Knowledge

Enriched uranium

Source đź“ť

636:(SILEX) is well developed and is licensed for commercial operation as of 2012. Separation of isotopes by laser excitation is a very effective and cheap method of uranium separation, able to be done in small facilities requiring much less energy and space than previous separation techniques. The cost of uranium enrichment using laser enrichment technologies is approximately $ 30 per SWU which is less than a third of the price of gas centrifuges, the current standard of enrichment. Separation of isotopes by laser excitation could be done in facilities virtually undetectable by satellites. More than 20 countries have worked with laser separation over the past two decades, the most notable of these countries being Iran and North Korea, though all countries have had very limited success up to this point. 972: 505: 406:. This multi-stage design enhances the efficiency and effectiveness of nuclear weapons, allowing for greater control over the release of energy during detonation. For the secondary of a large nuclear weapon, the higher critical mass of less-enriched uranium can be an advantage as it allows the core at explosion time to contain a larger amount of fuel. This design strategy optimizes the explosive yield and performance of advanced nuclear weapons systems. The U is not said to be fissile but still is fissionable by fast neutrons (>2 MeV) such as the ones produced during 707:(GEH) signed a commercialization agreement with Silex Systems in 2006. GEH has since built a demonstration test loop and announced plans to build an initial commercial facility. Details of the process are classified and restricted by intergovernmental agreements between United States, Australia, and the commercial entities. SILEX has been projected to be an order of magnitude more efficient than existing production techniques but again, the exact figure is classified. In August, 2011 Global Laser Enrichment, a subsidiary of GEH, applied to the U.S. 952:
and 4.5 SWU if the DU stream was allowed to have 0.3% U. On the other hand, if the depleted stream had only 0.2% U, then it would require just 6.7 kilograms of NU, but nearly 5.7 SWU of enrichment. Because the amount of NU required and the number of SWUs required during enrichment change in opposite directions, if NU is cheap and enrichment services are more expensive, then the operators will typically choose to allow more U to be left in the DU stream whereas if NU is more expensive and enrichment is less so, then they would choose the opposite.
79: 734: 808: 608: 1267:), which it intends to pursue through financial investment in a U.S. commercial venture by General Electric, Although SILEX has been granted a license to build a plant, the development is still in its early stages as laser enrichment has yet to be proven to be economically viable, and there is a petition being filed to review the license given to SILEX over nuclear proliferation concerns. It has also been claimed that Israel has a uranium enrichment program housed at the 742: 573: 4550: 4538: 4562: 1222:
nuclear warheads accounted for about 13% of total world requirement for enriched uranium leading up to 2008.This ambitious initiative not only addresses nuclear disarmament goals but also serves as a significant contributor to global energy security and environmental sustainability, effectively repurposing material once intended for destructive purposes into a resource for peaceful energy production.
715:. The fear of nuclear proliferation arose in part due to laser separation technology requiring less than 25% of the space of typical separation techniques, as well as requiring only the energy that would power 12 typical houses, putting a laser separation plant that works by means of laser excitation well below the detection threshold of existing surveillance technologies. Due to these concerns the 317: 912:"Separative work"—the amount of separation done by an enrichment process—is a function of the concentrations of the feedstock, the enriched output, and the depleted tailings; and is expressed in units that are so calculated as to be proportional to the total input (energy / machine operation time) and to the mass processed. Separative work is 785:(UCOR) developed and deployed the continuous Helikon vortex separation cascade for high production rate low-enrichment and the substantially different semi-batch Pelsakon low production rate high enrichment cascade both using a particular vortex tube separator design, and both embodied in industrial plant. A demonstration plant was built in 711:(NRC) for a permit to build a commercial plant. In September 2012, the NRC issued a license for GEH to build and operate a commercial SILEX enrichment plant, although the company had not yet decided whether the project would be profitable enough to begin construction, and despite concerns that the technology could contribute to 528:, gaseous diffusion played a major role as a uranium enrichment technique, and as of 2008 accounted for about 33% of enriched uranium production, but in 2011 was deemed an obsolete technology that is steadily being replaced by the later generations of technology as the diffusion plants reach their ends of life. In 2013, the 948:
on the level of enrichment desired and upon the amount of U that ends up in the depleted uranium. However, unlike the number of SWUs required during enrichment, which increases with decreasing levels of U in the depleted stream, the amount of NU needed will decrease with decreasing levels of U that end up in the DU.
947:
In addition to the separative work units provided by an enrichment facility, the other important parameter to be considered is the mass of natural uranium (NU) that is needed to yield a desired mass of enriched uranium. As with the number of SWUs, the amount of feed material required will also depend
584:
so that the heavier gas molecules containing U move tangentially toward the outside of the cylinder and the lighter gas molecules rich in U collect closer to the center. It requires much less energy to achieve the same separation than the older gaseous diffusion process, which it has largely replaced
1234:
to generate electricity.This innovative program not only facilitated the safe and secure elimination of excess weapons-grade uranium but also contributed to the sustainable operation of civilian nuclear power plants, reducing reliance on newly enriched uranium and promoting non-proliferation efforts
1209:
specifications for nuclear fuel if NU or DU were used. So, the HEU downblending generally cannot contribute to the waste management problem posed by the existing large stockpiles of depleted uranium. Effective management and disposition strategies for depleted uranium are crucial to ensure long-term
967:
The opposite of enriching is downblending; surplus HEU can be downblended to LEU to make it suitable for use in commercial nuclear fuel. Downblending is a key process in nuclear non-proliferation efforts, as it reduces the amount of highly enriched uranium available for potential weaponization while
765:
separation processes depend upon diffusion driven by pressure gradients, as does the gas centrifuge. They in general have the disadvantage of requiring complex systems of cascading of individual separating elements to minimize energy consumption. In effect, aerodynamic processes can be considered as
615:
The Zippe-type centrifuge is an improvement on the standard gas centrifuge, the primary difference being the use of heat. The bottom of the rotating cylinder is heated, producing convection currents that move the U up the cylinder, where it can be collected by scoops. This improved centrifuge design
589:. It has a separation factor per stage of 1.3 relative to gaseous diffusion of 1.005, which translates to about one-fiftieth of the energy requirements. Gas centrifuge techniques produce close to 100% of the world's enriched uranium. The cost per separative work unit is approximately 100 dollars per 951:
For example, in the enrichment of LEU for use in a light water reactor it is typical for the enriched stream to contain 3.6% U (as compared to 0.7% in NU) while the depleted stream contains 0.2% to 0.3% U. In order to produce one kilogram of this LEU it would require approximately 8 kilograms of NU
1221:
converts ex-Soviet weapons-grade HEU to fuel for U.S. commercial power reactors. From 1995 through mid-2005, 250 tonnes of high-enriched uranium (enough for 10,000 warheads) was recycled into low-enriched uranium. The goal is to recycle 500 tonnes by 2013. The decommissioning programme of Russian
1201:) in special reactors. Understanding and managing the isotopic composition of uranium during downblending processes is essential to ensure the quality and safety of the resulting nuclear fuel, as well as to mitigate potential radiological and proliferation risks associated with unwanted isotopes. 448:
is difficult because two isotopes of the same element have nearly identical chemical properties, and can only be separated gradually using small mass differences. (U is only 1.26% lighter than U.) This problem is compounded because uranium is rarely separated in its atomic form, but instead as a
1249:
The following countries are known to operate enrichment facilities: Argentina, Brazil, China, France, Germany, India, Iran, Japan, the Netherlands, North Korea, Pakistan, Russia, the United Kingdom, and the United States. Belgium, Iran, Italy, and Spain hold an investment interest in the French
1229:
has been involved in the disposition of a portion of the 174.3 tonnes of highly enriched uranium (HEU) that the U.S. government declared as surplus military material in 1996. Through the U.S. HEU Downblending Program, this HEU material, taken primarily from dismantled U.S. nuclear warheads, was
1300:
is still occasionally used to refer to enriched uranium. Its continued usage serves as a historical reminder of the pivotal role of enriched uranium in shaping the course of modern history and its ongoing significance in various nuclear applications, including energy production, medicine, and
1295:
alloy, after the location of the plants where the uranium was enriched. This covert terminology underscores the secrecy and sensitivity surrounding the production of highly enriched uranium during World War II, highlighting the strategic importance of the Manhattan Project and its role in the
719:
filed a petition with the NRC, asking that before any laser excitation plants are built that they undergo a formal review of proliferation risks. The APS even went as far as calling the technology a "game changer" due to the ability for it to be hidden from any type of detection.
1204:
The blendstock can be NU or DU; however, depending on feedstock quality, SEU at typically 1.5 wt% U may be used as a blendstock to dilute the unwanted byproducts that may be contained in the HEU feed. Concentrations of these isotopes in the LEU product in some cases could exceed
540:
Thermal diffusion uses the transfer of heat across a thin liquid or gas to accomplish isotope separation. The process exploits the fact that the lighter U gas molecules will diffuse toward a hot surface, and the heavier U gas molecules will diffuse toward a cold surface. The
210: 378:(which is standard on all nuclear explosives) can dramatically reduce the critical mass. Because the core was surrounded by a good neutron reflector, at explosion it comprised almost 2.5 critical masses. Neutron reflectors, compressing the fissile core via implosion, 421:, where it often contains at least 50% U, but typically does not exceed 90%. These specialized reactor systems rely on highly enriched uranium for their unique operational requirements, including high neutron flux and precise control over reactor dynamics. The 343:, a minimum of 20% could be sufficient (called weapon-usable) although it would require hundreds of kilograms of material and "would not be practical to design"; even lower enrichment is hypothetically possible, but as the enrichment percentage decreases the 2259:
Becker, E. W.; Ehrfeld, W.; MĂĽnchmeyer, D.; Betz, H.; Heuberger, A.; Pongratz, S.; Glashauser, W.; Michel, H. J.; Siemens, R. (1982). "Production of Separation-Nozzle Systems for Uranium Enrichment by a Combination of X-Ray Lithography and Galvanoplastics".
