Knowledge

Nickel titanium

Source 📝

487:. A second effect, called superelasticity or pseudoelasticity, is also observed in nitinol. This effect is the direct result of the fact that martensite can be formed by applying a stress as well as by cooling. Thus in a certain temperature range, one can apply a stress to austenite, causing martensite to form while at the same time changing shape. In this case, as soon as the stress is removed, the nitinol will spontaneously return to its original shape. In this mode of use, nitinol behaves like a super spring, possessing an elastic range 10 to 30 times greater than that of a normal spring material. There are, however, constraints: the effect is only observed up to about 40 °C (72 °F) above the A 546:(VIM) is done by using alternating magnetic fields to heat the raw materials in a crucible (generally carbon). This is also done in a high vacuum. While both methods have advantages, it has been demonstrated that an industrial state-of-the-art VIM melted material has smaller inclusions than an industrial state-of-the-art VAR one, leading to a higher fatigue resistance. Other research report that VAR employing extreme high-purity raw materials may lead to a reduced number of inclusions and thus to an improved fatigue behavior. Other methods are also used on a boutique scale, including plasma arc melting, induction skull melting, and e-beam melting. 429: 367: 641: 456: 650: 472: 698:
material for the technology. The process begins with tensile loading on the wire, which causes fluid (within the wire) to flow to HHEX (hot heat exchanger). Simultaneously, heat will be expelled, which can be used to heat the surrounding. In the reverse process, tensile unloading of the wire leads to fluid flowing to CHEX (cold heat exchanger), causing the NiTi wire to absorb heat from the surrounding. Therefore, the temperature of the surrounding can be decreased (cooled).
452:, which consists of the rearrangement of atomic planes without causing slip, or permanent deformation. It is able to undergo about 6–8% strain in this manner. When martensite is reverted to austenite by heating, the original austenitic structure is restored, regardless of whether the martensite phase was deformed. Thus the shape of the high temperature austenite phase is "remembered," even though the alloy is severely deformed at a lower temperature. 607:. As in all other metals and alloys, inclusions can be found in nitinol. The size, distribution and type of inclusions can be controlled to some extent. Theoretically, smaller, rounder and few inclusions should lead to increased fatigue durability. In literature, some early works report to have failed to show measurable differences, while novel studies demonstrate a dependence of fatigue resistance on the typical inclusion size in an alloy. 283:
upon removal of the external load. Nitinol can deform 10 to 30 times as much as ordinary metals and return to its original shape. Whether nitinol behaves with shape memory effect or superelasticity depends on whether it is above its transformation temperature during the action. Action below the transformation temperature exhibits the shape memory effect and above the transformation temperature it behaves superelastically.
38: 1711: 623:
and higher surface-to-volume ratio (improvements up to 3.3 Hz with very thin wires and up to 100 Hz with thin films of nitinol). The fastest nitinol actuation recorded was carried by a high voltage capacitor discharge which heated an SMA wire in a manner of microseconds, and resulted in a complete phase transformation (and high velocities) in a few milliseconds.
468:. In an ordinary alloy, the constituents are randomly positioned in the crystal lattice; in an ordered intermetallic compound, the atoms (in this case, nickel and titanium) have very specific locations in the lattice. The fact that nitinol is an intermetallic is largely responsible for the complexity in fabricating devices made from the alloy. 831:: a collapsed stent can be inserted into an artery or vein, where body temperature warms the stent and the stent returns to its original expanded shape following removal of a constraining sheath; the stent then helps support the artery or vein to improve blood flow. It is also used as a replacement for 443:
Crucial to nitinol properties are two key aspects of this phase transformation. First is that the transformation is "reversible", meaning that heating above the transformation temperature will revert the crystal structure to the simpler austenite phase. The second key point is that the transformation
282:
at one temperature, stay in its deformed shape when the external force is removed, then recover its original, undeformed shape upon heating above its "transformation temperature." Superelasticity is the ability for the metal to undergo large deformations and immediately return to its undeformed shape
814:
for brackets and wires connecting the teeth. Once the SMA wire is placed in the mouth its temperature rises to ambient body temperature. This causes the nitinol to contract back to its original shape, applying a constant force to move the teeth. These SMA wires do not need to be retightened as often
626:
Recent advances have shown that processing of nitinol can expand thermomechanical capabilities, allowing for multiple shape memories to be embedded within a monolithic structure. Research on multi-memory technology is on-going and may deliver enhanced shape memory devices in the near future, and the
622:
Actuation frequency of nitinol is dependent on heat management, especially during the cooling phase. Numerous methods are used to increase the cooling performance, such as forced air, flowing liquids, thermoelectric modules (i.e. Peltier or semiconductor heat pumps), heat sinks, conductive materials
553:
Heat treating nitinol is delicate and critical. It is a knowledge intensive process to fine-tune the transformation temperatures. Aging time and temperature controls the precipitation of various Ni-rich phases, and thus controls how much nickel resides in the NiTi lattice; by depleting the matrix of
534:
Nitinol is exceedingly difficult to make, due to the exceptionally tight compositional control required, and the tremendous reactivity of titanium. Every atom of titanium that combines with oxygen or carbon is an atom that is robbed from the NiTi lattice, thus shifting the composition and making the
697:
Superelastic materials undergo stress-induced transformation and are commonly recognized for their "shape-memory" property. Due to its superelasticity, NiTi wires exhibit "elastocaloric" effect, which is stress-triggered heating/cooling. NiTi wires are currently under research as the most promising
570:
and electromechanical microactuators), it is necessarily exposed to much greater fatigue strains compared to other metals. While the strain-controlled fatigue performance of nitinol is superior to all other known metals, fatigue failures have been observed in the most demanding applications; with a
463:
A great deal of pressure can be produced by preventing the reversion of deformed martensite to austenite—from 240 MPa (35,000 psi) to, in many cases, more than 690 MPa (100,000 psi). One of the reasons that nitinol works so hard to return to its original shape is that it is not
710:
In 1989 a survey was conducted in the United States and Canada that involved seven organizations. The survey focused on predicting the future technology, market, and applications of SMAs. The companies predicted the following uses of nitinol in a decreasing order of importance: (1) Couplings, (2)
591:
layer that acts as an effective and self-healing barrier against ion exchange; repeatedly showing that nitinol releases nickel at a slower pace than stainless steel, for example. Early Nitinol medical devices were made without electropolishing, and corrosion was observed. Today's nitinol vascular
1511:
Robertson, Scott W.; Launey, Maximilien; Shelley, Oren; Ong, Ich; Vien, Lot; Senthilnathan, Karthike; Saffari, Payman; Schlegel, Scott; Pelton, Alan R. (2015-11-01). "A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing".
506:
Nitinol is typically composed of approximately 50 to 51% nickel by atomic percent (55 to 56% weight percent). Making small changes in the composition can change the transition temperature of the alloy significantly. Transformation temperatures in nitinol can be controlled to some extent, where
855:
Superelastic nitinol finds a variety of applications in civil structures such as bridges and buildings. One such application is Intelligent Reinforced Concrete (IRC), which incorporates NiTi wires embedded within the concrete. These wires can sense cracks and contract to heal macro-sized
894:
has registered a US patent for what it calls a "bicycle derailleur apparatus for controlling bicycle speed". Filed on 22 April 2019, the patent depicts a front derailleur for a bicycle, devoid of cables, instead using two nitinol wires to provide the movement needed to shift
1269:
Spini, Tatiana Sobottka; Valarelli, Fabrício Pinelli; Cançado, Rodrigo Hermont; Freitas, Karina Maria Salvatore de; Villarinho, Denis Jardim; Spini, Tatiana Sobottka; Valarelli, Fabrício Pinelli; Cançado, Rodrigo Hermont; Freitas, Karina Maria Salvatore de (2014-04-01).
