuring proper cellular function and homeostasis. Small
454:
While translocation through the NPC is not energy-dependent, the overall import cycle needs the hydrolysis of two GTPs molecules, making it an active transport process. The import cycle is powered by the nucleo-cytoplasmic RanGTP gradient. This gradient arises from the exclusive nuclear localization
600:
remain stable, as cylindrical ring complexes within the nuclear envelope. This disassembly of the NPC peripheral groups is largely thought to be phosphate driven, as several of these nucleoporins are phosphorylated during the stages of mitosis. However, the enzyme involved in the phosphorylation is
557:
There are several theories as to how NPCs are assembled. As the immunodepletion of certain protein complexes, such as the Nup 107–160 complex, leads to the formation of poreless nuclei, it seems likely that the Nup complexes are involved in fusing the outer membrane of the nuclear envelope with the
523:
In highest eukaryotes, mRNA export is believed to be spicling-dependent. Splicing recruits the TREX protein complex to spliced messages, serving as an adapter for TAP, a low-affinity RNA-binding protein However, there are alternative mRNA export pathways that do not rely on splicing for specialized
434:
Nuclear proteins are synthesized in the cytoplasm and need to be imported through the NPCs into the nucleus. Import can be directed by various signals, of which nuclear localization signal (NLS) are best characterized. Several NLS sequences are known, generally containing a conserved sequence with
569:
Another model for the formation of the NPC is the production of a prepore as a start as opposed to a single protein complex. This prepore would form when several Nup complexes come together and bind to the chromatin. This would have the double membrane form around it in during mitotic reassembly.
308:
encircling the actual pore, forming the outer ring. Additionally, these subunits project a spoke-shaped protein over the pore channel. The central region of the pore may exhibit a plug-like structure; however, its precise nature remains unknown, and it is yet undetermined whether it represents an
544:
stages characterized by high transcription rates is crucial. For example, cycling mammalian and yeast cells double the amount of NPC in the nucleus between the G1 and G2 phase. Similarly, oocytes accumulate abundant NPCs in anticipation of the rapid mitotic activity during early development.
299:
The count of nuclear pore complexes varies across cell types and different stages of the cell's life cycle, with approximately 1,000 NPCs typically found in vertebrate cells. The human nuclear pore complex (hNPC) is a substantial structure, with a molecular weight of 120
607:, 14 out of the 30 nucleoporins disassemble from the core scaffold structure, driven by the activation of the NIMA and Cdk1 kinases that phosphorylate nucleoporins and open nuclear pores thereby widening the nuclear pore and allowing the entry of mitotic regulators. 447:(CAS), an exportin which in the nucleus is bound to RanGTP, displaces Importin-α from the cargo. The NLS-protein is thus free in the nucleoplasm. The Importinβ-RanGTP and Importinα-CAS-RanGTP complex diffuses back to the cytoplasm where 394:. These are a superfamily of nuclear transport receptors that facilitate the translocation of proteins, RNAs, and ribonuclear particles across the NPC in a Ran GTP hydrolase-dependent process. This family is further subdivided to the 582:
has at least been shown to bring Nup 107 and the Nup 153 nucleoporins into the nucleus. NPC assembly is a very rapid process yet defined intermediate states occur which leads to the idea that this assembly occurs in a stepwise
332:(MDa), comprising approximately 30 distinct protein components, each in multiple copies. The mammalian NPCs contain about 800 nucleoporins each that are organized into distinct NPC subcomplexes. Conversely, the yeast 317:
The nuclear pore complex (NPC) is a crucial cellular structure with a diameter of approximately 120 nanometers in vertebrates. Its channel varies from 5.2 nanometers in humans to 10.7 nm in the frog
441:
As the complex reaches the NPC, it diffuses through the pore without the need for additional energy. Upon entry into nucleus, RanGTP binds to Importin-β and displaces it from the complex. Then the
524:
messages such as histones. Recent work also suggest an interplay between splicing-dependent export and one of these alternative mRNA export pathways for secretory and mitochondrial transcripts.
292:
regulate molecular transport through the nuclear pore. Nucleoporin-mediated transport does not entail direct energy expenditure but instead relies on concentration gradients associated with the
226:
found in the NPC. The other two are the transmembrane Nups and the scaffold Nups. The transmembrane Nups are made up of transmembrane α-helices and play a vital part in anchoring the NPC to the
549:
must maintain NPC generation to sustain consistent NPC levels, as some may incur damage. Furthermore, certain cells can even increase the NPC numbers due to increased transcriptional demand.
635:
Lin, D. H., Stuwe, T., Schilbach, S., Rundlet, E. J., Perriches, T., Mobbs, G., ... Hoelz, A. (2016). Architecture of the nuclear pore complex symmetric core. Science, 352(6283), aaf1015.
504:
export is signal-mediated, with nuclear export signals (NES) present in RNA-binding proteins, except for tRNA which lacks an adapter. It is notable that all viral RNAs and cellular RNAs (
520:) except mRNA are dependent on RanGTP. Conserved mRNA export factors are necessary for mRNA nuclear export. Export factors are Mex67/Tap (large subunit) and Mtr2/p15 (small subunit). 438:
Importation begins with Importin-α binding to the NLS sequence of cargo proteins, forming a complex. Importin-β then attaches to Importin-α, facilitating transport towards the NPC.
