Knowledge

MUSIC (algorithm)

Source đź“ť

20: 2394: 2008: 75:
of arbitrary form. Schmidt, in particular, accomplished this by first deriving a complete geometric solution in the absence of noise, then cleverly extending the geometric concepts to obtain a reasonable approximate solution in the presence of noise. The resulting algorithm was called MUSIC (MUltiple
54:
In many practical signal processing problems, the objective is to estimate from measurements a set of constant parameters upon which the received signals depend. There have been several approaches to such problems including the so-called maximum likelihood (ML) method of Capon (1969) and Burg's
3057:
Its chief disadvantage is that it requires the number of components to be known in advance, so the original method cannot be used in more general cases. Methods exist for estimating the number of source components purely from statistical properties of the autocorrelation matrix. See, e.g. In
2732:
coefficients, whose zeros can be found analytically or with polynomial root finding algorithms. In contrast, MUSIC assumes that several such functions have been added together, so zeros may not be present. Instead there are local minima, which can be located by computationally searching the
79:
In a detailed evaluation based on thousands of simulations, the Massachusetts Institute of Technology's Lincoln Laboratory concluded in 1998 that, among currently accepted high-resolution algorithms, MUSIC was the most promising and a leading candidate for further study and actual hardware
2548: 2200: 1828: 724: 3046:
MUSIC outperforms simple methods such as picking peaks of DFT spectra in the presence of noise, when the number of components is known in advance, because it exploits knowledge of this number to ignore the noise in its final report.
55:
maximum entropy (ME) method. Although often successful and widely used, these methods have certain fundamental limitations (especially bias and sensitivity in parameter estimates), largely because they use an incorrect model (e.g.,
982: 2687: 3076:
A modified version of MUSIC, denoted as Time-Reversal MUSIC (TR-MUSIC) has been recently applied to computational time-reversal imaging. MUSIC algorithm has also been implemented for fast detection of the DTMF frequencies
1246: 2193:
as implied by the orthogonality condition. Taking a reciprocal of the squared norm expression creates sharp peaks at the signal frequencies. The frequency estimation function for MUSIC (or the pseudo-spectrum) is
70:
in additive noise using a covariance approach. Schmidt (1977), while working at Northrop Grumman and independently Bienvenu and Kopp (1979) were the first to correctly exploit the measurement model in the case of
219: 1331: 80:
implementation. However, although the performance advantages of MUSIC are substantial, they are achieved at a cost in computation (searching over parameter space) and storage (of array calibration data).
2434: 3200: 1514: 3050:
Unlike DFT, it is able to estimate frequencies with accuracy higher than one sample, because its estimation function can be evaluated for any frequency, not just those of DFT bins. This is a form of
1820: 1656: 2389:{\displaystyle {\hat {P}}_{MU}(e^{j\omega })={\frac {1}{\mathbf {e} ^{H}\mathbf {U} _{N}\mathbf {U} _{N}^{H}\mathbf {e} }}={\frac {1}{\sum _{i=p+1}^{M}|\mathbf {e} ^{H}\mathbf {v} _{i}|^{2}}},} 2158: 1693: 1617: 1752: 455: 2003:{\displaystyle d^{2}=\|\mathbf {U} _{N}^{H}\mathbf {e} \|^{2}=\mathbf {e} ^{H}\mathbf {U} _{N}\mathbf {U} _{N}^{H}\mathbf {e} =\sum _{i=p+1}^{M}|\mathbf {e} ^{H}\mathbf {v} _{i}|^{2}} 3032: 2978: 2852: 2119: 1466: 1382: 2088: 522: 2772: 2426: 1275: 1155: 1119: 911: 831: 1090: 647: 304: 1774: 1578: 879: 776: 639: 170: 108: 1435: 754: 2728:. In Pisarenko's method, only a single eigenvector is used to form the denominator of the frequency estimation function; and the eigenvector is interpreted as a set of 857: 802: 617: 330: 3392:
Zhang, Qilin; Abeida, Habti; Xue, Ming; Rowe, William; Li, Jian (2012). "Fast implementation of sparse iterative covariance-based estimation for source localization".
2901: 2191: 148: 2821: 1011: 588: 2726: 1549: 1408: 3001: 2924: 2947: 2872: 2792: 2591: 2571: 1351: 1175: 562: 542: 128: 919: 2599: 1555:. The general idea behind MUSIC method is to use all the eigenvectors that span the noise subspace to improve the performance of the Pisarenko estimator. 3331:
Abeida, Habti; Zhang, Qilin; Li, Jian; Merabtine, Nadjim (2013). "Iterative Sparse Asymptotic Minimum Variance Based Approaches for Array Processing".
1180: 178: 66:
Pisarenko (1973) was one of the first to exploit the structure of the data model, doing so in the context of estimation of parameters of
2929:
This fundamental result, although often skipped in spectral analysis books, is a reason why the input signal can be distributed into
2543:{\displaystyle \mathbf {e} ={\begin{bmatrix}1&e^{j\omega }&e^{j2\omega }&\cdots &e^{j(M-1)\omega }\end{bmatrix}}^{T}} 1280: 60: 1471: 1779: 3271: 1622: 3078: 2124: 1661: 1583: 3588: 1698: 3157: 2693: 1552: 338: 3291:," in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984–995, Jul 1989. 3196:"Super-Resolution Spectral Approach for the Accuracy Enhancement of Biomedical Resonant Microwave Sensors" 3174: 3090: 3058:
addition, MUSIC assumes coexistent sources to be uncorrelated, which limits its practical applications.
3006: 2952: 2826: 2093: 1440: 1356: 3130: 2016: 460: 2748: 2402: 1251: 1131: 1095: 887: 807: 719:{\displaystyle \mathbf {R} _{x}=\mathbf {A} \mathbf {R} _{s}\mathbf {A} ^{H}+\sigma ^{2}\mathbf {I} ,} 3125: 2741:
The fundamental observation MUSIC and other subspace decomposition methods are based on is about the
3486:
Ciuonzo, D.; Romano, G.; Solimene, R. (2015-05-01). "Performance Analysis of Time-Reversal MUSIC".