706:
due to its specific cooling power (at 2 Hz), which is 70X better (7 kWh/kg vs. 0.1 kWh/kg). However, elastocaloric device made with NiTi wires also have limitations, such as its short fatigue life and dependency on large tensile forces (energy consuming).
346:
While potential applications for nitinol were realized immediately, practical efforts to commercialize the alloy did not take place until a decade later in the 1980s, largely due to the extraordinary difficulty of melting, processing and machining the alloy.
1821: 393:(daughter phase). There are four transition temperatures associated to the austenite-to-martensite and martensite-to-austenite transformations. Starting from full austenite, martensite begins to form as the alloy is cooled to the so-called 792:
and has properties suitable for use in orthopedic implants. Due to nitinol's unique properties it has seen a large demand for use in less invasive medical devices. Nitinol tubing is commonly used in catheters, stents, and superelastic
440:. The hysteresis width depends on the precise nitinol composition and processing. Its typical value is a temperature range spanning about 20–50 °C (36–90 °F) but it can be reduced or amplified by alloying and processing. 610:
Nitinol is difficult to weld, both to itself and other materials. Laser welding nitinol to itself is a relatively routine process. Strong joints between NiTi wires and stainless steel wires have been made using nickel filler.
823:
procedure. Because of the high fatigue tolerance and flexibility of nitinol, it greatly decreases the possibility of an endodontic file breaking inside the tooth during root canal treatment, thus improving safety for the
574:
Nitinol is half nickel, and thus there has been a great deal of concern in the medical industry regarding the release of nickel, a known allergen and possible carcinogen. (Nickel is also present in substantial amounts in
1780:
Rahim, M.; Frenzel, J.; Frotscher, M.; Pfetzing-Micklich, J.; Steegmüller, R.; Wohlschlögel, M.; Mughrabi, H.; Eggeler, G. (2013-06-01). "Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys".
526:. The R-phase is another martensitic phase that competes with the martensite phase mentioned above. Because it does not offer the large memory effects of the martensite phase, it is usually of non practical use. 701:
Elastocaloric devices are often compared with magnetocaloric devices as new methods of efficient heating/cooling. Elastocaloric device made with NiTi wires has an advantage over magnetocaloric device made with
838:
Similarly, collapsible structures composed of braided, microscopically-thin nitinol filaments can be used in neurovascular interventions such as stroke thrombolysis, embolization, and intracranial angioplasty.
447:
Martensite's crystal structure (known as a monoclinic, or B19' structure) has the unique ability to undergo limited deformation in some ways without breaking atomic bonds. This type of deformation is known as
343:, was passed around and flexed by the participants. One of them applied heat from his pipe lighter to the sample and, to everyone's surprise, the accordion-shaped strip contracted and took its previous shape. 711:
Biomedical and medical, (3) Toys, demonstration, novelty items, (4) Actuators, (5) Heat Engines, (6) Sensors, (7) Cryogenically activated die and bubble memory sockets, and finally (8) lifting devices.
2999:
A process of making parts and forms of Type 60 Nitinol having a shape memory effect, comprising: selecting a Type 60 Nitinol. Inventor G, Julien, CEO of Nitinol Technologies, Inc. (Washington State)
2574: 562:
Fatigue failures of nitinol devices are a constant subject of discussion. Because it is the material of choice for applications requiring enormous flexibility and motion (e.g., peripheral
542:(VAR) is done by striking an electrical arc between the raw material and a water-cooled copper strike plate. Melting is done in a high vacuum, and the mold itself is water-cooled copper. 1210:
Chluba, Christoph; Ge, Wenwei; Miranda, Rodrigo Lima de; Strobel, Julian; Kienle, Lorenz; Quandt, Eckhard; Wuttig, Manfred (2015-05-29). "Ultralow-fatigue shape memory alloy films".
873:
have been built which use nitinol wire to produce mechanical energy from hot and cold heat sources. A prototype commercial engine developed in the 1970s by engineer Ridgway Banks at
231:
Nitinol properties are particular to the precise composition of the alloy and its processing. These specifications are typical for commercially available shape memory nitinol alloys
1426: 1346: 2146:
Daly, M.; Pequegnat, A.; Zhou, Y. N.; Khan, M. I. (2012), "Fabrication of a novel laser-processed NiTi shape memory microgripper with enhanced thermomechanical functionality",
2027: 554:
nickel, aging increases the transformation temperature. The combination of heat treatment and cold working is essential in controlling the properties of nitinol products.
511:
temperature ranges from about −20 to +110 °C (−4 to 230 °F). Thus, it is common practice to refer to a nitinol formulation as "superelastic" or "austenitic" if A
772:
incorporates nitinol actuators, which replaced heavier motorized actuators to open and close the hatch vent that releases air from the trunk, making it easier to close.
259:, where the two elements are present in roughly equal atomic percentages. Different alloys are named according to the weight percentage of nickel; e.g., nitinol 55 and 1602: 948:
Buehler, W. J.; Gilfrich, J. W.; Wiley, R. C. (1963). "Effects of Low-Temperature Phase Changes on the Mechanical Properties of Alloys Near Composition TiNi".
2104:
Daly, M.; Pequegnat, A.; Zhou, Y.; Khan, M. I. (2012), "Enhanced thermomechanical functionality of a laser processed hybrid NiTi–NiTiCu shape memory alloy",
1664: 619:
have been made between NiTi tubes and stainless steel tubes. More research is ongoing into other processes and other metals to which nitinol can be welded.
312: 2077:
Vollach, Shahaf, and D. Shilo. "The mechanical response of shape memory alloys under a rapid heating pulse." Experimental Mechanics 50.6 (2010): 803-811.
1129:
Hornbogen, E.; Wassermann, G. (1956). "Über den Einfluβ von Spannungen und das Auftreten von Umwandlungsplastizität bei β1-β-Umwandlung des Messings".
2362: 483:
To fix the original "parent shape," the alloy must be held in position and heated to about 500 °C (930 °F). This process is usually called
835:—nitinol wire can be woven through two structures then allowed to transform into its preformed shape, which should hold the structures in place. 515:
is lower than a reference temperature, while as "shape memory" or "martensitic" if higher. The reference temperature is usually defined as the
503:, since martensite is no longer formed, the only response to stress is slip of the austenitic microstructure, and thus permanent deformation. 2985: 1018: 675:
Nitinol is deformed at a low temperature, remains deformed, and then is heated to recover its original shape through the shape memory effect.
815:
as other wires because they can contract as the teeth move unlike conventional stainless steel wires. Additionally, nitinol can be used in
1916:
Wellman PS, Peine WJ, Favalora G, Howe RD (1997). "Mechanical Design and Control of a High-Bandwidth Shape Memory Alloy Tactile Display".
339:
of nickel and titanium could do the job, in 1961 he presented a sample at a laboratory management meeting. The sample, folded up like an
3008: 2051:
Winzek B; Schmitz S; Rumpf H; Sterzl T; Ralf Hassdorf; Thienhaus S (2004). "Recent developments in shape memory thin film technology".
1433: 1353: 2180:
Pequegnat, A.; Daly, M.; Wang, J.; Zhou, Y.; Khan, M. I. (2012), "Dynamic actuation of a novel laser-processed NiTi linear actuator",
1881:
Tadesse Y, Thayer N, Priya S (2010). "Tailoring the response time of shape memory alloy wires through active cooling and pre-stress".
1185: 2387:
Turok, David K.; Nelson, Anita L.; Dart, Clint; Schreiber, Courtney A.; Peters, Kevin; Schreifels, Mary Jo; Katz, Bob (April 2020).
627:
application of new materials and material structures, such hybrid shape memory materials (SMMs) and shape memory composites (SMCs).