241:
The principal function of nuclear pore complexes is to facilitate selective membrane transport of various molecules across the nuclear envelope. This includes the transportation of
1284: 1314: 2364: 273:
moving into the nucleus. Notably, the nuclear pore complex (NPC) can actively mediate up to 1000 translocations per complex per second. While smaller molecules can
592:
During mitosis the NPC appears to disassemble in stages, except in lower eukaryotes like yeast, where NPC disassembly does not happen during mitosis. Peripheral
104: 558:
inner and not that the fusing of the membrane begins the formation of the pore. There are several ways that this could lead to the formation of the full NPC.
455:
of RanGEFs, proteins that exchange GDP to GTP on Ran molecules. Thus, there is an elevated RanGTP concentration in the nucleus compared to the cytoplasm.
1798:"The Three Fungal Transmembrane Nuclear Pore Complex Proteins of Aspergillus nidulans Are Dispensable in the Presence of an Intact An-Nup84-120 Complex" 324:, with a depth of roughly 45 nm. Additionally, mRNA, being single-stranded, has a thickness ranging from 0.5 to 1 nm. The mammalian NPC has a 1619: 1197: 47:
Schematic diagram of a nuclear pore complex within the nuclear envelope (1) with the outer ring (2), spokes (3), basket (4), and filaments (5).
478:
complex with an exportin and RanGTP within the nucleus. Example of such an exportin is CRM1. This complex subsequently translocate to the
1276: 443: 471:, require export from the nucleus to the cytoplasm. This export process mirrors the import mechanism in complexity and importance. 451:
are hydrolyzed to GDP leading to the release of Importinβ and Importinα which become available for a new NLS-protein import round.
1643:"Nup2 requires a highly divergent partner, NupA, to fulfill functions at nuclear pore complexes and the mitotic chromatin region" 1532: 685: 1887: 1875: 1306: 830:"Evolutionarily Conserved Sequence Features Regulate the Formation of the FG Network at the Center of the Nuclear Pore Complex" 1901: 1395:"Genome analysis reveals interplay between 5'UTR introns and nuclear mRNA export for secretory and mitochondrial genes" 887:"Physical motif clustering within intrinsically disordered nucleoporin sequences reveals universal functional features" 1928: 200: 1447:
Rabut G, Lénárt P, Ellenberg J (June 2004). "Dynamics of nuclear pore complex organization through the cell cycle".
179:
proteins, in 2022 90% of the structure was known, then in 2024 the nuclear basket was decoded. About half of the
648:
Mosalaganti S, Obarska-Kosinska A, Siggel M, Taniguchi R, Turoňová B, Zimmerli CE, et al. (June 10, 2022).
354:
The Ran-GTP cycle, which drives the import and export of RNA and proteins through the nuclear protein complex.
2412: 277:
through the pores, larger molecules are often identified by specific signal sequences and are facilitated by
99: 1583: 429: 2298: 1560: 435:
basic residues such as PKKKRKV. Any material with an NLS will be taken up by importins to the nucleus.
1337: 1151: 596:
such as the Nup 153 Nup 98 and Nup 214 disassociate from the NPC. The rest, which can be considered a
92: 2407: 2382: 2136: 1533:"Steps of nuclear pore complex disassembly and reassembly during mitosis in early Drosophila embryos" 2119: 2114: 2109: 2104: 2099: 2094: 1906: 1866: 333: 87: 75: 1897:
3D electron microscopy structures of the NPC and constituent proteins from the EM Data Bank(EMDB)
708: 707:
Singh D, Soni N, Hutchings J, Echeverria I, Shaikh F, Duquette M, et al. (August 9, 2024).
1484:"Steps in the assembly of replication-competent nuclei in a cell-free system from Xenopus eggs" 650:"AI-based structure prediction empowers integrative structural analysis of human nuclear pores" 448: 111: 2402: 1921: 175:(Nups). Each human NPC comprises at least 456 individual protein molecules, with 34 distinct 1856: 1703: 898: 841: 603: 1599: 1362: 222:
repeats (FG repeats) in their amino acid sequences. FG-Nups is one of three main types of
8: 1221:"Saccharomyces cerevisiae exhibits a yAP-1-mediated adaptive response to malondialdehyde" 358: 266: 1862: 1707: 1692:"Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans" 902: 845: 375:
molecules such as proteins water and ions can diffuse through NPCs, but cargoes (>40
2059: 1830: 1797: 1773: 1748: 1729: 1667: 1642: 1508: 1483: 1421: 1394: 1127: 1094: 1070: 1045: 1021: 996: 921: 886: 862: 829: 764: 737: 463:
In addition to nuclear import, certain molecules and macromolecular complexes, such as
350: 285: 204: 165: 1353: 1253: 1220: 972: 945: 649: 1884: 1835: 1817: 1778: 1721: 1672: 1611: 1603: 1552: 1513: 1464: 1426: 1375: 1367: 1258: 1240: 1189: 1181: 1132: 1114: 1075: 1026: 977: 926: 867: 810: 769: 677: 669: 540:
Since the NPC regulates genome access, its presence in significant quantities during
474:
In a classical export scenario, proteins with a nuclear export sequence (NES) form a
403: 383: 345: 274: 246: 192: 1872: 1733: 1393:
Cenik C, Chua HN, Zhang H, Tarnawsky SP, Akef A, Derti A, et al. (April 2011).