3062: 3051: 1016: 227: 3034:. It is based on signal embedding theory and can also be explained by the topological theory of 1757: 1561: 862: 759: 622: 153: 91: 3120: 1413: 732: 43: 24: 67: 3435:
Devaney, A.J. (2005-05-01). "Time reversal imaging of obscured targets from multistatic data".
836: 781: 596: 309: 2877: 2742: 2163: 133: 3575:
The estimation and tracking of frequency, Quinn and Hannan, Cambridge University Press 2001.
2800: 990: 567: 3495: 3444: 3401: 3350: 3319:
Estimation of the number of sources in unbalanced arrays via information theoretic criteria
3302: 3110: 2729: 2699: 1522: 56: 39: 8: 3246: 1387: 1121:, MUSIC estimates the frequency content of the signal or autocorrelation matrix using an 3499: 3448: 3405: 3354: 2983: 2906: 977:{\displaystyle {\widehat {\mathbf {R} }}_{x}={\frac {1}{N}}\mathbf {X} \mathbf {X} ^{H}} 3519: 3468: 3374: 3340: 3288: 3225: 2932: 2857: 2777: 2576: 2556: 1336: 1160: 547: 527: 332: 113: 1353:
largest eigenvalues (i.e. directions of largest variability) span the signal subspace
3511: 3460: 3417: 3366: 3229: 3217: 3153: 3105: 2682:{\displaystyle {\hat {\omega }}=\arg \max _{\omega }\;{\hat {P}}_{MU}(e^{j\omega }).} 3472: 3378: 3523: 3503: 3452: 3409: 3358: 3209: 3115: 3066: 1754:
that spans the noise subspace. In order to measure the degree of orthogonality of
3555: 3261:"Performance Comparison of Superresolution Array Processing Algorithms. Revised" 3260: 3249:," IEEE Trans. Antennas Propagation, Vol. AP-34 (March 1986), pp. 276–280. 3195: 3100: 3537: 3213: 2573:
largest peaks of the estimation function give the frequency estimates for the
1241:{\displaystyle \{\mathbf {v} _{1},\mathbf {v} _{2},\ldots ,\mathbf {v} _{M}\}} 3582: 3515: 3507: 3464: 3370: 3362: 3221: 3081:) in the form of C library - libmusic (including for MATLAB implementation). 3456: 3421: 3289:
ESPRIT-estimation of signal parameters via rotational invariance techniques
3201:
IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology
72: 3095: 524:
is the amplitude vector. A crucial assumption is that number of sources,
3339:(4). Institute of Electrical and Electronics Engineers (IEEE): 933–944. 1122: 3413: 3035: 3345: 3318: 214:{\displaystyle \mathbf {x} =\mathbf {A} \mathbf {s} +\mathbf {n} .} 16:
Algorithm used for frequency estimation and radio direction finding
3307:, University College London, Lecture notes 1999–2000 academic year 3003:
for real valued signals) and noise subspace eigenvectors spanning
3321:." IEEE Transactions on Signal Processing 53.9 (2005): 3543–3553. 3194:
Costanzo, Sandra; Buonanno, Giovanni; Solimene, Raffaele (2022).
544:, is less than the number of elements in the measurement vector, 1326:{\displaystyle \{\mathbf {v} _{1},\ldots ,\mathbf {v} _{p}\}} 19: 3183:] (Thesis) (in Polish). Warsaw University of Technology. 2926:, i.e. each real sinusoid is generated by two base vectors. 913:
is traditionally estimated using sample correlation matrix
2090:
is the matrix of eigenvectors that span the noise subspace
1509:{\displaystyle {\mathcal {U}}_{S}\perp {\mathcal {U}}_{N}} 3247:
Multiple Emitter Location and Signal Parameter Estimation
3193: 2553:
is the candidate steering vector. The locations of the
3538:"libmusic: A powerful C library for spectral analysis" 3330: 3061:
Recent iterative semi-parametric methods offer robust
2452: 1815:{\displaystyle \mathbf {v} _{i}\in {\mathcal {U}}_{N}} 150:
are unknown, in the presence of Gaussian white noise,
3485: 3009: 2986: 2955: 2935: 2909: 2880: 2860: 2829: 2803: 2780: 2751: 2702: 2602: 2579: 2559: 2437: 2405: 2203: 2166: 2127: 2096: 2019: 1831: 1782: 1760: 1701: 1664: 1625: 1586: 1564: 1525: 1474: 1443: 1416: 1390: 1359: 1339: 1283: 1254: 1183: 1163: 1134: 1098: 1019: 993: 922: 890: 865: 839: 810: 784: 762: 735: 650: 625: 599: 570: 550: 530: 463: 341: 312: 230: 181: 156: 136: 116: 94: 76:
SIgnal Classification) and has been widely studied.