178:
while the remainder is U, but in nature, more than 99% of the extracted ore is U. Most nuclear reactors require enriched uranium, which is uranium with higher concentrations of U ranging between 3.5% and 4.5% (although a few reactor designs using a
824:
process (EMIS), metallic uranium is first vaporized, and then ionized to positively charged ions. The cations are then accelerated and subsequently deflected by magnetic fields onto their respective collection targets. A production-scale
1258:
entitling it to 10% of the enriched uranium output. Countries that had enrichment programs in the past include Libya and South Africa, although Libya's facility was never operational. The Australian company Silex Systems has developed a
1107:
fuel. HEU reprocessed from nuclear weapons material production reactors (with an U assay of approximately 50%) may contain U concentrations as high as 25%, resulting in concentrations of approximately 1.5% in the blended LEU product.
1210:
safety and environmental protection. Innovative approaches such as reprocessing and recycling of depleted uranium could offer sustainable solutions to minimize waste and optimize resource utilization in the nuclear fuel cycle.
841:
in 1945. Properly the term 'Calutron' applies to a multistage device arranged in a large oval around a powerful electromagnet. Electromagnetic isotope separation has been largely abandoned in favour of more effective methods.
390:
that is responsible for the weapon's power. The critical mass for 85% highly enriched uranium is about 50 kilograms (110 lb), which at normal density would be a sphere about 17 centimetres (6.7 in) in diameter.
272:
disposal of nuclear waste. Reprocessed uranium often carries traces of other transuranic elements and fission products, necessitating careful monitoring and management during fuel fabrication and reactor operation.
461:
of identical stages produces successively higher concentrations of U. Each stage passes a slightly more concentrated product to the next stage and returns a slightly less concentrated residue to the previous stage.
898:. France developed its own version of PSP, which it called RCI. Funding for RCI was drastically reduced in 1986, and the program was suspended around 1990, although RCI is still used for stable isotope separation. 437:.The medical industry benefits from the unique properties of highly enriched uranium, which enable the efficient production of critical isotopes essential for diagnostic imaging and therapeutic applications 815:
shows how a strong magnetic field is used to redirect a stream of uranium ions to a target, resulting in a higher concentration of uranium-235 (represented here in dark blue) in the inner fringes of the
632:
Laser processes promise lower energy inputs, lower capital costs and lower tails assays, hence significant economic advantages. Several laser processes have been investigated or are under development.
1963: 850:
One chemical process has been demonstrated to pilot plant stage but not used for production. The French CHEMEX process exploited a very slight difference in the two isotopes' propensity to change
1575: 1905: 2187: 3313: 398:
in the primary stage, but the jacket or tamper secondary stage, which is compressed by the primary nuclear explosion often uses HEU with enrichment between 40% and 80% along with the
793:
that used the separation nozzle process. However, all methods have high energy consumption and substantial requirements for removal of waste heat; none is currently still in use.
790: 3899: 916:
energy. The same amount of separative work will require different amounts of energy depending on the efficiency of the separation technology. Separative work is measured in
331:(HEU) has a 20% or higher concentration of U. This high enrichment level is essential for nuclear weapons and certain specialized reactor designs. The fissile uranium in 4093: 553:
to prepare feed material for the Electromagnetic isotope separation (EMIS) process, explained later in this article. It was abandoned in favor of gaseous diffusion.
1862:
Von Hippel, Frank N.; Kahn, Laura H. (December 2006). "Feasibility of Eliminating the Use of Highly Enriched Uranium in the Production of Medical Radioisotopes".
284:(LEU) has a lower than 20% concentration of U; for instance, in commercial LWR, the most prevalent power reactors in the world, uranium is enriched to 3 to 5% U. 3501: 2456: 2241: 232:
Reprocessed uranium (RepU) undergoes a series of chemical and physical treatments to extract usable uranium from spent nuclear fuel. (RepU) is a product of
2326: 3028: 1735: 1564: 1184:, which is not usable in thermal neutron reactors but can be chemically separated from spent fuel to be disposed of as waste or to be transmutated into 3323: 2010:
Lei, Jia; Liu, Huanhuan; Zhou, Li; Wang, Yazhou; Yu, Kaifu; Zhu, Hui; Wang, Bo; Zang, Mengxuan; Zhou, Jian; He, Rong; Zhu, Wenkun (1 September 2023).
1823:
Lei, Jia; Liu, Huanhuan; Zhou, Li; Wang, Yazhou; Yu, Kaifu; Zhu, Hui; Wang, Bo; Zang, Mengxuan; Zhou, Jian; He, Rong; Zhu, Wenkun (1 September 2023).
655:
tuned to frequencies that ionize U atoms and no others. The positively charged U ions are then attracted to a negatively charged plate and collected.
170:, which can be enriched to produce fuel for the majority of types of reactors". Naturally occurring uranium is made of a mixture of U and U. The U is 140:
Uranium as it is taken directly from the Earth is not suitable as fuel for most nuclear reactors and requires additional processes to make it usable (
2507: 1967: 4204: 2624: 928:). Efficient utilization of separative work is crucial for optimizing the economic and operational performance of uranium enrichment facilities. 580:
The gas centrifuge process uses a large number of rotating cylinders in series and parallel formations. Each cylinder's rotation creates a strong
386:
that use less than what would be one bare-sphere critical mass at normal density. The presence of too much of the U isotope inhibits the runaway
4349: 1909: 1444: 3008: 144:
design is a notable exception). Uranium is mined either underground or in an open pit depending on the depth at which it is found. After the
2169: 3330: 2761: 1624: 1059:
over long enough timescales); during the enrichment process, its concentration increases but remains well below 1%. High concentrations of
1945: 3096: 1264: 689: 633: 2374: 1421: 749:
manufacturing process was originally developed at the Forschungszentrum Karlsruhe, Germany, to produce nozzles for isotope enrichment.
151:
This is accomplished by a combination of chemical processes with the end product being concentrated uranium oxide, which is known as "
3599: 2679:, by Allan S. Krass, Peter Boskma, Boelie Elzen and Wim A. Smit, 296 pp., published for SIPRI by Taylor and Francis Ltd, London, 1983 1653: 3838: 2669: 2593: 2675: 1751:
The enrichment of the pin and of one of the hemispheres was 97.67 w/o, while the enrichment of the other hemisphere was 97.68 w/o.
4049: 3889: 3828: 3969: 1116:; therefore the actual U concentration in the LEU product must be raised accordingly to compensate for the presence of U. While 611:
Diagram of the principles of a Zippe-type gas centrifuge with U-238 represented in dark blue and U-235 represented in light blue
3794: 2420: 1026:, it is be produced and destroyed at the same rate in a constant steady state equilibrium, bringing any sample with sufficient 781:
as a carrier gas achieving a much higher flow velocity for the gas than could be obtained using pure uranium hexafluoride. The
3023: 1260: 753:
Aerodynamic enrichment processes include the Becker jet nozzle techniques developed by E. W. Becker and associates using the
644: 1989: 1255: 308:
is usually enriched between 12% and 19.75% U; the latter concentration is used to replace HEU fuels when converting to LEU.
3845: 2712: 1226: 17: 2652: 4566: 3762: 3308: 3273: 2660: 737:
Schematic diagram of an aerodynamic nozzle. Many thousands of these small foils would be combined in an enrichment unit.
481:
generation), which consumes only 2% to 2.5% as much energy as gaseous diffusion. Some work is being done that would use
4460: 4044: 1063:
are a byproduct from irradiation in a reactor and may be contained in the HEU, depending on its manufacturing history.
821: 663: 2637: 3124: 3003: 2352: 1417: 1400: 425:
commercial fast reactor prototype used HEU with 26.5% U. Significant quantities of HEU are used in the production of
162:
production. After the milling process is complete, the uranium must next undergo a process of conversion, "to either
1623:. The 27th International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR. Princeton University. 4354: 4219: 2754: 2445: 1592: 971: 4297: 4131: 3733: 3611: 3268: 3129: 2319: 2188:"GE Hitachi Nuclear Energy Selects Wilmington, N.C. as Site for Potential Commercial Uranium Enrichment Facility" 529: 485:; however, there is no reliable evidence that any nuclear resonance processes have been scaled up to production. 1716: 4603: 4287: 4136: 3594: 2012:"Progress and perspective in enrichment and separation of radionuclide uranium by biomass functional materials" 1825:"Progress and perspective in enrichment and separation of radionuclide uranium by biomass functional materials" 458: 4061: 3894: 3318: 3246: 2708:"The Military Significance of Small Uranium Enrichment Facilities Fed with Low-Enrichment Uranium (Redacted)" 1268: 1218: 708: 975:
Enriched uranium produced at LLNL plant was collected as nuggets the size and thickness of several quarters.
4404: 4141: 3850: 3604: 3101: 2693: 407: 2392: 532:
facility in the U.S. ceased operating, it was the last commercial U gaseous diffusion plant in the world.