2034: 596:
show no evidence of corrosion or nickel release, and outcomes in patients with and without nickel allergies are indistinguishable.
495:, which corresponds to the highest temperature in which it is still possible to stress-induce the formation of martensite. Below M 1682:. Proceedings of the MRS International Meeting on Advanced Materials. Vol. 9. Materials Research Society. pp. 257–262. 73: 2559: 1040:
Kauffman, G. B.; Mayo, I. (1997). "The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications".
3028: 2314: 1931:
Romano R, Tannuri EA (2009). "Modeling, control and experimental validation of a novel actuator based on shape memory alloys".
2958: 2928: 2813: 2778: 2745: 1687: 1625: 1472: 874: 378:, between two different martensite crystal phases, requiring 69–138 MPa (10,000–20,000 psi) of mechanical stress. 2731: 2692: 2000:
An L, Huang WM, Fu YQ, Guo NQ (2008). "A note on size effect in actuating NiTi shape memory alloys by electrical current".
2801: 2768: 3068: 1639: 1985:
Chee Siong L, Yokoi H, Arai T (2005). "Improving heat sinking in ambient environment for the shape memory alloy (SMA)".
3013: 1712:"The Influence of Microcleanliness on the Fatigue Performance of Nitinol - Conference Proceedings - ASM International" 2973: 2943: 2871: 2457: 2246: 1397:"The effect of temperature on the elastic responses to longitudinal torsion of rectangular nickel titanium archwires" 983:
Wang, F. E.; Buehler, W. J.; Pickart, S. J. (1965). "Crystal Structure and a Unique Martensitic Transition of TiNi".
2995:
Gerald Julien, Nitinol Technologies, Inc Edgewood, Wa. Us patent" 6422010 Manufacturing of Nitinol Parts & Forms
796:
In colorectal surgery, the material is used in devices for reconnecting the intestine after removing the pathogens.
2337: 2222:
Tao T, Liang YC, Taya M (2006). "Bio-inspired actuating system for swimming using shape memory alloy composites".
2626: 1603:"Carbon and Oxygen Levels in Nitinol Alloys and the Implications for Medical Device Manufacture and Durability" 1396: 593: 1370: 385:(also known as the parent phase). At low temperatures, nitinol spontaneously transforms to a more complicated 2920: 1558:
Pelton, A.; Russell, S.; DiCello, J. (2003). "The Physical Metallurgy of Nitinol for Medical Applications".
859:
Another application is active tuning of structural natural frequency using nitinol wires to damp vibrations.
386: 2366: 547: 375: 374:
Nitinol's unusual properties are derived from a reversible solid-state phase transformation known as a
2887: 2643: 1860:"Fusion welding of nickel–titanium and 304 stainless steel tubes: Part II: tungsten inert gas welding" 1816: 1678:
Miyazaki, S.; Sugaya, Y.; Otsuka, K. (1989). "Mechanism of Fatigue Crack Nucleation in Ti-Ni Alloys".
3053: 1454: 320: 279: 2668: 1494: 1162: 3073: 2737: 1610:
SMST-2006 Proceedings of the International Conference on Shape Memory and Superelastic Technologies
883:
Boeing engineers successfully flight-tested SMA-actuated morphing chevrons on the Boeing 777-300ER
807:, blocking a blood vessel that bypasses the lungs and has failed to close after birth in an infant. 804: 782: 681:
Similar to free recovery, except that recovery is rigidly prevented and thus a stress is generated.
616: 543: 1026: 409:. When the alloy is fully martensite and is subjected to heating, austenite starts to form at the 3063: 2597: 2277: 1453:
Urbano, Marco; Coda, Alberto; Beretta, Stefano; Cadelli, Andrea; Sczerzenie, Frank (2013-09-01).
923:
Nickel-titanium alloy is used in aerospace applications such as aircraft pipe joints, spacecraft
769: 584: 156: 17: 599:
There are constant and long-running discussions regarding inclusions in nitinol, both TiC and Ti
571:
great deal of effort underway to better understand and define the durability limits of nitinol.
381:
At high temperatures, nitinol assumes an interpenetrating simple cubic structure referred to as
1819:, Hall, P. C., "Method of Welding Titanium and Titanium Based Alloys to Ferrous Metals" 1157: 1076: 465: 2862:
Zhang, Xuexi; Qian, Mingfang (2021). "Chapter 7-Application of Magnetic Shape Memory Alloys".
3058: 2989: 2389:"Efficacy, Safety, and Tolerability of a New Low-Dose Copper and Nitinol Intrauterine Device" 350:
The discovery of the shape-memory effect in general dates back to 1932, when Swedish chemist
146: 2767:
Sang, D.; Ellis, P.; Ryan, L.; Taylor, J.; McMonagle, D.; Petheram, L.; Godding, P. (2005).
687:
The alloy is allowed to recover, but to do so it must act against a force (thus doing work).
2504: 2189: 2113: 1790: 1567: 1219: 1189: 992: 957: 539: 354:
first observed the property in gold–cadmium alloys. The same effect was observed in Cu-Zn (
100: 2444: 8: 1680:
Shape memory materials : May 31-June 3, 1988, Sunshine City, Ikebukuro, Tokyo, Japan
902:
which can be used by amateur and stage magicians to demonstrate "psychic" powers or as a
842: 755: 2508: 2201: 2193: 2125: 2117: 1837:"Fusion welding of nickel–titanium and 304 stainless steel tubes: Part I: laser welding" 1794: 1571: 1223: 996: 961: 906:, as the spoon will bend itself when used to stir tea, coffee, or any other warm liquid. 2520: 2421: 2388: 2205: 2163: 2129: 1948: 1944: 1898: 1756: 1658: 1583: 1482: 1304: 1271: 1251: 1057: 891: 612: 332: 324: 323:
in 1959. Buehler was attempting to make a better missile nose cone, which could resist
221: 1148:
Otsuka, K.; Ren, X. (2005). "Physical Metallurgy of Ti-Ni-based Shape Memory Alloys".
3018: 2969: 2954: 2939: 2924: 2867: 2848: 2809: 2774: 2741: 2622: 2453: 2426: 2408: 2252: 2242: 1952: 1760: 1736: 1693: 1683: 1631: 1621: 1587: 1537: 1529: 1468: 1408: 1309: 1291: 1243: 1235: 1102:Ölander, A. (1932). "An Electrochemical Investigation of Solid Cadmium-Gold Alloys". 800: 316: 119: 2524: 2322: 2209: 2167: 2133: 2088: 1902: 1061: 428: 2844: 2619:
Engineering Materials Technology: Structure, Processing, Properties & Selection
2512: 2473: 2416: 2400: 2197: 2155: 2121: 2060: 2009: 1940: 1890: 1798: 1748: 1613: 1575: 1521: 1460: 1299: 1283: 1255: 1227: 1167: 1111: 1049: 1000: 965: 762: 580: 516: 449: 366: 275: 2799: 1802: 1171: 927:, fasteners, connecting components, electrical connections, and electromechanical 2981:
Low Temperature Creep of Hot-extruded Near-stoichiometric NiTi Shape Memory Alloy
2404: 2013: 884: 832: 576: 499:, martensite formation under load allows superelasticity due to twinning. Above M 271: 183: 2706: 2298: 1525: 640: 579:
and cobalt-chrome alloys also used in the medical industry.) When treated (via
455: 351: 291:
The word "nitinol" is derived from its composition and its place of discovery: (
2064: 1836: 1272:"Transition temperature range of thermally activated nickel-titanium archwires" 909:
Due to the high damping capacity of superelastic nitinol, it is also used as a
903: 202: 3038: 3033: 2591: 2548: 2271: 2090:
Methods and Systems for Processing Materials, Including Shape Memory Materials
1752: 1579: 1287: 3047: 2412: 2159: 1894: 1533: 1295: 1239: 917: 899: 819:, where nitinol files are used to clean and shape the root canals during the 789: 737: 649: 53: 2256: 1464: 1231: 401:, and the temperature at which the transformation is complete is called the 2835:
Brook, G.B. (1983). "Applications of titanium-nickel shape memory alloys".
