Knowledge

Mechanobiology

Source đź“ť

119:
both the solid and fluid phases. The fluid phase is made up of water -which contributes 80% of the wet weight – and inorganic ions e. g Sodium ion, Calcium ion and Potassium ion. The solid phase is made up of porous ECM. The proteoglycans and interstitial fluids interact to give compressive force to the cartilage through negative electrostatic repulsive forces. The ion concentration difference between the extracellular and intracellular ions composition of chondrocytes result in hydrostatic pressure. During development, mechanical environment of joint determines surface and topology of the joint. In adult, moderate mechanical loading is required to maintain cartilage; immobilization of joint leads to loss of proteoglycans and cartilage atrophy while excess mechanical loading results in degeneration of joint.
160:
The embryo is formed by self-assembly through which cells differentiate into tissues performing specialized functions. It was previously believed that only chemical signals give cues that control spatially oriented changes in cell growth, differentiation and fate switching that mediate morphogenetic
118:
is the connective tissue that protects bones of load-bearing joints like knee, shoulder by providing a lubricated surface. It deforms in response to compressive load, thereby reducing stress on bones. This mechanical responsiveness of articular cartilage is due to its biphasic nature; it contains
131:
is also responsive to mechanical signals which are relayed from the extracellular matrix through the cytoskeleton by the help of Linker of Nucleoskeleton and Cytoskeleton LINC-associated proteins like KASH and SUN. Examples of effect of mechanical responses in the nucleus involve:
257:
cell-generated traction forces also contribute significantly to these responses by modulating tensional prestress within cells, tissues, and organs that govern their mechanical stability, as well as mechanical signal transmission from the macroscale to the nanoscale.
161:
controls. This is based on the ability of chemical signals to induce biochemical responses like tissue patterning in distant cells. However, it is now known that mechanical  forces generated within cells and tissues provide regulatory signals.
19:
is an emerging field of science at the interface of biology, engineering, chemistry and physics. It focuses on how physical forces and changes in the mechanical properties of cells and tissues contribute to development, cell differentiation,
81:
are vital in development and wound repair and they are affected by mechanical cues like tension, compression and shear pressure. Fibroblasts synthesize structural proteins, some of which are mechanosensitive and form integral part of the
32:—the molecular mechanisms by which cells sense and respond to mechanical signals. While medicine has typically looked for the genetic and biochemical basis of disease, advances in mechanobiology suggest that changes in cell mechanics, 218:
increase the skin area available for reconstructive surgery. Surgical tension application devices are used for bone fracture healing, orthodontics, cosmetic breast expansion and closure of non-healing wounds.
137: 28:
and bone during exercise, and shear pressure on the blood vessel during blood circulation are all examples of mechanical forces in human tissues. A major challenge in the field is understanding
206:
The effectiveness of many of the mechanical therapies already in clinical use shows how important physical forces can be in physiological control. Several examples illustrate this point.
180:
system. Local variation in physical forces and mechanical cues such as stiffness of the ECM also control the expression of genes that give rise to the embryonic developmental process of
210:
promotes lung development in premature infants; modifying the tidal volumes of mechanical ventilators reduces morbidity and death in patients with acute lung injury. Expandable
176:. The spindle positioning within symmetrically and asymmetrically dividing cells in the early embryo is controlled by mechanical forces mediated by microtubules and 168:, cells aggregate and the compactness between cells increases with the help of actomyosin-dependent cytoskeletal traction forces and their application to adhesive 24:, and disease. Mechanical forces are experienced and may be interpreted to give biological responses in cells. The movement of joints, compressive loads on the 609:
Haapala, Jussi; Arokoski, Jari P.A.; Hyttinen, Mika M.; Lammi, Mikko; Tammi, Markku; Kovanen, Vuokko; Helminen, Heikki J.; Kiviranta, Ilkka (May 1999).
60:. There is also a strong mechanical basis for many generalized medical disabilities, such as lower back pain, foot and postural injury, deformity, and 140:(ATR) to the nuclear peripheral region while mechanical stretching due to hypo-osmotic challenge and compression re-localizes and activates 699:
Xia, Yuntao; Pfeifer, Charlotte R.; Cho, Sangkyun; Discher, Dennis E.; Irianto, Jerome (2018-12-21). del Río Hernández, Armando (ed.).
