Knowledge

Nonlinear partial differential equation

Source đź“ť

819:. A slightly more complicated case is the self dual Yang–Mills equations, when the moduli space is finite-dimensional but not necessarily compact, though it can often be compactified explicitly. Another case when one can sometimes hope to describe all solutions is the case of completely integrable models, when solutions are sometimes a sort of superposition of 768:
The basic questions about singularities (their formation, propagation, and removal, and regularity of solutions) are the same as for linear PDE, but as usual much harder to study. In the linear case one can just use spaces of distributions, but nonlinear PDEs are not usually defined on arbitrary
814:
for example, as this would involve describing all possible fluid motions.) If the equation has a very large symmetry group, then one is usually only interested in the moduli space of solutions modulo the symmetry group, and this is sometimes a finite-dimensional compact manifold, possibly with
835:
It is often possible to write down some special solutions explicitly in terms of elementary functions (though it is rarely possible to describe all solutions like this). One way of finding such explicit solutions is to reduce the equations to equations of lower dimension, preferably ordinary
747:
A fundamental question for any PDE is the existence and uniqueness of a solution for given boundary conditions. For nonlinear equations these questions are in general very hard: for example, the hardest part of Yau's solution of the Calabi conjecture was the proof of existence for a
857:
Numerical solution on a computer is almost the only method that can be used for getting information about arbitrary systems of PDEs. There has been a lot of work done, but a lot of work still remains on solving certain systems numerically, especially for the Navier–Stokes and
809:
Ideally one would like to describe the (moduli) space of all solutions explicitly, and for some very special PDEs this is possible. (In general this is a hopeless problem: it is unlikely that there is any useful description of all solutions of the
1000:) are invariant under diffeomorphisms of the underlying manifold. Any such symmetry groups can usually be used to help study the equations; in particular if one solution is known one can trivially generate more by acting with the symmetry group. 800:
The solutions in a neighborhood of a known solution can sometimes be studied by linearizing the PDE around the solution. This corresponds to studying the tangent space of a point of the moduli space of all solutions.
934: 727:. They are difficult to study: almost no general techniques exist that work for all such equations, and usually each individual equation has to be studied as a separate problem. 1007:
equation is not quite parabolic, but is "parabolic modulo the action of the diffeomorphism group", which implies that it has most of the good properties of parabolic equations.
719:. They describe many different physical systems, ranging from gravitation to fluid dynamics, and have been used in mathematics to solve problems such as the 1096: 1016: 694: 435: 976:
PDEs that arise from integrable systems are often the easiest to study, and can sometimes be completely solved. A well-known example is the
753: 178: 951:
for a variational problem. Systems of this form can sometimes be solved by finding an extremum of the original variational problem.
1048: 852: 309: 1291: 730:
The distinction between a linear and a nonlinear partial differential equation is usually made in terms of the properties of the
1264: 1126: 350: 1236: 1212: 1186: 240: 687: 258: 142: 561: 215: 792:
depended on a deep study of these singularities, where he showed how to continue the solution past the singularities.
1152: 1108: 1077: 236: 188: 1306: 304: 223: 198: 1173:, International Series of Numerical Mathematics, vol. 153 (2nd ed.), Basel, Boston, Berlin: Birkhäuser, 680: 1301: 1226: 1103:, Studies in Mathematics and its Applications, vol. 13, Amsterdam-New York: North-Holland Publishing Co., 977: 824: 615: 168: 340: 1136: 712: 355: 183: 173: 884: 1043: 816: 630: 481: 384: 271: 193: 1131: 1028: 948: 316: 231: 811: 521: 389: 1272: 1101:
Spectral transform and solitons. Vol. I. Tools to solve and investigate nonlinear evolution equations
757: 749: 492: 470: 1003:
Sometimes equations are parabolic or hyperbolic "modulo the action of some group": for example, the
635: 997: 784:
showed that while short time solutions exist, singularities will usually form after a finite time.
486: 394: 989: 837: 566: 556: 548: 504: 345: 731: 379: 789: 720: 960: 836:
differential equations, which can often be solved exactly. This can sometimes be done using
625: 610: 499: 442: 424: 263: 19: 1246: 1196: 1162: 1118: 511: 447: 420: 8: 859: 781: 543: 528: 429: 293: 132: 99: 90: 1092: 971: 863: 538: 533: 416: 1219: 1296: 1232: 1208: 1182: 1148: 1104: 1073: 1038: 724: 595: 374: 109: 650: 1174: 1033: 939:
then it usually has an infinite number of first integrals, which help to study it.