374:
in 1945, used 64 kilograms (141 lb) of 80% enriched uranium. Wrapping the weapon's fissile core in a
166:, which can be used as the fuel for those types of reactors that do not require enriched uranium, or into 4588: 4554: 4467: 4439: 4396: 4361: 4199: 4026: 3964: 3789: 3693: 3579: 3047: 2747: 198:, are capable of operating with natural uranium as fuel). There are two commercial enrichment processes: 206:. Both enrichment processes involve the use of uranium hexafluoride and produce enriched uranium oxide. 4598: 4388: 4247: 3926: 3444: 3401: 3253: 482: 269: 155:", contains roughly 80% uranium whereas the original ore typically contains as little as 0.1% uranium. 129: 2688: 2011: 1824: 4542: 4224: 3833: 3616: 1764: 1690: 1484: 716: 704: 418: 252:, and therefore could be used to fuel reactors that customarily use natural uranium as fuel, such as 106: 4472: 4314: 4214: 4126: 3335: 3221: 3181: 2993: 2698: 542: 434: 4377: 4344: 4319: 3933: 3710: 3516: 3439: 3396: 3379: 3340: 3263: 2173: 1717:"Detailed Reanalysis of a Benchmark Critical Experiment: Water-Reflected Enriched-Uranium Sphere" 1615: 887: 521: 344: 4302: 2213: 1691:"Nuclear Weapons FAQ, Section 4.1.7.1: Nuclear Design Principles â€“ Highly Enriched Uranium" 4593: 4209: 3496: 3040: 1938: 1310: 879: 859: 387: 82:
Proportions of uranium-238 (blue) and uranium-235 (red) found naturally versus enriched grades
4503: 4239: 4194: 3656: 3584: 3511: 3506: 3471: 3258: 3226: 3013: 2940: 2170:"GE Signs Agreement With Silex Systems of Australia To Develop Uranium Enrichment Technology" 2135: 1390: 907: 712: 678: 648: 647:
employs specially tuned lasers to separate isotopes of uranium using selective ionization of
602: 590: 524:. This produces a slight separation between the molecules containing U and U. Throughout the 383: 340: 301: 2625:
Annotated bibliography on enriched uranium from the Alsos Digital Library for Nuclear Issues
1875: 858:, using immiscible aqueous and organic phases. An ion-exchange process was developed by the 504: 465:
There are currently two generic commercial methods employed internationally for enrichment:
4414: 4189: 4174: 3491: 3449: 3285: 3191: 3119: 2481: 2378: 2269: 2103: 1871: 1802: 1428: 1292: 1231: 767: 766:
non-rotating centrifuges. Enhancement of the centrifugal forces is achieved by dilution of
693: 667: 546: 513: 414: 356: 237: 167: 27:
Uranium in which isotope separation has been used to increase its proportion of uranium-235
1664: 8: 4513: 4324: 4109: 3703: 3571: 3549: 3374: 3231: 2998: 2960: 2793: 1244: 851: 245: 227: 125: 2273: 2107: 158:
This yellowcake is further processed to obtain the desired form of uranium suitable for
4493: 4229: 4066: 3993: 3804: 3454: 3424: 3408: 3391: 3035: 2925: 2873: 2823: 2770: 2552: 2455:(Report). The Parliament of the Commonwealth of Australia. November 2006. p. 730. 2285: 2218: 2127: 2073: 1887: 1545: 1356: 1143: 445: 321: 233: 203: 64: 44: 1524:"Integral molten salt reactor neutron physics study using Monte Carlo N-particle code" 1464:. U.S. Army Center for Health Promotion and Preventive Medicine. June 1999. p. 27 512:
Gaseous diffusion is a technology used to produce enriched uranium by forcing gaseous
382:, and "tamping", which slows the expansion of the fissioning core with inertia, allow 3561: 3354: 3241: 3216: 3154: 3111: 2955: 2950: 2945: 2788: 2729: 2721: 2556: 2544: 2411: 2131: 2119: 2077: 2031: 1891: 1844: 1784: 1780: 1549: 1504: 1500: 1396: 1320: 1284: 826: 581: 499: 466: 403: 375: 199: 187: 148:
is mined, it must go through a milling process to extract the uranium from the ore.
52: 2526: 2289: 1540: 1523: 4608: 4409: 3464: 3429: 3186: 3176: 3064: 3052: 2893: 2878: 2868: 2863: 2717: 2684: 2534: 2277: 2111: 2063: 2023: 1879: 1836: 1776: 1727: 1535: 1496: 1371: 1128: 891: 426: 305: 117: 110: 2647: 124:
than even natural uranium, though still very dense. Depleted uranium is used as a
4307: 4267: 3721: 3535: 3459: 3434: 3280: 3073: 2975: 2965: 2930: 2808: 2798: 2664: 2641: 1198: 379: 261: 249: 163: 78: 72: 3799: 2732: 2707: 2139: 2094:
Slakey, Francis; Cohen, Linda R. (March 2010). "Stop laser uranium enrichment".
733: 300:
High-assay LEU (HALEU) is enriched between 5% and 20% and is called for in many
4262: 4257: 4252: 4002: 3909: 3878: 3860: 3384: 3290: 3236: 3201: 3134: 3081: 2935: 2828: 2813: 2803: 1427:. Proceedings of international forum on illegal nuclear traffic. Archived from 1375: 1335: 1330: 1113: 883: 593:(SWU), making it about 40% cheaper than standard gaseous diffusion techniques. 567: 474: 399: 332: 91: 4282: 2539: 2068: 2055: 2027: 1883: 1840: 4582: 4447: 3738: 3144: 2985: 2725: 2657: 2548: 2209: 2035: 1848: 1788: 1652:
Forsberg, C. W.; Hopper, C. M.; Richter, J. L.; Vantine, H. C. (March 1998).
1508: 1186: 1173: 866:
that applies similar chemistry but effects separation on a proprietary resin
807: 703:
acquiring and then relinquishing commercialization rights to the technology,
508:
Gaseous diffusion uses semi-permeable membranes to separate enriched uranium.
430: 395: 367: 336: 265: 253: 102: 87: 2670:
A busy year for SWU (a 2008 review of the commercial enrichment marketplace)
1964:"McConnell asks DOE to keep using 60-year-old enrichment plant to save jobs" 1461: 607: 4013: 3149: 3091: 3018: 2970: 2840: 2634: 2355:. Washington DC: Office of Technical Services, Dept of Commerce. p. 29 2325:. Bombay, India: Government of India, Atomic Energy Commission. p. 6. 2296: 2152: 2123: 1415: 1214: 983:
is a minor isotope contained in natural uranium (primarily as a product of
956: 867: 833:
was developed during World War II that provided some of the U used for the
699:. After a protracted development process involving U.S. enrichment company 617: 550: 417:, whose cores require about 20% or more of fissile material, as well as in 348: 159: 2570: 1617:
About the Enrichment Limit for Research Reactor Conversion : Why 20%?
741: 4424: 4071: 3661: 3168: 3139: 2446:
Australia's uranium - Greenhouse friendly fuel for an energy hungry world
1109: 1060: 989: 984: 980: 762: 758: 572: 268:, which would be one of the more mobile and troublesome radionuclides in 257: 184: 145: 121: 60: 56: 48: 40: 878:
Plasma separation process (PSP) describes a technique that makes use of
3777: 2281: 1168: 834: 363: 241: 214: 152: 359:
experiments, enrichment of uranium to over 97% has been accomplished.
4419: 3782: 3772: 2900: 2853: 2818: 2739: 1731: 1001: 838: 684: 371: 4277: 2115: 264:, wasting neutrons (and requiring higher U enrichment) and creating 47:. Naturally occurring uranium is composed of three major isotopes: 4508: 4151: 4146: 4086: 3755: 3683: 3666: 3651: 3626: 3369: 2858: 2594:"Strategic Air Command Declassifies Nuclear Target List from 1950s" 1355:
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021).
1315: 830: 812: 802: 774: 674: 673:, exciting molecules that contain a U atom. A second laser frees a 621: 525: 352: 180: 2410:
Makhijani, Arjun; Chalmers, Lois; Smith, Brice (15 October 2004).
4477: 4429: 4292: 4272: 3671: 3646: 3086: 2917: 2905: 2883: 2848: 2305:
South African Institution of Chemical Engineers – Conference 2000
1462:"Radiological Sources of Potential Exposure and/or Contamination" 1251: 422: 175: 171: 68: 36: 639: 4081: 4076: 4056: 4036: 4021: 3904: 3641: 3621: 3589: 1287:, weapons-grade highly enriched uranium was given the codename 1272: 786: 778: 959:, hex for short) to metal, 0.3% is lost during manufacturing. 4498: 4455: 4118: 3974: 3767: 3631: 1325: 863: 855: 782: 652: 316: 195: 141: 101:
of highly enriched uranium in the world, produced mostly for
98: 1990:"Paducah enrichment plant to be closed - World Nuclear News" 1651: 658: 209: 3979: 3868: 3678: 3636: 2350: 2258: 1206: 754: 746: 700: 191: 2629: 2089: 2087: 1388: 1085:
absorbs a neutron and does not fission. The production of
3952: 3816: 2242:"Uranium Plant Using Laser Technology Wins U.S. Approval" 979:
The HEU feedstock can contain unwanted uranium isotopes:
895: 248:(LWR) spent fuel typically contains slightly more U than 1765:"The theory of uranium enrichment by the gas centrifuge" 1485:"The theory of uranium enrichment by the gas centrifuge" 1422:"Safeguarding Nuclear Weapon-Usable Materials in Russia" 1096:
is thus unavoidable in any thermal neutron reactor with
86:
Enriched uranium is a critical component for both civil
2609:
Oralloy was a term of art for highly enriched uranium.
