Knowledge

Yield (engineering)

Source 📝

40: 1068:
impurities dislocations in the material. To move this defect (plastically deforming or yielding the material), a larger stress must be applied. This thus causes a higher yield stress in the material. While many material properties depend only on the composition of the bulk material, yield strength is extremely sensitive to the materials processing as well.
1067:
There are several ways in which crystalline materials can be engineered to increase their yield strength. By altering dislocation density, impurity levels, grain size (in crystalline materials), the yield strength of the material can be fine-tuned. This occurs typically by introducing defects such as
1877:
That experimentally measured yield strength is significantly lower than the expected theoretical value can be explained by the presence of dislocations and defects in the materials. Indeed, whiskers with perfect single crystal structure and defect-free surfaces have been shown to demonstrate yield
1054:
correlates roughly linearly with tensile strength for most steels, but measurements on one material cannot be used as a scale to measure strengths on another. Hardness testing can therefore be an economical substitute for tensile testing, as well as providing local variations in yield strength due
891:
Beyond the elastic limit, permanent deformation will occur. The elastic limit is, therefore, the lowest stress point at which permanent deformation can be measured. This requires a manual load-unload procedure, and the accuracy is critically dependent on the equipment used and operator skill. For
1413:
Where the presence of a secondary phase will increase yield strength by blocking the motion of dislocations within the crystal. A line defect that, while moving through the matrix, will be forced against a small particle or precipitate of the material. Dislocations can move through this particle
2359:
When these conditions are undesirable, it is essential for suppliers to be informed to provide appropriate materials. The presence of YPE is influenced by chemical composition and mill processing methods such as skin passing or temper rolling, which temporarily eliminate YPE and improve surface
1881:
The theoretical yield strength can be estimated by considering the process of yield at the atomic level. In a perfect crystal, shearing results in the displacement of an entire plane of atoms by one interatomic separation distance, b, relative to the plane below. In order for the atoms to move,
1647:
Where a buildup of dislocations at a grain boundary causes a repulsive force between dislocations. As grain size decreases, the surface area to volume ratio of the grain increases, allowing more buildup of dislocations at the grain edge. Since it requires a lot of energy to move dislocations to
2347:
Yield Point Elongation (YPE) significantly impacts the usability of steel. In the context of tensile testing and the engineering stress-strain curve, the Yield Point is the initial stress level, below the maximum stress, at which an increase in strain occurs without an increase in stress. This
2355:
YPE can lead to issues such as coil breaks, edge breaks, fluting, stretcher strain, and reel kinks or creases, which can affect both aesthetics and flatness. Coil and edge breaks may occur during either initial or subsequent customer processing, while fluting and stretcher strain arise during
1034:
Yielded structures have a lower stiffness, leading to increased deflections and decreased buckling strength. The structure will be permanently deformed when the load is removed, and may have residual stresses. Engineering metals display strain hardening, which implies that the yield stress is
1055:
to, e.g., welding or forming operations. For critical situations, tension testing is often done to eliminate ambiguity. However, it is possible to obtain stress-strain curves from indentation-based procedures, provided certain conditions are met. These procedures are grouped under the term
1021:, reach an upper yield point before dropping rapidly to a lower yield point. The material response is linear up until the upper yield point, but the lower yield point is used in structural engineering as a conservative value. If a metal is only stressed to the upper yield point, and beyond, 1223:
the material, impurity atoms in low concentrations will occupy a lattice position directly below a dislocation, such as directly below an extra half plane defect. This relieves a tensile strain directly below the dislocation by filling that empty lattice space with the impurity atom.
2112: 1882:
considerable force must be applied to overcome the lattice energy and move the atoms in the top plane over the lower atoms and into a new lattice site. The applied stress to overcome the resistance of a perfect lattice to shear is the theoretical yield strength, τ
1478: 1105:, which increases their density in the material. This increases the yield strength of the material since now more stress must be applied to move these dislocations through a crystal lattice. Dislocations can also interact with each other, becoming entangled. 1550: 2192: 1878:
stress approaching the theoretical value. For example, nanowhiskers of copper were shown to undergo brittle fracture at 1 GPa, a value much higher than the strength of bulk copper and approaching the theoretical value.
1955: 1289: 2343:
exhibit a distinct upper yield point or a delay in work hardening. These tensile testing phenomena, wherein the strain increases but stress does not increase as expected, are two types of yield point elongation.
1043:
Yield strength testing involves taking a small sample with a fixed cross-section area and then pulling it with a controlled, gradually increasing force until the sample changes shape or breaks. This is called a
1011:
is multiplied by a factor of safety to obtain a lower value of the offset yield point. High strength steel and aluminum alloys do not exhibit a yield point, so this offset yield point is used on these materials.
1986: 1716: 1648:
another grain, these dislocations build up along the boundary, and increase the yield stress of the material. Also known as Hall-Petch strengthening, this type of strengthening is governed by the formula:
1155: 421: 2282: 1609: 1889:
The stress displacement curve of a plane of atoms varies sinusoidally as stress peaks when an atom is forced over the atom below and then falls as the atom slides into the next lattice point.
1423: 1637: 1581: 982: 949: 2326: 896:, such as rubber, the elastic limit is much larger than the proportionality limit. Also, precise strain measurements have shown that plastic strain begins at very low stresses. 1009: 355:, which is the load-bearing capacity for a given material. The ratio of yield strength to ultimate tensile strength is an important parameter for applications such steel for 1980:
is the interatomic separation distance. Since τ = G γ and dτ/dγ = G at small strains (i.e. Single atomic distance displacements), this equation becomes:
2222: 313:
and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable
1749: 1185: 1403: 100: 76: 2348:
characteristic is typical of certain materials, indicating the presence of YPE. The mechanism for YPE has been related to carbon diffusion, and more specifically to
1383: 1312: 1209: 1978: 1793: 1771: 1356: 1336: 317:
in a mechanical component, since it represents the upper limit to forces that can be applied without producing permanent deformation. For most metals, such as
1489: 249: 2558: 2811: 2123: 2422:"Automated Calculation of Strain Hardening Parameters from Tensile Stress vs. Strain Data for Low Carbon Steel Exhibiting Yield Point Elongation" 1414:
either by shearing the particle or by a process known as bowing or ringing, in which a new ring of dislocations is created around the particle.