785: 716: 660: 645: 1276: 1242: 1192: 1158: 1114: 600: 516: 43: 737: 655: 769:
distributions, so one replaces spaces of distributions by refinements such as
620: 605: 411: 399: 118: 1178: 1285: 770: 640: 590: 476: 104: 993: 48: 1004: 777: 665: 406: 127: 70: 60: 875: 988:
Some systems of PDEs have large symmetry groups. For example, the
820: 81: 76: 65: 1269: 738:
Methods for studying nonlinear partial differential equations
1259: 815:
singularities; for example, this happens in the case of the
1147:, Boca Raton, FL: Chapman & Hall/CRC, pp. xx+814, 1070:
An Introduction to Nonlinear Partial Differential Equations
1171:
Nonlinear Partial Differential Equations with Applications
742: 843:
Some equations have several different exact solutions.
887: 1145:
Handbook of nonlinear partial differential equations
776:
An example of singularity formation is given by the
756:to the Navier–Stokes equations is one of the seven 1231:(3rd ed.), Boston, MA: Academic Press, Inc., 1143:Polyanin, Andrei D.; Zaitsev, Valentin F. (2004), 1091: 1072:. New York: John Wiley & Sons. pp. 8–11. 928: 840:, or by looking for highly symmetric solutions. 1283: 1017:List of nonlinear partial differential equations 1142: 1270:NEQwiki, the nonlinear equations encyclopedia 996:, and many systems of equations (such as the 688: 1260:EqWorld, The World of Mathematical Equations 992:are invariant under an infinite-dimensional 804: 942: 1224: 1127:"Non-linear partial differential equation" 1124: 695: 681: 1168: 1049:Dispersive partial differential equation 853:Numerical partial differential equations 795: 754:existence (and smoothness) of solutions 709:nonlinear partial differential equation 1284: 929:{\displaystyle {\frac {dL}{dt}}=LA-AL} 846: 1202: 1067: 965: 954: 743:Existence and uniqueness of solutions 1010: 874:If a system of PDEs can be put into 143:List of named differential equations 947:Systems of PDEs often arise as the 216:Dependent and independent variables 13: 1228:Handbook of differential equations 830: 14: 1318: 1253: 1205:Encyclopedia of Nonlinear Science 763: 351:CarathĂ©odory's existence theorem 1292:Partial differential equations 1061: 707:In mathematics and physics, a 438: / Integral solutions 1: 1054: 734:that defines the PDE itself. 713:partial differential equation 1044:Inverse scattering transform 823:; this happens e.g. for the 482:Exponential response formula 228:Coupled / Decoupled 7: 1225:Zwillinger, Daniel (1998), 1132:Encyclopedia of Mathematics 1022: 983: 869: 10: 1323: 1203:Scott, Alwyn, ed. (2004), 1125:Pokhozhaev, S.I. (2001) , 978:Korteweg–de Vries equation 969: 958: 850: 825:Korteweg–de Vries equation 1179:10.1007/978-3-0348-0513-1 805:Moduli space of solutions 758:Millennium Prize problems 616:JĂłzef Maria Hoene-WroĹ„ski 562:Undetermined coefficients 471:Method of characteristics 356:Cauchy–Kowalevski theorem 1068:Logan, J. David (1994). 998:Einstein field equations 949:Euler–Lagrange equations 943:Euler–Lagrange equations 817:Seiberg–Witten equations 341:Picard–Lindelöf theorem 335:Existence and uniqueness 1307:Exactly solvable models 1029:Euler–Lagrange equation 838:separation of variables 567:Variation of parameters 557:Separation of variables 346:Peano existence theorem 930: 812:Navier–Stokes equation 752:. The open problem of 636:Carl David TolmĂ© Runge 179:Differential-algebraic 20:Differential equations 1302:Differential geometry 1169:RoubĂ­ÄŤek, T. (2013), 961:Hamiltonian mechanics 959:Further information: 931: 750:Monge–Ampere equation 626:Augustin-Louis Cauchy 611:Joseph-Louis Lagrange 443:Numerical integration 425:Exponential stability 288:Relation to processes 990:Yang–Mills equations 885: 796:Linear approximation 448:Dirac delta function 