2375:"Status Report: USEC-DOE Megatons to Megawatts Program" 2172:(Press release). GE Energy. 22 May 2006. Archived from 2084: 1230:
recycled into low-enriched uranium (LEU) fuel, used by
576:
A cascade of gas centrifuges at a U.S. enrichment plant
2409: 1939:"Lodge Partners Mid-Cap Conference 11 April 2008" 43:(written U) has been increased through the process of 2672:, Nuclear Engineering International, 1 September 2008 2005: 2003: 811:
Schematic diagram of uranium isotope separation in a
796: 585:
and so is the current method of choice and is termed
335:
primaries usually contains 85% or more of U known as
1354: 2677:
Uranium Enrichment and Nuclear Weapon Proliferation
2419:. Institute for Energy and Environmental Research. 890:is used to selectively energize the U isotope in a 3502:Blue Ribbon Commission on America's Nuclear Future 2508:"Laser enrichment could cut cost of nuclear power" 2302: 2000: 685:Separation of isotopes by laser excitation (SILEX) 2214:"Laser Advances in Nuclear Fuel Stir Terror Fear" 2049: 2047: 2045: 1663:. Oak Ridge National Laboratories. Archived from 1595:. Nuclear Engineering International. 30 June 2024 1357:"The NUBASE2020 evaluation of nuclear properties" 4580: 2527:"US grants licence for uranium laser enrichment" 2239: 2056:"US grants licence for uranium laser enrichment" 1647: 1645: 311: 1522:Carter, John P.; Borrelli, R.A. (August 2020). 1238: 2042: 2009: 1861: 1822: 1521: 1451:. World Nuclear Association, update April 2021 783:Uranium Enrichment Corporation of South Africa 4205:Small sealed transportable autonomous (SSTAR) 2755: 2705: 1642: 1157:absorbs a neutron, the resulting short-lived 640:Atomic vapor laser isotope separation (AVLIS) 276: 221: 116:The U remaining after enrichment is known as 2563: 2453:Standing Committee on Industry and Resources 2351:US Atomic Energy Commission (January 1961). 2317: 2303:Smith, Michael; Jackson A G M (2000). "Dr". 692:is an Australian development that also uses 2648:Overview and history of U.S. HEU production 2252: 2093: 1585: 256:. It also contains the undesirable isotope 2762: 2748: 2573:. Nuclear Weapon Archive. 10 December 1997 2524: 2053: 1654:"Definition of Weapons-Usable Uranium-233" 1265:separation of isotopes by laser excitation 690:Separation of isotopes by laser excitation 681:, which then precipitates out of the gas. 634:Separation of isotopes by laser excitation 2706:Gilinsky, V.; Hoehn, W. (December 1969). 2683: 2538: 2403: 2067: 1714: 1539: 1348: 1296:development of nuclear weapons. The term 659:Molecular laser isotope separation (MLIS) 295: 4117: 2525:Weinberger, Sharon (28 September 2012). 2054:Weinberger, Sharon (28 September 2012). 1933: 1931: 1929: 1927: 1688: 970: 806: 740: 732: 728: 620:to produce nuclear fuel and was used by 606: 571: 556: 503: 351:rapidly increases, with for example, an 315: 208: 77: 1762: 1562: 1482: 920:SWU, kg SW, or kg UTA (from the German 901: 488: 394:Later U.S. nuclear weapons usually use 14: 4581: 4132:Liquid-fluoride thorium reactor (LFTR) 2769: 2377:. USEC.com. 1 May 2000. Archived from 2240:Associated Press (27 September 2012). 1613: 968:repurposing it for peaceful purposes. 4374: 4137:Molten-Salt Reactor Experiment (MSRE) 3546: 3533: 2743: 2320:"Economics of blending, a case study" 2208: 2159:(Academic, New York, 1990) Chapter 9. 1961: 1924: 1763:Olander, Donald R. (1 January 1981). 1682: 1614:Glaser, Alexander (6 November 2005). 1483:Olander, Donald R. (1 January 1981). 837:nuclear bomb, which was dropped over 645:Atomic vapor laser isotope separation 440: 292:) has a concentration of under 2% U. 4561: 3534: 2713:Defense Technical Information Center 2658:Nuclear Chemistry-Uranium Enrichment 2591: 1951:from the original on 9 October 2022. 1593:"HALEU UF6 and SMR fuel fabrication" 1581:from the original on 9 October 2022. 1227:United States Enrichment Corporation 932:1 SWU = 1 kg SW = 1 kg UTA 886:. In this process, the principle of 873: 535: 493: 67:(in any appreciable amount) that is 39:in which the percent composition of 4142:Integral Molten Salt Reactor (IMSR) 2653:News Resource on Uranium Enrichment 2462:from the original on 9 October 2022 2426:from the original on 9 October 2022 2332:from the original on 9 October 2022 1908:. world-nuclear.org. Archived from 1741:from the original on 9 October 2022 1630:from the original on 9 October 2022 1389:OECD Nuclear Energy Agency (2003). 845: 723: 666:uses an infrared laser directed at 627: 596: 355:mass of 5.4% U being required. For 217:(a mixture of uranium precipitates) 63:(U, 0.0049–0.0059%). U is the only 24: 3951: 3102:Positron-emission tomography (PET) 2592:Burr, William (22 December 2015). 2571:"Israel's Nuclear Weapons Program" 2518: 1689:Sublette, Carey (4 October 1996). 1563:Herczeg, John W. (28 March 2019). 822:electromagnetic isotope separation 797:Electromagnetic isotope separation 664:Molecular laser isotope separation 624:in their nuclear weapons program. 174:, meaning it is easily split with 25: 4620: 3125:Neutron capture therapy of cancer 3024:Radioisotope thermoelectric (RTG) 2618: 1966:. Atomic Insights. Archived from 1565:"High-assay low enriched uranium" 1418:Natural Resources Defense Council 561: 304:(SMR) designs. Fresh LEU used in 4560: 4549: 4548: 4536: 4225:Fast Breeder Test Reactor (FBTR) 324:of highly enriched uranium metal 3314:Historical stockpiles and tests 2585: 2500: 2474: 2438: 2385: 2367: 2344: 2311: 2233: 2202: 2180: 2162: 2146: 1982: 1955: 1898: 1855: 1816: 1795: 1756: 1708: 1607: 1541:10.1016/j.nucengdes.2020.110718 1395:. OECD Publishing. p. 25. 1127:also absorbs neutrons, it is a 962: 789:by NUCLEI, a consortium led by 120:(DU), and is considerably less 4215:Energy Multiplier Module (EM2) 3097:Single-photon emission (SPECT) 2190:. Business Wire. 30 April 2008 1556: 1528:Nuclear Engineering and Design 1515: 1476: 1454: 1438: 1409: 1382: 942: 791:Industrias Nucleares do Brasil 453:is only 0.852% lighter than UF 339:, though theoretically for an 13: 1: 4543:Nuclear technology portal 2482:"Q&A: Uranium enrichment" 1864:Science & Global Security 1420:), Thomas B. (12 June 1997). 1341: 1269:Negev Nuclear Research Center 1219:Megatons to Megawatts Program 1037:content to a stable ratio of 709:Nuclear Regulatory Commission 312:Highly enriched uranium (HEU) 109:, and smaller quantities for 4405:Field-reversed configuration 4015:Uranium Naturel Graphite Gaz 2694:The Periodic Table of Videos 2689:"How do you enrich Uranium?" 2318:Balakrishnan, M. R. (1971). 2016:Chemical Engineering Journal 1944:. Silex Ltd. 11 April 2008. 1829:Chemical Engineering Journal 1781:10.1016/0149-1970(81)90026-3 1501:10.1016/0149-1970(81)90026-3 1239:Global enrichment facilities 1131:that is turned into fissile 1015:is much larger than that of 7: 4362:Aircraft Reactor Experiment 3547: 3309:States with nuclear weapons 2644:, World Nuclear Association 1445:Nuclear Fuel Cycle Overview 1304: 1278: 1074:is produced primarily when 97:There are about 2,000  10: 4625: 4375: 4200:Liquid-metal-cooled (LMFR) 3324:Tests in the United States 2155:and L. W. Hillman (Eds.), 1994:www.world-nuclear-news.org 1962:Adams, Rod (24 May 2011). 