1895: 2887: 1233: 2494: 2107:{\displaystyle G={\frac {d\tau }{dx}}={\frac {2\pi }{b}}\tau _{\max }\cos \left({\frac {2\pi x}{b}}\right)={\frac {2\pi }{b}}\tau _{\max }} 918:
is arbitrarily defined. The value for this is commonly set at 0.1% or 0.2% plastic strain. The offset value is given as a subscript, e.g.,
3080: 2459: 1654: 700: 294:
is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as
871:
move. This definition is rarely used since dislocations move at very low stresses, and detecting such movement is very difficult.
1874:
The theoretical yield strength of a perfect crystal is much higher than the observed stress at the initiation of plastic flow.
242: 2589: 3071: 3038: 3002: 2968: 2946: 2925: 2638: 1114: 328:, there is a gradual onset of non-linear behavior, and no precise yield point. In such a case, the offset yield point (or 373: 295: 287: 2234: 1586: 2787: 3056: 3021: 2987: 235: 2532: 1473:{\displaystyle \Delta \tau ={\frac {r_{\text{particle}}}{l_{\text{interparticle}}}}\gamma _{\text{particle-matrix}}} 3115: 2385: 2117:
For small displacement of γ=x/a, where a is the spacing of atoms on the slip plane, this can be rewritten as:
2825:
Richter, Gunther (2009). "Ultrahigh Strength Single-Crystalline Nanowhiskers Grown by Physical Vapor Deposition".
1614: 2360:
quality. However, YPE can return over time due to aging, which is holding at a temperature usually 200-400 °C.
2356:
forming. Reel kinks, transverse ridges on successive inner wraps of a coil, are caused by the coiling process.
17: 3105: 3095: 2337: 3120: 2565: 1558: 1090: 1080: 902:
The point in the stress-strain curve at which the curve levels off and plastic deformation begins to occur.
310: 1085: 954: 921: 198: 2290: 188: 2390: 987: 533: 360: 352: 203: 2847: 3110: 2200: 1727: 1163: 1056: 914:
When a yield point is not easily defined on the basis of the shape of the stress-strain curve an
857: 208: 43: 31: 2498: 2842: 2368: 1388: 178: 85: 860:
exhibited by real materials. In addition, there are several possible ways to define yielding:
2630: 2624: 2395: 1048:
Longitudinal and/or transverse strain is recorded using mechanical or optical extensometers.
112: 61: 2463: 2834: 2739: 2380: 1361: 1297: 1194: 1051: 337: 283: 279: 8: 2349: 370:, the yield point can be specified in terms of the three-dimensional principal stresses ( 332:) is taken as the stress at which 0.2% plastic deformation occurs. Yielding is a gradual 275: 193: 158: 2838: 2743: 1545:{\displaystyle \Delta \tau ={\frac {Gb}{l_{\text{interparticle}}-2r_{\text{particle}}}}} 881:), so the stress-strain graph is a straight line, and the gradient will be equal to the 3100: 2805: 2757: 1963: 1778: 1756: 1341: 1321: 291: 183: 163: 107: 79: 55: 2667: 3067: 3052: 3034: 3017: 2998: 2983: 2964: 2942: 2935:
Avallone, Eugene A.; Baumeister, Theodore; Sadegh, Ali; Marks, Lionel Simeon (2006).
2921: 2860: 2793: 2783: 2761: 2654:
Barnes, Howard (1999). "The yield stress—a review or 'παντα ρει'—everything flows?".
2634: 2441: 263: 153: 51: 2852: 2747: 2663: 2433: 341: 3028: 2958: 2936: 1045: 882: 599: 560: 367: 314: 2600:
A. M. Howatson, P. G. Lund and J. D. Todd, "Engineering Tables and Data", p. 41.
2437: 1188: 1187:
is the yield stress, G is the shear elastic modulus, b is the magnitude of the
1075: 878: 585: 123: 30:
This article is about the science of material yield. For predicting yield, see
2752: 2727: 2363:
Despite its drawbacks, YPE offers advantages in certain applications, such as
1022: 856:
It is often difficult to precisely define yielding due to the wide variety of
3089: 2797: 2728:"Correlation of Yield Strength and Tensile Strength with Hardness for Steels" 2536: 2445: 2421: 2400: 2187:{\displaystyle G={\frac {d\tau }{d\gamma }}={\frac {2\pi a}{b}}\tau _{\max }} 547: 424: 333: 213: 117: 2915: 2864: 2364: 1315: 520: 431:. A variety of yield criteria have been developed for different materials. 1102: 868: 651: 624: 322: 267: 1950:{\displaystyle \tau =\tau _{\max }\sin \left({\frac {2\pi x}{b}}\right)} 1018: 507: 483: 2856: 2420:
Scales, M.; Kornuta, J.A.; Switzner, N.; Veloo, P. (1 December 2023).
1284:{\displaystyle \Delta \tau =Gb{\sqrt {C_{s}}}\epsilon ^{\frac {3}{2}}} 893: 574: 458: 348: 318: 148: 3061: 841: 827: 799: 664: 356: 173: 143: 2957:
Beer, Ferdinand P.; Johnston, E. Russell; Dewolf, John T. (2001).
1405:
is the strain induced in the lattice due to adding the impurity.
785: 168: 877:
Up to this amount of stress, stress is proportional to strain (
771: 686: 682: 678: 1711:{\displaystyle \sigma _{y}=\sigma _{0}+kd^{-{\frac {1}{2}}}\,} 39: 2978:
Boresi, A. P., Schmidt, R. J., and Sidebottom, O. M. (1993).
