Knowledge

Super-resolution imaging

Source đź“ť

290: 243: 533:. Because of this aliasing, the high-frequency content of the desired reconstruction image is embedded in the low-frequency content of each of the observed images. Given a sufficient number of observation images, and if the set of observations vary in their phase (i.e. if the images of the scene are shifted by a sub-pixel amount), then the phase information can be used to separate the aliased high-frequency content from the true low-frequency content, and the full-resolution image can be accurately reconstructed. 351: 204:. It is generally taught that diffraction theory stipulates an upper limit, the cut-off spatial-frequency, beyond which pattern elements fail to be transferred into the optical image, i.e., are not resolved. But in fact what is set by diffraction theory is the width of the passband, not a fixed upper limit. No laws of physics are broken when a spatial frequency band beyond the cut-off spatial frequency is swapped for one inside it: this has long been implemented in 409:) of the light distribution extending over several adjacent pixels (see figure on the left). Provided that there is enough light, this can be achieved with arbitrary precision, very much better than pixel width of the detecting apparatus and the resolution limit for the decision of whether the source is single or double. This technique, which requires the presupposition that all the light comes from a single source, is at the basis of what has become known as 25: 189:. Information transfer can never be increased beyond this boundary, but packets outside the limits can be cleverly swapped for (or multiplexed with) some inside it. One does not so much “break” as “run around” the diffraction limit. New procedures probing electro-magnetic disturbances at the molecular level (in the so-called near field) remain fully consistent with 440:
object. The classical example is Toraldo di Francia's proposition of judging whether an image is that of a single or double star by determining whether its width exceeds the spread from a single star. This can be achieved at separations well below the classical resolution bounds, and requires the prior limitation to the choice "single or double?"
216:: When the term super-resolution is used in techniques of inferring object details from statistical treatment of the image within standard resolution limits, for example, averaging multiple exposures, it involves an exchange of one kind of information (extracting signal from noise) for another (the assumption that the target has remained invariant). 393: 324:
If a target has no special polarization or wavelength properties, two polarization states or non-overlapping wavelength regions can be used to encode target details, one in a spatial-frequency band inside the cut-off limit the other beyond it. Both would use normal passband transmission but are then
219:
Resolution and localization: True resolution involves the distinction of whether a target, e.g. a star or a spectral line, is single or double, ordinarily requiring separable peaks in the image. When a target is known to be single, its location can be determined with higher precision than the image
549:
between multiple low resolution images of the same scene. It creates an improved resolution image fusing information from all low resolution images, and the created higher resolution images are better descriptions of the scene. Single-frame SR methods attempt to magnify the image without producing
439:
Some object features, though beyond the diffraction limit, may be known to be associated with other object features that are within the limits and hence contained in the image. Then conclusions can be drawn, using statistical methods, from the available image data about the presence of the full
311:
An image is formed using the normal passband of the optical device. Then some known light structure, for example a set of light fringes that need not even be within the passband, is superimposed on the target. The image now contains components resulting from the combination of the target and the
333:
The usual discussion of super-resolution involved conventional imagery of an object by an optical system. But modern technology allows probing the electromagnetic disturbance within molecular distances of the source which has superior resolution properties, see also
208:. Nor are information-theoretical rules broken when superimposing several bands, disentangling them in the received image needs assumptions of object invariance during multiple exposures, i.e., the substitution of one kind of uncertainty for another. 228:
The technical achievements of enhancing the performance of imaging-forming and –sensing devices now classified as super-resolution use to the fullest but always stay within the bounds imposed by the laws of physics and information theory.
316:, and carries information about target detail which simple unstructured illumination does not. The “superresolved” components, however, need disentangling to be revealed. For an example, see structured illumination (figure to left). 536:
In practice, this frequency-based approach is not used for reconstruction, but even in the case of spatial approaches (e.g. shift-add fusion), the presence of aliasing is still a necessary condition for SR reconstruction.
558:. Originally, super-resolution methods worked well only on grayscale images, but researchers have found methods to adapt them to color camera images. Recently, the use of super-resolution for 3D data has also been shown. 297:. The target, a band of fine fringes (top row), is beyond the diffraction limit. When a band of somewhat coarser resolvable fringes (second row) is artificially superimposed, the combination (third row) features 301:
components that are within the diffraction limit and hence contained in the image (bottom row) allowing the presence of the fine fringes to be inferred even though they are not themselves represented in the
389:, can sometimes be mitigated in whole or in part by suitable spatial-frequency filtering of even a single image. Such procedures all stay within the diffraction-mandated passband, and do not extend it. 358:
is improved by suitable combination of several separately-obtained images (right). This can be achieved only within the intrinsic resolution capability of the imaging process for revealing such detail.
550:
blur. These methods use other parts of the low resolution images, or other unrelated images, to guess what the high-resolution image should look like. Algorithms can also be divided by their domain:
946:
D. Poot, B. Jeurissen, Y. Bastiaensen, J. Veraart, W. Van Hecke, P. M. Parizel, and J. Sijbers, "Super-Resolution for Multislice Diffusion Tensor Imaging", Magnetic Resonance in Medicine, (2012)
1699:
Calabuig, Alejandro; Micó, Vicente; Garcia, Javier; Zalevsky, Zeev; Ferreira, Carlos (March 2011). "Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing".