1769:Progress in Nuclear Energy 1724:Los Alamos Technical Paper 1489:Progress in Nuclear Energy 1242: 938:1 MSWU = 1 ktSW = 1 kt UTA 905: 800: 761:separation process. These 600: 565: 497: 277:Low-enriched uranium (LEU) 270:deep geological repository 225: 222:Reprocessed uranium (RepU) 65:nuclide existing in nature 4530: 4486: 4438: 4395: 4385: 4337: 4325:Stable Salt Reactor (SSR) 4238: 4220:Reduced-moderation (RMWR) 4185: 4168: 4108: 4035: 4027:Advanced gas-cooled (AGR) 4001: 3992: 3944: 3924: 3877: 3859: 3815: 3720: 3702: 3570: 3557: 3542: 3529: 3484: 3417: 3362: 3353: 3301: 3209: 3200: 3167: 3110: 3072: 3063: 2984: 2916: 2839: 2781: 2777: 2540:10.1038/nature.2012.11502 2512:The Sydney Morning Herald 2069:10.1038/nature.2012.11502 2028:10.1016/j.cej.2023.144586 1884:10.1080/08929880600993071 1841:10.1016/j.cej.2023.144586 1291:, a shortened version of 955:When converting uranium ( 717:American Physical Society 705:GE Hitachi Nuclear Energy 435:technetium-99m generators 286:Slightly enriched uranium 135: 130:armor-penetrating weapons 59:(U, 0.7198–0.7210%), and 51:(U with 99.2732–99.2752% 4230:Dual fluid reactor (DFR) 3846:Steam-generating (SGHWR) 3182:Electron-beam processing 2699:University of Nottingham 2353:"Costs of nuclear power" 1715:Mosteller, R.D. (1994). 1376:10.1088/1674-1137/abddae 1263:process known as SILEX ( 935:1 kSWU = 1 tSW = 1 t UTA 616:is used commercially by 522:semi-permeable membranes 362:The first uranium bomb, 90:generation and military 4345:Organic nuclear reactor 3517:Nuclear power phase-out 3440:Nuclear decommissioning 3380:Reactor-grade plutonium 3130:Targeted alpha-particle 3009:Accidents and incidents 2663:15 October 2008 at the 2640:2 December 2010 at the 2488:. BBC. 1 September 2006 2393:"Megatons to Megawatts" 1876:2006S&GS...14..151V 1254:enrichment plant, with 1217:undertaking called the 926:uranium separation work 888:ion cyclotron resonance 880:superconducting magnets 329:Highly enriched uranium 1870:(2 & 3): 151–162. 1311:List of laser articles 976: 860:Asahi Chemical Company 817: 750: 738: 612: 577: 509: 388:nuclear chain reaction 384:nuclear weapon designs 325: 296:High-assay LEU (HALEU) 244:. RepU recovered from 218: 83: 4604:Nuclear weapon design 3507:Anti-nuclear movement 2062:: nature.2012.11502. 1803:"Nuclear Weapons FAQ" 1301:scientific research. 974: 918:Separative work units 908:Separative work units 906:Further information: 810: 744: 736: 729:Aerodynamic processes 713:nuclear proliferation 679:uranium pentafluoride 651:. The technique uses 649:hyperfine transitions 610: 603:Zippe-type centrifuge 591:Separative Work Units 575: 557:Centrifuge techniques 507: 415:fast neutron reactors 319: 302:small modular reactor 212: 81: 4415:Reversed field pinch 4210:Traveling-wave (TWR) 3694:Supercritical (SCWR) 3192:Gemstone irradiation 2157:Dye Laser Principles 1906:"Uranium Enrichment" 1726:(LA–UR–93–4097): 2. 1392:Nuclear Energy Today 1232:nuclear power plants 902:Separative work unit 894:containing a mix of 547:Oak Ridge, Tennessee 514:uranium hexafluoride 489:Diffusion techniques 413:HEU is also used in 282:Low-enriched uranium 238:nuclear reprocessing 168:uranium hexafluoride 18:Low-enriched uranium 3580:Aqueous homogeneous 3375:Reprocessed uranium 3048:Safety and security 2274:1982NW.....69..520B 2262:Naturwissenschaften 2108:2010Natur.464...32S 1695:Nuclear Weapons FAQ 1245:Georges-Besse plant 856:oxidation/reduction 246:light water reactor 234:nuclear fuel cycles 228:Reprocessed uranium 126:radiation shielding 105:, nuclear weapons, 4589:Isotope separation 4494:Dense plasma focus 3409:Actinide chemistry 2874:Isotope separation 2771:Nuclear technology 2635:Uranium Enrichment 2598:nsarchive2.gwu.edu 2413:Uranium enrichment 2282:10.1007/BF00463495 2246:The New York Times 2219:The New York Times 2212:(20 August 2011). 1970:on 28 January 2013 1670:on 2 November 2013 1144:neutron absorption 977: 818: 751: 739: 613: 578: 549:, was used during 510: 446:Isotope separation 441:Enrichment methods 326: 260:, which undergoes 219: 204:gas centrifugation 84: 45:isotope separation 4599:Nuclear materials 4576: 4575: 4526: 4525: 4522: 4521: 4473:Magnetized-target 4370: 4369: 4333: 4332: 4164: 4163: 4160: 4159: 4104: 4103: 3988: 3987: 3920: 3919: 3525: 3524: 3480: 3479: 3349: 3348: 3336:Weapon-free zones 3163: 3162: 3155:Radiopharmacology 2685:Poliakoff, Martyn 2630:Silex Systems Ltd 2397:centrusenergy.com 2210:Broad, William J. 1364:Chinese Physics C 1321:Nuclear fuel bank 1285:Manhattan Project 1199:nuclear batteries 874:Plasma separation 827:mass spectrometer 587:second generation 582:centripetal force 536:Thermal diffusion 500:Gaseous diffusion 494:Gaseous diffusion 483:nuclear resonance 467:gaseous diffusion 404:lithium deuteride 376:neutron reflector 366:, dropped by the 306:research reactors 200:gaseous diffusion 128:material and for 111:research reactors 53:natural abundance 16:(Redirected from 4616: 4564: 4563: 4552: 4551: 4541: 4540: 4539: 4451: 4410:Levitated dipole 4380: 4372: 4371: 4320:Helium gas (GFR) 4183: 4182: 4178: 4115: 4114: 3999: 3998: 3949: 3948: 3942: 3941: 3937: 3936: 3718: 3717: 3714: 3713: 3552: 3544: 3543: 3536:Nuclear reactors 3531: 3530: 3430:High-level (HLW) 3360: 3359: 3207: 3206: 3187:Food irradiation 3177:Atomic gardening 3070: 3069: 3053:Nuclear meltdown 2879:Nuclear material 2869:Fissile material 2864:Fertile material 2779: 2778: 2764: 2757: 2750: 2741: 2740: 2736: 2718:RAND Corporation 2702: 2612: 2611: 2606: 2604: 2589: 2583: 2582: 2580: 2578: 2567: 2561: 2560: 2542: 2522: 2516: 2515: 2504: 2498: 2497: 2495: 2493: 2478: 2472: 2471: 2469: 2467: 2461: 2450: 2442: 2436: 2435: 2433: 2431: 2425: 2418: 2407: 2401: 2400: 2399:. December 2013. 2389: 2383: 2382: 2381:on 6 April 2001. 2371: 2365: 2364: 2362: 2360: 2348: 2342: 2341: 2339: 2337: 2331: 2324: 2315: 2309: 2308: 2300: 2294: 2293: 2256: 2250: 2249: 2237: 2231: 2230: 2228: 2226: 2206: 2200: 2199: 2197: 2195: 2184: 2178: 2177: 2176:on 14 June 2006. 2166: 2160: 2150: 2144: 2143: 2091: 2082: 2081: 2071: 2051: 2040: 2039: 2007: 1998: 1997: 1986: 1980: 1979: 1977: 1975: 1959: 1953: 1952: 1950: 1943: 1935: 1922: 1921: 1919: 1917: 1902: 1896: 1895: 1859: 1853: 1852: 1820: 1814: 1813: 1811: 1809: 1799: 1793: 1792: 1760: 1754: 1753: 1748: 1746: 1740: 1732:10.2172/10120434 1721: 1712: 1706: 1705: 1703: 1701: 1686: 1680: 1679: 1677: 1675: 1669: 1658: 1649: 1640: 1639: 1637: 1635: 1629: 1622: 1611: 1605: 1604: 1602: 1600: 1589: 1583: 1582: 1580: 1569: 1560: 1554: 1553: 1543: 1519: 1513: 1512: 1480: 1474: 1473: 1471: 1469: 1458: 1452: 1442: 1436: 1435: 1434:on 22 July 2012. 1433: 1426: 1413: 1407: 1406: 1386: 1380: 1379: 1361: 1352: 1261:laser enrichment 1196: 1193: 1192: 1183: 1180: 1179: 1167: 1165: 1164: 1156: 1154: 1153: 1141: 1139: 1138: 1129:fertile material 1126: 1124: 1123: 1106: 1104: 1103: 1095: 1093: 1092: 1084: 1082: 1081: 1073: 1071: 1070: 1058: 1056: 1055: 1047: 1045: 1044: 1036: 1034: 1033: 1025: 1023: 1022: 1014: 1012: 1011: 999: 996: 995: 846:Chemical methods 757:process and the 745:The X-ray-based 724:Other techniques 628:Laser techniques 597:Zippe centrifuge 473:generation) and 469:(referred to as 427:medical isotopes 347:for unmoderated 341:implosion design 118:depleted uranium 107:naval propulsion 73:thermal neutrons 33:Enriched uranium 21: 4624: 4623: 4619: 4618: 4617: 4615: 4614: 4613: 4579: 4578: 4577: 4572: 4537: 4535: 4518: 4482: 4449: 4434: 4391: 4381: 4376: 4366: 4329: 4234: 4179: 4172: 4171: 4156: 4100: 4031: 4006: 3984: 3956: 3938: 3931: 3930: 3929: 3916: 3882: 3873: 3855: 3820: 3811: 3725: 3708: 3707: 3706: 3698: 3612:Natural fission 3566: 3565: 3553: 3548: 3538: 3521: 3497:Nuclear weapons 3476: 3435:Low-level (LLW) 3413: 3345: 3297: 3196: 3159: 3106: 3059: 2980: 2912: 2835: 2773: 2768: 2665:Wayback Machine 2642:Wayback Machine 2621: 2616: 2615: 2602: 2600: 2590: 2586: 2576: 2574: 2569: 2568: 2564: 2523: 2519: 2506: 2505: 2501: 2491: 2489: 2480: 2479: 2475: 2465: 2463: 2459: 2448: 2444: 2443: 2439: 2429: 2427: 2423: 2416: 2408: 2404: 2391: 2390: 2386: 2373: 2372: 2368: 2358: 2356: 2349: 2345: 2335: 2333: 2329: 2322: 2316: 2312: 2301: 2297: 2268:(11): 520–523. 