1236: 962: 379:) such as RNA and protein require the participation of soluble transport receptors. 1950: 1914: 1825: 1809: 1768: 1760: 1711: 1662: 1654: 1595: 1544: 1503: 1495: 1456: 1416: 1406: 1357: 1349: 1248: 1232: 1171: 1163: 1122: 1106: 1065: 1057: 1016: 1008: 967: 957: 916: 906: 857: 849: 800: 759: 754: 749: 716: 661: 597: 575: 329: 227: 153: 149: 145: 2153: 1942: 1891: 1879: 1411: 911: 805: 788: 305: 141: 80: 1046:"Characterisation of the passive permeability barrier of nuclear pore complexes" 2329: 1999: 1955: 1176: 738:"Pore timing: the evolutionary origins of the nucleus and nuclear pore complex" 721: 475: 363: 325: 320: 254: 235: 231: 188: 184: 1896: 1716: 1691: 1460: 1167: 2396: 1821: 1607: 1371: 1244: 1185: 1118: 673: 468: 262: 215: 30: 1813: 1658: 1548: 665: 2183: 1938: 1839: 1782: 1725: 1676: 1615: 1556: 1531:
Kiseleva E, Rutherford S, Cotter LM, Allen TD, Goldberg MW (October 2001).
1468: 1430: 1193: 1136: 1110: 1079: 1061: 1030: 1012: 981: 930: 871: 814: 773: 681: 532: 289: 278: 211: 196: 180: 172: 157: 1517: 1379: 1262: 647: 636: 2335: 2198: 2188: 2071: 1969: 593: 495: 409:
Three models have been suggested to explain the translocation mechanism:
399: 395: 223: 176: 1764: 1499: 2276: 2089: 546: 541: 483: 301: 853: 787:
Nag N, Sasidharan S, Uversky VN, Saudagar P, Tripathi T (April 2022).
2229: 2178: 2081: 1482:
Sheehan MA, Mills AD, Sleeman AM, Laskey RA, Blow JJ (January 1988).
571: 563: 479: 367: 293: 250: 171:
The nuclear pore complex predominantly consists of proteins known as
1936: 117: 2158: 579: 517: 500:
Different export pathways through the NPC for various RNA classes.
464: 391: 387: 42: 1044:
Mohr D, Frey S, Fischer T, Güttler T, Görlich D (September 2009).
2207: 616: 219: 1581: 2259: 2249: 2239: 2234: 2146: 2129: 2064: 2054: 2049: 2044: 2039: 2034: 2029: 2024: 885:
Ando D, Colvin M, Rexach M, Gopinathan A (September 16, 2013).
789:"Phase separation of FG-nucleoporins in nuclear pore complexes" 270: 1796:
Liu HL, De Souza CP, Osmani AH, Osmani SA (January 15, 2009).
1690:
De Souza CP, Osmani AH, Hashmi SB, Osmani SA (November 2004).
1641:
Markossian S, Suresh S, Osmani AH, Osmani SA (February 2015).
1582:
Hampoelz B, Andres-Pons A, Kastritis P, Beck M (May 6, 2019).
1152:"Mitotic disassembly and reassembly of nuclear pore complexes" 2349: 2254: 2244: 2217: 2212: 2141: 2124: 2019: 2014: 2009: 2004: 1994: 1989: 1984: 1979: 1974: 1530: 793:
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
562:
One possibility is that as a protein complex it binds to the
513: 339: 312: 258: 63: 1640: 786: 706: 2314: 2309: 2286: 2281: 2269: 2264: 2222: 1277:"Nuclear Pore Complex - an overview | ScienceDirect Topics" 997:"Nuclear pore proteins and the control of genome functions" 828:
Peyro M, Soheilypour M, Lee BL, Mofrad MR (November 2015).
509: 505: 309:
actual plug or merely cargo transiently caught in transit.
1689: 1442: 1440: 884: 203:, characterized by high flexibility and a lack of ordered 1481: 827: 501: 376: 242: 161: 1795: 1437: 1392: 362:
Scanning and illumination microscopy of nuclear pores,
1859: – Histology Learning System at Boston University 1043: 35:
Diagram of the human cell nucleus with nuclear pores.
1584:"Structure and Assembly of the Nuclear Pore Complex" 1446: 336:
possesses a smaller mass, estimated at only 66 MDa.
238:
folds, and create the structural framework of NPCs.