2430: 2145: 1541: 1313: 1247: 811: 471: 267: 1859: 1617: 1412: 1053: 1966:
Russell RA, Gorbet RB (1995). "Improving the response of SMA actuators".
947: 870: 816: 729: 2729: 2103: 1115: 2516: 2338:"The inventions of the Bolivian doctor who saved thousands of children" 2241:. Survey Reports. Vol. 89. Future Technology Surveys. p. 17. 1737:"Academic paper (PDF): Smartflex NiTi Wires for Shape Memory Actuators" 1600: 982: 820: 747:, where the material both acts as a temperature sensor and an actuator. 703: 459:
2D view of nitinol's crystalline structure during cooling/heating cycle
437: 390: 260: 3023: 1779: 1004: 969: 266:
Nitinol alloys exhibit two closely related and unique properties: the
2979: 2341: 2179: 928: 910: 841:
Application of nitinol wire in female contraception, specifically in
751: 659: 382: 340: 370:
3D view of austenite and martensite structures of the NiTi compound.
2766: 924: 744: 733: 725: 721: 567: 256: 2538:
Vimeo posting of "The Individualist", documentary on Ridgway Banks
1635: 2800:
Jones, G.; Falvo, M. R.; Taylor, A. R.; Broadwell, B. P. (2007).
523: 63: 2050: 1697: 1677: 1557: 668:
There are four commonly used types of applications for nitinol:
522:
One often-encountered effect regarding nitinol is the so-called
37: 693:
Nitinol acts as a super spring through the superelastic effect.
252: 880:
Nitinol is also popular in extremely resilient glasses frames.
2917:
Shape Memory Alloys: Manufacture, Properties and Applications
2537: 828: 827:
Another significant application of nitinol in medicine is in
563: 355: 336: 248: 245: 1268: 849: 776: 1128: 328: 2296: 1514:
Journal of the Mechanical Behavior of Biomedical Materials
1456:
The Effect of Inclusions on Fatigue Properties for Nitinol
519:
or the human body temperature (37 °C or 99 °F).
2549:"Single wire nitinol engine", Ridgway M. Banks, US Patent 1510: 2386: 1915: 1452: 845:
due to its small, flexible nature and its high efficacy.
765:
for comfort seating and has become an industry standard.
2236: 1039: 916:
Nickel titanium can be used to make the underwires for
2363:"Nitinol Micro-Braids for Neurovascular Interventions" 2148:
Journal of Intelligent Material Systems and Structures
1883:
Journal of Intelligent Material Systems and Structures
1864:
Journal of Intelligent Material Systems and Structures
1841:
Journal of Intelligent Material Systems and Structures
1601:
Morgan, N.; Wick, A.; DiCello, J.; Graham, R. (2006).
1209: 464:
just an ordinary metal alloy, but what is known as an
3009:
Society of Shape Memory and Superelastic Technologies
2730:
Brady, G. S.; Clauser, H. R.; Vaccari, J. A. (2002).
278:). Shape memory is the ability of nitinol to undergo 2300:
Nitinol: The Shape Memory Effect and Superelasticity
863: 432:
Thermal hysteresis of nitinol's phase transformation
3039:
How NASA Reinvented The Wheel - Shape Memory Alloys
2693:"Is Ford about to reinvent the bicycle derailleur?" 1984: 1734: 714: 319:, discovered its properties during research at the 2269: 1880: 662:bent and recovered after being placed in hot water 538:There are two primary melting methods used today. 2335: 1663:: CS1 maint: DOI inactive as of September 2024 ( 1506: 1504: 1395:R Meling, Torstein; Ødegaard, Jan (August 1998). 1147: 491:temperature. This upper limit is referred to as M 3045: 1918:International Symposium on Experimental Robotics 1741:Journal of Materials Engineering and Performance 1394: 2297:Bill Hammack (engineerguy) (October 25, 2018). 1858:Fox, Gordon; Hahnlen, Ryan (October 29, 2012). 1835:Hahnlen, Ryan; Fox, Gordon (October 29, 2012). 743:Nitinol springs are used in thermal valves for 2086: 1501: 1448: 1446: 1341: 1339: 2986:National Aeronautics and Space Administration 2953:, Springer Science+Business Media LLC, 2008, 2616: 1965: 1930: 1371:"Fabrication & Heat Treatment of Nitinol" 898:It is used in some novelty products, such as 587:), nitinol forms a very stable protective TiO 2936:Shape Memory Materials and Its Applications 2221: 1999: 1735:Fumagalli, L.; Butera, F.; Coda, A. (2009). 720:Nitinol can be used to replace conventional 1443: 1336: 1101: 1857: 1834: 475:The effect of nitinol composition on the M 36: 2861: 2793: 2589: 2494: 2420: 1553: 1551: 1303: 1161: 850:Damping systems in structural engineering 799:Nitinol is used for devices developed by 777:Biocompatible and biomedical applications 68:6.45 g/cm (0.233 lb/cu in) 1326: 1104:Journal of the American Chemical Society 470: 454: 436:The cooling/heating cycle shows thermal 427: 365: 2617:Jacobs, James; Kilduff, Thomas (1996). 1815: 1612:. ASM International. pp. 821–828. 566:, heart valves, smart thermomechanical 14: 3046: 2938:, Trans Tech Publications Ltd., 2002, 2888:"Nitinol – Amazing Shape Memory Alloy" 2641: 2495:Banks, R. (1975). "The Banks Engine". 1548: 1331:, University of Tokyo, pp. 7, 176 810:In dentistry, the material is used in 2834: 2723: 2476:. Images Scientific Instruments. 2007 875:Lawrence Berkeley National Laboratory 754:actuator in action cameras and as an 444:in both directions is instantaneous. 2968:, Cambridge University Press, 1998, 2760: 2053:Materials Science and Engineering: A 550:is also used on a laboratory scale. 2964:K. Ōtsuka & C.M. Wayman, eds., 2866:. Springer Singapore. p. 256. 1188:. Nitinol.com. 2013. Archived from 1074: 27:Alloy known for shape-memory effect 24: 3024:Nitinol Technical Resource Library 2909: 2237:Miller, R. K.; Walker, T. (1989). 1945:10.1016/j.mechatronics.2009.03.007 535:transformation temperature lower. 