1651:{\displaystyle \mathbf {e} \perp {\mathcal {U}}_{N}} 1248:
are orthogonal to each other. If the eigenvalues of
3391: 3150:Statistical Digital Signal Processing and Modeling 3026: 2995: 2972: 2941: 2918: 2895: 2866: 2846: 2815: 2786: 2766: 2720: 2681: 2585: 2565: 2542: 2420: 2388: 2185: 2153:{\displaystyle \mathbf {e} \in {\mathcal {U}}_{S}} 2152: 2113: 2082: 2002: 1814: 1768: 1746: 1688:{\displaystyle \mathbf {e} \perp \mathbf {v} _{i}} 1687: 1650: 1612:{\displaystyle \mathbf {e} \in {\mathcal {U}}_{S}} 1611: 1572: 1543: 1508: 1460: 1429: 1402: 1376: 1345: 1325: 1269: 1240: 1169: 1149: 1113: 1084: 1005: 976: 905: 873: 851: 825: 796: 770: 748: 718: 633: 611: 582: 556: 536: 516: 449: 324: 298: 213: 164: 142: 122: 102: 1277:are sorted in decreasing order, the eigenvectors 3580: 3394:The Journal of the Acoustical Society of America 3268:Massachusetts Inst of Tech Lexington Lincoln Lab 3181:Application of MUSIC algorithm to DTMF detection 2625: 1747:{\displaystyle \{\mathbf {v} _{i}\}_{i=p+1}^{M}} 3176:Zastosowanie algorytmu MUSIC do wykrywania DTMF 1410:eigenvectors correspond to eigenvalue equal to 3041: 1822:, the MUSIC algorithm defines a squared norm 1468:, which is orthogonal to the signal subspace, 3437:IEEE Transactions on Antennas and Propagation 3168: 3166: 2774:which is related to number of signal sources 2736: 2696:, and it reduces to Pisarenko's method when 1871: 1845: 1718: 1702: 1320: 1284: 1235: 1184: 88:MUSIC method assumes that a signal vector, 3324: 3163: 2634: 1619:must be orthogonal to the noise subspace, 450:{\displaystyle \mathbf {a} (\omega )=^{T}} 3556:"libmusic_m : MATLAB implementation" 3344: 3241: 3239: 3065:despite highly correlated sources, e.g., 2823:and the dimension of the signal subspace 1013:is the number of vector observations and 3258: 2903:and dimension of the signal subspace is 130:complex exponentials, whose frequencies 18: 3434: 3581: 3488:IEEE Transactions on Signal Processing 3333:IEEE Transactions on Signal Processing 3236: 3172: 2949:signal subspace eigenvectors spanning 3317:Fishler, Eran, and H. Vincent Poor. " 3300: 3152:, John Wiley & Sons, Inc., 1996. 3071: 1580:that resides in the signal subspace 3079:Dual-tone multi-frequency signaling 13: 3569: 3385: 3277:from the original on May 25, 2021. 3027:{\displaystyle {\mathcal {U}}_{N}} 3013: 2973:{\displaystyle {\mathcal {U}}_{S}} 2959: 2847:{\displaystyle {\mathcal {U}}_{S}} 2833: 2139: 2114:{\displaystyle {\mathcal {U}}_{N}} 2100: 1801: 1637: 1598: 1495: 1478: 1461:{\displaystyle {\mathcal {U}}_{N}} 1447: 1377:{\displaystyle {\mathcal {U}}_{S}} 1363: 1157:is a Hermitian matrix, all of its 14: 3600: 2797:If the sources are complex, then 2083:{\displaystyle \mathbf {U} _{N}=} 517:{\displaystyle \mathbf {s} =^{T}} 2767:{\displaystyle \mathbf {R} _{x}} 2754: 2439: 2421:{\displaystyle \mathbf {v} _{i}} 2408: 2358: 2346: 2296: 2280: 2268: 2256: 2129: 2067: 2040: 2022: 1978: 1966: 1925: 1909: 1897: 1885: 1866: 1850: 1785: 1762: 1707: 1675: 1666: 1627: 1588: 1566: 1553:Pisarenko harmonic decomposition 1310: 1289: 1270:{\displaystyle \mathbf {R} _{x}} 1257: 1225: 1204: 1189: 1150:{\displaystyle \mathbf {R} _{x}} 1137: 1114:{\displaystyle \mathbf {R} _{x}} 1101: 1069: 1048: 1033: 1021: 964: 958: 928: 906:{\displaystyle \mathbf {R} _{x}} 893: 867: 826:{\displaystyle \mathbf {R} _{s}} 813: 764: 709: 685: 673: 667: 653: 627: 465: 343: 273: 243: 232: 204: 196: 191: 183: 158: 96: 3548: 3530: 3479: 3428: 2733:estimation function for peaks. 