1961:
CHRISTENSEN-JEFFRIES, T.; COUTURE, O.; DAYTON, P.A.; ELDAR, Y.C.; HYNYNEN, K.; KIESSLING, F.; O’REILLY, M.; PINTON, G.F.; SCHMITZ, G.; TANG, M.-X.; TANTER, M.; VAN SLOUN, R.J.G. (2020).
166:
Because some of the ideas surrounding super-resolution raise fundamental issues, there is need at the outset to examine the relevant physical and information-theoretical principles:
997: 514: 578:
image using it. While this technique can increase the information content of an image, there is no guarantee that the upscaled features exist in the original image and
1946: 1891:
Berliner, L.; Buffa, A. (2011). "Super-resolution variable-dose imaging in digital radiography: quality and dose reduction with a fluoroscopic flat-panel detector".
1201:. 21st International Conference, Granada, Spain, September 16–20, 2018, Proceedings, Part I. Lecture Notes in Computer Science. Vol. 11070. pp. 529–536. 173:: The detail of a physical object that an optical instrument can reproduce in an image has limits that are mandated by laws of physics, whether formulated by the 35: 1738:
Chan, Wai-San; Lam, Edmund; Ng, Michael K.; Mak, Giuseppe Y. (September 2007). "Super-resolution reconstruction in a computational compound-eye imaging system".
582:
should not be used in analytical applications with ambiguous inputs. These methods can hallucinate image features, which can make them unsafe for medical use.
278:
Substituting spatial-frequency bands: Though the bandwidth allowable by diffraction is fixed, it can be positioned anywhere in the spatial-frequency spectrum.
1452: 367:
When an image is degraded by noise, there can be more detail in the average of many exposures, even within the diffraction limit. See example on the right.
224:
had been proposed for this process but it did not catch on, and the high-precision localization procedure is typically referred to as super-resolution.
1194: 868:
Gustaffsson, M., 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microscopy 198, 82–87.
1589:
Elad, M.; Hel-Or, Y. (August 2001). "Fast Super-Resolution Reconstruction Algorithm for Pure Translational Motion and Common Space-Invariant Blur".
1086:
Grant-Jacob, James A; Mackay, Benita S; Baker, James A G; Xie, Yunhui; Heath, Daniel J; Loxham, Matthew; Eason, Robert W; Mills, Ben (2019-06-18).
630:
Schmidt, R.O, "Multiple Emitter Location and Signal Parameter Estimation," IEEE Trans. Antennas Propagation, Vol. AP-34 (March 1986), pp.276-280.
46: 2062: 1358: 414: 1822: 254:. The reason given is: We should update this to include progress in improving superresolution with machine learning and neural networks.. 2027: 756:
Betzig, E; Trautman, JK (1992). "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit".
396:
Both features extend over 3 pixels but in different amounts, enabling them to be localized with precision superior to pixel dimension.
1065:
Johnson, Justin; Alahi, Alexandre; Fei-Fei, Li (2016-03-26). "Perceptual Losses for Real-Time Style Transfer and Super-Resolution".
200:
light distributions are expressed as superpositions of a series of grating light patterns in a range of fringe widths, technically
517:
problems has been proposed and demonstrated to accelerate most of the existing Bayesian super-resolution methods significantly.
1499:"Spatial Resolution Enhancement of Low-Resolution Image Sequences – A Comprehensive Review with Directions for Future Research" 1652:
Sroubek, F.; Cristobal, G.; Flusser, J. (2007). "A Unified Approach to Superresolution and Multichannel Blind Deconvolution".
1654: 1591: 1307: 1224: 555: 1356:
Clement, G.T.; Huttunen, J.; Hynynen, K. (2005). "Superresolution ultrasound imaging using back-projected reconstruction".
877:
Cox, I.J., Sheppard, C.J.R., 1986. Information capacity and resolution in an optical system. J.opt. Soc. Am. A 3, 1152–1158
124: 1259:
Curtis, Craig H.; Milster, Tom D. (October 1992). "Analysis of Superresolution in Magneto-Optic Data Storage Devices".
196:
Spatial-frequency domain: A succinct expression of the diffraction limit is given in the spatial-frequency domain. In
1813: 806:
Lukosz, W., 1966. Optical systems with resolving power exceeding the classical limit. J. opt. soc. Am. 56, 1463–1472.
64: 1197:. In Alejandro F. Frangi; Julia A. Schnabel; Christos Davatzikos; Carlos Alberola-LĂłpez; Gabor Fichtinger (eds.). 1169: 1523:
Park, S. C.; Park, M. K.; Kang, M. G. (May 2003). "Super-resolution image reconstruction: a technical overview".
355: 1052: 579: 2020: 1560:
Farsiu, S.; Robinson, D.; Elad, M.; Milanfar, P. (August 2004). "Advances and Challenges in Super-Resolution".
