Knowledge

Lotus effect

Source đź“ť

28: 137:. The higher the contact angle the higher the hydrophobicity of a surface. Surfaces with a contact angle < 90° are referred to as hydrophilic and those with an angle >90° as hydrophobic. Some plants show contact angles up to 160° and are called ultrahydrophobic, meaning that only 2–3% of the surface of a droplet (of typical size) is in contact. Plants with a double structured surface like the lotus can reach a contact angle of 170°, whereby the droplet's contact area is only 0.6%. All this leads to a self-cleaning effect. 52: 1130: 20: 125:
force between surface and droplet to be significantly reduced, resulting in a self-cleaning process. This hierarchical double structure is formed out of a characteristic epidermis (its outermost layer called the cuticle) and the covering waxes. The epidermis of the lotus plant possesses papillae 10 ÎĽm to 20 ÎĽm in height and 10 ÎĽm to 15 ÎĽm in width on which the so-called
44: 210:" respectively. In October 2005, tests of the Hohenstein Research Institute showed that clothes treated with NanoSphere technology allowed tomato sauce, coffee and red wine to be easily washed away even after a few washes. Another possible application is thus with self-cleaning awnings, tarpaulins and sails, which otherwise quickly become dirty and difficult to clean. 141:
the particle and the surface. This cleaning effect has been demonstrated on common materials such as stainless steel when a superhydrophobic surface is produced. As this self-cleaning effect is based on the high surface tension of water it does not work with organic solvents. Therefore, the hydrophobicity of a surface is no protection against graffiti.
173:
When it was discovered that the self-cleaning qualities of ultrahydrophobic surfaces come from physical-chemical properties at the microscopic to nanoscopic scale rather than from the specific chemical properties of the leaf surface, the possibility arose of using this effect in manmade surfaces, by
140:
Dirt particles with an extremely reduced contact area are picked up by water droplets and are thus easily cleaned off the surface. If a water droplet rolls across such a contaminated surface the adhesion between the dirt particle, irrespective of its chemistry, and the droplet is higher than between
110:
and Ehler in 1977, who described such self-cleaning and ultrahydrophobic properties for the first time as the "lotus effect"; perfluoroalkyl and perfluoropolyether ultrahydrophobic materials were developed by Brown in 1986 for handling chemical and biological fluids. Other biotechnical applications
189:
In addition to chemical surface treatments, which can be removed over time, metals have been sculpted with femtosecond pulse lasers to produce the lotus effect. The materials are uniformly black at any angle, which combined with the self-cleaning properties might produce very low maintenance solar
124:
of the surface. Either complete or incomplete wetting may occur depending on the structure of the surface and the fluid tension of the droplet. The cause of self-cleaning properties is the hydrophobic water-repellent double structure of the surface. This enables the contact area and the adhesion
185:
and other surfaces that can stay dry and clean themselves by replicating in a technical manner the self-cleaning properties of plants, such as the lotus plant. This can usually be achieved using special fluorochemical or silicone treatments on structured surfaces or with compositions containing
217:
and the buildup of ice and snow. "Easy to clean" products in ads are often mistaken in the name of the self-cleaning properties of hydrophobic or ultrahydrophobic surfaces. Patterned ultrahydrophobic surfaces also show promise for "lab-on-a-chip" microfluidic devices and can greatly improve
410: 73:, the lotus flower. Dirt particles are picked up by water droplets due to the micro- and nanoscopic architecture on the surface, which minimizes the droplet's adhesion to that surface. Ultrahydrophobicity and self-cleaning properties are also found in other plants, such as 119:
The high surface tension of water causes droplets to assume a nearly spherical shape, since a sphere has minimal surface area, and this shape therefore minimizes the solid-liquid surface energy. On contact of liquid with a surface, adhesion forces result in
407: 343:
Barthlott, W. (2023): “The Discovery of the Lotus Effect as a Key Innovation for Biomimetic Technologies” -  in: Handbook of Self-Cleaning Surfaces and Materials: From Fundamentals to Applications, Chapter 15, pp. 359-369 - Wiley-VCH,
129:
are imposed. These superimposed waxes are hydrophobic and form the second layer of the double structure. This system regenerates. This biochemical property is responsible for the functioning of the water repellency of the surface.
94:
The phenomenon of ultrahydrophobicity was first studied by Dettre and Johnson in 1964 using rough hydrophobic surfaces. Their work developed a theoretical model based on experiments with glass beads coated with paraffin or
253:). Similar to lotus effect, a recent study has revealed honeycomb-like micro-structures on the taro leaf, which makes the leaf superhydrophobic. The measured contact angle on this leaf in this study is around 148 degrees. 164:
and other insects not able to cleanse all their body parts. Another positive effect of self-cleaning is the prevention of contamination of the area of a plant surface exposed to light resulting in reduced photosynthesis.