25: 3085: 3002: 2360: 2303:. youtube. Event occurs at 9:18. 2270:Actuator Solutions (2015-12-18), 2033:(PDF). SAES Group. Archived from 864:Other applications and prototypes 2934:Y.Y. Chu & L.C. Zhao, eds., 2336:Alejandra Martins (2014-10-02). 2087:Khan, M. I.; Zhou Y. N. (2011), 715:Thermal and electrical actuators 648: 639: 529: 120:Coefficient of thermal expansion 2880: 2855: 2828: 2699: 2685: 2661: 2635: 2610: 2600:from the original on 2021-12-13 2583: 2568: 2553: 2542: 2531: 2488: 2466: 2437: 2380: 2354: 2329: 2307: 2290: 2280:from the original on 2021-12-13 2263: 2230: 2215: 2173: 2139: 2097: 2080: 2071: 2044: 2020: 1993: 1978: 1959: 1924: 1909: 1874: 1851: 1828: 1809: 1773: 1728: 1704: 1671: 1594: 1419: 1388: 1363: 1320: 1276:Journal of Applied Oral Science 1262: 1203: 885:Quiet Technology Demonstrator 2 630: 594:self-expandable metallic stents 3019:Physical properties of nitinol 2773:. Nelson Thornes. p. 80. 2621:. Prentice Hall. p. 305. 2446:Shape Memory Alloy Engineering 2365:. US BioDesign. Archived from 2182:Smart Materials and Structures 2106:Smart Materials and Structures 1987:Intelligent Robots and Systems 1178: 1141: 1122: 1095: 1068: 1033: 1011: 976: 941: 617:tungsten inert gas (TIG) welds 13: 1: 2921:Nova Science Publishers, Inc. 2642:Trento, Chin (Dec 27, 2023). 2239:Survey on Shape Memory Alloys 2202:10.1088/0964-1726/21/9/094004 2126:10.1088/0964-1726/21/4/045018 1803:10.1016/j.actamat.2013.02.054 1172:10.1016/j.pmatsci.2004.10.001 1150:Progress in Materials Science 935: 877:, was named the Banks Engine. 557: 403:martensite finish temperature 58:1,310 °C (2,390 °F) 2864:Magnetic Shape Memory Alloys 2849:10.1016/0261-3069(83)90185-1 2802:"Nanomaterials: Memory Wire" 2644:"An Overview of the Nitinol" 2405:10.1097/AOG.0000000000003756 2014:10.1016/j.matdes.2007.09.001 1083:. Royal Society of Chemistry 1025:, 1968-09-13, archived from 419:austenite finish temperature 395:martensite start temperature 387:monoclinic crystal structure 361: 7: 2808:. NSTA Press. p. 109. 2648:Stanford Advanced Materials 2093:, WO Patent WO/2011/014,962 1526:10.1016/j.jmbbm.2015.07.003 1327:Funakubo, Hiroyasu (1984), 1131:Zeitschrift für Metallkunde 411:austenite start temperature 10: 3090: 3029:Literature on Nitinol Wire 2892:Advanced Refractory Metals 2452:. 2014. pp. 369–401. 2065:10.1016/j.msea.2003.09.105 1019:"The Alloy That Remembers" 985:Journal of Applied Physics 950:Journal of Applied Physics 780: 548:Physical vapour deposition 376:martensitic transformation 335:. Having found that a 1:1 286: 2669:"Boeing Frontiers Online" 2474:"Nitinol Heat Engine Kit" 2393:Obstetrics and Gynecology 2315:"NiTi Surgical Solutions" 1753:10.1007/s11665-009-9407-9 1580:10.1007/s11837-003-0243-3 1288:10.1590/1678-775720130133 321:Naval Ordnance Laboratory 230: 220: 212: 201: 193: 182: 170: 155: 145: 133: 118: 110: 99: 87: 72: 62: 52: 47: 35: 3014:Nitinol Resource Library 2738:McGraw-Hill Professional 2590:Hero Khan (2013-11-01), 2560:"Metals that Remember", 2160:10.1177/1045389X12444492 1895:10.1177/1045389x09352814 1716:www.asminternational.org 805:patent ductus arteriosus 783:Nitinol biocompatibility 756:optical image stabilizer 732:, etc.), such as in the 544:Vacuum induction melting 2575:"Engine Uses No Fuel", 2497:Die Naturwissenschaften 1968:Robotics and Automation 1620:(inactive 2024-09-12). 1465:10.1520/STP155920120189 1232:10.1126/science.1261164 770:2014 Chevrolet Corvette 157:Magnetic susceptibility 3069:Nickel–titanium alloys 2966:Shape Memory Materials 2837:Materials & Design 2273:SMA AF / OIS Mechanism 2028:"SmartFlex Datasheets" 2002:Materials & Design 1432:. 2013. Archived from 1401:The Angle Orthodontist 1352:. 2013. Archived from 480: 466:intermetallic compound 460: 433: 417:, and finishes at the 371: 358:) in the early 1950s. 74:Electrical resistivity 2990:Glenn Research Center 1817:US patent 6875949 1618:10.1361/cp2006smst821 1054:10.1007/s00897970111a 1042:The Chemical Educator 474: 458: 431: 369: 147:Magnetic permeability 2949:D.C. Lagoudas, ed., 2319:www.nitisurgical.com 2224:Int J Automat Comput 1427:"Nitinol SE508 Wire" 1347:"Nitinol SM495 Wire" 1029:on November 23, 2008 869:Demonstration model 843:intrauterine devices 678:Constrained recovery 540:Vacuum arc remelting 101:Thermal conductivity 2951:Shape Memory Alloys 2707:"Memory Golf Clubs" 2509:1975NW.....62..305B 2194:2012SMaS...21i4004P 2118:2012SMaS...21d5018D 1795:2013AcMat..61.3667R 1572:2003JOM....55e..33P 1329:Shape memory alloys 1224:2015Sci...348.1004C 1218:(6238): 1004–1007. 1116:10.1021/ja01349a004 997:1965JAP....36.3232W 962:1963JAP....34.1475B 900:self-bending spoons 48:Material properties 32: 2733:Materials Handbook 2579:, December 5, 1973 2517:10.1007/BF00608890 1459:. pp. 18–34. 892:Ford Motor Company 788:Nitinol is highly 481: 461: 434: 372: 313:William J. Buehler 30: 2959:978-0-387-47684-1 2929:978-1-60741-789-7 2815:978-1-933531-05-2 2806:Nanoscale Science 2780:978-0-7487-7996-3 2747:978-0-07-136076-0 2736:(15th ed.). 2695:. 6 October 2021. 2577:Milwaukee Journal 1789:(10): 3667–3686. 1689:978-1-55899-038-8 1627:978-0-87170-862-5 1474:978-0-8031-7545-7 1437:(properties, PDF) 1357:(properties, PDF) 1110:(10): 3819–3833. 1005:10.1063/1.1702955 991:(10): 3232–3239. 970:10.1063/1.1729603 801:Franz Freudenthal 758:in mobile phones. 331:and the force of 317:Frederick E. Wang 235: 234: 114:0.086 W/cm·K 16:(Redirected from 3081: 3054:Dental materials 2915:H.R. Chen, ed., 2904: 2903: 2901: 2899: 2894:. 