1902:
NCDIR - National Center for the Dynamic Interactome
1307:"Karyopherin - an overview | ScienceDirect Topics" 1149: 1095:"Perspective on the metazoan nuclear pore complex" 709:"The molecular architecture of the nuclear basket" 570:Possible prepore structures have been observed on 199:exhibit characteristics of "natively unfolded" or 2365:transcription factors and intracellular receptors 1150:Kutay U, Jühlen R, Antonin W (December 1, 2021). 2394: 1218: 16:Openings in nuclear envelope of eukaryotic cells 1746: 1922: 1092: 386:are karyopherin's, these are also knowing as 994: 610: 207:. These disordered proteins, referred to as 183:encompass solenoid protein domains, such as 1929: 1915: 406:include NTF2 and some NTF2-like proteins. 340:Transport through the nuclear pore complex 313:Nuclear Pore Complex: Size and Composition 41: 29: 1865:at the U.S. National Library of Medicine 1829: 1772: 1747:De Souza CP, Osmani SA (September 2007). 1715: 1666: 1507: 1420: 1410: 1361: 1252: 1175: 1126: 1069: 1020: 971: 961: 920: 910: 861: 804: 763: 753: 735: 720: 444:cellular apoptosis susceptibility protein 413:Affinity gradients along the central plug 191:folds, and occasionally both as separate 1037: 531: 357: 349: 1335: 552: 2395: 1317:from the original on February 15, 2024 1287:from the original on February 15, 2024 1219:Turton HE, Dawes IW, Grant CM (1997). 637:http://doi.org/10.1126/science.aaf1015 536:Cell nucleus containing nuclear pores. 527: 1910: 1600:10.1146/annurev-biophys-052118-115308 1200:from the original on February 8, 2024 995:Ibarra A, Hetzer MW (February 2015). 458: 423: 296:(Ras-related nuclear protein cycle). 943: 1622:from the original on April 26, 2021 736:Field MC, Rout MP (April 3, 2019). 230:. The scaffold Nups are made up of 13: 1885:Nuclear Pore Complex illustrations 1749:"Mitosis, not just open or closed" 281:to traverse the nuclear envelope. 14: 2424: 1850: 688:from the original on May 16, 2024 201:intrinsically disordered proteins 489: 304:(MDa). Each NPC comprises eight 1873:Nuclear Pore Complex animations 1789: 1740: 1683: 1634: 1575: 1524: 1475: 1449:Current Opinion in Cell Biology 1386: 1342:Current Opinion in Cell Biology 1329: 1299: 1269: 1237:10.1128/jb.179.4.1096-1101.1997 1212: 1143: 1086: 963:10.1186/gb-2001-2-9-reviews0007 253:, as well as proteins (such as 1363:11858/00-001M-0000-002D-1CC5-E 988: 937: 878: 821: 780: 755:10.12688/f1000research.16402.1 729: 700: 641: 629: 587: 164:and facilitates the selective 1: 1802:Molecular Biology of the Cell 1647:Molecular Biology of the Cell 1354:10.1016/S0955-0674(97)80015-4 622: 1412:10.1371/journal.pgen.1001366 1093:Maimon T, Medalia O (2010). 912:10.1371/journal.pone.0073831 806:10.1016/j.bbamcr.2021.119205 214:(FG-Nups), contain multiple 195:. Conversely, the remaining 132:is a channel as part of the 7: 1588:Annual Review of Biophysics 1488:The Journal of Cell Biology 430:Nuclear localization signal 404:nuclear transport receptors 384:nuclear transport receptors 288:in sequences that code for 10: 2429: 2299:Transition nuclear protein 1336:Görlich D (June 1, 1997). 946:"The nuclear pore complex" 722:10.1016/j.cell.2024.07.020 493: 427: 343: 2378: 2358: 2345: 2325: 2297: 2197: 2174: 2167: 2137:Perinucleolar compartment 2080: 1949: 1890:February 7, 2009, at the 1878:February 7, 2009, at the 1857:Histology image: 20104loa 1717:10.1016/j.cub.2004.10.050 1461:10.1016/j.ceb.2004.04.001 1168:10.1016/j.tcb.2021.06.011 611:Preservation of integrity 110: 98: 86: 74: 62: 57: 52: 40: 28: 23: 1867:Medical Subject Headings 1338:"Nuclear protein import" 416:Brownian affinity gating 334:Saccharomyces cerevisiae 249:from the nucleus to the 1814:10.1091/mbc.E08-06-0628 1659:10.1091/mbc.E14-09-1359 1549:10.1242/jcs.114.20.3607 1537:Journal of Cell Science 1225:Journal of Bacteriology 1001:Genes & Development 666:10.1126/science.abm9506 1156:Trends in Cell Biology 1111:10.4161/nucl.1.5.12332 1062:10.1038/emboj.2009.200 1013:10.1101/gad.256495.114 537: 402:-β subfamilies. Other 382:The largest family of 371: 355: 168:of various molecules. 