1639: 1921: 459:. This method is severely limited by the ever-present noise in digital imaging systems, but it can work for 2130: 1317:
Caron, J.N. (September 2004). "Rapid supersampling of multiframe sequences by use of blind deconvolution".
575: 567: 570:
to perform super-resolution. In particular work has been demonstrated showing the transformation of a 20x
529:
are possible if and only if the input low resolution images have been under-sampled and therefore contain
962: 479: 410: 155: 2164: 1933: 1030: 606: 472: 120: 2159: 2013: 1858: 1769:"A Total Variation Regularization Based Super-Resolution Reconstruction Algorithm for Digital Video" 1953: 1613: 545:
There are many both single-frame and multiple-frame variants of SR. Multiple-frame SR uses the sub-
475:. More recently, a fast single image super-resolution algorithm based on a closed-form solution to 42: 39:
that states a Knowledge editor's personal feelings or presents an original argument about a topic.
1853: 1608: 1443: 601: 456: 452: 190: 1829: 354:
Compared to a single image marred by noise during its acquisition or transmission (left), the
2044: 279: 220:
width by finding the centroid (center of gravity) of its image light distribution. The word
205: 182: 936:
Toraldo di Francia, G., 1955. Resolving power and information. J. opt. soc. Am. 45, 497–501.
1780: 1710: 1663: 1600: 1532: 1367: 1328: 1270: 1099: 832: 765: 713: 670: 178: 645: 289: 8: 201: 128: 97: 1784: 1714: 1667: 1604: 1536: 1371: 1332: 1274: 1103: 836: 769: 674: 405:
The location of a single source can be determined by computing the "center of gravity" (
256:
Please help update this article to reflect recent events or newly available information.
2125: 1989: 1979: 1962: 1879: 1755: 1687: 1577: 1548: 1468:
Bertero, M.; Boccacci, P. (October 2003). "Super-resolution in computational imaging".
1425: 1396: 1230: 1202: 1140: 1066: 789: 694: 660: 641: 591: 434: 386: 283: 136: 1510: 1498: 1481: 1033:, IEEE Transactions on Image Processing, vol. 13, no. 10, pp. 1327–1344, October 2004. 927:
Harris, J.L., 1964. Resolving power and decision making. J. opt. soc. Am. 54, 606–611.
2095: 2052: 1994: 1908: 1871: 1726: 1679: 1626: 1485: 1430: 1401: 1383: 1344: 1303: 1286: 1220: 1117: 1012: 910: 905: 888: 848: 781: 686: 448: 186: 170: 132: 1838: 1759: 1581: 1552: 1234: 1195:"Distribution Matching Losses Can Hallucinate Features in Medical Image Translation" 793: 698: 646:"Iterative Sparse Asymptotic Minimum Variance Based Approaches for Array Processing" 2169: 2036: 1984: 1974: 1900: 1863: 1798: 1788: 1747: 1718: 1691: 1671: 1618: 1569: 1540: 1477: 1456: 1420: 1410: 1375: 1336: 1278: 1212: 1150: 1107: 900: 840: 773: 678: 611: 551: 418: 350: 335: 151: 140: 85: 16:
Any technique to improve resolution of an imaging system beyond conventional limits
1883: 1139:. IEEE Conference on Computer Vision and Pattern Recognition. pp. 6228–6237. 313: 298: 294: 2074: 1647:. International Conference on Pattern Recognition. Vol. 2. pp. 115–120. 1216: 820: 777: 89: 1701: 1319: 1261: 1112: 1087: 197: 1904: 1751: 325:
separately decoded to reconstitute target structure with extended resolution.
319: 2153: 2120: 2105: 2069: 2057: 1544: 1121: 1017:, Ed. V. Lakshminarayanan, M. Calvo, and T. Alieva. CRC Press, 2012. 539-564. 852: 690: 682: 444: 1675: 1154: 821:"Super-resolution through illumination by diffraction-born evanescent waves" 2099: 1998: 1912: 1875: 1867: 1730: 1683: 1630: 1489: 1434: 1387: 1348: 1290: 1011:
J. Simpkins, R.L. Stevenson, "An Introduction to Super-Resolution Imaging."
914: 785: 596: 105: 1460: 428: 392: 293:
The "structured illumination" technique of super-resolution is related to
1793: 1768: 1722: 1340: 1282: 546: 422: 213: 174: 144: 1767:
Ng, Michael K.; Shen, Huanfeng; Lam, Edmund Y.; Zhang, Liangpei (2007).
1199:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2018
958:"Fast single image super-resolution using a new analytical solution for 956:
N. Zhao, Q. Wei, A. Basarab, N. Dobigeon, D. Kouamé and J-Y. Tourneret,
2079: 1923:
A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution
1803: 571: 468: 376: 339: 1960: 1622: 1573: 1379: 2110: 1415: 844: 526: 464: 447:
the image in the frequency domain, by assuming that the object is an
2135: 2005: 1207: 1145: 1071: 957: 665: 530: 406: 345: 1837:
Ben-Ezra, M.; Lin, Zhouchen; Wilburn, B.; Zhang, Wei (July 2011).