18 August 2020 2884: 2878: 2877: 2859: 2853: 2852: 2832: 2826: 2825: 2823: 2822: 2797: 2791: 2790: 2788: 2787: 2764: 2758: 2757: 2755: 2754: 2727: 2721: 2720: 2718: 2717: 2711:spinoff.nasa.gov 2703: 2697: 2696: 2689: 2683: 2682: 2680: 2679: 2665: 2659: 2658: 2656: 2654: 2639: 2633: 2632: 2614: 2608: 2607: 2606: 2605: 2587: 2581: 2572: 2566: 2557: 2551: 2546: 2540: 2535: 2529: 2528: 2492: 2486: 2485: 2483: 2481: 2470: 2464: 2463: 2451: 2441: 2435: 2434: 2424: 2384: 2378: 2377: 2375: 2374: 2358: 2352: 2351: 2349: 2348: 2333: 2327: 2326: 2321:. Archived from 2311: 2305: 2304: 2294: 2288: 2287: 2286: 2285: 2267: 2261: 2260: 2234: 2228: 2227: 2226:. 3page=366-373. 2219: 2213: 2212: 2177: 2171: 2170: 2143: 2137: 2136: 2101: 2095: 2094: 2084: 2078: 2075: 2069: 2068: 2048: 2042: 2041: 2039: 2032: 2024: 2018: 2017: 2008:(7): 1432–1437. 1997: 1991: 1990: 1982: 1976: 1975: 1963: 1957: 1956: 1939:(7): 1169–1177. 1928: 1922: 1921: 1913: 1907: 1906: 1878: 1872: 1871: 1855: 1849: 1848: 1832: 1826: 1825: 1824: 1820: 1813: 1807: 1806: 1777: 1771: 1770: 1768: 1767: 1747:(5–6): 691–695. 1732: 1726: 1725: 1723: 1722: 1708: 1702: 1701: 1675: 1669: 1668: 1662: 1654: 1652: 1650: 1644: 1638:. Archived from 1607: 1598: 1592: 1591: 1555: 1546: 1545: 1508: 1499: 1498: 1492: 1488: 1486: 1478: 1450: 1441: 1440: 1438: 1431: 1423: 1417: 1416: 1392: 1386: 1385: 1383: 1382: 1367: 1361: 1360: 1358: 1351: 1343: 1334: 1332: 1324: 1318: 1317: 1307: 1266: 1260: 1259: 1207: 1201: 1200: 1198: 1197: 1182: 1176: 1175: 1165: 1145: 1139: 1138: 1126: 1120: 1119: 1099: 1093: 1092: 1090: 1088: 1072: 1066: 1065: 1037: 1031: 1030: 1015: 1009: 1008: 980: 974: 973: 956:(5): 1475–1477. 945: 763:pneumatic valves 652: 643: 581:electropolishing 517:room temperature 276:pseudoelasticity 240:, also known as 208:195–690 MPa 177: 165: 140: 128: 106:0.18 W/cm·K 94: 82: 40: 33: 29: 21: 3089: 3088: 3084: 3083: 3082: 3080: 3079: 3078: 3074:Smart materials 3044: 3043: 3005: 2912: 2910:Further reading 2907: 2897: 2895: 2886: 2885: 2881: 2874: 2860: 2856: 2833: 2829: 2820: 2818: 2816: 2798: 2794: 2785: 2783: 2781: 2765: 2761: 2752: 2750: 2748: 2740:. p. 633. 2728: 2724: 2715: 2713: 2705: 2704: 2700: 2691: 2690: 2686: 2677: 2675: 2667: 2666: 2662: 2652: 2650: 2640: 2636: 2629: 2615: 2611: 2603: 2601: 2593:Nitinol Glasses 2588: 2584: 2573: 2569: 2562:Popular Science 2558: 2554: 2547: 2543: 2536: 2532: 2493: 2489: 2479: 2477: 2472: 2471: 2467: 2460: 2449: 2443: 2442: 2438: 2385: 2381: 2372: 2370: 2359: 2355: 2346: 2344: 2334: 2330: 2313: 2312: 2308: 2295: 2291: 2283: 2281: 2268: 2264: 2249: 2235: 2231: 2220: 2216: 2178: 2174: 2144: 2140: 2102: 2098: 2085: 2081: 2076: 2072: 2049: 2045: 2037: 2030: 2026: 2025: 2021: 1998: 1994: 1983: 1979: 1964: 1960: 1929: 1925: 1914: 1910: 1879: 1875: 1856: 1852: 1833: 1829: 1822: 1814: 1810: 1783:Acta Materialia 1778: 1774: 1765: 1763: 1733: 1729: 1720: 1718: 1710: 1709: 1705: 1690: 1676: 1672: 1656: 1655: 1648: 1646: 1645:on 14 July 2011 1642: 1628: 1605: 1599: 1595: 1556: 1549: 1509: 1502: 1490: 1489: 1480: 1479: 1475: 1451: 1444: 1436: 1429: 1425: 1424: 1420: 1393: 1389: 1380: 1378: 1369: 1368: 1364: 1356: 1349: 1345: 1344: 1337: 1325: 1321: 1267: 1263: 1208: 1204: 1195: 1193: 1186:"Nitinol facts" 1184: 1183: 1179: 1163:10.1.1.455.1300 1146: 1142: 1127: 1123: 1100: 1096: 1086: 1084: 1081:Chemistry World 1075:Withers, Neil. 1073: 1069: 1038: 1034: 1017: 1016: 1012: 981: 977: 946: 942: 938: 866: 852: 785: 779: 717: 690:Superelasticity 684:Work production 666: 665: 664: 663: 655: 654: 653: 645: 644: 633: 606: 602: 590: 577:stainless steel 560: 532: 514: 510: 502: 498: 494: 490: 478: 424: 416: 408: 400: 364: 289: 272:superelasticity 238:Nickel titanium 222:Poisson's ratio 216:70–140 MPa 184:Elastic modulus 175: 163: 138: 126: 92: 80: 43: 31:Nickel Titanium 28: 23: 22: 15: 12: 11: 5: 3087: 3077: 3076: 3071: 3066: 3064:Intermetallics 3061: 3056: 3042: 3041: 3036: 3034:Nitinol-Tubing 3031: 3026: 3021: 3016: 3011: 3004: 3003:External links 3001: 2997: 2996: 2993: 2976: 2962: 2947: 2932: 2911: 2908: 2906: 2905: 2879: 2872: 2854: 2843:(4): 835–840. 2827: 2814: 2792: 2779: 2759: 2746: 2722: 2698: 2684: 2673:www.boeing.com 2660: 2634: 2627: 2609: 2582: 2567: 2564:, January 1988 2552: 2541: 2530: 2503:(7): 305–308. 2487: 2465: 2458: 2436: 2399:(4): 840–847. 2379: 2361:Smith, Keith. 2353: 2328: 2325:on 2007-12-08. 2306: 2289: 2262: 2247: 2229: 2214: 2172: 2154:(8): 984–990, 2138: 2096: 2079: 2070: 2059:(1–2): 40–46. 2043: 2040:on 2017-04-06. 2019: 1992: 1977: 1958: 1923: 1908: 1873: 1850: 1827: 1808: 1772: 1727: 1703: 1688: 1670: 1626: 1593: 1547: 1500: 1491:|journal= 1473: 1442: 1439:on 2011-07-14. 1418: 1407:(4): 357–368. 1387: 1362: 1359:on 2011-07-14. 1335: 1319: 1282:(2): 109–117. 1261: 1202: 1177: 1156:(5): 511–678. 