2257: 2253: 2238: 2234: 2224: 2222: 2207: 2203: 2193: 2191: 2186: 2185: 2181: 2168: 2167: 2163: 2151: 2147: 2116:10.1038/464032a 2102:(7285): 32–33. 2092: 2085: 2052: 2043: 2008: 2001: 1988: 1987: 1983: 1973: 1971: 1960: 1956: 1948: 1941: 1937: 1936: 1925: 1915: 1913: 1904: 1903: 1899: 1860: 1856: 1821: 1817: 1807: 1805: 1801: 1800: 1796: 1761: 1757: 1744: 1742: 1738: 1719: 1713: 1709: 1699: 1697: 1687: 1683: 1673: 1671: 1667: 1656: 1650: 1643: 1633: 1631: 1627: 1620: 1612: 1608: 1598: 1596: 1591: 1590: 1586: 1578: 1567: 1561: 1557: 1520: 1516: 1481: 1477: 1467: 1465: 1460: 1459: 1455: 1449:Uranium milling 1443: 1439: 1431: 1424: 1414: 1410: 1403: 1387: 1383: 1359: 1353: 1349: 1344: 1307: 1281: 1247: 1241: 1191: 1189: 1188: 1187: 1185: 1178: 1176: 1175: 1174: 1172: 1163: 1161: 1160: 1159: 1158: 1152: 1150: 1149: 1148: 1147: 1137: 1135: 1134: 1133: 1132: 1122: 1120: 1119: 1118: 1117: 1102: 1100: 1099: 1098: 1097: 1091: 1089: 1088: 1087: 1086: 1080: 1078: 1077: 1076: 1075: 1069: 1067: 1066: 1065: 1064: 1054: 1052: 1051: 1050: 1049: 1043: 1041: 1040: 1039: 1038: 1032: 1030: 1029: 1028: 1027: 1021: 1019: 1018: 1017: 1016: 1010: 1008: 1007: 1006: 1005: 994: 992: 991: 990: 988: 965: 945: 922:Urantrennarbeit 910: 904: 876: 848: 805: 799: 771: 731: 726: 697: 687: 671: 661: 642: 630: 605: 599: 570: 564: 559: 538: 502: 496: 491: 456: 452: 443: 380:fusion boosting 314: 298: 279: 262:neutron capture 250:natural uranium 230: 224: 164:uranium dioxide 138: 92:nuclear weapons 28: 23: 22: 15: 12: 11: 5: 4622: 4612: 4611: 4606: 4601: 4596: 4591: 4574: 4573: 4571: 4570: 4558: 4546: 4531: 4528: 4527: 4524: 4523: 4520: 4519: 4517: 4516: 4511: 4506: 4504:Muon-catalyzed 4501: 4496: 4490: 4488: 4484: 4483: 4481: 4480: 4475: 4470: 4465: 4464: 4463: 4453: 4444: 4442: 4436: 4435: 4433: 4432: 4427: 4422: 4417: 4412: 4407: 4401: 4399: 4393: 4392: 4386: 4383: 4382: 4368: 4367: 4365: 4364: 4359: 4358: 4357: 4352: 4341: 4339: 4335: 4334: 4331: 4330: 4328: 4327: 4322: 4317: 4312: 4311: 4310: 4305: 4300: 4295: 4290: 4285: 4280: 4275: 4270: 4265: 4260: 4255: 4244: 4242: 4236: 4235: 4233: 4232: 4227: 4222: 4217: 4212: 4207: 4202: 4197: 4195:Integral (IFR) 4192: 4186: 4180: 4169: 4166: 4165: 4162: 4161: 4158: 4157: 4155: 4154: 4149: 4144: 4139: 4134: 4129: 4123: 4121: 4112: 4106: 4105: 4102: 4101: 4099: 4098: 4097: 4096: 4091: 4090: 4089: 4084: 4079: 4074: 4059: 4054: 4053: 4052: 4041: 4039: 4033: 4032: 4030: 4029: 4024: 4019: 4010: 4008: 4004: 3996: 3990: 3989: 3986: 3985: 3983: 3982: 3977: 3972: 3967: 3961: 3959: 3954: 3946: 3939: 3925: 3922: 3921: 3918: 3917: 3915: 3914: 3913: 3912: 3907: 3902: 3897: 3886: 3884: 3880: 3875: 3874: 3872: 3871: 3865: 3863: 3857: 3856: 3854: 3853: 3848: 3843: 3842: 3841: 3836: 3825: 3823: 3818: 3813: 3812: 3810: 3809: 3808: 3807: 3802: 3797: 3792: 3787: 3786: 3785: 3780: 3775: 3765: 3760: 3759: 3758: 3753: 3750: 3747: 3744: 3730: 3728: 3723: 3715: 3700: 3699: 3697: 3696: 3691: 3690: 3689: 3686: 3681: 3676: 3675: 3674: 3669: 3659: 3654: 3649: 3644: 3639: 3634: 3629: 3624: 3614: 3609: 3608: 3607: 3602: 3597: 3592: 3582: 3576: 3574: 3568: 3567: 3559: 3558: 3555: 3554: 3540: 3539: 3527: 3526: 3523: 3522: 3520: 3519: 3514: 3512:Uranium mining 3509: 3504: 3499: 3494: 3488: 3486: 3482: 3481: 3478: 3477: 3475: 3474: 3469: 3468: 3467: 3462: 3452: 3447: 3442: 3437: 3432: 3427: 3421: 3419: 3415: 3414: 3412: 3411: 3406: 3405: 3404: 3394: 3389: 3388: 3387: 3385:Minor actinide 3382: 3377: 3366: 3364: 3357: 3351: 3350: 3347: 3346: 3344: 3343: 3338: 3333: 3328: 3327: 3326: 3321: 3311: 3305: 3303: 3299: 3298: 3296: 3295: 3294: 3293: 3283: 3278: 3277: 3276: 3271: 3261: 3256: 3251: 3250: 3249: 3239: 3234: 3229: 3224: 3219: 3213: 3211: 3204: 3198: 3197: 3195: 3194: 3189: 3184: 3179: 3173: 3171: 3165: 3164: 3161: 3160: 3158: 3157: 3152: 3147: 3142: 3137: 3132: 3127: 3122: 3116: 3114: 3108: 3107: 3105: 3104: 3099: 3094: 3089: 3084: 3082:Autoradiograph 3078: 3076: 3067: 3061: 3060: 3058: 3057: 3056: 3055: 3045: 3044: 3043: 3033: 3032: 3031: 3021: 3016: 3011: 3006: 3001: 2996: 2990: 2988: 2982: 2981: 2979: 2978: 2973: 2968: 2963: 2958: 2953: 2948: 2943: 2938: 2933: 2928: 2922: 2920: 2914: 2913: 2911: 2910: 2909: 2908: 2903: 2898: 2897: 2896: 2891: 2876: 2871: 2866: 2861: 2856: 2851: 2845: 2843: 2837: 2836: 2834: 2833: 2832: 2831: 2826: 2816: 2811: 2806: 2804:Atomic nucleus 2801: 2796: 2791: 2785: 2783: 2775: 2774: 2767: 2766: 2759: 2752: 2744: 2738: 2737: 2703: 2681: 2673: 2667: 2655: 2650: 2645: 2632: 2627: 2620: 2619:External links 2617: 2614: 2613: 2584: 2562: 2517: 2514:. 26 May 2006. 2499: 2473: 2437: 2402: 2384: 2366: 2343: 2310: 2295: 2251: 2232: 2201: 2179: 2161: 2145: 2083: 2041: 1999: 1981: 1954: 1923: 1912:on 1 July 2013 1897: 1854: 1815: 1794: 1755: 1707: 1681: 1641: 1606: 1584: 1555: 1514: 1475: 1453: 1437: 1408: 1401: 1381: 1346: 1345: 1343: 1340: 1339: 1338: 1336:Uranium mining 1333: 1331:Uranium market 1328: 1323: 1318: 1313: 1306: 1303: 1280: 1277: 1256:Iran's holding 1240: 1237: 1190: 1177: 1162: 1151: 1136: 1121: 1114:neutron poison 1101: 1090: 1079: 1068: 1053: 1042: 1031: 1020: 1009: 993: 964: 961: 944: 941: 940: 939: 936: 933: 903: 900: 884:plasma physics 875: 872: 847: 844: 801:Main article: 798: 795: 769: 730: 727: 725: 722: 695: 686: 683: 677:atom, leaving 669: 660: 657: 641: 638: 629: 626: 601:Main article: 598: 595: 568:Gas centrifuge 566:Main article: 563: 562:Gas centrifuge 560: 558: 555: 537: 534: 498:Main article: 495: 492: 490: 487: 475:gas centrifuge 454: 450: 442: 439: 429:, for example 419:naval reactors 333:nuclear weapon 313: 310: 297: 294: 278: 275: 254:CANDU reactors 226:Main article: 223: 220: 190:, such as the 137: 134: 26: 9: 6: 4: 3: 2: 4621: 4610: 4607: 4605: 4602: 4600: 4597: 4595: 4594:Nuclear fuels 4592: 4590: 4587: 4586: 4584: 4569: 4568: 4559: 4557: 4556: 4547: 4545: 4544: 4533: 4532: 4529: 4515: 4512: 4510: 4507: 4505: 4502: 4500: 4497: 4495: 4492: 4491: 4489: 4485: 4479: 4476: 4474: 4471: 4469: 4466: 4462: 4461:electrostatic 4459: 4458: 4457: 4454: 4452: 4446: 4445: 4443: 4441: 4437: 4431: 4428: 4426: 4423: 4421: 4418: 4416: 4413: 4411: 4408: 4406: 4403: 4402: 4400: 4398: 4394: 4390: 4384: 4379: 4373: 4363: 4360: 4356: 4353: 4351: 4348: 4347: 4346: 4343: 4342: 4340: 4336: 4326: 4323: 4321: 4318: 4316: 4313: 4309: 4306: 4304: 4301: 4299: 4296: 4294: 4291: 4289: 4286: 4284: 4281: 4279: 4276: 4274: 4271: 4269: 4266: 4264: 4261: 4259: 4256: 4254: 4251: 4250: 4249: 4246: 4245: 4243: 4241: 4240:Generation IV 4237: 4231: 4228: 4226: 4223: 4221: 4218: 4216: 4213: 4211: 4208: 4206: 4203: 4201: 4198: 4196: 4193: 4191: 4190:Breeder (FBR) 4188: 4187: 4184: 4181: 4176: 4167: 4153: 4150: 4148: 4145: 4143: 4140: 4138: 4135: 4133: 4130: 4128: 4125: 4124: 4122: 4120: 