1014:
Mathematical Optics: Classical, Quantum, and Computational Methods
421:
distance information. It is also the mechanism underlying visual
382: 328: 1846:
IEEE Transactions on Pattern Analysis and Machine Intelligence
417:(STORM), where fluorescent probes attached to molecules give 1943:
Single Image Super-Resolution from Transformed Self-Exemplars
1053:"LidarBoost: Depth Superresolution for ToF 3D Shape Scanning" 460: 116: 112: 1397:"Statistics for optimal point prediction in natural images" 320:
Multiple parameter use within traditional diffraction limit
36:
personal reflection, personal essay, or argumentative essay
1947:
IEEE Conference on Computer Vision and Pattern Recognition
1698: 1559: 273: 1085: 1920:
Timofte, R.; De Smet, V.; Van Gool, L. (November 2014).
1193:
Cohen, Joseph Paul; Luck, Margaux; Honari, Sina (2018).
150:
Super-resolution imaging techniques are used in general
1836: 1651: 1562:
International Journal of Imaging Systems and Technology
1088:"A neural lens for super-resolution biological imaging" 1042:
P. Cheeseman, B. Kanefsky, R. Kraft, and J. Stutz, 1994
429:
Bayesian induction beyond traditional diffraction limit
362: 306: 84:) is a class of techniques that enhance (increase) the 1919: 1442:
Cheung, V.; Frey, B. J.; Jojic, N. (20–25 June 2005).
1355: 639: 1453:
Conference on Computer Vision and Pattern Recognition
1025: 1023: 965: 482: 381:
Known defects in a given imaging situation, such as
1064: 1929:. 12th Asian Conference on Computer Vision (ACCV). 1812:Glasner, D.; Bagon, S.; Irani, M. (October 2009). 1029:S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, 1020: 991: 814: 812: 508: 1811: 1297: 1186: 1051:S. Schuon, C. Theobalt, J. Davis, and S. Thrun, 2151: 1773:EURASIP Journal on Advances in Signal Processing 1512:Super-resolution from image sequences — a review 889:"Optical superresolution and visual hyperacuity" 346:Geometrical or image-processing super-resolution 1941:Huang, J.-B; Singh, A.; Ahuja, N. (June 2015). 1940: 1508: 1496: 1467: 1441: 1192: 809: 400: 1766: 1740:Multidimensional Systems and Signal Processing 1031:"Fast and Robust Multi-frame Super-resolution" 1002:, IEEE Trans. Image Process., 2016, to appear. 755: 329:Probing near-field electromagnetic disturbance 2021: 1890: 1258: 1737: 1522: 1518:. Midwest Symposium on Circuits and Systems. 1394: 1359:Journal of the Acoustical Society of America 1134: 864: 862: 751: 749: 540: 415:stochastic optical reconstruction microscopy 1823:International Conference on Computer Vision 143:) are employed to achieve SR over standard 2028: 2014: 1637: 1588: 886: 633: 370: 1988: 1978: 1857: 1802: 1792: 1612: 1424: 1414: 1206: 1144: 1111: 1070: 904: 859: 746: 664: 65:Learn how and when to remove this message 1170:"The AI Tools Making Images Look Better" 391: 349: 288: 1167: 274:Optical or diffractive super-resolution 2152: 1135:Blau, Yochai; Michaeli, Tomer (2018). 818: 653:IEEE Transactions on Signal Processing 282:in microscopy is an example. See also 2009: 1963:"Super-resolution Ultrasound Imaging" 1839:"Penrose Pixels for Super-Resolution" 1655:IEEE Transactions on Image Processing 1641:Super Resolution From Image Sequences 1592:IEEE Transactions on Image Processing 1455:(CVPR). Vol. 1. pp. 42–49. 1316: 1252: 800: 566:There is promising research on using 2035: 1815:Super-Resolution from a Single Image 1298:Zalevsky, Z.; Mendlovic, D. (2003). 717:, Cambridge Univ. Press, any edition 574:image of pollen grains into a 1500x 363:Multi-exposure image noise reduction 307:Multiplexing spatial-frequency bands 236: 100:of systems is transcended, while in 18: 1395:Geisler, W.S.; Perry, J.S. (2011). 