1140: 1121: 1094: 1067: 1032: 1010: 975: 939: 937: 934: 933: 932: 921: 918:underwire bras 914: 907: 904:practical joke 896: 888: 881: 878: 865: 862: 861: 860: 857: 851: 848: 847: 846: 839: 836: 825: 808: 797: 794: 781:Main article: 778: 775: 774: 773: 766: 761:It is used in 759: 750:It is used as 748: 741: 716: 713: 695: 694: 691: 688: 685: 682: 679: 676: 673: 657: 656: 647: 646: 638: 637: 636: 635: 634: 632: 629: 604: 600: 588: 559: 556: 531: 528: 512: 508: 500: 496: 492: 488: 476: 422: 414: 406: 398: 363: 360: 288: 285: 233: 232: 228: 227: 224: 218: 217: 214: 210: 209: 206: 203:Yield strength 199: 198: 197:28–40 GPa 195: 191: 190: 189:75–83 GPa 187: 180: 179: 172: 168: 167: 160: 153: 152: 149: 143: 142: 135: 131: 130: 123: 116: 115: 112: 108: 107: 104: 97: 96: 89: 85: 84: 77: 70: 69: 66: 60: 59: 56: 50: 49: 45: 44: 41: 26: 9: 6: 4: 3: 2: 3086: 3075: 3072: 3070: 3067: 3065: 3062: 3060: 3057: 3055: 3052: 3051: 3049: 3040: 3037: 3035: 3032: 3030: 3027: 3025: 3022: 3020: 3017: 3015: 3012: 3010: 3007: 3006: 3000: 2994: 2991: 2987: 2983: 2982: 2977: 2975: 2974:0-521-44487-X 2971: 2967: 2963: 2960: 2956: 2952: 2948: 2945: 2944:0-87849-896-6 2941: 2937: 2933: 2930: 2926: 2922: 2918: 2914: 2913: 2893: 2889: 2883: 2875: 2873:9789811663352 2869: 2865: 2858: 2850: 2846: 2842: 2838: 2831: 2817: 2811: 2807: 2803: 2796: 2782: 2776: 2772: 2771: 2763: 2749: 2743: 2739: 2735: 2734: 2726: 2712: 2708: 2702: 2694: 2688: 2674: 2670: 2664: 2649: 2645: 2638: 2630: 2624: 2620: 2613: 2599: 2595: 2594: 2586: 2580: 2578: 2571: 2565: 2563: 2556: 2550: 2545: 2539: 2534: 2526: 2522: 2518: 2514: 2510: 2506: 2502: 2498: 2491: 2475: 2469: 2461: 2459:9781322158457 2455: 2448: 2447: 2440: 2432: 2428: 2423: 2418: 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2383: 2369:on 2017-02-23 2368: 2364: 2357: 2343: 2339: 2332: 2324: 2320: 2316: 2310: 2302: 2301: 2293: 2279: 2275: 2274: 2266: 2258: 2254: 2250: 2248:9781558651005 2244: 2240: 2233: 2225: 2218: 2211: 2207: 2203: 2199: 2195: 2191: 2188:(9): 094004, 2187: 2183: 2176: 2169: 2165: 2161: 2157: 2153: 2149: 2142: 2135: 2131: 2127: 2123: 2119: 2115: 2112:(4): 045018, 2111: 2107: 2100: 2092: 2091: 2083: 2074: 2066: 2062: 2058: 2054: 2047: 2036: 2029: 2023: 2015: 2011: 2007: 2003: 1996: 1988: 1981: 1973: 1969: 1962: 1954: 1950: 1946: 1942: 1938: 1934: 1927: 1919: 1912: 1904: 1900: 1896: 1892: 1888: 1884: 1877: 1869: 1865: 1861: 1854: 1846: 1842: 1838: 1831: 1818: 1812: 1804: 1800: 1796: 1792: 1788: 1784: 1776: 1762: 1758: 1754: 1750: 1746: 1742: 1738: 1731: 1717: 1713: 1707: 1699: 1695: 1691: 1685: 1681: 1674: 1666: 1660: 1641: 1637: 1633: 1629: 1623: 1619: 1615: 1611: 1604: 1597: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1561: 1554: 1552: 1543: 1539: 1535: 1531: 1527: 1523: 1519: 1515: 1507: 1505: 1496: 1484: 1476: 1470: 1466: 1462: 1458: 1457: 1449: 1447: 1435: 1428: 1422: 1414: 1410: 1406: 1402: 1398: 1391: 1376: 1372: 1366: 1355: 1348: 1342: 1340: 1330: 1323: 1315: 1311: 1306: 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1265: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1206: 1192:on 2013-08-18 1191: 1187: 1181: 1173: 1169: 1164: 1159: 1155: 1151: 1144: 1136: 1132: 1125: 1117: 1113: 1109: 1105: 1098: 1082: 1078: 1071: 1063: 1059: 1055: 1051: 1047: 1043: 1036: 1028: 1024: 1020: 1014: 1006: 1002: 998: 994: 990: 986: 979: 971: 967: 963: 959: 955: 951: 944: 940: 930: 926: 922: 919: 915: 912: 908: 905: 901: 897: 893: 889: 886: 882: 879: 876: 872: 868: 867: 858: 854: 853: 844: 840: 837: 834: 830: 826: 822: 818: 813: 809: 806: 802: 798: 795: 791: 790:biocompatible 787: 786: 784: 771: 767: 764: 760: 757: 753: 749: 746: 742: 739: 738:hexapod robot 735: 731: 727: 723: 719: 718: 712: 708: 705: 699: 692: 689: 686: 683: 680: 677: 674: 672:Free recovery 671: 670: 669: 661: 651: 642: 628: 624: 620: 618: 614: 608: 597: 595: 586: 582: 578: 572: 569: 565: 555: 551: 549: 545: 541: 536: 530:Manufacturing 527: 525: 520: 518: 504: 486: 485:shape setting 473: 469: 467: 457: 453: 451: 445: 441: 439: 430: 426: 420: 412: 404: 396: 392: 388: 384: 379: 377: 368: 359: 357: 353: 348: 344: 342: 338: 334: 330: 326: 322: 318: 314: 310: 306: 302: 298: 294: 284: 281: 277: 274:(also called 273: 269: 264: 262: 258: 254: 250: 247: 243: 239: 229: 225: 223: 219: 215: 211: 207: 204: 200: 196: 192: 188: 185: 181: 178:10 emu/g 173: 169: 166:10 emu/g 161: 158: 154: 150: 148: 144: 136: 132: 124: 121: 117: 113: 109: 105: 102: 98: 90: 86: 78: 75: 71: 67: 65: 61: 57: 55: 54:Melting point 51: 46: 42:Nitinol wires 39: 34: 19: 3059:Biomaterials 2998: 2980: 2978:Sai V. Raj, 2965: 2950: 2935: 2916: 2896:. Retrieved 2891: 2882: 2863: 2857: 2840: 2836: 2830: 2819:. Retrieved 2805: 2795: 2784:. Retrieved 2769: 2762: 2751:. Retrieved 2732: 2725: 2714:. Retrieved 2710: 2701: 2687: 2676:. Retrieved 2672: 2663: 2651:. Retrieved 2647: 2637: 2618: 2612: 2602:, retrieved 2592: 2585: 2576: 2570: 2561: 2555: 2544: 2533: 2500: 2496: 2490: 2478:. Retrieved 2468: 2445: 2439: 2396: 2392: 2382: 2371:. Retrieved 2367:the original 2356: 2345:. Retrieved 2331: 2323:the original 2318: 2309: 2299: 2292: 2282:, retrieved 2272: 2265: 2238: 2232: 2223: 2217: 2185: 2181: 2175: 2151: 2147: 2141: 2109: 2105: 2099: 2089: 2082: 2073: 2056: 2052: 2046: 2035:the original 2022: 2005: 2001: 1995: 1989:: 3560–3565. 1986: 1980: 1971: 1967: 1961: 1936: 1933:Mechatronics 1932: 1926: 1917: 1911: 1889:(1): 19–40. 1886: 1882: 1876: 1867: 1863: 1853: 1844: 1840: 1830: 1811: 1786: 1782: 1775: 1764:. Retrieved 1744: 1740: 1730: 1719:. Retrieved 1715: 1706: 1679: 1673: 1647:. Retrieved 1640:the original 1609: 1596: 1566:(5): 33–37. 1563: 1559: 1517: 1513: 1455: 1434:the original 1421: 1404: 1400: 1390: 1379:. Retrieved 1377:. 2011-01-26 1374: 1365: 1354:the original 1328: 1322: 1279: 1275: 1264: 1215: 1211: 1205: 1194:. Retrieved 1190:the original 1180: 1153: 1149: 1143: 1134: 1130: 1124: 1107: 1103: 1097: 1085:. Retrieved 1080: 1070: 1045: 1041: 1035: 1027:the original 1022: 1013: 988: 984: 978: 953: 949: 943: 871:heat engines 812:orthodontics 730:servo motors 709: 700: 696: 667: 631:Applications 625: 621: 609: 598: 573: 561: 552: 537: 533: 521: 505: 484: 482: 479:temperature. 