2428:are the noise eigenvectors and 172:, as given by the linear model 3311: 3294: 3281: 3252: 3187: 3142: 2745:of the autocorrelation matrix 2673: 2657: 2642: 2609: 2518: 2506: 2370: 2340: 2242: 2226: 2211: 2077: 2035: 1990: 1960: 1079: 1028: 505: 472: 438: 429: 417: 359: 353: 347: 293: 290: 277: 260: 247: 239: 36:MUltiple SIgnal Classification 1: 3136: 2692:MUSIC is a generalization of 1085:{\displaystyle \mathbf {X} =} 299:{\displaystyle \mathbf {A} =} 2874:. If sources are real, then 1769:{\displaystyle \mathbf {e} } 1573:{\displaystyle \mathbf {e} } 1437:and span the noise subspace 874:{\displaystyle \mathbf {s} } 771:{\displaystyle \mathbf {I} } 634:{\displaystyle \mathbf {x} } 165:{\displaystyle \mathbf {n} } 103:{\displaystyle \mathbf {x} } 7: 3091:Spectral density estimation 3084: 3042:Comparison to other methods 1430:{\displaystyle \sigma ^{2}} 884:The autocorrelation matrix 749:{\displaystyle \sigma ^{2}} 38:) is an algorithm used for 10: 3605: 3131:High-resolution microscopy 859:autocorrelation matrix of 619:autocorrelation matrix of 49: 3589:Digital signal processing 3214:10.1109/JERM.2022.3210457 3126:Pitch detection algorithm 2737:Dimension of signal space 1695:for all the eigenvectors 852:{\displaystyle p\times p} 797:{\displaystyle M\times M} 612:{\displaystyle M\times M} 325:{\displaystyle M\times p} 83: 3508:10.1109/TSP.2015.2417507 3363:10.1109/tsp.2012.2231676 3304:Signal Processing Course 3287:R. Roy and T. Kailath, " 3259:Barabell, A. J. (1998). 1776:with respect to all the 1558:Since any signal vector 1551:, MUSIC is identical to 1092:. Given the estimate of 63:) of the measurements. 3457:10.1109/TAP.2005.846723 3121:Radio direction finding 2896:{\displaystyle M>2p} 2186:{\displaystyle d^{2}=0} 756:is the noise variance, 143:{\displaystyle \omega } 44:radio direction finding 25:radio direction finding 3173:Gregor, Piotr (2022). 3028: 2997: 2974: 2943: 2920: 2897: 2868: 2848: 2817: 2816:{\displaystyle M>p} 2788: 2768: 2722: 2683: 2587: 2567: 2544: 2422: 2390: 2338: 2187: 2154: 2115: 2084: 2004: 1958: 1816: 1770: 1748: 1689: 1652: 1613: 1574: 1545: 1510: 1462: 1431: 1404: 1378: 1347: 1327: 1271: 1242: 1171: 1151: 1115: 1086: 1007: 1006:{\displaystyle N>M} 978: 907: 875: 853: 827: 798: 772: 750: 720: 635: 613: 584: 583:{\displaystyle p<M} 558: 538: 518: 451: 326: 300: 215: 166: 144: 124: 104: 28: 27:by the MUSIC algorithm 3301:Penny, W. D. (2009), 3029: 2998: 2975: 2944: 2921: 2898: 2869: 2849: 2818: 2789: 2769: 2723: 2721:{\displaystyle M=p+1} 2684: 2588: 2568: 2545: 2423: 2391: 2312: 2188: 2155: 2116: 2085: 2005: 1932: 1817: 1771: 1749: 1690: 1653: 1614: 1575: 1546: 1544:{\displaystyle M=p+1} 1511: 1463: 1432: 1405: 1379: 1348: 1333:corresponding to the 1328: 1272: 1243: 1172: 1152: 1116: 1087: 1008: 979: 908: 876: 854: 828: 804:identity matrix, and 799: 773: 751: 721: 636: 614: 585: 559: 539: 519: 452: 327: 301: 216: 167: 145: 125: 105: 22: 3007: 2984: 2953: 2933: 2907: 2878: 2858: 2827: 2801: 2778: 2749: 2700: 2600: 2577: 2557: 2435: 2403: 2201: 2164: 2125: 2094: 2017: 1829: 1780: 1758: 1699: 1662: 1623: 1584: 1562: 1523: 1472: 1441: 1414: 1388: 1357: 1337: 1281: 1252: 1181: 1161: 1132: 1096: 1017: 991: 920: 888: 863: 837: 808: 782: 760: 733: 648: 623: 597: 568: 548: 528: 461: 339: 335:of steering vectors 310: 228: 179: 154: 134: 114: 92: 59:rather than special 40:frequency estimation 3500:2015ITSP...63.2650C 3449:2005ITAP...53.1600D 3406:2012ASAJ..131.1249Z 3355:2013ITSP...61..933A 2294: 1923: 1864: 1743: 1403:{\displaystyle M-p} 3562:. 2023. MathWorks. 3148:Hayes, Monson H., 3072:Other applications 3024: 2996:{\displaystyle 2p} 2993: 2970: 2939: 2919:{\displaystyle 2p} 2916: 2893: 2864: 2844: 2813: 2784: 2764: 2718: 2694:Pisarenko's method 2679: 2633: 2593:signal components 2583: 2563: 2540: 2528: 2418: 2386: 2278: 2183: 2150: 2111: 2080: 2000: 1907: 1848: 1812: 1766: 1744: 1717: 1685: 1658:, it must be that 1648: 1609: 1570: 1541: 1506: 1458: 1427: 1400: 1374: 1343: 1323: 1267: 1238: 1167: 1147: 1111: 1082: 1003: 974: 903: 871: 849: 823: 794: 768: 746: 716: 631: 609: 580: 554: 534: 514: 447: 333:Vandermonde matrix 322: 296: 211: 162: 140: 120: 100: 29: 3494:(10): 2650–2662. 3414:10.1121/1.3672656 3111:Bartlett's method 2942:{\displaystyle p} 2867:{\displaystyle p} 2787:{\displaystyle p} 2645: 2624: 2612: 2586:{\displaystyle p} 2566:{\displaystyle p} 2381: 2301: 2214: 2013:where the matrix 1346:{\displaystyle p} 1170:{\displaystyle M} 955: 935: 641:is then given by 557:{\displaystyle M} 537:{\displaystyle p} 123:{\displaystyle p} 68:complex sinusoids 3596: 3564: 3563: 3552: 3546: 3545: 3534: 3528: 3527: 3483: 3477: 3476: 3443:(5): 1600–1610. 