992:{\displaystyle \ell _{2}-\ell _{2}} 509:{\displaystyle \ell _{2}-\ell _{2}} 451:, and that we can exactly know the 312:superimposed light structure, e.g. 125:high-resolution computed tomography 13: 1980:10.1016/j.ultrasmedbio.2019.11.013 1638:Irani, M.; Peleg, S. (June 1990). 1509:Borman, S.; Stevenson, R. (1998). 1497:Borman, S.; Stevenson, R. (1998). 1137:The perception-distortion tradeoff 1055:, In Proceedings of IEEE CVPR 2009 443:The approach can take the form of 131:decomposition-based methods (e.g. 14: 2181: 1092:Journal of Physics Communications 161: 906:10.1016/j.preteyeres.2012.05.001 739:Zalevsky Z, Mendlovic D. 2003 241: 23: 1893:Int J Comput Assist Radiol Surg 1525:IEEE Signal Processing Magazine 1161: 1128: 1079: 1058: 1045: 1036: 1005: 950: 939: 930: 921: 880: 871: 338:and the development of the new 945: 819:Guerra, John M. (1995-06-26). 733: 720: 705: 624: 525:Geometrical SR reconstruction 1: 1482:10.1016/s0968-4328(03)00051-9 640:Abeida, Habti; Zhang, Qilin; 617: 232: 1217:10.1007/978-3-030-00928-1_60 1168:Zeeberg, Amos (2023-08-23). 778:10.1126/science.257.5067.189 644:; Merabtine, Nadjim (2013). 580:deep convolutional upscalers 576:scanning electron microscope 401:Sub-pixel image localization 7: 1504:. University of Notre Dame. 585: 568:deep convolutional networks 561: 520: 411:super-resolution microscopy 156:super-resolution microscopy 119:imaging applications (e.g. 10: 2186: 607:Single-particle trajectory 473:magnetic resonance imaging 432: 374: 121:magnetic resonance imaging 104:the resolution of digital 2088: 2043: 1905:10.1007/s11548-011-0545-9 1752:10.1007/s11045-007-0022-3 541:Technical implementations 250:This section needs to be 139:-based algorithms (e.g., 2116:Super-resolution imaging 1545:10.1109/MSP.2003.1203207 1113:10.1088/2399-6528/ab267d 683:10.1109/tsp.2012.2231676 78:Super-resolution imaging 1676:10.1109/TIP.2007.903256 1300:Optical Superresolution 1155:10.1109/CVPR.2018.00652 825:Applied Physics Letters 741:Optical Superresolution 371:Single-frame deblurring 280:Dark-field illumination 1868:10.1109/TPAMI.2010.213 993: 887:Westheimer, G (2012). 602:Video super-resolution 510: 397: 359: 303: 45:by rewriting it in an 1830:"example and results" 1461:10.1109/CVPR.2005.366 994: 511: 395: 356:signal-to-noise ratio 353: 292: 206:dark-field microscopy 183:uncertainty principle 1967:Ultrasound Med. Biol 1723:10.1364/OL.36.000885 1341:10.1364/OL.29.001986 1283:10.1364/AO.31.006272 963: 714:Principles of Optics 480: 181:or equivalently the 179:wave theory of light 1785:2007EJASP2007..104N 1715:2011OptL...36..885C 1668:2007ITIP...16.2322S 1605:2001ITIP...10.1187E 1537:2003ISPM...20...21P 1372:2005ASAJ..118.3953C 1333:2004OptL...29.1986C 1275:1992ApOpt..31.6272M 1104:2019JPhCo...3f5004G 837:1995ApPhL..66.3555G 770:1992Sci...257..189B 675:2013ITSP...61..933A 202:spatial frequencies 191:Maxwell's equations 2089:Special processing 1794:10.1155/2007/74585 1502:(Technical report) 1253:Other related work 989: 893:Prog Retin Eye Res 711:Born M, Wolf E, 592:Optical resolution 506: 435:Bayesian inference 398: 360: 304: 284:aperture synthesis 137:compressed sensing 47:encyclopedic style 34:is written like a 2165:Signal processing 2144: 2143: 2131:Pixel art scaling 2096:Film colorization 1623:10.1109/83.935034 1574:10.1002/ima.20007 1402:Journal of Vision 1380:10.1121/1.2109167 1327:(17): 1986–1988. 1309:978-0-387-00591-1 1269:(29): 6272–6279. 1226:978-3-030-00927-4 831:(26): 3555–3557. 764:(5067): 189–195. 449:analytic function 271: 270: 187:quantum mechanics 177:equations in the 171:Diffraction limit 98:diffraction limit 75: 74: 67: 2177: 2160:Image processing 2037:Video processing 2030: 2023: 2016: 2007: 2006: 2002: 1992: 1982: 1957: 1950: 1937: 1934:"codes and data" 1930: 1928: 1916: 1887: 1861: 1852:(7): 1370–1383. 