2934: 2340: 1220: 638: 351:
materials, the yield strength is typically distinct from the
325: 1611:
is the surface tension between the matrix and the particle,
2916:
Avallone, Eugene A. & Baumeister III, Theodore (1996).
713: 218: 2419: 2993:
Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003).
813: 2941:(11th, Illustrated ed.). McGraw-Hill Professional. 290:
and will return to its original shape when the applied
2336:
During monotonic tensile testing, some metals such as
2287:
The theoretical yield strength can be approximated as
2293: 2237: 2203: 2126: 1989: 1966: 1898: 1781: 1759: 1730: 1657: 1617: 1589: 1561: 1492: 1426: 1408: 1391: 1364: 1344: 1324: 1300: 1236: 1197: 1166: 1117: 990: 957: 924: 376: 88: 64: 2622: 1150:{\displaystyle \Delta \sigma _{y}=Gb{\sqrt {\rho }}} 3064:
Roark's Formulas for Stress and Strain, 7th edition
3062:Young, Warren C. & Budynas, Richard G. (2002). 3012:Oberg, E., Jones, F. D., and Horton, H. L. (1984). 1071:These mechanisms for crystalline materials include 416:{\displaystyle \sigma _{1},\sigma _{2},\sigma _{3}} 2992: 2956: 2519: 2320: 2277:{\displaystyle \tau _{\max }={\frac {Gb}{2\pi a}}} 2276: 2216: 2186: 2106: 1972: 1949: 1787: 1765: 1743: 1710: 1631: 1604:{\displaystyle \gamma _{\text{particle-matrix}}\,} 1603: 1575: 1544: 1472: 1397: 1377: 1350: 1330: 1306: 1283: 1203: 1179: 1149: 1029: 1003: 976: 943: 415: 94: 70: 27:Phenomenon of deformation due to structural stress 2938:Mark's Standard Handbook for Mechanical Engineers 2918:Mark's Standard Handbook for Mechanical Engineers 286:behavior. Below the yield point, a material will 3087: 2732:Journal of Materials Engineering and Performance 2371:. Generally, steel with YPE is highly formable. 2299: 2243: 2209: 2179: 2099: 2039: 1910: 2725: 2331: 1642: 1214: 359:, and has been found to be proportional to the 2888:"Yield Point Elongation (YPE) – Pros and Cons" 1035:increased after unloading from a yield state. 1799: 1108:The governing formula for this mechanism is: 243: 2810:: CS1 maint: multiple names: authors list ( 2629:. Boston: Houghton Mifflin Company. p.  2626:Engineering Materials and their Applications 1751:is the stress required to move dislocations, 1227:The relationship of this mechanism goes as: 1101:Where deforming the material will introduce 3047:Shigley, J. E., and Mischke, C. R. (1989). 2623:Flinn, Richard A.; Trojan, Paul K. (1975). 1062: 2773: 2771: 1632:{\displaystyle l_{\text{interparticle}}\,} 984:MPa. For most practical engineering uses, 250: 236: 2846: 2751: 2691: 2689: 1707: 1628: 1600: 1572: 2995:Materials and Processes in Manufacturing 2656:Journal of Non-Newtonian Fluid Mechanics 2647: 38: 2920:(8th ed.). New York: McGraw-Hill. 2824: 2768: 1639:is the distance between the particles. 14: 3088: 2726:Pavlina, E.J.; Van Tyne, C.J. (2008). 2686: 2653: 2603: 2533:"Technical Product Data Sheets UHMWPE" 1358:are the same as in the above example, 2982:, 5th edition John Wiley & Sons. 2882: 2880: 2878: 2876: 2874: 1576:{\displaystyle r_{\text{particle}}\,} 449: 444: 3026: 2695: 2680: 1385:is the concentration of solute and 977:{\displaystyle R_{\text{p0.2}}=350} 944:{\displaystyle R_{\text{p0.1}}=310} 627:10% Ni, 1.6% Fe, 1% Mn, balance Cu 24: 3016:, 22nd edition. Industrial Press. 2871: 2777: 2321:{\displaystyle \tau _{\max }=G/30} 1813:Experimental shear strength (GPa) 1493: 1427: 1409:Particle/precipitate strengthening 1237: 1118: 25: 3132: 1810:Theoretical shear strength (GPa) 1096: 2780:Mechanical behavior of materials 2520:Beer, Johnston & Dewolf 2001 2386:Specified minimum yield strength 1483:and the bowing/ringing formula: 482:Steel, high strength alloy ASTM 2980:Advanced Mechanics of Materials 2909: 2818: 2719: 2710: 2701: 2674: 2616: 1318:, related to the yield stress, 1030:Usage in structural engineering 1004:{\displaystyle R_{\text{p0.2}}} 2594: 2583: 2551: 2525: 2513: 2487: 2478: 2452: 2413: 1417:The shearing formula goes as: 888:Elastic limit (yield strength) 434: 282:behavior and the beginning of 13: 1: 3049:Mechanical Engineering Design 2963:(3rd ed.). McGraw-Hill. 2892:www.baileymetalprocessing.com 2778:H., Courtney, Thomas (2005). 