4116: 4113: 4111: 4107: 4095: 4092: 4088: 4085: 4083: 4080: 4078: 4075: 4073: 4070: 4069: 4068: 4065: 4064: 4063: 4060: 4058: 4055: 4051: 4048: 4047: 4046: 4043: 4042: 4040: 4038: 4034: 4028: 4025: 4023: 4020: 4018: 4016: 4012: 4011: 4009: 4007: 4000: 3997: 3995: 3991: 3981: 3978: 3976: 3973: 3971: 3968: 3966: 3963: 3962: 3960: 3958: 3950: 3947: 3943: 3940: 3935: 3928: 3923: 3911: 3908: 3906: 3903: 3901: 3898: 3896: 3893: 3892: 3891: 3888: 3887: 3885: 3883: 3876: 3870: 3867: 3866: 3864: 3862: 3858: 3852: 3849: 3847: 3844: 3840: 3837: 3835: 3832: 3831: 3830: 3827: 3826: 3824: 3822: 3814: 3806: 3803: 3801: 3798: 3796: 3793: 3791: 3788: 3784: 3781: 3779: 3776: 3774: 3771: 3770: 3769: 3766: 3764: 3761: 3757: 3754: 3751: 3748: 3745: 3742: 3741: 3740: 3737: 3736: 3735: 3732: 3731: 3729: 3727: 3719: 3716: 3712: 3705: 3701: 3695: 3692: 3687: 3685: 3682: 3680: 3677: 3673: 3670: 3668: 3665: 3664: 3663: 3660: 3658: 3655: 3653: 3650: 3648: 3645: 3643: 3640: 3638: 3635: 3633: 3630: 3628: 3625: 3623: 3620: 3619: 3618: 3615: 3613: 3610: 3606: 3603: 3601: 3598: 3596: 3593: 3591: 3588: 3587: 3586: 3583: 3581: 3578: 3577: 3575: 3573: 3569: 3564: 3563: 3556: 3551: 3545: 3541: 3537: 3532: 3528: 3518: 3515: 3513: 3510: 3508: 3505: 3503: 3500: 3498: 3495: 3493: 3492:Nuclear power 3490: 3489: 3487: 3483: 3473: 3472:Transmutation 3470: 3466: 3463: 3461: 3458: 3457: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3426: 3423: 3422: 3420: 3416: 3410: 3407: 3403: 3400: 3399: 3398: 3395: 3393: 3390: 3386: 3383: 3381: 3378: 3376: 3373: 3372: 3371: 3368: 3367: 3365: 3361: 3358: 3356: 3352: 3342: 3339: 3337: 3334: 3332: 3329: 3325: 3322: 3320: 3317: 3316: 3315: 3312: 3310: 3307: 3306: 3304: 3300: 3292: 3289: 3288: 3287: 3284: 3282: 3279: 3275: 3272: 3270: 3269:high-altitude 3267: 3266: 3265: 3262: 3260: 3259:Proliferation 3257: 3255: 3252: 3248: 3245: 3244: 3243: 3240: 3238: 3235: 3233: 3230: 3228: 3225: 3223: 3220: 3218: 3215: 3214: 3212: 3208: 3205: 3203: 3199: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3174: 3172: 3170: 3166: 3156: 3153: 3151: 3148: 3146: 3145:Brachytherapy 3143: 3141: 3138: 3136: 3133: 3131: 3128: 3126: 3123: 3121: 3118: 3117: 3115: 3113: 3109: 3103: 3100: 3098: 3095: 3093: 3090: 3088: 3085: 3083: 3080: 3079: 3077: 3075: 3071: 3068: 3066: 3062: 3054: 3051: 3050: 3049: 3046: 3042: 3039: 3038: 3037: 3034: 3030: 3027: 3026: 3025: 3022: 3020: 3017: 3015: 3012: 3010: 3007: 3005: 3002: 3000: 2997: 2995: 2992: 2991: 2989: 2987: 2983: 2977: 2974: 2972: 2969: 2967: 2964: 2962: 2959: 2957: 2954: 2952: 2949: 2947: 2944: 2942: 2941:Cross section 2939: 2937: 2934: 2932: 2929: 2927: 2924: 2923: 2921: 2919: 2915: 2907: 2904: 2902: 2899: 2895: 2892: 2890: 2887: 2886: 2885: 2882: 2881: 2880: 2877: 2875: 2872: 2870: 2867: 2865: 2862: 2860: 2857: 2855: 2852: 2850: 2847: 2846: 2844: 2842: 2838: 2830: 2827: 2825: 2822: 2821: 2820: 2817: 2815: 2812: 2810: 2807: 2805: 2802: 2800: 2797: 2795: 2792: 2790: 2787: 2786: 2784: 2780: 2776: 2772: 2765: 2760: 2758: 2753: 2751: 2746: 2745: 2742: 2734: 2731: 2727: 2723: 2719: 2715: 2714: 2709: 2704: 2700: 2696: 2695: 2690: 2686: 2682: 2680: 2678: 2674: 2671: 2668: 2666: 2662: 2659: 2656: 2654: 2651: 2649: 2646: 2643: 2639: 2636: 2633: 2631: 2628: 2626: 2623: 2622: 2610: 2599: 2595: 2588: 2572: 2566: 2558: 2554: 2550: 2546: 2541: 2536: 2532: 2528: 2521: 2513: 2509: 2503: 2487: 2483: 2477: 2458: 2454: 2447: 2441: 2422: 2415: 2414: 2406: 2398: 2394: 2388: 2380: 2376: 2370: 2354: 2347: 2328: 2321: 2314: 2306: 2299: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2263: 2255: 2247: 2243: 2236: 2221: 2220: 2215: 2211: 2205: 2189: 2183: 2175: 2171: 2165: 2158: 2154: 2149: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2105: 2101: 2097: 2090: 2088: 2079: 2075: 2070: 2065: 2061: 2057: 2050: 2048: 2046: 2037: 2033: 2029: 2025: 2021: 2017: 2013: 2006: 2004: 1995: 1991: 1985: 1969: 1965: 1958: 1947: 1940: 1934: 1932: 1930: 1928: 1911: 1907: 1901: 1893: 1889: 1885: 1881: 1877: 1873: 1869: 1865: 1858: 1850: 1846: 1842: 1838: 1834: 1830: 1826: 1819: 1804: 1798: 1790: 1786: 1782: 1778: 1774: 1770: 1766: 1759: 1752: 1737: 1733: 1729: 1725: 1718: 1711: 1696: 1692: 1685: 1666: 1662: 1661:ORNL/TM-13517 1655: 1648: 1646: 1626: 1619: 1618: 1610: 1594: 1588: 1577: 1573: 1566: 1559: 1551: 1547: 1542: 1537: 1533: 1529: 1525: 1518: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1479: 1463: 1457: 1450: 1446: 1441: 1430: 1423: 1419: 1412: 1404: 1402:9789264103283 1398: 1394: 1393: 1385: 1377: 1373: 1370:(3): 030001. 1369: 1365: 1358: 1351: 1347: 1337: 1334: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1312: 1309: 1308: 1302: 1299: 1294: 1290: 1286: 1276: 1274: 1270: 1266: 1262: 1257: 1253: 1246: 1236: 1233: 1228: 1223: 1220: 1216: 1211: 1208: 1202: 1200: 1195: 1182: 1170: 1145: 1130: 1115: 1111: 1062: 1003: 1000:—because the 998: 986: 982: 973: 969: 960: 958: 953: 949: 937: 934: 931: 930: 929: 927: 923: 919: 915: 909: 899: 897: 893: 889: 885: 881: 871: 869: 865: 861: 857: 853: 843: 840: 836: 832: 828: 823: 814: 809: 804: 794: 792: 788: 784: 780: 776: 772: 764: 760: 756: 748: 743: 735: 721: 718: 714: 710: 706: 702: 698: 691: 682: 680: 676: 672: 665: 656: 654: 650: 646: 637: 635: 625: 623: 619: 609: 604: 594: 592: 588: 583: 574: 569: 554: 552: 548: 544: 533: 531: 527: 523: 519: 515: 506: 501: 486: 484: 480: 476: 472: 468: 463: 460: 447: 438: 436: 432: 431:molybdenum-99 428: 424: 420: 416: 411: 409: 405: 401: 397: 396:plutonium-239 392: 389: 385: 381: 377: 373: 369: 368:United States 365: 360: 358: 354: 350: 349:fast neutrons 346: 345:critical mass 342: 338: 337:weapons grade 334: 330: 323: 318: 309: 307: 303: 293: 291: 287: 283: 274: 271: 267: 266:neptunium-237 263: 259: 255: 251: 247: 243: 239: 235: 229: 216: 211: 207: 205: 201: 197: 193: 189: 186: 182: 177: 173: 169: 165: 161: 156: 154: 149: 147: 143: 133: 131: 127: 123: 119: 114: 112: 108: 104: 103:nuclear power 100: 95: 93: 89: 88:nuclear power 80: 76: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 35:is a type of 34: 30: 19: 4565: 4553: 4534: 4514:Pyroelectric 4468:Laser-driven 4248:Sodium (SFR) 4175:fast-neutron 4014: 3560: 3450:Reprocessing 3331:WMD treaties 3150:Radiosurgery 3120:Fast-neutron 3092:Scintigraphy 2888: 2711: 2692: 2676: 2608: 2601:. Retrieved 2597: 2587: 2575:. Retrieved 2565: 2530: 2520: 2511: 2502: 2490:. Retrieved 2485: 2476: 2464:. Retrieved 2452: 2440: 2428:. Retrieved 2412: 2405: 2396: 2387: 2379:the original 2369: 2357:. Retrieved 2346: 2334:. Retrieved 2313: 2304: 2298: 2265: 2261: 2254: 2245: 2235: 2223:. Retrieved 2217: 2204: 2194:30 September 2192:. Retrieved 2182: 2174:the original 2164: 2156: 2153:F. J. Duarte 2148: 2099: 2095: 2059: 2019: 2015: 1993: 1984: 1972:. Retrieved 1968:the original 1957: 1914:. Retrieved 1910:the original 1900: 1867: 1863: 1857: 1832: 1828: 1818: 1806:. Retrieved 1797: 1772: 1768: 1758: 1750: 1743:. Retrieved 1723: 1710: 1698:. Retrieved 1694: 1684: 1672:. Retrieved 1665:the original 1660: 1632:. Retrieved 1616: 1609: 1597:. Retrieved 1587: 1571: 1558: 1531: 1527: 1517: 1492: 1488: 1478: 1466:. Retrieved 1456: 1448: 1440: 1429:the original 1411: 1391: 1384: 1367: 1363: 1350: 1297: 1288: 1282: 1248: 1224: 1215:downblending 1212: 1203: 1197:(for use in 978: 966: 963:Downblending 957:hexafluoride 954: 950: 946: 925: 924:– literally 921: 917: 913: 911: 877: 868:ion-exchange 849: 819: 752: 688: 662: 643: 631: 614: 586: 579: 551:World War II 539: 517: 511: 478: 470: 464: 449:compound (UF 444: 412: 393: 361: 328: 327: 299: 289: 285: 281: 280: 231: 160:nuclear fuel 157: 150: 139: 115: 96: 85: 32: 31: 29: 4425:Stellarator 4389:confinement 4283:SuperphĂ©nix 4110:Molten-salt 4062:VHTR (HTGR) 3839:HW BLWR 250 3805:R4 Marviken 3734:Pressurized 3704:Heavy water 3688:many others 3617:Pressurized 3572:Light water 3274:underground 3232:Disarmament 3140:Tomotherapy 3135:Proton-beam 2999:Power plant 2961:Temperature 2794:Engineering 2603:27 November 2430:21 November 1775:(1): 1–33. 