112:Anatomical terminology 1563:on September 13, 2019 1311:www.sciencedirect.com 1281:www.sciencedirect.com 535: 361: 353: 344:Further information: 2413:Nuclear pore complex 1543:(Pt 20): 3607–3618. 615:In fungi undergoing 604:Aspergillus nidulans 553:Theories of assembly 134:nuclear pore complex 2090:Cajal (coiled) body 1951:Envelope (membrane) 1765:10.1128/EC.00178-07 1708:2004CBio...14.1973D 1500:10.1083/jcb.106.1.1 1177:20.500.11850/518955 903:2013PLoSO...873831A 846:2015NatSR...515795P 528:Assembly of the NPC 267:signaling molecules 156:(NE) surrounds the 1937:Structures of the 956:(9): REVIEWS0007. 834:Scientific Reports 660:(6598): eabm9506. 538: 459:Export of proteins 424:Import of proteins 372: 356: 286:conserved features 247:ribosomal proteins 205:tertiary structure 193:structural domains 166:membrane transport 93:H1.00.01.2.01005 2390: 2389: 2374: 2373: 1702:(22): 1973–1984. 1162:(12): 1019–1033. 1056:(17): 2541–2553. 854:10.1038/srep15795 598:scaffold proteins 346:Nuclear transport 275:passively diffuse 126: 125: 121: 2420: 2408:Membrane biology 2383:nucleus diseases 2332:(Nucleoskeleton) 2172: 2171: 1931: 1924: 1917: 1908: 1907: 1844: 1843: 1833: 1793: 1787: 1786: 1776: 1759:(9): 1521–1527. 1744: 1738: 1737: 1719: 1687: 1681: 1680: 1670: 1638: 1632: 1631: 1629: 1627: 1579: 1573: 1572: 1570: 1568: 1559:. Archived from 1528: 1522: 1521: 1511: 1479: 1473: 1472: 1444: 1435: 1434: 1424: 1414: 1390: 1384: 1383: 1365: 1333: 1327: 1326: 1324: 1322: 1303: 1297: 1296: 1294: 1292: 1273: 1267: 1266: 1256: 1231:(4): 1096–1101. 1216: 1210: 1209: 1207: 1205: 1179: 1147: 1141: 1140: 1130: 1090: 1084: 1083: 1073: 1050:The EMBO Journal 1041: 1035: 1034: 1024: 992: 986: 985: 975: 965: 944:Adam SA (2001). 941: 935: 934: 924: 914: 882: 876: 875: 865: 825: 819: 818: 808: 784: 778: 777: 767: 757: 733: 727: 726: 724: 704: 698: 697: 695: 693: 645: 639: 633: 576:nuclear envelope 547:interphase cells 306:protein subunits 228:nuclear envelope 154:nuclear envelope 150:eukaryotic cells 146:nuclear envelope 118:edit on Wikidata 115: 45: 33: 21: 20: 2428: 2427: 2423: 2422: 2421: 2419: 2418: 2417: 2393: 2392: 2391: 2386: 2370: 2354: 2341: 2321: 2293: 2193: 2163: 2076: 1954: 1945: 1943:nuclear protein 1935: 1892:Wayback Machine 1880:Wayback Machine 1853: 1848: 1847: 1794: 1790: 1753:Eukaryotic Cell 1745: 1741: 1696:Current Biology 1688: 1684: 1639: 1635: 1625: 1623: 1580: 1576: 1566: 1564: 1529: 1525: 1480: 1476: 1445: 1438: 1405:(4): e1001366. 1391: 1387: 1334: 1330: 1320: 1318: 1305: 1304: 1300: 1290: 1288: 1275: 1274: 1270: 1217: 1213: 1203: 1201: 1148: 1144: 1091: 1087: 1042: 1038: 993: 989: 942: 938: 883: 879: 826: 822: 785: 781: 734: 730: 705: 701: 691: 689: 646: 642: 634: 630: 625: 613: 590: 555: 530: 498: 492: 461: 432: 426: 419:Selective phase 348: 342: 315: 185:alpha solenoids 142:protein complex 122: 69:porus nuclearis 48: 36: 17: 12: 11: 5: 2426: 2416: 2415: 2410: 2405: 2388: 2387: 2379: 2376: 2375: 2372: 2371: 2369: 2368: 2359: 2356: 2355: 2353: 2352: 2346: 2343: 2342: 2340: 2339: 2333: 2330:Nuclear matrix 2326: 2323: 2322: 2320: 2319: 2318: 2317: 2312: 2304: 2302: 2295: 