2668:10.1016/S0377-0257(98)00094-9 2406: 2217:{\displaystyle \tau _{\max }} 3051:, 5th edition. McGraw Hill. 3033:. City: Albion/Horwood Pub. 2332:Yield point elongation (YPE) 1643:Grain boundary strengthening 1215:Solid solution strengthening 1211:is the dislocation density. 1091:Grain boundary strengthening 1081:Solid solution strengthening 1014:Upper and lower yield points 496:Steel, prestressing strands 278:that indicates the limit of 7: 2374: 1773:is a material constant, and 1744:{\displaystyle \sigma _{0}} 1180:{\displaystyle \sigma _{y}} 1086:Precipitation strengthening 867:The lowest stress at which 438: 199:Metal-induced embrittlement 10: 3137: 2438:10.1007/s40799-023-00626-4 1800:Theoretical yield strength 1038: 189:Liquid metal embrittlement 29: 3066:. New York: McGraw-Hill. 2753:10.1007/s11665-008-9225-5 2391:Ultimate tensile strength 1398:{\displaystyle \epsilon } 534:High-density polyethylene 361:strain hardening exponent 353:ultimate tensile strength 204:Stress corrosion cracking 95:{\displaystyle \epsilon } 78:, shown as a function of 1583:is the particle radius, 1063:Strengthening mechanisms 136:Mechanical failure modes 3116:Deformation (mechanics) 2997:(9th ed.). Wiley. 2559:"unitex-deutschland.eu" 2426:Experimental Techniques 1057:Indentation plastometry 563:AISI 302 – cold-rolled 209:Sulfide stress cracking 71:{\displaystyle \sigma } 32:Material failure theory 2960:Mechanics of Materials 2322: 2278: 2218: 2188: 2108: 1974: 1951: 1789: 1767: 1745: 1712: 1633: 1605: 1577: 1546: 1474: 1399: 1379: 1352: 1332: 1308: 1285: 1205: 1181: 1151: 1005: 978: 945: 417: 336:which is normally not 179:Hydrogen embrittlement 130: 96: 72: 2611:Mechanical Metallurgy 2396:Yield curve (physics) 2323: 2279: 2219: 2189: 2109: 1975: 1952: 1790: 1768: 1746: 1713: 1634: 1606: 1578: 1547: 1475: 1400: 1380: 1378:{\displaystyle C_{s}} 1353: 1333: 1309: 1307:{\displaystyle \tau } 1286: 1206: 1204:{\displaystyle \rho } 1182: 1152: 1017:Some metals, such as 1006: 979: 946: 874:Proportionality limit 418: 113:Proportionality limit 102:): 97: 73: 42: 3106:Plasticity (physics) 3096:Elasticity (physics) 3014:Machinery's Handbook 2381:Plasticity (physics) 2350:Cottrell atmospheres 2291: 2235: 2201: 2124: 1987: 1964: 1896: 1779: 1757: 1728: 1655: 1615: 1587: 1559: 1490: 1424: 1389: 1362: 1342: 1322: 1298: 1234: 1195: 1164: 1115: 1052:Indentation hardness 988: 955: 922: 905:Offset yield point ( 858:stress–strain curves 738:Aluminium (annealed) 374: 86: 62: 3121:Structural analysis 3081:Engineer's Handbook 3030:Mechanics of Solids 2839:2009NanoL...9.3048R 2744:2008JMEP...17..888P 2613:, McGraw-Hill, 1986 1555:In these formulas, 296:plastic deformation 276:stress-strain curve 194:Mechanical overload 44:Stress–strain curve 2782:. Waveland Press. 2539:on 14 October 2011 2484:ASTM A228-A228M-14 2318: 2274: 2214: 2197:Giving a value of 2184: 2104: 1970: 1947: 1795:is the grain size. 1785: 1763: 1741: 1708: 1629: 1601: 1573: 1542: 1470: 1395: 1375: 1348: 1328: 1304: 1281: 1201: 1177: 1147: 1001: 974: 941: 916:offset yield point 864:True elastic limit 577:4.5% C, ASTM A-48 471:Steel, API 5L X65 413: 288:deform elastically 274:is the point on a 131: 108:True elastic limit 92: 68: 3073:978-0-07-072542-3 3040:978-1-898563-67-9 3027:Ross, C. (1999). 3004:978-0-471-65653-1 2970:978-0-07-365935-0 2948:978-0-07-142867-5 2927:978-0-07-004997-0 2857:10.1021/nl9015107 2640:978-0-395-18916-0 2272: 2172: 2151: 2092: 2070: 2032: 2014: 1973:{\displaystyle b} 1941: 1872: 1871: 1788:{\displaystyle d} 1766:{\displaystyle k} 1703: 1625: 1597: 1569: 1540: 1536: 1520: 1467: 1458: 1455: 1445: 1351:{\displaystyle b} 1331:{\displaystyle G} 1278: 1264: 1145: 998: 965: 932: 854: 853: 749:Copper (annealed) 450:Ultimate strength 311:material property 264:materials science 260: 259: 154:Corrosion fatigue 52:nonferrous alloys 16:(Redirected from 3128: 3077: 3044: 3008: 2974: 2952: 2931: 2903: 2902: 2900: 2898: 2884: 2869: 2868: 2850: 2833:(8): 3048–3052. 