462: 446: 442: 435: 418: 410: 402: 394: 380: 373: 352:Arne Ölander 349: 345: 311:aboratory). 308: 304: 300: 296: 292: 290: 268:shape memory 265: 241: 237: 236: 213:(martensite) 194:(martensite) 171:(martensite) 134:(martensite) 111:(martensite) 95:10 Ω·cm 88:(martensite) 83:10 Ω·cm 2770:Scientifica 1974:: 2299–304. 1520:: 119–131. 1048:(2): 1–21. 817:endodontics 736:, a simple 585:passivation 315:along with 280:deformation 270:effect and 205:(austenite) 186:(austenite) 159:(austenite) 122:(austenite) 103:(austenite) 76:(austenite) 3048:Categories 2821:2009-05-09 2786:2009-05-09 2753:2009-05-09 2716:2017-04-05 2678:2017-04-05 2628:0852929269 2604:2017-04-05 2373:2017-02-22 2347:2015-03-30 2284:2017-04-05 1766:2017-04-05 1721:2017-04-05 1636:2009499204 1381:2017-03-28 1196:2010-12-04 1137:: 427–433. 1087:29 January 936:References 821:root canal 704:gadolinium 658:A nitinol 558:Challenges 438:hysteresis 391:martensite 261:nitinol 60 151:< 1.002 2413:0029-7844 2342:BBC Mundo 1953:109783521 1761:137357771 1659:cite book 1649:26 August 1588:135621269 1534:1878-0180 1493:ignored ( 1483:cite book 1375:memry.com 1296:1678-7757 1240:0036-8075 1158:CiteSeerX 1077:"Nitinol" 929:actuators 911:golf club 803:to treat 752:autofocus 726:solenoids 722:actuators 660:paperclip 568:actuators 389:known as 383:austenite 362:Mechanism 341:accordion 2923:, 2010, 2598:archived 2525:28849141 2431:32168217 2278:archived 2257:38076438 2210:54204995 2168:55054532 2134:55660651 1903:31183365 1698:90174266 1542:26241890 1314:24676581 1248:26023135 1062:98306580 925:antennas 824:patient. 793:needles. 745:fluidics 734:Stiquito 450:twinning 307:rdnance 257:titanium 2992:, 2013. 2898:Aug 29, 2653:Aug 23, 2505:Bibcode 2480:14 July 2422:7098438 2190:Bibcode 2114:Bibcode 1791:Bibcode 1568:Bibcode 1413:9709837 1305:3956402 1256:2563331 1220:Bibcode 1212:Science 993:Bibcode 958:Bibcode 913:insert. 856:cracks. 833:sutures 524:R-phase 325:fatigue 299:tanium- 287:History 244:, is a 242:nitinol 64:Density 18:Nitinol 2972:  2957:  2942:  2927:  2870:  2812:  2777:  2744:  2625:  2523:  2456:  2429:  2419:  2411:  2255:  2245:  2208:  2166:  2132:  1951:  1901:  1823:  1759:  1696:  1686:  1634:  1624:  1586:  1540:  1532:  1471:  1411:  1312:  1302:  1294:  1254:  1246:  1238:  1160:  1060:  895:gears. 829:stents 564:stents 405:, or M 397:, or M 333:impact 253:nickel 2521:S2CID 2450:(PDF) 2206:S2CID 2164:S2CID 2130:S2CID 2038:(PDF) 2031:(PDF) 1949:S2CID 1899:S2CID 1757:S2CID 1643:(PDF) 1606:(PDF) 1584:S2CID 1430:(PDF) 1350:(PDF) 1252:S2CID 1058:S2CID 613:Laser 356:brass 337:alloy 303:aval 295:ckel 249:alloy 246:metal 141:10/°C 129:10/°C 2970:ISBN 2955:ISBN 2940:ISBN 2925:ISBN 2900:2024 2868:ISBN 2810:ISBN 2775:ISBN 2742:ISBN 2655:2024 2623:ISBN 2482:2011 2454:ISBN 2427:PMID 2409:ISSN 2253:OCLC 2243:ISBN 1870:(8). 1847:(8). 1694:LCCN 1684:ISBN 1665:link 1651:2010 1632:LCCN 1622:ISBN 1538:PMID 1530:ISSN 1495:help 1469:ISBN 1409:PMID 1310:PMID 1292:ISSN 1244:PMID 1236:ISSN 1089:2018 1023:Time 890:The 768:The 615:and 329:heat 255:and 226:0.33 2845:doi 2513:doi 2417:PMC 2401:doi 2397:135 2198:doi 2156:doi 2122:doi 2061:doi 2057:378 2010:doi 1941:doi 1891:doi 1799:doi 1749:doi 1614:doi 1576:doi 1560:JOM 1522:doi 1461:doi 1300:PMC 1284:doi 1228:doi 1216:348 1168:doi 1112:doi 1050:doi 1001:doi 966:doi 603:NiO 583:or 421:, A 413:, A 251:of 174:2.4 162:3.7 137:6.6 3050:: 2988:, 2984:, 2919:, 2890:. 2839:. 2804:. 2709:. 2671:. 2646:. 2596:, 2519:. 2511:. 2501:62 2499:. 2425:. 2415:. 2407:. 2395:. 2391:. 2340:. 2317:. 2276:, 2251:. 2204:, 2196:, 2186:21 2184:, 2162:, 2152:24 2150:, 2128:, 2120:, 2110:21 2108:, 2055:. 2006:29 2004:. 1970:. 1947:. 1937:19 1935:. 1897:. 1887:21 1885:. 1868:24 1866:. 1862:. 1845:24 1843:. 1839:. 1797:. 1787:61 1785:. 1755:. 1745:18 1743:. 1739:. 1714:. 1692:. 1661:}} 1657:{{ 1630:. 1608:. 1582:. 1574:. 1564:55 1562:. 1550:^ 1536:. 1528:. 1518:51 1516:. 1503:^ 1487:: 1485:}} 1481:{{ 1467:. 1445:^ 1405:68 1403:. 1399:. 1373:. 1338:^ 1308:. 1298:. 1290:. 1280:22 1278:. 1274:. 1250:. 1242:. 1234:. 1226:. 1214:. 1166:. 1154:50 1152:. 1135:47 1133:. 1108:54 1106:. 1079:. 1056:. 1044:. 1021:, 999:. 989:36 987:. 964:. 954:34 952:. 728:, 425:. 327:, 297:Ti 293:Ni 263:. 125:11 91:76 79:82 2961:. 2946:. 2931:. 2902:. 2876:. 2851:. 2847:: 2841:4 2824:. 2789:. 2756:. 2719:. 2681:. 2657:. 2631:. 2527:. 2515:: 2507:: 2484:. 2462:. 2433:. 2403:: 2376:. 2350:. 2259:. 2200:: 2192:: 2158:: 2124:: 2116:: 2067:. 2063:: 2016:. 2012:: 1972:3 1955:. 1943:: 1920:. 1905:. 1893:: 1805:. 1801:: 1793:: 1769:. 1751:: 1724:. 1700:. 1667:) 1653:. 1616:: 1590:. 1578:: 1570:: 1544:. 1524:: 1497:) 1477:. 1463:: 1415:. 1384:. 1333:. 1316:. 1286:: 1258:. 1230:: 1222:: 1199:. 1174:. 1170:: 1118:. 1114:: 1091:. 1064:. 1052:: 1046:2 1007:. 1003:: 995:: 972:. 968:: 960:: 931:. 920:. 887:. 740:. 724:( 605:x 601:2 589:2 513:f 509:f 507:A 501:d 497:d 493:d 489:f 477:s 423:f 415:s 407:f 399:s 309:L 305:O 301:N 176:× 164:× 139:× 127:× 93:× 81:× 20:)

Index

Nitinol

Melting point
Density
Electrical resistivity
Thermal conductivity
Coefficient of thermal expansion
Magnetic permeability
Magnetic susceptibility
Elastic modulus
Yield strength
Poisson's ratio
metal
alloy
nickel
titanium
nitinol 60
shape memory
superelasticity
pseudoelasticity
deformation
William J. Buehler
Frederick E. Wang
Naval Ordnance Laboratory
fatigue
heat
impact
alloy
accordion
Arne Ölander

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.