1745:19 December 1495:(1): 1–33. 1283:During the 1169:beta decays 985:alpha decay 943:Cost issues 763:aerodynamic 759:vortex tube 357:criticality 258:uranium-236 185:heavy water 146:uranium ore 122:radioactive 61:uranium-234 57:uranium-235 49:uranium-238 41:uranium-235 4583:Categories 4450:(acoustic) 4067:PBR (PBMR) 3455:Spent fuel 3445:Repository 3425:Fuel cycle 3392:Activation 3169:Processing 3036:Propulsion 2994:by country 2926:Activation 2359:7 November 2336:7 November 2307:: 280–289. 2022:: 144586. 1974:26 January 1835:: 144586. 1808:26 January 1674:30 October 1572:energy.gov 1534:: 110718. 1342:References 1271:site near 1243:See also: 835:Little Boy 829:named the 520:) through 408:D–T fusion 364:Little Boy 242:spent fuel 236:involving 215:yellowcake 213:A drum of 153:yellowcake 4420:Spheromak 4119:Fluorides 3783:IPHWR-700 3778:IPHWR-540 3773:IPHWR-220 3562:Moderator 3242:Explosion 3217:Arms race 3004:Economics 2956:Reflector 2951:Radiation 2946:Generator 2901:Plutonium 2854:Deuterium 2819:Radiation 2789:Chemistry 2733:ADA613260 2726:913595660 2577:7 October 2557:100862135 2549:1476-4687 2492:3 January 2225:21 August 2140:204555310 2132:205053626 2078:100862135 2036:1385-8947 1892:122507063 1849:1385-8947 1789:0149-1970 1700:2 October 1550:225435681 1509:0149-1970 1416:Cochran ( 1293:Oak Ridge 1235:globally 1002:half-life 839:Hiroshima 545:plant at 372:Hiroshima 188:moderator 4555:Category 4509:Polywell 4440:Inertial 4397:Magnetic 4152:TMSR-LF1 4147:TMSR-500 4127:Fuji MSR 4087:THTR-300 3927:Graphite 3790:PHWR KWU 3756:ACR-1000 3684:IPWR-900 3667:ACPR1000 3662:HPR-1000 3652:CPR-1000 3627:APR-1400 3418:Disposal 3370:Actinide 3363:Products 3222:Delivery 3065:Medicine 2894:depleted 2889:enriched 2859:Helium-3 2824:ionizing 2687:(2009). 2661:Archived 2638:Archived 2486:BBC News 2457:Archived 2421:Archived 2327:Archived 2290:44245091 2136:ProQuest 2124:20203589 1946:Archived 1916:14 April 1736:Archived 1634:18 April 1625:Archived 1576:Archived 1316:MOX fuel 1305:See also 1279:Codename 1213:A major 870:column. 831:Calutron 813:calutron 803:Calutron 775:hydrogen 675:fluorine 622:Pakistan 526:Cold War 353:infinite 181:graphite 176:neutrons 4609:Uranium 4567:Commons 4478:Z-pinch 4448:Bubble 4430:Tokamak 4293:FBR-600 4273:CFR-600 4268:BN-1200 3934:coolant 3861:Organic 3746:CANDU 9 3743:CANDU 6 3711:coolant 3672:ACP1000 3647:CAP1400 3585:Boiling 3550:Fission 3397:Fission 3341:Weapons 3281:Warfare 3264:Testing 3254:History 3247:effects 3202:Weapons 3112:Therapy 3087:RadBall 3074:Imaging 2966:Thermal 2931:Capture 2918:Neutron 2906:Thorium 2884:Uranium 2849:Tritium 2829:braking 2809:Fission 2799:Physics 2782:Science 2466:3 April 2270:Bibcode 2104:Bibcode 1872:Bibcode 1599:16 July 1298:oralloy 1289:oralloy 1252:Eurodif 852:valency 820:In the 816:stream. 530:Paducah 459:cascade 423:Fermi-1 172:fissile 69:fissile 37:uranium 4378:Fusion 4338:Others 4278:PhĂ©nix 4263:BN-800 4258:BN-600 4253:BN-350 4082:HTR-PM 4077:HTR-10 4057:UHTREX 4022:Magnox 4017:(UNGG) 3910:Lucens 3905:KS 150 3642:ATMEA1 3622:AP1000 3605:Kerena 3485:Debate 3237:Ethics 3227:Design 3210:Topics 3041:rocket 3019:Fusion 3014:Policy 2976:Fusion 2936:Poison 2814:Fusion 2724:  2555:  2547:  2531:Nature 2288:  2138:  2130:  2122:  2096:Nature 2076:  2060:Nature 2034:  1890:  1847:  1787:  1548:  1507:  1468:1 July 1399:  1273:Dimona 892:plasma 787:Brazil 779:helium 653:lasers 618:Urenco 479:second 400:fusion 322:billet 136:Grades 99:tonnes 4499:Migma 4487:Other 4456:Fusor 4355:Piqua 4350:Arbus 4308:PRISM 4050:MHR-T 4045:GTMHR 3975:EGP-6 3970:AMB-X 3945:Water 3890:HWGCR 3829:HWLWR 3768:IPHWR 3739:CANDU 3600:ESBWR 3355:Waste 3319:Tests 3302:Lists 3286:Yield 3029:MMRTG 2986:Power 2553:S2CID 2460:(PDF) 2449:(PDF) 2424:(PDF) 2417:(PDF) 2330:(PDF) 2323:(PDF) 2286:S2CID 2128:S2CID 2074:S2CID 1949:(PDF) 1942:(PDF) 1888:S2CID 1739:(PDF) 1720:(PDF) 1668:(PDF) 1657:(PDF) 1628:(PDF) 1621:(PDF) 1579:(PDF) 1568:(PDF) 1546:S2CID 1432:(PDF) 1425:(PDF) 1360:(PDF) 1326:Orano 1146:. If 1142:upon 1112:is a 864:Japan 773:with 471:first 457:). A 402:fuel 196:CANDU 142:CANDU 71:with 4315:Lead 4298:CEFR 4288:PFBR 4170:None 3980:RBMK 3965:AM-1 3895:EL-4 3869:WR-1 3851:AHWR 3795:MZFR 3763:CVTR 3752:AFCR 3679:VVER 3637:APWR 3632:APR+ 3595:ABWR 3465:cask 3460:pool 3402:LLFP 3291:TNTe 2971:Fast 2841:Fuel 2730:DTIC 2722:OCLC 2605:2020 2579:2007 2545:ISSN 2494:2010 2468:2015 2432:2009 2361:2021 2338:2021 2227:2011 2196:2012 2120:PMID 2032:ISSN 1976:2013 1918:2013 1845:ISSN 1810:2013 1785:ISSN 1747:2007 1702:2010 1676:2013 1636:2014 1601:2024 1505:ISSN 1470:2019 1397:ISBN 1225:The 1207:ASTM 896:ions 882:and 755:LIGA 747:LIGA 701:USEC 543:S-50 433:for 202:and 194:and 192:RBMK 4387:by 4303:PFR 4094:PMR 4072:AVR 3994:Gas 3932:by 3900:KKN 3834:ATR 3749:EC6 3709:by 3657:EPR 3590:BWR 2535:doi 2278:doi 2112:doi 2100:464 2064:doi 2024:doi 2020:471 1880:doi 1837:doi 1833:471 1777:doi 1728:doi 1536:doi 1532:365 1497:doi 1372:doi 1171:to 1048:to 1004:of 987:of 914:not 862:in 854:in 777:or 518:hex 370:on 290:SEU 240:of 183:or 55:), 4585:: 4037:He 4003:CO 3879:CO 3800:R3 2728:. 2720:. 2716:. 2710:. 2697:. 2691:. 2607:. 2596:. 2551:. 2543:. 2533:. 2529:. 2510:. 2484:. 2451:. 2395:. 2284:. 2276:. 2266:69 2264:. 2244:. 2216:. 2134:. 2126:. 2118:. 2110:. 2098:. 2086:^ 2072:. 2058:. 2044:^ 2030:. 2018:. 2014:. 2002:^ 1992:. 1926:^ 1886:. 1878:. 1868:14 1866:. 1843:. 1831:. 1827:. 1783:. 1771:. 1767:. 1749:. 1734:. 1722:. 1693:. 1659:. 1644:^ 1574:. 1570:. 1544:. 1530:. 1526:. 1503:. 1491:. 1487:. 1447:, 1368:45 1366:. 1362:. 1275:. 1194:Pu 1181:Np 768:UF 694:UF 668:UF 410:. 320:A 132:. 113:. 94:. 4177:) 4173:( 4005:2 3957:O 3955:2 3953:H 3881:2 3821:O 3819:2 3817:H 3726:O 3724:2 3722:D 2763:e 2756:t 2749:v 2735:. 2701:. 2581:. 2559:. 2537:: 2496:. 2470:. 2434:. 2363:. 2340:. 2292:. 2280:: 2272:: 2248:. 2229:. 2198:. 2142:. 2114:: 2106:: 2080:. 2066:: 2038:. 2026:: 1996:. 1978:. 1920:. 1894:. 1882:: 1874:: 1851:. 1839:: 1812:. 1791:. 1779:: 1773:8 1730:: 1704:. 1678:. 1638:. 1603:. 1552:. 1538:: 1511:. 1499:: 1493:8 1472:. 1405:. 1378:. 1374:: 1166:U 1155:U 1140:U 1125:U 1110:U 1105:U 1094:U 1083:U 1072:U 1061:U 1057:U 1046:U 1035:U 1024:U 1013:U 997:U 981:U 770:6 696:6 670:6 516:( 477:( 455:6 451:6 288:( 75:. 20:)

Index

Low-enriched uranium
uranium
uranium-235
isotope separation
uranium-238
natural abundance
uranium-235
uranium-234
nuclide existing in nature
fissile
thermal neutrons

nuclear power
nuclear weapons
tonnes
nuclear power
naval propulsion
research reactors
depleted uranium
radioactive
radiation shielding
armor-penetrating weapons
CANDU
uranium ore
yellowcake
nuclear fuel
uranium dioxide
uranium hexafluoride
fissile
neutrons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