2822: 2816: 2815: 2809: 2801: 2775: 2766: 2765: 2755: 2723: 2717: 2716:Degarmo, p. 377. 2714: 2708: 2705: 2699: 2693: 2684: 2678: 2672: 2671: 2662:(1–2): 133–178. 2651: 2645: 2644: 2620: 2614: 2607: 2601: 2598: 2592: 2587: 2581: 2580: 2578: 2576: 2571:on 25 March 2012 2570: 2564:. Archived from 2563: 2555: 2549: 2548: 2546: 2544: 2535:. Archived from 2529: 2523: 2517: 2511: 2510: 2508: 2506: 2497:. Archived from 2491: 2485: 2482: 2476: 2475: 2473: 2471: 2462:. Archived from 2456: 2450: 2449: 2432:(6): 1311–1322. 2417: 2327: 2325: 2324: 2319: 2314: 2303: 2302: 2283: 2281: 2280: 2275: 2273: 2271: 2260: 2252: 2247: 2246: 2223: 2221: 2220: 2215: 2213: 2212: 2193: 2191: 2190: 2185: 2183: 2182: 2173: 2168: 2157: 2152: 2150: 2142: 2134: 2113: 2111: 2110: 2105: 2103: 2102: 2093: 2088: 2080: 2075: 2071: 2066: 2055: 2043: 2042: 2033: 2028: 2020: 2015: 2013: 2005: 1997: 1979: 1977: 1976: 1971: 1956: 1954: 1953: 1948: 1946: 1942: 1937: 1926: 1914: 1913: 1804: 1803: 1794: 1792: 1791: 1786: 1772: 1770: 1769: 1764: 1750: 1748: 1747: 1742: 1740: 1739: 1717: 1715: 1714: 1709: 1706: 1705: 1704: 1696: 1680: 1679: 1667: 1666: 1638: 1636: 1635: 1630: 1627: 1626: 1623: 1610: 1608: 1607: 1602: 1599: 1598: 1595: 1582: 1580: 1579: 1574: 1571: 1570: 1567: 1551: 1549: 1548: 1543: 1541: 1539: 1538: 1537: 1534: 1522: 1521: 1518: 1511: 1503: 1479: 1477: 1476: 1471: 1469: 1468: 1465: 1459: 1457: 1456: 1453: 1447: 1446: 1443: 1437: 1404: 1402: 1401: 1396: 1384: 1382: 1381: 1376: 1374: 1373: 1357: 1355: 1354: 1349: 1337: 1335: 1334: 1329: 1313: 1311: 1310: 1305: 1290: 1288: 1287: 1282: 1280: 1279: 1271: 1265: 1263: 1262: 1253: 1210: 1208: 1207: 1202: 1186: 1184: 1183: 1178: 1176: 1175: 1156: 1154: 1153: 1148: 1146: 1141: 1130: 1129: 1010: 1008: 1007: 1002: 1000: 999: 996: 983: 981: 980: 975: 967: 966: 963: 950: 948: 947: 942: 934: 933: 930: 910: 909: 885:of the material. 727:Nylon, type 6/6 613:Copper 99.9% Cu 439: 422: 420: 419: 414: 412: 411: 399: 398: 386: 385: 342:ultimate failure 252: 245: 238: 133: 132: 101: 99: 98: 93: 77: 75: 74: 69: 46:showing typical 21: 3136: 3135: 3131: 3130: 3129: 3127: 3126: 3125: 3111:Solid mechanics 3086: 3085: 3074: 3041: 3005: 2971: 2949: 2928: 2912: 2907: 2906: 2896: 2894: 2886: 2885: 2872: 2848:10.1.1.702.1801 2823: 2819: 2803: 2802: 2790: 2776: 2769: 2724: 2720: 2715: 2711: 2707:ISO 6892-1:2009 2706: 2702: 2694: 2687: 2679: 2675: 2652: 2648: 2641: 2621: 2617: 2608: 2604: 2599: 2595: 2588: 2584: 2574: 2572: 2568: 2561: 2557: 2556: 2552: 2542: 2540: 2531: 2530: 2526: 2518: 2514: 2504: 2502: 2501:on 19 July 2011 2493: 2492: 2488: 2483: 2479: 2469: 2467: 2466:on 22 June 2012 2458: 2457: 2453: 2418: 2414: 2409: 2377: 2334: 2310: 2298: 2294: 2292: 2289: 2288: 2261: 2253: 2251: 2242: 2238: 2236: 2233: 2232: 2227: 2208: 2204: 2202: 2199: 2198: 2178: 2174: 2158: 2156: 2143: 2135: 2133: 2125: 2122: 2121: 2098: 2094: 2081: 2079: 2056: 2054: 2050: 2038: 2034: 2021: 2019: 2006: 1998: 1996: 1988: 1985: 1984: 1965: 1962: 1961: 1927: 1925: 1921: 1909: 1905: 1897: 1894: 1893: 1885: 1802: 1780: 1777: 1776: 1758: 1755: 1754: 1735: 1731: 1729: 1726: 1725: 1695: 1691: 1687: 1675: 1671: 1662: 1658: 1656: 1653: 1652: 1645: 1622: 1618: 1616: 1613: 1612: 1596:particle-matrix 1594: 1590: 1588: 1585: 1584: 1566: 1562: 1560: 1557: 1556: 1533: 1529: 1517: 1513: 1512: 1504: 1502: 1491: 1488: 1487: 1466:particle-matrix 1464: 1460: 1452: 1448: 1442: 1438: 1436: 1425: 1422: 1421: 1411: 1390: 1387: 1386: 1369: 1365: 1363: 1360: 1359: 1343: 1340: 1339: 1323: 1320: 1319: 1299: 1296: 1295: 1270: 1266: 1258: 1254: 1252: 1235: 1232: 1231: 1217: 1196: 1193: 1192: 1171: 1167: 1165: 1162: 1161: 1140: 1125: 1121: 1116: 1113: 1112: 1099: 1065: 1041: 1032: 995: 991: 989: 986: 985: 962: 958: 956: 953: 952: 929: 925: 923: 920: 919: 907: 906: 883:elastic modulus 760:Iron (annealed) 600:Aluminium alloy 561:Stainless steel 451: 446: 437: 429:yield criterion 407: 403: 394: 390: 381: 377: 375: 372: 371: 368:solid mechanics 256: 129: 128: 87: 84: 83: 63: 60: 59: 35: 28: 23: 22: 15: 12: 11: 5: 3134: 3124: 3123: 3118: 3113: 3108: 3103: 3098: 3084: 3083: 3078: 3072: 3059: 3045: 3039: 3024: 3010: 3003: 2990: 2976: 2969: 2954: 2947: 2932: 2926: 2911: 2908: 2905: 2904: 2870: 2817: 2789:978-1577664253 2788: 2767: 2738:(6): 888–893. 