3432: 3426: 3425: 3400:(2): 1249–1259. 3389: 3383: 3382: 3348: 3328: 3322: 3315: 3309: 3308: 3298: 3292: 3285: 3279: 3278: 3276: 3265: 3256: 3250: 3243: 3234: 3233: 3191: 3185: 3184: 3170: 3161: 3146: 3116:SAMV (algorithm) 3033: 3031: 3030: 3025: 3023: 3022: 3017: 3016: 3002: 3000: 2999: 2994: 2979: 2977: 2976: 2971: 2969: 2968: 2963: 2962: 2948: 2946: 2945: 2940: 2925: 2923: 2922: 2917: 2902: 2900: 2899: 2894: 2873: 2871: 2870: 2865: 2853: 2851: 2850: 2845: 2843: 2842: 2837: 2836: 2822: 2820: 2819: 2814: 2793: 2791: 2790: 2785: 2773: 2771: 2770: 2765: 2763: 2762: 2757: 2727: 2725: 2724: 2719: 2688: 2686: 2685: 2680: 2672: 2671: 2656: 2655: 2647: 2646: 2638: 2632: 2614: 2613: 2605: 2592: 2590: 2589: 2584: 2572: 2570: 2569: 2564: 2549: 2547: 2546: 2541: 2539: 2538: 2533: 2532: 2525: 2524: 2490: 2489: 2472: 2471: 2442: 2427: 2425: 2424: 2419: 2417: 2416: 2411: 2395: 2393: 2392: 2387: 2382: 2380: 2379: 2378: 2373: 2367: 2366: 2361: 2355: 2354: 2349: 2343: 2337: 2332: 2307: 2302: 2300: 2299: 2293: 2288: 2283: 2277: 2276: 2271: 2265: 2264: 2259: 2249: 2241: 2240: 2225: 2224: 2216: 2215: 2207: 2192: 2190: 2189: 2184: 2176: 2175: 2159: 2157: 2156: 2151: 2149: 2148: 2143: 2142: 2132: 2120: 2118: 2117: 2112: 2110: 2109: 2104: 2103: 2089: 2087: 2086: 2081: 2076: 2075: 2070: 2055: 2054: 2043: 2031: 2030: 2025: 2009: 2007: 2006: 2001: 1999: 1998: 1993: 1987: 1986: 1981: 1975: 1974: 1969: 1963: 1957: 1952: 1928: 1922: 1917: 1912: 1906: 1905: 1900: 1894: 1893: 1888: 1879: 1878: 1869: 1863: 1858: 1853: 1841: 1840: 1821: 1819: 1818: 1813: 1811: 1810: 1805: 1804: 1794: 1793: 1788: 1775: 1773: 1772: 1767: 1765: 1753: 1751: 1750: 1745: 1742: 1737: 1716: 1715: 1710: 1694: 1692: 1691: 1686: 1684: 1683: 1678: 1669: 1657: 1655: 1654: 1649: 1647: 1646: 1641: 1640: 1630: 1618: 1616: 1615: 1610: 1608: 1607: 1602: 1601: 1591: 1579: 1577: 1576: 1571: 1569: 1550: 1548: 1547: 1542: 1515: 1513: 1512: 1507: 1505: 1504: 1499: 1498: 1488: 1487: 1482: 1481: 1467: 1465: 1464: 1459: 1457: 1456: 1451: 1450: 1436: 1434: 1433: 1428: 1426: 1425: 1409: 1407: 1406: 1401: 1384:. The remaining 1383: 1381: 1380: 1375: 1373: 1372: 1367: 1366: 1352: 1350: 1349: 1344: 1332: 1330: 1329: 1324: 1319: 1318: 1313: 1298: 1297: 1292: 1276: 1274: 1273: 1268: 1266: 1265: 1260: 1247: 1245: 1244: 1239: 1234: 1233: 1228: 1213: 1212: 1207: 1198: 1197: 1192: 1176: 1174: 1173: 1168: 1156: 1154: 1153: 1148: 1146: 1145: 1140: 1120: 1118: 1117: 1112: 1110: 1109: 1104: 1091: 1089: 1088: 1083: 1078: 1077: 1072: 1057: 1056: 1051: 1042: 1041: 1036: 1024: 1012: 1010: 1009: 1004: 983: 981: 980: 975: 973: 972: 967: 961: 956: 948: 943: 942: 937: 936: 931: 926: 912: 910: 909: 904: 902: 901: 896: 880: 878: 877: 872: 870: 858: 856: 855: 850: 832: 830: 829: 824: 822: 821: 816: 803: 801: 800: 795: 777: 775: 774: 769: 767: 755: 753: 752: 747: 745: 744: 725: 723: 722: 717: 712: 707: 706: 694: 693: 688: 682: 681: 676: 670: 662: 661: 656: 640: 638: 637: 632: 630: 618: 616: 615: 610: 589: 587: 586: 581: 563: 561: 560: 555: 543: 541: 540: 535: 523: 521: 520: 515: 513: 512: 503: 502: 484: 483: 468: 456: 454: 453: 448: 446: 445: 436: 435: 399: 398: 380: 379: 346: 331: 329: 328: 323: 305: 303: 302: 297: 289: 288: 276: 259: 258: 246: 235: 220: 218: 217: 212: 207: 199: 194: 186: 171: 169: 168: 163: 161: 149: 147: 146: 141: 129: 127: 126: 121: 109: 107: 106: 101: 99: 3604: 3603: 3599: 3598: 3597: 3595: 3594: 3593: 3579: 3578: 3572: 3570:Further reading 3567: 3560:Data and Signal 3554: 3553: 3549: 3542:Data and Signal 3536: 3535: 3531: 3484: 3480: 3433: 3429: 3390: 3386: 3329: 3325: 3316: 3312: 3299: 3295: 3286: 3282: 3274: 3263: 3257: 3253: 3245:Schmidt, R.O, " 3244: 3237: 3192: 3188: 3171: 3164: 3147: 3143: 3139: 3087: 3074: 3063:superresolution 3052:superresolution 3044: 3018: 3012: 3011: 3010: 3008: 3005: 3004: 2985: 2982: 2981: 2964: 2958: 2957: 2956: 2954: 2951: 2950: 2934: 2931: 2930: 2908: 2905: 2904: 2879: 2876: 2875: 2859: 2856: 2855: 2838: 2832: 2831: 2830: 2828: 2825: 2824: 2802: 2799: 2798: 2779: 2776: 2775: 2758: 2753: 2752: 2750: 2747: 2746: 2739: 2701: 