2294: 2292: 2291: 2290: 2289: 2284: 2274: 2273: 2272: 2267: 2262: 2257: 2252: 2247: 2242: 2237: 2227: 2226: 2225: 2220: 2215: 2204: 2202: 2195: 2194: 2192: 2191: 2186: 2184:Dot (PML body) 2181: 2175: 2169: 2165: 2164: 2162: 2161: 2156: 2151: 2150: 2149: 2144: 2134: 2133: 2132: 2127: 2122: 2117: 2112: 2107: 2102: 2097: 2086: 2084: 2078: 2077: 2075: 2074: 2069: 2068: 2067: 2062: 2057: 2052: 2047: 2042: 2037: 2032: 2027: 2022: 2017: 2012: 2007: 2002: 1997: 1992: 1987: 1982: 1977: 1967: 1960: 1958: 1956:nuclear lamina 1947: 1946: 1934: 1933: 1926: 1919: 1911: 1905: 1904: 1899: 1894: 1882: 1870: 1860: 1852: 1851:External links 1849: 1846: 1845: 1808:(2): 616–630. 1788: 1739: 1682: 1653:(4): 605–621. 1633: 1594:(1): 515–536. 1574: 1523: 1474: 1455:(3): 314–321. 1436: 1385: 1348:(3): 412–419. 1328: 1298: 1268: 1211: 1142: 1105:(5): 383–386. 1085: 1036: 1007:(4): 337–349. 987: 950:Genome Biology 936: 877: 820: 779: 728: 699: 640: 627: 626: 624: 621: 617:closed mitosis 612: 609: 589: 586: 585: 584: 567: 554: 551: 529: 526: 491: 488: 476:heterotrimeric 469:messenger RNAs 460: 457: 428:Main article: 425: 422: 421: 420: 417: 414: 341: 338: 326:molecular mass 321:Xenopus laevis 314: 311: 255:DNA polymerase 189:beta-propeller 124: 123: 114: 108: 107: 102: 96: 95: 90: 84: 83: 78: 72: 71: 66: 60: 59: 55: 54: 50: 49: 46: 38: 37: 34: 26: 25: 15: 9: 6: 4: 3: 2: 2425: 2414: 2411: 2409: 2406: 2404: 2401: 2400: 2398: 2385: 2384: 2377: 2367: 2366: 2361: 2360: 2357: 2351: 2348: 2347: 2344: 2337: 2334: 2331: 2328: 2327: 2324: 2316: 2313: 2311: 2308: 2307: 2306: 2305: 2303: 2300: 2296: 2288: 2285: 2283: 2280: 2279: 2278: 2275: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2232: 2231: 2228: 2224: 2221: 2219: 2216: 2214: 2211: 2210: 2209: 2206: 2205: 2203: 2200: 2196: 2190: 2187: 2185: 2182: 2180: 2177: 2176: 2173: 2170: 2166: 2160: 2157: 2155: 2152: 2148: 2145: 2143: 2140: 2139: 2138: 2135: 2131: 2128: 2126: 2123: 2121: 2118: 2116: 2113: 2111: 2108: 2106: 2103: 2101: 2098: 2096: 2093: 2092: 2091: 2088: 2087: 2085: 2083: 2079: 2073: 2070: 2066: 2063: 2061: 2058: 2056: 2053: 2051: 2048: 2046: 2043: 2041: 2038: 2036: 2033: 2031: 2028: 2026: 2023: 2021: 2018: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1991: 1988: 1986: 1983: 1981: 1978: 1976: 1973: 1972: 1971: 1968: 1965: 1962: 1961: 1959: 1957: 1952: 1948: 1944: 1940: 1932: 1927: 1925: 1920: 1918: 1913: 1912: 1909: 1903: 1900: 1898: 1895: 1893: 1889: 1886: 1883: 1881: 1877: 1874: 1871: 1868: 1864: 1861: 1858: 1855: 1854: 1841: 1837: 1832: 1827: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1792: 1784: 1780: 1775: 1770: 1766: 1762: 1758: 1754: 1750: 1743: 1735: 1731: 1727: 1723: 1718: 1713: 1709: 1705: 1701: 1697: 1693: 1686: 1678: 1674: 1669: 1664: 1660: 1656: 1652: 1648: 1644: 1637: 1621: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1589: 1585: 1578: 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1534: 1527: 1519: 1515: 1510: 1505: 1501: 1497: 1493: 1489: 1485: 1478: 1470: 1466: 1462: 1458: 1454: 1450: 1443: 1441: 1432: 1428: 1423: 1418: 1413: 1408: 1404: 1400: 1399:PLOS Genetics 1396: 1389: 1381: 1377: 1373: 1369: 1364: 1359: 1355: 1351: 1347: 1343: 1339: 1332: 1316: 1312: 1308: 1302: 1286: 1282: 1278: 1272: 1264: 1260: 1255: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1215: 1199: 1195: 1191: 1187: 1183: 1178: 1173: 1169: 1165: 1161: 1157: 1153: 1146: 1138: 1134: 1129: 1124: 1120: 1116: 1112: 1108: 1104: 1100: 1096: 1089: 1081: 1077: 1072: 1067: 1063: 1059: 1055: 1051: 1047: 1040: 1032: 1028: 1023: 1018: 1014: 1010: 1006: 1002: 998: 991: 983: 979: 974: 969: 964: 959: 955: 951: 947: 940: 932: 928: 923: 918: 913: 908: 904: 900: 897:(9): e73831. 