2718: 2709: 2700: 2685: 2673: 2646: 2639: 2615: 2602: 2593: 2582: 2550: 2524: 2522:, p. 746. 2512: 2495:"complore.com" 2486: 2477: 2451: 2411: 2410: 2408: 2405: 2404: 2403: 2398: 2393: 2388: 2383: 2376: 2373: 2367:, and reduces 2333: 2330: 2317: 2313: 2309: 2306: 2301: 2297: 2285: 2284: 2270: 2267: 2264: 2259: 2256: 2250: 2245: 2241: 2225: 2211: 2207: 2195: 2194: 2181: 2177: 2171: 2167: 2164: 2161: 2155: 2149: 2146: 2141: 2138: 2132: 2129: 2115: 2114: 2101: 2097: 2091: 2087: 2084: 2078: 2074: 2069: 2065: 2062: 2059: 2053: 2049: 2046: 2041: 2037: 2031: 2027: 2024: 2018: 2012: 2009: 2004: 2001: 1995: 1992: 1969: 1958: 1957: 1945: 1940: 1936: 1933: 1930: 1924: 1920: 1917: 1912: 1908: 1904: 1901: 1883: 1870: 1869: 1866: 1863: 1859: 1858: 1855: 1852: 1848: 1847: 1844: 1841: 1837: 1836: 1833: 1830: 1826: 1825: 1822: 1819: 1815: 1814: 1811: 1808: 1801: 1798: 1797: 1796: 1784: 1774: 1762: 1752: 1738: 1734: 1719: 1718: 1702: 1699: 1694: 1690: 1686: 1683: 1678: 1674: 1670: 1665: 1661: 1644: 1641: 1621: 1593: 1565: 1553: 1552: 1532: 1528: 1525: 1516: 1510: 1507: 1501: 1498: 1495: 1481: 1480: 1463: 1451: 1441: 1435: 1432: 1429: 1410: 1407: 1394: 1372: 1368: 1347: 1327: 1303: 1292: 1291: 1277: 1274: 1269: 1261: 1257: 1251: 1248: 1245: 1242: 1239: 1216: 1213: 1200: 1189:Burgers vector 1174: 1170: 1158: 1157: 1144: 1139: 1136: 1133: 1128: 1124: 1120: 1098: 1097:Work hardening 1095: 1094: 1093: 1088: 1083: 1078: 1076:Work hardening 1064: 1061: 1040: 1037: 1031: 1028: 1027: 1026: 1015: 1012: 994: 973: 970: 961: 940: 937: 928: 912: 903: 900: 897: 889: 886: 875: 872: 865: 852: 851: 848: 845: 838: 837: 834: 831: 824: 823: 820: 817: 810: 809: 806: 803: 796: 795: 792: 789: 782: 781: 778: 775: 768: 767: 764: 761: 757: 756: 753: 750: 746: 745: 742: 739: 735: 734: 731: 728: 724: 723: 720: 717: 710: 709: 706: 703: 697: 696: 693: 690: 675: 674: 671: 668: 661: 660: 657: 654: 648: 647: 644: 641: 635: 634: 631: 628: 621: 620: 617: 614: 610: 609: 606: 603: 596: 595: 592: 589: 588:(6% Al, 4% V) 586:Titanium alloy 582: 581: 578: 571: 570: 567: 564: 557: 556: 553: 550: 544: 543: 540: 537: 530: 529: 526: 524: 517: 516: 513: 510: 504: 503: 500: 497: 493: 492: 489: 486: 479: 478: 475: 472: 468: 467: 464: 461: 454: 453: 448: 445:Yield strength 443: 436: 433: 410: 406: 402: 397: 393: 389: 384: 380: 303:yield strength 258: 257: 255: 254: 247: 240: 232: 229: 228: 227: 226: 221: 216: 211: 206: 201: 196: 191: 186: 181: 176: 171: 166: 161: 156: 151: 146: 138: 137: 127: 126: 124:yield strength 120: 115: 110: 104: 103: 91: 67: 26: 18:Yield strength 9: 6: 4: 3: 2: 3133: 3122: 3119: 3117: 3114: 3112: 3109: 3107: 3104: 3102: 3099: 3097: 3094: 3093: 3091: 3082: 3079: 3075: 3069: 3065: 3060: 3058: 3057:0-07-056899-5 3054: 3050: 3046: 3042: 3036: 3032: 3031: 3025: 3023: 3022:0-8311-1155-0 3019: 3015: 3011: 3006: 3000: 2996: 2991: 2989: 2988:0-471-55157-0 2985: 2981: 2977: 2972: 2966: 2962: 2961: 2955: 2950: 2944: 2940: 2939: 2933: 2929: 2923: 2919: 2914: 2913: 2893: 2889: 2883: 2881: 2879: 2877: 2875: 2866: 2862: 2858: 2854: 2849: 2844: 2840: 2836: 2832: 2828: 2821: 2813: 2807: 2799: 2795: 2791: 2785: 2781: 2774: 2772: 2763: 2759: 2754: 2749: 2745: 2741: 2737: 2733: 2729: 2722: 2713: 2704: 2698:, p. 59. 2697: 2692: 2690: 2683:, p. 56. 