2698: 2697: 2664: 2660: 2648: 2637: 2636: 2635: 2628: 2604: 2603: 2601: 2598: 2597: 2578: 2575: 2574: 2558: 2555: 2554: 2534: 2527: 2526: 2502: 2498: 2496: 2491: 2479: 2475: 2473: 2464: 2460: 2458: 2448: 2447: 2446: 2438: 2436: 2433: 2432: 2412: 2407: 2406: 2404: 2401: 2400: 2374: 2369: 2368: 2362: 2357: 2356: 2350: 2345: 2344: 2339: 2333: 2316: 2311: 2306: 2295: 2289: 2284: 2279: 2272: 2267: 2266: 2260: 2255: 2254: 2253: 2248: 2233: 2229: 2217: 2206: 2205: 2204: 2202: 2199: 2198: 2171: 2167: 2165: 2162: 2161: 2144: 2138: 2137: 2136: 2128: 2126: 2123: 2122: 2105: 2099: 2098: 2097: 2095: 2092: 2091: 2071: 2066: 2065: 2044: 2039: 2038: 2026: 2021: 2020: 2018: 2015: 2014: 1994: 1989: 1988: 1982: 1977: 1976: 1970: 1965: 1964: 1959: 1953: 1936: 1924: 1918: 1913: 1908: 1901: 1896: 1895: 1889: 1884: 1883: 1874: 1870: 1865: 1859: 1854: 1849: 1836: 1832: 1830: 1827: 1826: 1806: 1800: 1799: 1798: 1789: 1784: 1783: 1781: 1778: 1777: 1761: 1759: 1756: 1755: 1738: 1721: 1711: 1706: 1705: 1700: 1697: 1696: 1679: 1674: 1673: 1665: 1663: 1660: 1659: 1642: 1636: 1635: 1634: 1626: 1624: 1621: 1620: 1603: 1597: 1596: 1595: 1587: 1585: 1582: 1581: 1565: 1563: 1560: 1559: 1524: 1521: 1520: 1500: 1494: 1493: 1492: 1483: 1477: 1476: 1475: 1473: 1470: 1469: 1452: 1446: 1445: 1444: 1442: 1439: 1438: 1421: 1417: 1415: 1412: 1411: 1389: 1386: 1385: 1368: 1362: 1361: 1360: 1358: 1355: 1354: 1338: 1335: 1334: 1314: 1309: 1308: 1293: 1288: 1287: 1282: 1279: 1278: 1261: 1256: 1255: 1253: 1250: 1249: 1229: 1224: 1223: 1208: 1203: 1202: 1193: 1188: 1187: 1182: 1179: 1178: 1162: 1159: 1158: 1141: 1136: 1135: 1133: 1130: 1129: 1105: 1100: 1099: 1097: 1094: 1093: 1073: 1068: 1067: 1052: 1047: 1046: 1037: 1032: 1031: 1020: 1018: 1015: 1014: 992: 989: 988: 968: 963: 962: 957: 947: 938: 927: 925: 924: 923: 921: 918: 917: 897: 892: 891: 889: 886: 885: 866: 864: 861: 860: 838: 835: 834: 817: 812: 811: 809: 806: 805: 783: 780: 779: 763: 761: 758: 757: 740: 736: 734: 731: 730: 708: 702: 698: 689: 684: 683: 677: 672: 671: 666: 657: 652: 651: 649: 646: 645: 626: 624: 621: 620: 598: 595: 594: 569: 566: 565: 549: 546: 545: 529: 526: 525: 508: 504: 498: 494: 479: 475: 464: 462: 459: 458: 441: 437: 413: 409: 388: 384: 372: 368: 342: 340: 337: 336: 311: 308: 307: 284: 280: 272: 254: 250: 242: 231: 229: 226: 225: 203: 195: 190: 182: 180: 177: 176: 157: 155: 152: 151: 135: 132: 131: 115: 112: 111: 95: 93: 90: 89: 86: 52: 17: 12: 11: 5: 3602: 3592: 3591: 3577: 3576: 3571: 3568: 3566: 3565: 3547: 3529: 3478: 3427: 3384: 3323: 3310: 3293: 3280: 3251: 3235: 3208:(4): 539–545. 3186: 3162: 3140: 3138: 3135: 3134: 3133: 3128: 3123: 3118: 3113: 3108: 3106:Welch's method 3103: 3101:Matched filter 3098: 3093: 3086: 3083: 3073: 3070: 3043: 3040: 3021: 3015: 2992: 2989: 2967: 2961: 2938: 2915: 2912: 2892: 2889: 2886: 2883: 2863: 2841: 2835: 2812: 2809: 2806: 2783: 2761: 2756: 2738: 2735: 2730:autoregressive 2717: 2714: 2711: 2708: 2705: 2690: 2689: 2678: 2675: 2670: 2667: 2663: 2659: 2654: 2651: 2644: 2641: 2631: 2627: 2623: 2620: 2617: 2611: 2608: 2582: 2562: 2551: 2550: 2537: 2531: 2523: 2520: 2517: 2514: 2511: 2508: 2505: 2501: 2497: 2495: 2492: 2488: 2485: 2482: 2478: 2474: 2470: 2467: 2463: 2459: 2457: 2454: 2453: 2451: 2445: 2441: 2415: 2410: 2397: 2396: 2385: 2377: 2372: 2365: 2360: 2353: 2348: 2342: 2336: 2331: 2328: 2325: 2322: 2319: 2315: 2310: 2305: 2298: 2292: 2287: 2282: 2275: 2270: 2263: 2258: 2252: 2247: 2244: 2239: 2236: 2232: 2228: 2223: 2220: 2213: 2210: 2182: 2179: 2174: 2170: 2147: 2141: 2135: 2131: 2108: 2102: 2079: 2074: 2069: 2064: 2061: 2058: 2053: 2050: 2047: 2042: 2037: 2034: 2029: 2024: 2011: 2010: 1997: 1992: 1985: 1980: 1973: 1968: 1962: 1956: 1951: 1948: 1945: 1942: 1939: 1935: 1931: 1927: 1921: 1916: 1911: 1904: 1899: 1892: 1887: 1882: 1877: 1873: 1868: 1862: 1857: 1852: 1847: 1844: 1839: 1835: 1809: 1803: 1797: 1792: 1787: 1764: 1741: 1736: 1733: 1730: 1727: 1724: 1720: 1714: 1709: 1704: 1682: 1677: 1672: 1668: 1645: 1639: 1633: 1629: 1606: 1600: 1594: 1590: 1568: 1540: 1537: 1534: 1531: 1528: 1519:Note that for 1503: 