193:
Further applications have been marketed, such as self-cleaning glasses installed in the sensors of traffic control units on German autobahns developed by a cooperation partner (Ferro GmbH). The Swiss companies
225:
has a lid with a microscopic pyramidal structure based on the ultrahydrophobic properties that funnel condensation and rainwater into a basin for release to a growing plant's roots.
691: 783:
Serles, Peter; Nikumb, Suwas; Bordatchev, Evgueni (2018-06-15). "Superhydrophobic and superhydrophilic functionalized surfaces by picosecond laser texturing".
221:
Superhydrophobic or hydrophobic properties have been used in dew harvesting, or the funneling of water to a basin for use in irrigation. The
935: 190:
thermal energy collectors, while the high durability of the metals could be used for self-cleaning latrines to reduce disease transmission.
233:
Although the self-cleaning phenomenon of the lotus was possibly known in Asia long before (reference to the lotus effect is found in the
826:
Solga, A.; Cerman, Z.; Striffler, B. F.; Spaeth, M.; Barthlott, W. (2007). "The dream of staying clean: Lotus and biomimetic surfaces".
471:
Barthlott, W., Mail, M., Bhushan, B., & K. Koch. (2017). Plant Surfaces: Structures and Functions for Biomimetic Innovations.
590:
Koch, K.; Bhushan, B.; Barthlott, W. (2008). "Diversity of structure, Morphology and Wetting of Plant Surfaces. Soft matter".
1134: 1013: 719: 357:
Rulon E. JohnsonJr.; Robert H. Dettre (1964). "Contact Angle Hysteresis. III. Study of an Idealized Heterogeneous Surface".
435:
Barthlott, Wilhelm; C. Neinhuis (1997). "The purity of sacred lotus or escape from contamination in biological surfaces".
566: 388:
Barthlott, Wilhelm; Ehler, N. (1977). "Raster-Elektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten".
998:
Porous silicon protein microarray technology and ultra-/superhydrophobic states for improved bioanalytical readout
828: 203: 1154: 1037: 883: 240: 1053: 898:
Guo, Z.; Zhou, F.; Hao, J.; Liu, W. (2005). "Stable Biomimetic Super-Hydrophobic Engineering Materials".
689:
Barthlott, Wilhelm; Neinhuis, C. (2001). "The lotus-effect: nature's model for self cleaning surfaces".
1146: 1165: 207: 1185: 850: 1180: 96: 529:
Narhe, R. D.; Beysens, D. A. (2006). "Water condensation on a super-hydrophobic spike surface".
27: 845: 1071:"Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof" 480: 1082: 951: 837: 792: 749: 599: 539: 503: 302: 8: 1160: 740: 64: 1086: 955: 841: 796: 753: 603: 543: 507: 306: 1103: 1070: 640: 454: 326: 1005: 978: 761: 1108: 1019: 1009: 916: 900: 863: 808: 765: 715: 712:
The Gecko's Foot, Bio-inspiration – Engineering New Materials and devices from Nature
495: 318: 239:), its mechanism was explained only in the early 1970s after the introduction of the 222: 107: 859: 656:"Characterization and distribution of water-repellent, self-cleaning plant surfaces" 458: 330: 1098: 1090: 1001: 959: 908: 855: 800: 757: 669: 660: 636: 607: 547: 511: 446: 437: 367: 310: 293: 126: 1057: 939: 531: 414: 272: 213:
Superhydrophobic coatings applied to microwave antennas can significantly reduce
551: 1094: 567:"Mimicking nature: Physical basis and artificial synthesis of the Lotus effect" 408:
Laboratory vessel having hydrophobic coating and process for manufacturing same
359: 178: 103: 1140: 418: 1174: 825: 812: 345: 235: 182: 134: 99: 55:
A water drop on a lotus surface showing contact angles of approximately 147°.
199: 35:
leaf with lotus effect (upper), and taro leaf surface magnified (0–1 is one
1142:
Video showing comparison between plant leaves with and without lotus effect
1112: 1023: 979:"Lasers help create water-repelling, light-absorbing, self-cleaning metals" 920: 867: 769: 674: 655: 627: 322: 267: 1050: 573: 493:
Cheng, Y. T.; Rodak, D. E. (2005). "Is the lotus leaf superhydrophobic?".
450: 262: 371: 144:
This effect is of a great importance for plants as a protection against
245: 87: 75: 36: 963: 912: 804: 515: 51: 1152:
Project Group lotus effect - Nees Institut for biodiversity of plants
995: 611: 214: 161: 157: 314: 356: 145: 121: 81: 69: 589: 1151: 1129: 1000:. Biotechnology Annual Review. Vol. 13. pp. 149–200. 940:"Multifunctional surfaces produced by femtosecond laser pulses" 202:
have developed stain-resistant textiles under the brand names "
149: 19: 174:
mimicking nature in a general way rather than a specific one.