191:
leads to the ectopic expression of inner cell mass markers in the trophectoderm, and the pluripotent transcription factor,
925:
Niwa, Hitoshi; Toyooka, Yayoi; Shimosato, Daisuke; Strumpf, Dan; Takahashi, Kadue; Yagi, Rika; Rossant, Janet (December 2005).
468:"Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation" 195:
may be negatively expressed, thereby inducing lineage switching. This cell fate switching is regulated by the mechanosensitive
700: 515:"Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments" 222:
Insights into the mechanical basis of tissue regulation may also lead to development of improved medical devices,
1183: 99: 1178: 466:
Korhonen, R.K; Laasanen, M.S; Töyräs, J; Rieppo, J; Hirvonen, J; Helminen, H.J; Jurvelin, J.S (July 2002).
650:"Linker of Nucleoskeleton and Cytoskeleton Complex Proteins in Cardiac Structure, Function, and Disease" 229:
Known contributors to cellular mechanotransduction are a growing list and include stretch-activated
61: 136:
Hyperosmotic challenge results in chromosome condensation and translocation and activation of the
196: 103: 36:
structure, or mechanotransduction may contribute to the development of many diseases, including
169: 95: 995: 826: 564:"Articular cartilage functional histomorphology and mechanobiology: a research perspective" 207: 185: 83: 33: 1088:
Ingber, DE (1997). "Tensegrity: the architectural basis of cellular mechanotransduction".
611:"Remobilization Does Not Fully Restore Immobilization Induced Articular Cartilage Atrophy" 8: 177: 29: 999: 830: 1154: 1070: 1016: 983: 964: 855: 814: 790: 757: 733: 676: 649: 648:
Stroud, Matthew J; Banerjee, Indroneal; Veevers, Jennifer; Chen, Ju (31 January 2014).
443: 410: 391: 378: 343: 324: 188: 879: 610: 579: 531: 514: 483: 1146: 1105: 1101: 1062: 1021: 956: 948: 907: 899: 895: 860: 842: 795: 777: 738: 720: 681: 630: 626: 591: 583: 544: 536: 513:
Ateshian, G.A.; Warden, W.H.; Kim, J.J.; Grelsamer, R.P.; Mow, V.C. (November 1997).
495: 487: 448: 430: 395: 383: 365: 316: 308: 1158: 1074: 968: 1136: 1097: 1052: 1011: 1003: 984:"Growing skin - A computational model for skin expansion in reconstructive surgery" 938: 891: 850: 834: 785: 769: 728: 712: 671: 661: 622: 575: 563: 526: 479: 467: 438: 422: 373: 355: 328: 300: 215: 141: 815:"Polarized Myosin Produces Unequal-Size Daughters During Asymmetric Cell Division" 813:
Ou, Guangshuo; Stuurman, Nico; D’Ambrosio, Michael; Vale, Ronald D. (2010-09-30).
666: 37: 1007: 943: 926: 250: 1057: 1040: 927:"Interaction between Oct3/4 and Cdx2 Determines Trophectoderm Differentiation" 304: 172:
in neighboring cells, thereby leading to formation of solid balls called
1172: 952: 903: 846: 781: 724: 634: 587: 540: 491: 434: 369: 312: 53: 838: 426: 344:"Adolescent idiopathic scoliosis: The mechanobiology of differential growth" 288: 1150: 1066: 1025: 960: 864: 799: 742: 685: 595: 499: 452: 387: 320: 246: 230: 223: 181: 128: 49: 1141: 1124: 1109: 911: 548: 411:"Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound" 716: 151:
hinders the access of kinases , thereby suppressing its degradation etc.
773: 267: 254: 78: 21: 360: 94:, lamin etc. In addition to the structural proteins, fibroblasts make 1125:"Cellular mechanotransduction: putting all the pieces together again" 880:"Tensegrity: The Architectural Basis of Cellular Mechanotransduction" 242: 238: 115: 25: 409:
Tracy, Lauren E.; Minasian, Raquel A.; Caterson, E.J. (March 2016).
982:
Buganza Tepole, A; Ploch, CJ; Wong, J; Gosain, AK; Kuhl, E (2011).