1497: 1491: 1486: 1480: 1455: 1449: 1424: 1420: 1399: 1396: 1393: 1371: 1365: 1342: 1322: 1317: 1312: 1307: 1304: 1301: 1296: 1291: 1286: 1264: 1259: 1237: 1232: 1227: 1222: 1219: 1216: 1211: 1206: 1201: 1196: 1191: 1186: 1166: 1144: 1139: 1108: 1103: 1081: 1076: 1071: 1066: 1063: 1060: 1055: 1050: 1045: 1040: 1035: 1030: 1027: 1023: 1002: 999: 996: 985: 984: 971: 966: 960: 954: 951: 946: 941: 934: 930: 900: 895: 869: 848: 845: 842: 820: 815: 793: 790: 787: 766: 743: 739: 727: 726: 715: 711: 705: 701: 697: 692: 687: 680: 675: 669: 665: 660: 655: 629: 608: 605: 602: 579: 576: 573: 553: 533: 511: 507: 501: 497: 493: 490: 487: 482: 478: 474: 471: 467: 444: 440: 434: 431: 428: 425: 422: 419: 416: 412: 408: 405: 402: 397: 394: 391: 387: 383: 378: 375: 371: 367: 364: 361: 358: 355: 352: 349: 345: 321: 318: 315: 295: 292: 287: 283: 279: 275: 271: 268: 265: 262: 257: 253: 249: 245: 241: 238: 234: 222: 221: 210: 206: 202: 198: 193: 189: 185: 160: 139: 119: 110:, consists of 98: 85: 82: 51: 48: 15: 9: 6: 4: 3: 2: 3601: 3590: 3587: 3586: 3584: 3574: 3573: 3561: 3557: 3551: 3543: 3539: 3533: 3525: 3521: 3517: 3513: 3509: 3505: 3501: 3497: 3493: 3489: 3482: 3474: 3470: 3466: 3462: 3458: 3454: 3450: 3446: 3442: 3438: 3431: 3423: 3419: 3415: 3411: 3407: 3403: 3399: 3395: 3388: 3380: 3376: 3372: 3368: 3364: 3360: 3356: 3352: 3347: 3342: 3338: 3334: 3327: 3320: 3314: 3306: 3305: 3297: 3290: 3284: 3273: 3269: 3262: 3255: 3248: 3242: 3240: 3231: 3227: 3223: 3219: 3215: 3211: 3207: 3203: 3202: 3197: 3190: 3182: 3178: 3177: 3169: 3167: 3159: 3158:0-471-59431-8 3155: 3151: 3145: 3141: 3132: 3129: 3127: 3124: 3122: 3119: 3117: 3114: 3112: 3109: 3107: 3104: 3102: 3099: 3097: 3094: 3092: 3089: 3088: 3082: 3080: 3069: 3068: 3064: 3059: 3055: 3053: 3048: 3039: 3037: 3019: 2990: 2987: 2965: 2936: 2927: 2913: 2910: 2890: 2887: 2884: 2881: 2861: 2839: 2810: 2807: 2804: 2795: 2781: 2759: 2744: 2734: 2731: 2715: 2712: 2709: 2706: 2703: 2695: 2676: 2668: 2665: 2661: 2652: 2649: 2639: 2629: 2621: 2618: 2615: 2606: 2596: 2595: 2594: 2580: 2560: 2535: 2529: 2521: 2515: 2512: 2509: 2503: 2499: 2493: 2486: 2483: 2480: 2476: 2468: 2465: 2461: 2455: 2449: 2443: 2431: 2430: 2429: 2413: 2383: 2375: 2363: 2351: 2334: 2329: 2326: 2323: 2320: 2317: 2313: 2308: 2303: 2290: 2285: 2273: 2261: 2250: 2245: 2237: 2234: 2230: 2221: 2218: 2208: 2197: 2196: 2195: 2180: 2177: 2172: 2168: 2145: 2133: 2106: 2072: 2062: 2059: 2056: 2051: 2048: 2045: 2032: 2027: 1995: 1983: 1971: 1954: 1949: 1946: 1943: 1940: 1937: 1933: 1929: 1919: 1914: 1902: 1890: 1880: 1875: 1860: 1855: 1842: 1837: 1833: 1825: 1824: 1823: 1807: 1795: 1790: 1739: 1734: 1731: 1728: 1725: 1722: 1712: 1680: 1670: 1643: 1631: 1604: 1592: 1556: 1554: 1538: 1535: 1532: 1529: 1526: 1517: 1501: 1489: 1484: 1453: 1422: 1418: 1397: 1394: 1391: 1369: 1340: 1315: 1305: 1302: 1299: 1294: 1262: 1230: 1220: 1217: 1214: 1209: 1199: 1194: 1177:eigenvectors 1164: 1142: 1126: 1124: 1106: 1074: 1064: 1061: 1058: 1053: 1043: 1038: 1025: 1000: 997: 994: 969: 952: 949: 944: 939: 932: 916: 915: 914: 898: 882: 846: 843: 840: 818: 791: 788: 785: 741: 737: 713: 703: 699: 695: 690: 678: 663: 658: 644: 643: 642: 606: 603: 600: 591: 577: 574: 571: 551: 531: 509: 499: 495: 491: 488: 485: 480: 476: 469: 442: 432: 426: 423: 420: 414: 410: 406: 403: 400: 395: 392: 389: 385: 381: 376: 373: 369: 365: 362: 356: 350: 334: 319: 316: 313: 285: 281: 269: 266: 263: 255: 251: 236: 208: 200: 187: 175: 174: 173: 137: 117: 81: 77: 74: 73:sensor arrays 69: 64: 62: 58: 47: 45: 41: 37: 33: 26: 21: 3559: 3550: 3541: 3532: 3491: 3487: 3481: 3440: 3436: 3430: 3397: 3393: 3387: 3336: 3332: 3326: 3313: 3303: 3296: 3283: 3267: 3254: 3205: 3199: 3189: 3180: 3175: 3149: 3144: 3075: 3060: 3056: 3049: 3045: 2928: 2796: 2794:as follows. 