1843: 1833: 1826: 1820: 1808: 1806: 1796: 1763: 1734: 1695: 1662:(9): 2322–2332. 1648: 1646: 1634: 1616: 1599:(8): 1187–1193. 1585: 1556: 1519: 1517: 1505: 1503: 1493: 1476:(6–7): 265–273. 1464: 1450: 1438: 1428: 1418: 1416:10.1167/11.12.14 1391: 1366:(6): 3953–3960. 1352: 1313: 1294: 1246: 1245: 1243: 1241: 1210: 1190: 1184: 1183: 1181: 1180: 1165: 1159: 1158: 1148: 1132: 1126: 1125: 1115: 1083: 1077: 1076: 1074: 1062: 1056: 1049: 1043: 1040: 1034: 1027: 1018: 1009: 1003: 998: 996: 995: 990: 988: 987: 975: 974: 954: 948: 943: 937: 934: 928: 925: 919: 918: 908: 884: 878: 875: 869: 866: 857: 856: 845:10.1063/1.113814 816: 807: 804: 798: 797: 753: 744: 737: 731: 724: 718: 709: 703: 702: 668: 650: 637: 631: 628: 612:Superoscillation 515: 513: 512: 507: 505: 504: 492: 491: 336:evanescent waves 266: 263: 257: 245: 244: 237: 222:ultra-resolution 152:image processing 70: 63: 59: 56: 50: 27: 26: 19: 2185: 2184: 2180: 2179: 2178: 2176: 2175: 2174: 2150: 2149: 2147: 2145: 2140: 2084: 2045:Post-processing 2039: 2034: 1952: 1932: 1926: 1859:10.1.1.174.8804 1841: 1828: 1818: 1746:(2–3): 83–101. 1644: 1515: 1501: 1448: 1310: 1255: 1250: 1249: 1239: 1237: 1227: 1191: 1187: 1178: 1176: 1174:Quanta Magazine 1166: 1162: 1133: 1129: 1084: 1080: 1063: 1059: 1050: 1046: 1041: 1037: 1028: 1021: 1010: 1006: 983: 979: 970: 966: 964: 961: 960: 955: 951: 944: 940: 935: 931: 926: 922: 885: 881: 876: 872: 867: 860: 817: 810: 805: 801: 754: 747: 738: 734: 725: 721: 710: 706: 648: 638: 634: 629: 625: 620: 588: 564: 543: 523: 500: 496: 487: 483: 481: 478: 477: 455:values in some 437: 431: 403: 379: 373: 365: 348: 331: 322: 309: 276: 267: 261: 258: 255: 246: 242: 235: 185:for photons in 164: 106:imaging sensors 71: 60: 54: 51: 43:help improve it 40: 28: 24: 17: 12: 11: 5: 2183: 2173: 2172: 2167: 2162: 2142: 2141: 2139: 2138: 2133: 2128: 2123: 2118: 2113: 2108: 2103: 2092: 2090: 2086: 2085: 2083: 2082: 2077: 2072: 2067: 2066: 2065: 2055: 2049: 2047: 2041: 2040: 2033: 2032: 2025: 2018: 2010: 2004: 2003: 1973:(4): 865–891. 1958: 1954:"project page" 1938: 1917: 1899:(5): 663–673. 1888: 1834: 1809: 1764: 1735: 1709:(6): 885–887. 1702:Optics Letters 1696: 1649: 1635: 1614:10.1.1.11.2502 1586: 1557: 1520: 1506: 1494: 1465: 1445:Video epitomes 1439: 1392: 1353: 1320:Optics Letters 1314: 1308: 1295: 1262:Applied Optics 1254: 1251: 1248: 1247: 1225: 1185: 1160: 1127: 1078: 1057: 1044: 1035: 1019: 1004: 986: 982: 978: 973: 969: 949: 938: 929: 920: 879: 870: 858: 808: 799: 745: 732: 728:Quantum Optics 719: 704: 659:(4): 933–944. 632: 622: 621: 619: 616: 615: 614: 609: 604: 599: 594: 587: 584: 563: 560: 542: 539: 522: 519: 503: 499: 495: 490: 486: 433:Main article: 430: 427: 402: 399: 375:Main article: 372: 369: 364: 361: 347: 344: 330: 327: 321: 318: 308: 305: 295:moirĂ© patterns 275: 272: 269: 268: 249: 247: 240: 234: 231: 226: 225: 217: 211: 210: 209: 198:Fourier optics 163: 162:Basic concepts 160: 102:geometrical SR 73: 72: 31: 29: 22: 15: 9: 6: 4: 3: 2: 2182: 2171: 2168: 2166: 2163: 2161: 2158: 2157: 2155: 2148: 2137: 2134: 2132: 2129: 2127: 2124: 2122: 2121:Video matting 2119: 2117: 2114: 2112: 2109: 2107: 2106:Color grading 2104: 2101: 2097: 2094: 2093: 2091: 2087: 2081: 2078: 2076: 2073: 2071: 2070:Deinterlacing 2068: 2064: 2061: 2060: 2059: 2056: 2054: 2051: 2050: 2048: 2046: 2042: 2038: 2031: 2026: 2024: 2019: 2017: 2012: 2011: 2008: 2000: 1996: 1991: 1986: 1981: 1976: 1972: 1968: 1964: 1959: 1955: 1948: 1944: 1939: 1935: 1925: 1924: 1918: 1914: 1910: 1906: 1902: 1898: 1894: 1889: 1885: 1881: 1877: 1873: 1869: 1865: 1860: 1855: 