756:
Mammoto, Akiko; Mammoto, Tadanori; Ingber, Donald E. (2012-07-01).
234: 87: 41: 253:, extracellular matrix, and numerous other signaling molecules. 91: 226:, and engineered tissues for tissue repair and reconstruction. 211: 173: 165: 57: 45: 981: 192: 608: 465: 106:
that plays in tissue in tissue maintenance and remodeling.
924: 758:"Mechanosensitive mechanisms in transcriptional regulation" 148: 512: 647: 812: 408: 1041:"Mechanobiology and diseases of mechanotransduction" 755: 698: 155: 214:physically prevent coronary artery constriction. 1170: 289:"An introductory review of cell mechanobiology" 287:Wang, J. H.-C.; Thampatty, B. P. (March 2006). 286: 293:Biomechanics and Modeling in Mechanobiology 615:Clinical Orthopaedics and Related Research 561: 245:, growth factor receptors, myosin motors, 1140: 1056: 1015: 942: 854: 789: 732: 675: 665: 530: 442: 377: 359: 122: 67: 1171: 1122: 1087: 1038: 877: 164:During the division of the fertilized 138:Ataxia Telangiectasia and Rad3-related 341: 184:. The loss of stiffness-controlled 13: 562:Wong, M; Carter, D.R (July 2003). 14: 1195: 1102:10.1146/annurev.physiol.59.1.575 896:10.1146/annurev.physiol.59.1.575 705:Emerging Topics in Life Sciences 627:10.1097/00003086-199905000-00031 1116: 1081: 1032: 975: 918: 871: 806: 749: 201: 156:Mechanobiology of embryogenesis 109: 100:Transforming-Growth-Factor-beta 878:Ingber, D. E. (October 1997). 692: 641: 602: 555: 506: 459: 402: 335: 280: 72: 1: 667:10.1161/circresaha.114.301236 580:10.1016/s8756-3282(03)00083-8 532:10.1016/s0021-9290(97)85606-0 484:10.1016/s0021-9290(02)00052-0 273: 147:High nuclear tension on the 7: 884:Annual Review of Physiology 261: 10: 1200: 1008:10.1016/j.jmps.2011.05.004 944:10.1016/j.cell.2005.08.040 342:Smit, Theodoor H. (2020). 1058:10.1080/07853890310016333 305:10.1007/s10237-005-0012-z 701:"Nuclear mechanosensing" 144:to the nuclear membrane. 90:types I, III, IV, V VI, 62:irritable bowel syndrome 839:10.1126/science.1196112 762:Journal of Cell Science 519:Journal of Biomechanics 472:Journal of Biomechanics 427:10.1089/wound.2014.0561 104:matrix metalloproteases 1184:Biological engineering 415:Advances in Wound Care 123:Nuclear mechanobiology 1142:10.1096/fj.05-5424rev 988:J. Mech. Phys. Solids 96:Tumor-Necrosis-Factor 717:10.1042/ETLS20180051 654:Circulation Research 525:(11–12): 1157–1164. 208:Pulmonary surfactant 186:transcription factor 84:extracellular Matrix 68:Load sensitive cells 34:extracellular matrix 1179:Branches of biology 1123:Ingber, DE (2006). 1039:Ingber, DE (2003). 1000:2011JMPSo..59.2177B 831:2010Sci...330..677O 178:actin microfilament 30:mechanotransduction 1090:Annu. Rev. Physiol 1045:Annals of Medicine 774:10.1242/jcs.093005 994:(10): 2177–2190. 825:(6004): 677–680. 768:(13): 3061–3073. 