2682: 2677: 2669: 2665: 2661: 2657: 2650: 2642: 2636: 2632: 2628: 2627: 2619: 2612: 2606: 2597: 2591: 2586: 2567: 2560: 2554: 2538: 2534: 2528: 2521: 2516: 2500: 2496: 2490: 2481: 2465: 2461: 2460:"ussteel.com" 2455: 2447: 2443: 2439: 2435: 2431: 2427: 2423: 2416: 2412: 2402: 2401:Yield surface 2399: 2397: 2394: 2392: 2389: 2387: 2384: 2382: 2379: 2378: 2372: 2370: 2366: 2361: 2357: 2353: 2351: 2345: 2342: 2339: 2329: 2315: 2311: 2307: 2304: 2295: 2268: 2265: 2262: 2257: 2254: 2248: 2239: 2231: 2230: 2229: 2205: 2175: 2169: 2165: 2162: 2159: 2153: 2147: 2144: 2139: 2136: 2130: 2127: 2120: 2119: 2118: 2095: 2089: 2085: 2082: 2076: 2072: 2067: 2063: 2060: 2057: 2051: 2047: 2044: 2035: 2029: 2025: 2022: 2016: 2010: 2007: 2002: 1999: 1993: 1990: 1983: 1982: 1981: 1967: 1943: 1938: 1934: 1931: 1928: 1922: 1918: 1915: 1906: 1902: 1899: 1892: 1891: 1890: 1887: 1879: 1875: 1867: 1864: 1861: 1860: 1856: 1853: 1850: 1849: 1845: 1842: 1839: 1838: 1834: 1831: 1828: 1827: 1823: 1820: 1817: 1816: 1812: 1809: 1806: 1805: 1782: 1775: 1760: 1753: 1736: 1732: 1724: 1723: 1722: 1700: 1697: 1692: 1688: 1684: 1681: 1676: 1672: 1668: 1663: 1659: 1651: 1650: 1649: 1640: 1624:interparticle 1619: 1591: 1563: 1530: 1526: 1523: 1519:interparticle 1514: 1508: 1505: 1499: 1496: 1486: 1485: 1484: 1461: 1454:interparticle 1449: 1439: 1433: 1430: 1420: 1419: 1418: 1415: 1406: 1392: 1370: 1366: 1345: 1325: 1317: 1301: 1275: 1272: 1267: 1259: 1255: 1249: 1246: 1243: 1240: 1230: 1229: 1228: 1225: 1222: 1212: 1198: 1190: 1172: 1168: 1142: 1137: 1134: 1131: 1126: 1122: 1111: 1110: 1109: 1106: 1104: 1092: 1089: 1087: 1084: 1082: 1079: 1077: 1074: 1073: 1072: 1069: 1060: 1058: 1053: 1049: 1047: 1046:tensile test. 1036: 1024: 1020: 1016: 1013: 992: 971: 968: 959: 938: 935: 926: 917: 913: 904: 901: 898: 895: 890: 887: 884: 880: 876: 873: 870: 866: 863: 862: 861: 859: 849: 846: 843: 840: 839: 835: 832: 829: 826: 825: 821: 818: 815: 812: 811: 807: 804: 801: 798: 797: 793: 790: 787: 784: 783: 779: 776: 773: 770: 769: 765: 762: 759: 758: 754: 751: 748: 747: 743: 740: 737: 736: 732: 729: 726: 725: 721: 718: 715: 712: 711: 707: 704: 702: 699: 698: 694: 691: 688: 684: 680: 677: 676: 672: 669: 666: 663: 662: 658: 655: 653: 650: 649: 645: 642: 640: 637: 636: 632: 629: 626: 623: 622: 618: 615: 612: 611: 607: 604: 601: 598: 597: 593: 590: 587: 584: 583: 579: 576: 573: 572: 568: 565: 562: 559: 558: 554: 551: 549: 548:Polypropylene 546: 545: 541: 538: 535: 532: 531: 527: 525: 522: 519: 518: 514: 511: 509: 506: 505: 501: 498: 495: 494: 490: 487: 485: 481: 480: 476: 473: 470: 469: 465: 462: 460: 456: 455: 441: 440: 432: 430: 426: 425:yield surface 408: 404: 400: 395: 391: 387: 382: 378: 369: 364: 362: 358: 354: 350: 345: 343: 339: 335: 331: 327: 324: 320: 316: 312: 308: 304: 299: 297: 293: 289: 285: 281: 277: 273: 269: 265: 253: 248: 246: 241: 239: 234: 233: 231: 230: 225: 222: 220: 217: 215: 214:Thermal shock 212: 210: 207: 205: 202: 200: 197: 195: 192: 190: 187: 185: 182: 180: 177: 175: 172: 170: 167: 165: 162: 160: 157: 155: 152: 150: 147: 145: 142: 141: 140: 139: 135: 134: 125: 121: 119: 118:Elastic limit 116: 114: 111: 109: 106: 105: 89: 81: 65: 57: 53: 50:behavior for 49: 45: 41: 37: 33: 19: 3063: 3048: 3029: 3013: 2994: 2979: 2959: 2937: 2917: 2910:Bibliography 2895:. Retrieved 2891: 2830: 2827:Nano Letters 2826: 2820: 2779: 2735: 2731: 2721: 2712: 2703: 2676: 2659: 2655: 2649: 2625: 2618: 2610: 2605: 2596: 2585: 2573:. Retrieved 2566:the original 2553: 2541:. Retrieved 2537:the original 2527: 2515: 2505:10 September 2503:. Retrieved 2499:the original 2489: 2480: 2468:. Retrieved 2464:the original 2454: 2429: 2425: 2415: 2365:roll forming 2362: 2358: 2354: 2346: 2335: 2286: 2196: 2116: 1959: 1888: 1880: 1876: 1873: 1720: 1646: 1554: 1482: 1416: 1412: 1316:shear stress 1293: 1226: 1218: 1159: 1107: 1103:dislocations 1100: 1070: 1066: 1050: 1042: 1033: 1025:can develop. 1023:Lüders bands 915: 908:proof stress 869:dislocations 855: 521:Carbon fiber 428: 365: 346: 338:catastrophic 334:failure mode 330:proof stress 329: 307:yield stress 306: 302: 300: 271: 261: 223: 47: 36: 2609:G. Dieter, 899:Yield point 879:Hooke's law 652:Spider silk 625:Cupronickel 435:Definitions 323:cold-worked 272:yield point 268:engineering 3090:Categories 2590:matweb.com 2407:References 2369:springback 2228:equal to: 1862:α-Fe 1019:mild steel 894:elastomers 844:(annealed) 830:(annealed) 816:(annealed) 802:(annealed) 788:(annealed) 774:(annealed) 523:(CF, CFK) 515:1740–3300 508:Piano wire 3101:Mechanics 2843:CiteSeerX 2806:cite book 2798:894800884 2762:135890256 2696:Ross 1999 2681:Ross 1999 2543:18 August 2446:1747-1567 2296:τ 2266:π 2240:τ 2206:τ 2176:τ 2163:π 2148:γ 2140:τ 2096:τ 2086:π 2061:π 2048:⁡ 2036:τ 2026:π 2003:τ 1932:π 1919:⁡ 1907:τ 1900:τ 1807:Material 1733:σ 1693:− 1673:σ 1660:σ 1592:γ 1524:− 1497:τ 1494:Δ 1462:γ 1431:τ 1428:Δ 1393:ϵ 1302:τ 1268:ϵ 1241:τ 1238:Δ 1199:ρ 1169:σ 1143:ρ 1123:σ 1119:Δ 791:5000–9000 656:1150 (??) 