1851: 1847: 1840: 1835: 1831: 1824: 1817: 1816: 1810: 1805: 1800: 1795: 1790: 1786: 1782: 1778: 1774: 1770: 1765: 1761: 1757: 1753: 1749: 1745: 1741: 1736: 1732: 1728: 1724: 1720: 1716: 1712: 1708: 1704: 1703: 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1665: 1661: 1657: 1656: 1650: 1643: 1642: 1636: 1632: 1628: 1624: 1620: 1615: 1610: 1606: 1602: 1598: 1594: 1593: 1587: 1583: 1579: 1575: 1571: 1567: 1563: 1558: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1521: 1514: 1513: 1507: 1500: 1495: 1491: 1487: 1483: 1479: 1475: 1471: 1466: 1462: 1458: 1454: 1447: 1446: 1440: 1436: 1432: 1427: 1422: 1417: 1412: 1408: 1404: 1403: 1398: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1365: 1361: 1360: 1354: 1350: 1346: 1342: 1338: 1334: 1330: 1326: 1322: 1321: 1315: 1311: 1305: 1301: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1263: 1257: 1256: 1236: 1232: 1228: 1222: 1218: 1214: 1209: 1204: 1200: 1196: 1189: 1175: 1171: 1164: 1156: 1152: 1147: 1142: 1138: 1131: 1123: 1119: 1114: 1109: 1105: 1101: 1098:(6): 065004. 1097: 1093: 1089: 1082: 1073: 1068: 1061: 1054: 1048: 1039: 1032: 1026: 1024: 1016: 1015: 1008: 1001: 999: 984: 980: 976: 971: 967: 953: 947: 942: 933: 924: 916: 912: 907: 902: 899:(5): 467–80. 898: 894: 890: 883: 874: 865: 863: 854: 850: 846: 842: 838: 834: 830: 826: 822: 815: 813: 803: 795: 791: 787: 783: 779: 775: 771: 767: 763: 759: 752: 750: 742: 736: 729: 723: 716: 715: 708: 700: 696: 692: 688: 684: 680: 676: 672: 667: 662: 658: 654: 647: 643: 636: 627: 623: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 589: 583: 581: 577: 573: 569: 559: 557: 553: 548: 538: 534: 532: 528: 518: 516: 501: 497: 493: 488: 484: 474: 470: 466: 462: 458: 454: 450: 446: 445:extrapolating 441: 436: 426: 424: 420: 416: 412: 408: 394: 390: 388: 384: 378: 368: 357: 352: 343: 341: 337: 326: 317: 315: 314:moirĂ© fringes 300: 296: 291: 287: 285: 281: 265: 253: 248: 239: 238: 230: 223: 218: 215: 212: 207: 203: 199: 195: 194: 192: 188: 184: 180: 176: 172: 169: 168: 167: 159: 157: 153: 148: 146: 142: 138: 134: 130: 126: 122: 118: 114: 109: 108:is enhanced. 107: 103: 99: 95: 91: 87: 83: 79: 69: 66: 58: 48: 44: 38: 37: 32:This article 30: 21: 20: 2146: 2126:Uncompressed 2115: 1970: 1966: 1942: 1922: 1896: 1892: 1849: 1845: 1814: 1776: 1772: 1743: 1739: 1706: 1700: 1659: 1653: 1640: 1596: 1590: 1568:(2): 47–57. 1565: 1561: 1531:(3): 21–36. 1528: 1524: 1511: 1473: 1469: 1444: 1406: 1400: 1363: 1357: 1324: 1318: 1302:. Springer. 1299: 1266: 1260: 1238:. Retrieved 1198: 1188: 1177:. Retrieved 1173: 1163: 1136: 1130: 1095: 1091: 1081: 1060: 1047: 1038: 1013: 1007: 959: 952: 941: 932: 923: 896: 892: 882: 873: 828: 824: 802: 761: 757: 740: 735: 727: 726:Fox M, 2007 722: 712: 707: 656: 652: 635: 626: 597:Oversampling 565: 556:space domain 547:pixel shifts 544: 535: 524: 476: 442: 438: 404: 380: 366: 332: 323: 310: 277: 262:January 2023 259: 251: 227: 221: 165: 149: 110: 101: 93: 81: 77: 76: 61: 55:October 2019 52: 33: 1804:10722/73871 423:hyperacuity 387:aberrations 214:Information 175:diffraction 147:algorithm. 145:periodogram 92:system. In 2154:Categories 2080:Deflicking 2063:Comparison 2053:Deblocking 1779:: 074585. 1409:(12): 14. 1208:1805.08841 1179:2023-08-28 1146:1711.06077 1072:1603.08155 666:1802.03070 618:References 572:microscope 527:algorithms 469:microscopy 377:Deblurring 340:super lens 233:Techniques 94:optical SR 86:resolution 2111:Film look 2075:Denoising 1854:CiteSeerX 1609:CiteSeerX 1122:2399-6528 1000:problems" 981:ℓ 977:− 968:ℓ 853:0003-6951 691:1053-587X 552:frequency 498:ℓ 494:− 485:ℓ 465:astronomy 419:nanoscale 2136:Telecine 2058:Resizing 1999:31973952 1913:21298404 1876:21135446 1760:16452552 1731:21403717 1684:17784605 1631:18255535 1582:12351561 1553:12320918 1490:12932769 1435:22011382 1388:16419839 1349:15455755 1291:20733840 1235:43919703 915:22634484 794:38041885 786:17794749 743:Springer 699:16276001 642:Li, Jian 586:See also 562:Research 531:aliasing 521:Aliasing 457:interval 453:function 407:centroid 129:subspace 111:In some 2170:Imaging 2100:tinting 2098: ( 1990:8388823 1825:(ICCV). 