361:10.1002/jsp2.1115 98:- alpha (TNF-α), 1191: 1163: 1162: 1144: 1120: 1114: 1113: 1085: 1079: 1078: 1060: 1036: 1030: 1029: 1019: 979: 973: 972: 946: 922: 916: 915: 875: 869: 868: 858: 810: 804: 803: 793: 753: 747: 746: 736: 696: 690: 689: 679: 669: 645: 639: 638: 606: 600: 599: 559: 553: 552: 534: 510: 504: 503: 463: 457: 456: 446: 406: 400: 399: 381: 363: 339: 333: 332: 284: 216:Tissue expanders 1199: 1198: 1194: 1193: 1192: 1190: 1189: 1188: 1169: 1168: 1167: 1166: 1121: 1117: 1086: 1082: 1037: 1033: 980: 976: 923: 919: 876: 872: 811: 807: 754: 750: 697: 693: 646: 642: 607: 603: 560: 556: 511: 507: 464: 460: 407: 403: 340: 336: 285: 281: 276: 264: 204: 158: 125: 112: 75: 70: 38:atherosclerosis 12: 11: 5: 1197: 1187: 1186: 1181: 1165: 1164: 1135:(7): 811–827. 1115: 1080: 1031: 974: 937:(5): 917–929. 917: 890:(1): 575–599. 870: 805: 748: 711:(5): 713–725. 691: 660:(3): 538–548. 640: 601: 554: 505: 478:(7): 903–909. 458: 421:(3): 119–136. 401: 334: 278: 277: 275: 272: 271: 270: 263: 260: 203: 200: 157: 154: 153: 152: 145: 124: 121: 111: 108: 74: 71: 69: 66: 17:Mechanobiology 9: 6: 4: 3: 2: 1196: 1185: 1182: 1180: 1177: 1176: 1174: 1160: 1156: 1152: 1148: 1143: 1138: 1134: 1130: 1126: 1119: 1111: 1107: 1103: 1099: 1095: 1091: 1084: 1076: 1072: 1068: 1064: 1059: 1054: 1051:(8): 564–77. 1050: 1046: 1042: 1035: 1027: 1023: 1018: 1013: 1009: 1005: 1001: 997: 993: 989: 985: 978: 970: 966: 962: 958: 954: 950: 945: 940: 936: 932: 928: 921: 913: 909: 905: 901: 897: 893: 889: 885: 881: 874: 866: 862: 857: 852: 848: 844: 840: 836: 832: 828: 824: 820: 816: 809: 801: 797: 792: 787: 783: 779: 775: 771: 767: 763: 759: 752: 744: 740: 735: 730: 726: 722: 718: 714: 710: 706: 702: 695: 687: 683: 678: 673: 668: 663: 659: 655: 651: 644: 636: 632: 628: 624: 620: 616: 612: 605: 597: 593: 589: 585: 581: 577: 573: 569: 565: 558: 550: 546: 542: 538: 533: 528: 524: 520: 516: 509: 501: 497: 493: 489: 485: 481: 477: 473: 469: 462: 454: 450: 445: 440: 436: 432: 428: 424: 420: 416: 412: 405: 397: 393: 389: 385: 380: 375: 371: 367: 362: 357: 353: 349: 345: 338: 330: 326: 322: 318: 314: 310: 306: 302: 298: 294: 290: 283: 279: 269: 266: 265: 259: 256: 252: 248: 244: 240: 236: 232: 227: 225: 220: 217: 213: 209: 199: 198: 197:hippo pathway 194: 190: 187: 183: 179: 175: 171: 167: 162: 150: 146: 143: 139: 135: 134: 133: 130: 120: 117: 107: 105: 101: 97: 93: 89: 85: 80: 65: 63: 59: 55: 54:heart failure 51: 47: 43: 39: 35: 31: 27: 23: 18: 1132: 1128: 1118: 1093: 1089: 1083: 1048: 1044: 1034: 991: 987: 977: 934: 930: 920: 887: 883: 873: 822: 818: 808: 765: 761: 751: 708: 704: 694: 657: 653: 643: 618: 614: 604: 571: 567: 557: 522: 518: 508: 475: 471: 461: 418: 414: 404: 354:(4): e1115. 351: 347: 337: 296: 292: 282: 247:cytoskeletal 231:ion channels 228: 224:biomaterials 221: 205: 202:Applications 182:blastulation 163: 159: 126: 113: 110:Chondrocytes 102:(TGF-β) and 76: 50:osteoporosis 16: 15: 1096:: 575–599. 621:: 218–229. 574:(1): 1–13. 299:(1): 1–16. 