575:Cast iron 459:A36 steel 442:Material 423:) with a 405:σ 392:σ 379:σ 357:pipelines 340:, unlike 319:aluminium 149:Corrosion 90:ϵ 66:σ 2865:19637912 2375:See also 2338:annealed 1568:particle 1535:particle 1444:particle 1221:alloying 850:550–620 842:Tungsten 836:240–370 828:Titanium 800:Tantalum 780:140–195 665:Silkworm 602:2014-T6 555:19.7–80 224:Yielding 174:Fracture 144:Buckling 2897:16 June 2835:Bibcode 2740:Bibcode 2575:15 June 2470:15 June 1314:is the 1039:Testing 951:MPa or 833:100–225 822:15–200 794:  786:Silicon 719:104–121 716:(limb) 673:  536:(HDPE) 349:ductile 284:plastic 280:elastic 169:Fouling 164:Fatigue 122:Offset 82:,  58:,  3070:  3055:  3037:  3020:  3001:  2986:  2967:  2945:  2924:  2863:  2845:  2796:  2786:  2760:  2637:  2444:  2224:τ 1960:where 1721:where 1294:where 1191:, and 1160:where 772:Nickel 763:80–100 744:40–50 701:UHMWPE 687:Twaron 683:Kevlar 679:Aramid 643:200+ ~ 512:  452:(MPa) 447:(MPa) 292:stress 270:, the 184:Impact 80:strain 56:stress 2758:S2CID 2569:(PDF) 2562:(PDF) 2341:steel 1868:2.75 1846:0.49 1835:0.78 1824:0.37 777:14–35 741:15–20 695:3757 667:silk 659:1400 639:Brass 552:12–43 539:26–33 528:5650 502:1860 457:ASTM 427:or a 326:steel 309:is a 159:Creep 48:yield 3068:ISBN 3053:ISBN 3035:ISBN 3018:ISBN 2999:ISBN 2984:ISBN 2965:ISBN 2943:ISBN 2922:ISBN 2899:2024 2861:PMID 2812:link 2794:OCLC 2784:ISBN 2635:ISBN 2577:2011 2545:2010 2507:2010 2472:2011 2442:ISSN 1865:2.6 1857:3.2 1854:2.6 1843:1.4 1832:0.9 1821:1.0 1338:and 997:p0.2 964:p0.2 931:p0.1 819:9–14 808:200 766:350 755:210 722:130 714:Bone 692:3620 646:550 633:350 619:220 608:455 594:900 580:172 569:860 499:1650 491:760 484:A514 477:531 466:400 347:For 321:and 315:load 301:The 266:and 219:Wear 2853:doi 2748:doi 2664:doi 2434:doi 2300:max 2244:max 2226:max 2210:max 2180:max 2100:max 2045:cos 2040:max 1916:sin 1911:max 1884:max 1851:Ni 1840:Cu 1829:Al 1818:Ag 1219:By 972:350 939:310 847:550 814:Tin 805:180 733:75 708:35 685:or 670:500 630:130 605:400 591:830 566:520 542:37 488:690 474:448 463:250 366:In 344:. 305:or 262:In 3092:: 2890:. 2873:^ 2859:. 2851:. 2841:. 2829:. 2808:}} 2804:{{ 2792:. 2770:^ 2756:. 2746:. 2736:17 2734:. 2730:. 2688:^ 2660:81 2658:. 2633:. 2631:61 2440:. 2430:47 2428:. 2424:. 2352:. 2328:. 2316:30 1886:. 1059:. 752:33 730:45 705:20 689:) 616:70 363:. 298:. 3076:. 3043:. 3009:. 3007:. 2975:. 2973:. 2953:. 2951:. 2930:. 2901:. 2867:. 2855:: 2837:: 2831:9 2814:) 2800:. 2764:. 2750:: 2742:: 2670:. 2666:: 2643:. 2579:. 2547:. 2509:. 2474:. 2448:. 2436:: 2312:/ 2308:G 2305:= 2269:a 2263:2 2258:b 2255:G 2249:= 2170:b 2166:a 2160:2 2154:= 2145:d 2137:d 2131:= 2128:G 2090:b 2083:2 2077:= 2073:) 2068:b 2064:x 2058:2 2052:( 2030:b 2023:2 2017:= 2011:x 2008:d 2000:d 1994:= 1991:G 1968:b 1944:) 1939:b 1935:x 1929:2 1923:( 1903:= 1783:d 1761:k 1737:0 1701:2 1698:1 1689:d 1685:k 1682:+ 1677:0 1669:= 1664:y 1620:l 1564:r 1531:r 1527:2 1515:l 1509:b 1506:G 1500:= 1450:l 1440:r 1434:= 1371:s 1367:C 1346:b 1326:G 1276:2 1273:3 1260:s 1256:C 1250:b 1247:G 1244:= 1173:y 1138:b 1135:G 1132:= 1127:y 993:R 969:= 960:R 936:= 927:R 911:) 681:( 409:3 401:, 396:2 388:, 383:1 251:e 244:t 237:v 54:( 34:. 20:)

Index

Yield strength
Material failure theory

Stress–strain curve
yield
nonferrous alloys
stress
strain
True elastic limit
Proportionality limit
Elastic limit
yield strength
Buckling
Corrosion
Corrosion fatigue
Creep
Fatigue
Fouling
Fracture
Hydrogen embrittlement
Impact
Liquid metal embrittlement
Mechanical overload
Metal-induced embrittlement
Stress corrosion cracking
Sulfide stress cracking
Thermal shock
Wear
Yielding
v

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.