1781:Bibcode 1711:Bibcode 1692:6367149 1664:Bibcode 1601:Bibcode 1533:Bibcode 1426:5144165 1368:Bibcode 1329:Bibcode 1271:Bibcode 1100:Bibcode 833:Bibcode 766:Bibcode 758:Science 671:Bibcode 413:, e.g. 383:defocus 252:updated 154:and in 123:(MRI), 90:imaging 41:Please 1997:  1987:  1911:  1884:184868 1882:  1874:  1856:  1758:  1729:  1690:  1682:  1629:  1611:  1580:  1551:  1488:  1470:Micron 1433:  1423:  1386:  1347:  1306:  1289:  1233:  1223:  1120:  913:  851:  792:  784:  730:Oxford 697:  689:  302:image. 135:) and 88:of an 1927:(PDF) 1880:S2CID 1842:(PDF) 1819:(PDF) 1756:S2CID 1688:S2CID 1645:(PDF) 1578:S2CID 1549:S2CID 1516:(PDF) 1449:(PDF) 1240:1 May 1231:S2CID 1203:arXiv 1141:arXiv 1067:arXiv 790:S2CID 695:S2CID 661:arXiv 649:(PDF) 461:radar 299:moirĂ© 133:MUSIC 117:sonar 113:radar 1995:PMID 1909:PMID 1872:PMID 1777:2007 1727:PMID 1680:PMID 1627:PMID 1486:PMID 1431:PMID 1384:PMID 1345:PMID 1304:ISBN 1287:PMID 1242:2022 1221:ISBN 1118:ISSN 911:PMID 849:ISSN 782:PMID 687:ISSN 141:SAMV 115:and 96:the 1985:PMC 1975:doi 1901:doi 1864:doi 1799:hdl 1789:doi 1748:doi 1719:doi 1672:doi 1619:doi 1570:doi 1541:doi 1478:doi 1457:doi 1421:PMC 1411:doi 1376:doi 1364:118 1337:doi 1279:doi 1213:doi 1151:doi 1108:doi 901:doi 841:doi 774:doi 762:257 679:doi 554:or 471:or 467:, 385:or 127:), 2156:: 1993:. 1983:. 1971:46 1969:. 1965:. 1951:; 1945:. 1931:; 1907:. 1895:. 1878:. 1870:. 1862:. 1850:33 1848:. 1844:. 1827:; 1821:. 1797:. 1787:. 1775:. 1771:. 1754:. 1744:18 1742:. 1725:. 1717:. 1707:36 1705:. 1686:. 1678:. 1670:. 1660:16 1658:. 1625:. 1617:. 1607:. 1597:10 1595:. 1576:. 1566:14 1564:. 1547:. 1539:. 1529:20 1527:. 1484:. 1474:34 1472:. 1451:. 1429:. 1419:. 1407:11 1405:. 1399:. 1382:. 1374:. 1362:. 1343:. 1335:. 1325:29 1323:. 1285:. 1277:. 1267:31 1265:. 1229:. 1219:. 1211:. 1172:. 1149:. 1116:. 1106:. 1094:. 1090:. 1022:^ 909:. 897:31 895:. 891:. 861:^ 847:. 839:. 829:66 827:. 823:. 811:^ 788:. 780:. 772:. 760:. 748:^ 693:. 685:. 677:. 669:. 657:61 655:. 651:. 463:, 425:. 342:. 286:. 193:. 158:. 82:SR 2102:) 2029:e 2022:t 2015:v 2001:. 1977:: 1956:. 1949:. 1936:. 1915:. 1903:: 1897:6 1886:. 1866:: 1832:. 1807:. 1801:: 1791:: 1783:: 1762:. 1750:: 1733:. 1721:: 1713:: 1694:. 1674:: 1666:: 1633:. 1621:: 1603:: 1584:. 1572:: 1555:. 1543:: 1535:: 1492:. 1480:: 1463:. 1459:: 1437:. 1413:: 1390:. 1378:: 1370:: 1351:. 1339:: 1331:: 1312:. 1293:. 1281:: 1273:: 1244:. 1215:: 1205:: 1182:. 1157:. 1153:: 1143:: 1124:. 1110:: 1102:: 1096:3 1075:. 1069:: 985:2 972:2 917:. 903:: 855:. 843:: 835:: 796:. 776:: 768:: 701:. 681:: 673:: 663:: 502:2 489:2 264:) 260:( 80:( 68:) 62:( 57:) 53:( 49:.

Index

personal reflection, personal essay, or argumentative essay
help improve it
encyclopedic style
Learn how and when to remove this message
resolution
imaging
diffraction limit
imaging sensors
radar
sonar
magnetic resonance imaging
high-resolution computed tomography
subspace
MUSIC
compressed sensing
SAMV
periodogram
image processing
super-resolution microscopy
Diffraction limit
diffraction
wave theory of light
uncertainty principle
quantum mechanics
Maxwell's equations
Fourier optics
spatial frequencies
dark-field microscopy
Information
Dark-field illumination

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