184:Integro-differential 1265:dispersive PDE wiki 1097:Degasperis, Antonio 1093:Calogero, Francesco 847:Numerical solutions 790:PoincarĂ© conjecture 788:'s solution of the 782:Richard S. Hamilton 721:PoincarĂ© conjecture 544:Perturbation theory 539:Integral transforms 430:Rate of convergence 296:(discrete analogue) 133:Population dynamics 100:Continuum mechanics 91:Applied mathematics 1275:2018-12-12 at the 1218:. For errata, see 1015:See the extensive 972:integrable systems 966:Integrable systems 955:Hamilton equations 926: 864:weather prediction 534:Integrating factor 375:Initial conditions 310:Stochastic partial 1238:978-0-12-784396-4 1214:978-1-57958-385-9 1188:978-3-0348-0512-4 1039:Integrable system 1011:List of equations 906: 725:Calabi conjecture 705: 704: 596:Gottfried Leibniz 487:Finite difference 279: 278: 140: 139: 110:Dynamical systems 1314: 1249: 1217: 1199: 1165: 1139: 1121: 1084: 1083: 1065: 1034:Nonlinear system 935: 933: 932: 927: 907: 905: 897: 889: 786:Grigori Perelman 760:in mathematics. 697: 690: 683: 661:Phyllis Nicolson 646:Rudolf Lipschitz 529:Green's function 505:Infinite element 496: 461:Solution methods 439: 297: 208:By variable type 162: 161: 44:Natural sciences 37: 36: 16: 15: 1322: 1321: 1317: 1316: 1315: 1313: 1312: 1311: 1282: 1281: 1277:Wayback Machine 1256: 1239: 1215: 1189: 1155: 1111: 1088: 1087: 1080: 1066: 1062: 1057: 1025: 1013: 986: 974: 968: 963: 957: 945: 898: 890: 888: 886: 883: 882: 872: 860:other equations 855: 849: 833: 831:Exact solutions 807: 798: 766: 745: 740: 717:nonlinear terms 701: 672: 671: 670: 601:Jacob Bernoulli 585: 572: 571: 553: 522:Petrov–Galerkin 490: 475: 462: 454: 453: 452: 434: 380:Boundary values 369: 361: 360: 336: 323: 322: 321: 295: 289: 281: 280: 268: 245: 203: 159: 146: 145: 141: 119:Social sciences 75: 53: 34: 12: 11: 5: 1320: 1310: 1309: 1304: 1299: 1294: 1280: 1279: 1267: 1262: 1255: 1254:External links 1252: 1251: 1250: 1237: 1222: 1213: 1200: 1187: 1166: 1153: 1140: 1122: 1109: 1086: 1085: 1078: 1059: 1058: 1056: 1053: 1052: 1051: 1046: 1041: 1036: 1031: 1024: 1021: 1012: 1009: 985: 982: 970:Main article: 967: 964: 956: 953: 944: 941: 937: 936: 925: 922: 919: 916: 913: 910: 904: 901: 896: 893: 871: 868: 851:Main article: 848: 845: 832: 829: 806: 803: 797: 794: 771:Sobolev spaces 765: 762: 744: 741: 739: 736: 703: 702: 700: 699: 692: 685: 677: 674: 673: 669: 668: 663: 658: 653: 651:Ernst Lindelöf 648: 643: 638: 633: 628: 623: 621:Joseph Fourier 618: 613: 608: 606:Leonhard Euler 603: 598: 593: 587: 586: 583: 582: 579: 578: 574: 573: 570: 569: 564: 559: 552: 551: 546: 541: 536: 531: 526: 525: 524: 514: 509: 508: 507: 500:Finite element 497: 493:Crank–Nicolson 484: 479: 473: 468: 464: 463: 460: 459: 456: 455: 451: 450: 445: 440: 432: 427: 414: 412:Phase portrait 409: 404: 403: 402: 400:Cauchy problem 397: 392: 387: 377: 371: 370: 368:General topics 367: 366: 363: 362: 359: 358: 353: 348: 343: 337: 334: 333: 330: 329: 325: 324: 320: 319: 314: 313: 312: 301: 300: 299: 290: 287: 286: 283: 282: 277: 276: 275: 274: 267: 266: 261: 255: 252: 251: 247: 246: 244: 243: 241:Nonhomogeneous 234: 229: 226: 220: 219: 218: 210: 209: 205: 204: 202: 201: 196: 191: 186: 181: 176: 171: 165: 160: 157: 156: 153: 152: 151:Classification 148: 147: 138: 137: 136: 135: 130: 122: 121: 115: 114: 113: 112: 107: 102: 94: 93: 87: 86: 85: 84: 79: 73: 68: 63: 55: 54: 52: 51: 46: 40: 35: 32: 31: 28: 27: 23: 22: 9: 6: 4: 3: 2: 1319: 1308: 1305: 1303: 1300: 1298: 1295: 1293: 1290: 1289: 1287: 1278: 1274: 1271: 1268: 1266: 1263: 1261: 1258: 1257: 1248: 1244: 1240: 1234: 1230: 1229: 1223: 1221: 1216: 1210: 1207:, Routledge, 1206: 1201: 1198: 1194: 1190: 1184: 1180: 1176: 1172: 1167: 1164: 1160: 1156: 1154:1-58488-355-3 1150: 1146: 