2740: 2691: 2552: 2398: 2012: 1557: 1518: 1127: 986: 883: 728: 592: 223: 87: 78: 65: 53: 35: 31: 30: 3096:Periodogram 3346:1802.03070 3137:References 1123:eigenspace 3516:1053-587X 3465:0018-926X 3371:1053-587X 3230:252792474 3222:2469-7249 3036:manifolds 2669:ω 2643:^ 2630:ω 2622:⁡ 2610:^ 2607:ω 2522:ω 2513:− 2494:⋯ 2487:ω 2469:ω 2314:∑ 2238:ω 2212:^ 2134:∈ 2060:… 1934:∑ 1872:‖ 1846:‖ 1796:∈ 1671:⊥ 1632:⊥ 1593:∈ 1490:⊥ 1419:σ 1395:− 1303:… 1218:… 1062:… 933:^ 844:× 789:× 738:σ 700:σ 604:× 489:… 433:ω 424:− 404:… 396:ω 377:ω 351:ω 317:× 282:ω 267:⋯ 252:ω 138:ω 3583:Category 3473:25241225 3422:22352499 3379:16276001 3272:Archived 3085:See also 1125:method. 3544:. 2023. 3524:5895440 3496:Bibcode 3445:Bibcode 3402:Bibcode 3351:Bibcode 2160:, then 833:is the 564:, i.e. 50:History 3522:  3514:  3471:  3463:  3420:  3377:  3369:  3228:  3220:  3156:  2399:where 1128:Since 987:where 729:where 306:is an 84:Theory 3520:S2CID 3469:S2CID 3375:S2CID 3341:arXiv 3275:(PDF) 3264:(PDF) 3226:S2CID 3179:[ 2121:. If 224:Here 32:MUSIC 3512:ISSN 3461:ISSN 3418:PMID 3367:ISSN 3218:ISSN 3154:ISBN 3067:SAMV 2885:> 2808:> 2743:rank 998:> 593:The 575:< 457:and 61:ARMA 42:and 23:The 3504:doi 3453:doi 3410:doi 3398:131 3359:doi 3210:doi 2854:is 2626:max 2619:arg 1516:. 881:. 778:is 3585:: 3558:. 3540:. 3518:. 3510:. 3502:. 3492:63 3490:. 3467:. 3459:. 3451:. 3441:53 3439:. 3416:. 3408:. 3396:. 3373:. 3365:. 3357:. 3349:. 3337:61 3335:. 3270:. 3266:. 3238:^ 3224:. 3216:. 3204:. 3198:. 3165:^ 3054:. 3038:. 590:. 57:AR 46:. 3526:. 3506:: 3498:: 3475:. 3455:: 3447:: 3424:. 3412:: 3404:: 3381:. 3361:: 3353:: 3343:: 3232:. 3212:: 3206:6 3160:. 3077:( 3020:N 3014:U 2991:p 2988:2 2980:( 2966:S 2960:U 2937:p 2914:p 2911:2 2891:p 2888:2 2882:M 2862:p 2840:S 2834:U 2811:p 2805:M 2782:p 2760:x 2755:R 2716:1 2713:+ 2710:p 2707:= 2704:M 2677:. 2674:) 2666:j 2662:e 2658:( 2653:U 2650:M 2640:P 2616:= 2581:p 2561:p 2536:T 2530:] 2519:) 2516:1 2510:M 2507:( 2504:j 2500:e 2484:2 2481:j 2477:e 2466:j 2462:e 2456:1 2450:[ 2444:= 2440:e 2414:i 2409:v 2384:, 2376:2 2371:| 2364:i 2359:v 2352:H 2347:e 2341:| 2335:M 2330:1 2327:+ 2324:p 2321:= 2318:i 2309:1 2304:= 2297:e 2291:H 2286:N 2281:U 2274:N 2269:U 2262:H 2257:e 2251:1 2246:= 2243:) 2235:j 2231:e 2227:( 2222:U 2219:M 2209:P 2181:0 2178:= 2173:2 2169:d 2146:S 2140:U 2130:e 2107:N 2101:U 2078:] 2073:M 2068:v 2063:, 2057:, 2052:1 2049:+ 2046:p 2041:v 2036:[ 2033:= 2028:N 2023:U 1996:2 1991:| 1984:i 1979:v 1972:H 1967:e 1961:| 1955:M 1950:1 1947:+ 1944:p 1941:= 1938:i 1930:= 1926:e 1920:H 1915:N 1910:U 1903:N 1898:U 1891:H 1886:e 1881:= 1876:2 1867:e 1861:H 1856:N 1851:U 1843:= 1838:2 1834:d 1808:N 1802:U 1791:i 1786:v 1763:e 1740:M 1735:1 1732:+ 1729:p 1726:= 1723:i 1719:} 1713:i 1708:v 1703:{ 1681:i 1676:v 1667:e 1644:N 1638:U 1628:e 1605:S 1599:U 1589:e 1567:e 1539:1 1536:+ 1533:p 1530:= 1527:M 1502:N 1496:U 1485:S 1479:U 1454:N 1448:U 1423:2 1398:p 1392:M 1370:S 1364:U 1341:p 1321:} 1316:p 1311:v 1306:, 1300:, 1295:1 1290:v 1285:{ 1263:x 1258:R 1236:} 1231:M 1226:v 1221:, 1215:, 1210:2 1205:v 1200:, 1195:1 1190:v 1185:{ 1165:M 1143:x 1138:R 1107:x 1102:R 1080:] 1075:N 1070:x 1065:, 1059:, 1054:2 1049:x 1044:, 1039:1 1034:x 1029:[ 1026:= 1022:X 1001:M 995:N 970:H 965:X 959:X 953:N 950:1 945:= 940:x 929:R 899:x 894:R 868:s 847:p 841:p 819:s 814:R 792:M 786:M 765:I 742:2 714:, 710:I 704:2 696:+ 691:H 686:A 679:s 674:R 668:A 664:= 659:x 654:R 628:x 607:M 601:M 578:M 572:p 552:M 532:p 510:T 506:] 500:p 496:s 492:, 486:, 481:1 477:s 473:[ 470:= 466:s 443:T 439:] 430:) 427:1 421:M 418:( 415:j 411:e 407:, 401:, 393:2 390:j 386:e 382:, 374:j 370:e 366:, 363:1 360:[ 357:= 354:) 348:( 344:a 320:p 314:M 294:] 291:) 286:p 278:( 274:a 270:, 264:, 261:) 256:1 248:( 244:a 240:[ 237:= 233:A 209:. 205:n 201:+ 197:s 192:A 188:= 184:x 159:n 118:p 97:x 34:(

Index


radio direction finding
frequency estimation
radio direction finding
AR
ARMA
complex sinusoids
sensor arrays
Vandermonde matrix
eigenspace
Pisarenko harmonic decomposition
Pisarenko's method
autoregressive
rank
manifolds
superresolution
superresolution
SAMV
Dual-tone multi-frequency signaling
Spectral density estimation
Periodogram
Matched filter
Welch's method
Bartlett's method
SAMV (algorithm)
Radio direction finding
Pitch detection algorithm
High-resolution microscopy
ISBN
0-471-59431-8

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