896: 892: 888: 881: 873: 869: 864: 859: 855: 851: 847: 843: 839: 835: 831: 824: 816: 812: 807: 802: 799:(4): 119205. 798: 794: 790: 783: 775: 771: 766: 761: 756: 751: 747: 743: 742:F1000Research 739: 732: 723: 718: 714: 710: 703: 687: 683: 679: 675: 671: 667: 663: 659: 655: 651: 644: 638: 632: 628: 620: 618: 608: 606: 605: 599: 595: 581: 577: 573: 568: 565: 561: 560: 559: 550: 548: 543: 534: 525: 521: 519: 515: 511: 507: 503: 497: 490:Export of RNA 487: 485: 481: 477: 472: 470: 467:subunits and 466: 456: 452: 450: 446: 445: 439: 436: 431: 418: 415: 412: 411: 410: 407: 405: 401: 397: 393: 389: 385: 380: 378: 369: 365: 360: 352: 347: 337: 335: 331: 328:of about 124 327: 323: 322: 310: 307: 303: 297: 295: 291: 287: 284:Evolutionary 282: 280: 276: 272: 268: 264: 263:carbohydrates 260: 256: 252: 248: 244: 239: 237: 233: 229: 225: 221: 217: 216:phenylalanine 213: 210: 206: 202: 198: 194: 190: 186: 182: 178: 174: 169: 167: 163: 159: 155: 151: 147: 144:found in the 143: 139: 135: 131: 119: 113: 109: 106: 103: 101: 97: 94: 91: 89: 85: 82: 79: 77: 73: 70: 67: 65: 61: 56: 51: 44: 39: 32: 27: 22: 19: 2403:Cell nucleus 2380: 2362: 1964:Pore complex 1963: 1939:cell nucleus 1863:Nuclear+pore 1805: 1801: 1791: 1756: 1752: 1742: 1699: 1695: 1685: 1650: 1646: 1636: 1626:February 14, 1624:. Retrieved 1591: 1587: 1577: 1565:. Retrieved 1561:the original 1540: 1536: 1526: 1491: 1487: 1477: 1452: 1448: 1402: 1398: 1388: 1345: 1341: 1331: 1321:February 15, 1319:. Retrieved 1310: 1301: 1291:February 15, 1289:. Retrieved 1280: 1271: 1228: 1224: 1214: 1204:February 12, 1202:. Retrieved 1159: 1155: 1145: 1102: 1098: 1088: 1053: 1049: 1039: 1004: 1000: 990: 953: 949: 939: 894: 890: 880: 837: 833: 823: 796: 792: 782: 745: 741: 731: 712: 702: 690:. Retrieved 657: 653: 643: 631: 614: 602: 594:nucleoporins 591: 556: 539: 522: 499: 473: 462: 453: 442: 440: 437: 433: 408: 381: 373: 319: 316: 298: 290:nucleoporins 283: 279:nucleoporins 240: 224:nucleoporins 212:nucleoporins 208: 197:nucleoporins 181:nucleoporins 173:nucleoporins 170: 158:cell nucleus 137: 133: 130:nuclear pore 129: 127: 68: 24:Nuclear Pore 18: 2338:(Nucleosol) 2336:Nucleoplasm 2199:SMC protein 2189:Paraspeckle 1970:Nucleoporin 1567:November 4, 1494:(1): 1–12. 588:Disassembly 496:Gene gating 400:karyopherin 398:-α and the 396:karyopherin 330:megadaltons 302:megadaltons 236:β-propeller 177:nucleoporin 160:containing 140:), a large 58:Identifiers 2397:Categories 2277:DNA repair 623:References 545:Moreover, 542:cell cycle 494:See also: 484:Leptomycin 232:α-solenoid 2381:see also 2363:see also 2230:Condensin 2179:Chromatin 2082:Nucleolus 1822:1059-1524 1608:1936-122X 1372:0955-0674 1245:0021-9193 1186:0962-8924 1119:1949-1034 840:: 15795. 674:0036-8075 580:importins 572:chromatin 564:chromatin 480:cytoplasm 392:exportins 388:importins 368:chromatin 294:RAN cycle 251:cytoplasm 1888:Archived 1876:Archived 1840:19019988 1783:17660363 1734:14782686 1726:15556859 1677:25540430 1620:Archived 1616:30943044 1557:11707513 1469:15145357 1431:21533221 1315:Archived 1285:Archived 1198:Archived 1194:34294532 1137:21326819 1080:19680228 1031:25691464 982:11574060 931:24066078 891:PLOS ONE 872:26541386 815:34995711 774:31001417 686:Archived 682:35679397 583:fashion. 518:microRNA 465:ribosome 2208:Cohesin 1831:2626566 1774:2043359 1704:Bibcode 1668:4325833 1518:3339085 1509:2114961 1422:3077370 1380:9159081 1263:9023189 1128:3037531 1099:Nucleus 1071:2728435 1022:4335290 922:3774778 899:Bibcode 863:4635341 842:Bibcode 765:6449795 748:: 369. 