1141: 1138: 1134: 1133: 1128: 1123: 1120: 1116: 1112: 1110:0-444-86368-0 1106: 1102: 1098: 1094: 1090: 1089: 1081: 1079:0-471-59916-6 1075: 1071: 1064: 1060: 1050: 1047: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1026: 1020: 1018: 1008: 1006: 1001: 999: 995: 991: 981: 979: 973: 962: 952: 950: 940: 923: 920: 917: 914: 911: 908: 902: 899: 894: 891: 881: 880: 879: 877: 867: 865: 861: 854: 844: 841: 839: 828: 826: 822: 818: 813: 802: 793: 791: 787: 783: 779: 774: 772: 764:Singularities 761: 759: 755: 751: 735: 733: 728: 726: 722: 718: 714: 710: 698: 693: 691: 686: 684: 679: 678: 676: 675: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 642: 639: 637: 634: 632: 629: 627: 624: 622: 619: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 592: 589: 588: 581: 580: 576: 575: 568: 565: 563: 560: 558: 555: 554: 550: 547: 545: 542: 540: 537: 535: 532: 530: 527: 523: 520: 519: 518: 515: 513: 512:Finite volume 510: 506: 503: 502: 501: 498: 494: 488: 485: 483: 480: 478: 474: 472: 469: 466: 465: 458: 457: 449: 446: 444: 441: 437: 433: 431: 428: 426: 422: 418: 415: 413: 410: 408: 405: 401: 398: 396: 393: 391: 388: 386: 383: 382: 381: 378: 376: 373: 372: 365: 364: 357: 354: 352: 349: 347: 344: 342: 339: 338: 332: 331: 327: 326: 318: 315: 311: 308: 307: 306: 303: 302: 298: 292: 291: 285: 284: 273: 270: 269: 265: 262: 260: 257: 256: 254: 253: 249: 248: 242: 238: 235: 233: 230: 227: 225: 222: 221: 217: 214: 213: 212: 211: 207: 206: 200: 197: 195: 192: 190: 187: 185: 182: 180: 177: 175: 172: 170: 167: 166: 164: 163: 155: 154: 150: 149: 144: 134: 131: 129: 126: 125: 124: 123: 120: 117: 116: 111: 108: 106: 103: 101: 98: 97: 96: 95: 92: 89: 88: 83: 80: 78: 74: 72: 69: 67: 64: 62: 59: 58: 57: 56: 50: 47: 45: 42: 41: 39: 38: 30: 29: 25: 24: 21: 18: 17: 1227: 1204: 1170: 1144: 1130: 1100: 1069: 1063: 1014: 1002: 987: 975: 946: 938: 873: 856: 842: 834: 808: 799: 775: 767: 746: 729: 708: 706: 656:Émile Picard 641:Martin Kutta 631:George Green 591:Isaac Newton 423: / 419: / 239: / 105:Chaos theory 994:gauge group 862:related to 549:Runge–Kutta 294:Difference 237:Homogeneous 49:Engineering 1286:Categories 1055:References 1005:Ricci flow 778:Ricci flow 666:John Crank 467:Inspection 421:Asymptotic 305:Stochastic 224:Autonomous 199:Non-linear 189:Fractional 1137:EMS Press 918:− 407:Wronskian 385:Dirichlet 128:Economics 71:Chemistry 61:Astronomy 1297:Solitons 1273:Archived 1099:(1982), 1023:See also 984:Symmetry 876:Lax pair 870:Lax pair 821:solitons 732:operator 723:and the 517:Galerkin 417:Lyapunov 328:Solution 272:Notation 264:Operator 250:Features 169:Ordinary 1247:0977062 1197:3014456 1163:2042347 1119:0680040 390:Neumann 174:Partial 82:Geology 77:Biology 66:Physics 1245:  1235:  1211:  1195:  1185:  1161:  1151:  1117:  1107:  1076:  577:People 489:  436:Series 194:Linear 33:Fields 878:form 715:with 711:is a 477:Euler 395:Robin 317:Delay 259:Order 232:Exact 158:Types 26:Scope 1233:ISBN 1220:this 1209:ISBN 1183:ISBN 1149:ISBN 1105:ISBN 1074:ISBN 584:List 1175:doi 1288:: 1243:MR 1241:, 1193:MR 1191:, 1181:, 1159:MR 1157:, 1135:, 1129:, 1115:MR 1113:, 1095:; 1019:. 980:. 866:. 827:. 780:: 773:. 1177:: 1082:. 924:L 921:A 915:A 912:L 909:= 903:t 900:d 895:L 892:d 696:e 689:t 682:v 495:) 491:(

Index

Differential equations
Natural sciences
Engineering
Astronomy
Physics
Chemistry
Biology
Geology
Applied mathematics
Continuum mechanics
Chaos theory
Dynamical systems
Social sciences
Economics
Population dynamics
List of named differential equations
Ordinary
Partial
Differential-algebraic
Integro-differential
Fractional
Linear
Non-linear
Dependent and independent variables
Autonomous
Exact
Homogeneous
Nonhomogeneous
Order
Operator

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