249:filaments, 86:(ECM) e. g 79:fibroblasts 73:Fibroblasts 1173:Categories 274:References 268:Biophysics 255:Endogenous 114:Articular 22:physiology 953:0092-8674 904:0066-4278 847:0036-8075 782:0021-9533 725:2397-8554 635:0009-921X 588:8756-3282 541:0021-9290 492:0021-9290 435:2162-1918 396:225497216 370:2572-1143 348:JOR Spine 313:1617-7959 243:cadherins 239:integrins 170:receptors 116:cartilage 26:cartilage 1159:21267494 1151:16675838 1075:22753025 1067:14708967 1026:22081726 969:13242763 961:16325584 865:20929735 800:22797927 743:31693005 686:24481844 596:12919695 500:12052392 453:26989578 388:33392452 321:16489478 262:See also 235:caveolae 88:collagen 42:fibrosis 1129:FASEB J 1110:9074778 1017:3212404 996:Bibcode 912:9074778 856:3032534 827:Bibcode 819:Science 791:3434847 734:6830732 677:4006372 549:9456384 444:4779293 379:7770204 329:5017641 149:Lamin A 129:nucleus 92:elastin 1157:  1149:  1108:  1073:  1065:  1024:  1014:  967:  959:  951:  910:  902:  863:  853:  845:  798:  788:  780:  741:  731:  723:  684:  674:  633:  594:  586:  547:  539:  498:  490:  451:  441:  433:  394:  386:  376:  368:  327:  319:  311:  251:nuclei 212:stents 174:Morula 166:oocyte 58:cancer 56:, and 46:asthma 1155:S2CID 1071:S2CID 965:S2CID 392:S2CID 325:S2CID 193:Oct-4 142:cPLA2 77:Skin 1147:PMID 1106:PMID 1063:PMID 1022:PMID 957:PMID 949:ISSN 931:Cell 908:PMID 900:ISSN 861:PMID 843:ISSN 796:PMID 778:ISSN 739:PMID 721:ISSN 682:PMID 631:ISSN 592:PMID 584:ISSN 568:Bone 545:PMID 537:ISSN 496:PMID 488:ISSN 449:PMID 431:ISSN 384:PMID 366:ISSN 317:PMID 309:ISSN 127:The 1137:doi 1098:doi 1053:doi 1012:PMC 1004:doi 939:doi 935:123 892:doi 851:PMC 835:doi 823:330 786:PMC 770:doi 766:125 729:PMC 713:doi 672:PMC 662:doi 658:114 623:doi 619:362 576:doi 527:doi 480:doi 439:PMC 423:doi 374:PMC 356:doi 301:doi 189:Cdx 1175:: 1153:. 1145:. 1133:20 1131:. 1127:. 1104:. 1094:59 1092:. 1069:. 1061:. 1049:35 1047:. 1043:. 1020:. 1010:. 1002:. 992:59 990:. 986:. 963:. 955:. 947:. 933:. 929:. 906:. 898:. 888:59 886:. 882:. 859:. 849:. 841:. 833:. 821:. 817:. 794:. 784:. 776:. 764:. 760:. 737:. 727:. 719:. 707:. 703:. 680:. 670:. 656:. 652:. 629:. 617:. 613:. 590:. 582:. 572:33 570:. 566:. 543:. 535:. 523:30 521:. 517:. 494:. 486:. 476:35 474:. 470:. 447:. 437:. 429:. 417:. 413:. 390:. 382:. 372:. 364:. 350:. 346:. 323:. 315:. 307:. 295:. 291:. 241:, 237:, 233:, 64:. 52:, 48:, 44:, 40:, 1161:. 1139:: 1112:. 1100:: 1077:. 1055:: 1028:. 1006:: 998:: 971:. 941:: 914:. 894:: 867:. 837:: 829:: 802:. 772:: 745:. 715:: 709:2 688:. 664:: 637:. 625:: 598:. 578:: 551:. 529:: 502:. 482:: 455:. 425:: 419:5 398:. 358:: 352:3 331:. 303:: 297:5

Index

physiology
cartilage
mechanotransduction
extracellular matrix
atherosclerosis
fibrosis
asthma
osteoporosis
heart failure
cancer
irritable bowel syndrome
fibroblasts
extracellular Matrix
collagen
elastin
Tumor-Necrosis-Factor
Transforming-Growth-Factor-beta
matrix metalloproteases
cartilage
nucleus
Ataxia Telangiectasia and Rad3-related
cPLA2
Lamin A
oocyte
receptors
Morula
actin microfilament
blastulation
transcription factor
Cdx

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