692:May 16, 654:Science 574:before 514:U snRNA 220:glycine 81:D022022 53:Details 2260:NCAPH2 2250:NCAPG2 2240:NCAPD3 2235:NCAPD2 2147:CUGBP1 2120:GEMIN7 2115:GEMIN6 2110:GEMIN5 2105:GEMIN4 2100:GEMIN2 2065:NUP214 2060:NUP210 2055:NUP205 2050:NUP188 2045:NUP160 2040:NUP155 2035:NUP153 2030:NUP133 2025:NUP107 1869:(MeSH) 1838:  1828:  1820:  1781:  1771:  1732:  1724:  1675:  1665:  1614:  1606:  1555:  1516:  1506:  1467:  1429:  1419:  1378:  1370:  1261:  1254:178803 1251:  1243:  1192:  1184:  1135:  1125:  1117:  1078:  1068:  1029:  1019:  980:  973:138961 970:  929:  919:  870:  860:  813:  772:  762:  680:  672:  366:, and 364:lamina 271:lipids 269:, and 259:lamins 152:. The 2350:LITAF 2255:NCAPH 2245:NCAPG 2218:SMC1B 2213:SMC1A 2168:Other 2159:ATXN7 2142:PTBP1 2125:DDX20 2020:NUP98 2015:NUP93 2010:NUP88 2005:NUP85 2000:NUP62 1995:NUP54 1990:NUP50 1985:NUP43 1980:NUP37 1975:NUP35 1730:S2CID 116:[ 105:63148 64:Latin 2315:TNP2 2310:TNP1 2287:SMC6 2282:SMC5 2270:SMC4 2265:SMC2 2223:SMC3 2154:TCOF 2130:COIL 2072:AAAS 1836:PMID 1818:ISSN 1779:PMID 1722:PMID 1673:PMID 1628:2024 1612:PMID 1604:ISSN 1569:2008 1553:PMID 1514:PMID 1465:PMID 1427:PMID 1376:PMID 1368:ISSN 1323:2024 1293:2024 1259:PMID 1241:ISSN 1206:2024 1190:PMID 1182:ISSN 1133:PMID 1115:ISSN 1076:PMID 1027:PMID 978:PMID 927:PMID 868:PMID 811:PMID 797:1869 770:PMID 713:Cell 694:2024 678:PMID 670:ISSN 510:rRNA 506:tRNA 449:GTPs 257:and 245:and 234:and 76:MeSH 2095:SMN 1826:PMC 1810:doi 1769:PMC 1761:doi 1712:doi 1663:PMC 1655:doi 1596:doi 1545:doi 1541:114 1504:PMC 1496:doi 1492:106 1457:doi 1417:PMC 1407:doi 1358:hdl 1350:doi 1249:PMC 1233:doi 1229:179 1172:hdl 1164:doi 1123:PMC 1107:doi 1066:PMC 1058:doi 1017:PMC 1009:doi 968:PMC 958:doi 917:PMC 907:doi 858:PMC 850:doi 801:doi 760:PMC 750:doi 717:doi 662:doi 658:376 502:RNA 390:or 377:KDa 261:), 243:RNA 187:or 162:DNA 148:of 138:NPC 100:FMA 2399:: 1941:/ 1834:. 1824:. 1816:. 1806:20 1804:. 1800:. 1777:. 1767:. 1755:. 1751:. 1728:. 1720:. 1710:. 1700:14 1698:. 1694:. 1671:. 1661:. 1651:26 1649:. 1645:. 1618:. 1610:. 1602:. 1592:48 1590:. 1586:. 1551:. 1539:. 1535:. 1512:. 1502:. 1490:. 1486:. 1463:. 1453:16 1451:. 1439:^ 1425:. 1415:. 1401:. 1397:. 1374:. 1366:. 1356:. 1344:. 1340:. 1313:. 1309:. 1283:. 1279:. 1257:. 1247:. 1239:. 1227:. 1223:. 1196:. 1188:. 1180:. 1170:. 1160:31 1158:. 1154:. 1131:. 1121:. 1113:. 1101:. 1097:. 1074:. 1064:. 1054:28 1052:. 1048:. 1025:. 1015:. 1005:29 1003:. 999:. 976:. 966:. 952:. 948:. 925:. 915:. 905:. 893:. 889:. 866:. 856:. 848:. 836:. 832:. 809:. 795:. 791:. 768:. 758:. 744:. 740:. 715:. 711:. 684:. 676:. 668:. 656:. 652:. 516:, 512:, 508:, 486:B 265:, 209:FG 128:A 88:TH 2301:: 2201:: 1966:: 1953:/ 1930:e 1923:t 1916:v 1842:. 1812:: 1785:. 1763:: 1757:6 1736:. 1714:: 1706:: 1679:. 1657:: 1630:. 1598:: 1571:. 1547:: 1520:. 1498:: 1471:. 1459:: 1433:. 1409:: 1403:7 1382:. 1360:: 1352:: 1346:9 1325:. 1295:. 1265:. 1235:: 1208:. 1174:: 1166:: 1139:. 1109:: 1103:1 1082:. 1060:: 1033:. 1011:: 984:. 960:: 954:2 933:. 909:: 901:: 895:8 874:. 852:: 844:: 838:5 817:. 803:: 776:. 752:: 746:8 725:. 719:: 696:. 664:: 370:. 218:– 136:( 120:]

Index



Latin
MeSH
D022022
TH
H1.00.01.2.01005
FMA
63148
Anatomical terminology
edit on Wikidata
protein complex
nuclear envelope
eukaryotic cells
nuclear envelope
cell nucleus
DNA
membrane transport
nucleoporins
nucleoporin
nucleoporins
alpha solenoids
beta-propeller
structural domains
nucleoporins
intrinsically disordered proteins
tertiary structure
nucleoporins
phenylalanine
glycine

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.