1166:"Self-Cleaning Materials: Lotus Leaf-Inspired Nanotechnology" 897: 153: 881:
Mueller, T. (April 2008). "Biomimetics, Design by Nature".
195: 32: 528: 653: 291:
Lafuma, A.; Quere, D. (2003). "Superhydrophobic states".
181:
have developed treatments, coatings, paints, roof tiles,
43: 492: 63:
refers to self-cleaning properties that are a result of
133:
The hydrophobicity of a surface can be measured by its
102:. The self-cleaning property of ultrahydrophobic micro- 782: 688: 434: 39:
span) showing a number of small protrusions (lower).
290: 1038:"The different forms of condensation - Technology" 996:Ressine, A.; Marko-Varga, G.; Laurell, T. (2007). 387: 91:, cane, and also on the wings of certain insects. 1172: 624: 430: 428: 383: 381: 738:Forbes, P. (2008). "Self-Cleaning Materials". 625:von Baeyer; H. C. (2000). "The Lotus Effect". 1068: 733: 731: 682: 1044: 647: 425: 378: 989: 933: 880: 737: 728: 709: 703: 618: 346:https://doi.org/10.1002/9783527690688.ch15 1102: 849: 819: 673: 350: 284: 47:Computer graphic of a lotus leaf surface. 976: 583: 522: 486: 243:. Studies were performed with leaves of 168: 50: 42: 26: 18: 564: 390:Tropische und Subtropische Pflanzenwelt 114: 1173: 714:. London: Fourth Estate. p. 272. 23:Water on the surface of a lotus leaf. 1155:Friedrich-Wilhelm University of Bonn 654:Neinhuis, C.; Barthlott, W. (1997). 977:Borghino, Dario (21 January 2015). 228: 13: 641:10.1002/j.2326-1951.2000.tb03461.x 156:growth, and also for animals like 14: 1197: 1122: 762:10.1038/scientificamerican0808-88 1128: 1069:Kumar, Manish; Bhardwaj (2020). 829:Bioinspiration & Biomimetics 1062: 1030: 970: 927: 891: 874: 776: 558: 692:International Textile Bulletin 465: 400: 337: 111:have emerged since the 1990s. 67:as exhibited by the leaves of 1: 1135:Animation of the lotus effect 1006:10.1016/S1387-2656(07)13007-6 785:Journal of Laser Applications 481:doi:10.1007/s40820-016-0125-1 278: 884:National Geographic Magazine 241:scanning electron microscope 7: 256: 218:surface-based bioanalysis. 10: 1202: 1095:10.1038/s41598-020-57410-2 944:Journal of Applied Physics 422:, Issued December 29, 1998 186:micro-scale particulates. 860:10.1088/1748-3182/2/4/S02 552:10.1209/epl/i2006-10069-9 106:surfaces was studied by 16:Self-cleaning properties 675:10.1006/anbo.1997.0400 56: 48: 40: 24: 451:10.1007/s004250050096 419:U.S. patent 5,853,894 169:Technical application 54: 46: 30: 22: 1137:at Wikimedia Commons 115:Functional principle 1161:Scientific American 1087:2020NatSR..10..935K 956:2015JAP...117c3103V 907:(45): 15670–15671. 842:2007BiBi....2..126S 797:2018JLasA..30c2505S 754:2008SciAm.299b..88F 741:Scientific American 710:Forbes, P. (2005). 604:2008SMat....4.1943K 544:2006EL.....75...98N 508:2005ApPhL..86n4101C 372:10.1021/j100789a012 307:2003NatMa...2..457L 65:ultrahydrophobicity 1075:Scientific Reports 1056:2012-09-10 at the 1051:Bhagavad Gita 5.10 473:Nano-Micro Letters 413:2017-01-22 at the 127:epicuticular waxes 57: 49: 41: 31:Water droplets on 25: 1133:Media related to 1015:978-0-444-53032-5 964:10.1063/1.4905616 934:Vorobyev, A. Y.; 913:10.1021/ja0547836 901:J. Am. Chem. Soc. 805:10.2351/1.5040641 721:978-0-00-717990-9 516:10.1063/1.1895487 496:Appl. Phys. Lett. 223:Groasis Waterboxx 179:nanotechnologists 108:Wilhelm Barthlott 1193: 1143: 1132: 1117: 1116: 1106: 1066: 1060: 1048: 1042: 1041: 1034: 1028: 1027: 993: 987: 986: 974: 968: 967: 931: 925: 924: 895: 889: 888: 878: 872: 871: 853: 836:(4): S126–S134. 823: 817: 816: 780: 774: 773: 735: 726: 725: 707: 701: 700: 686: 680: 679: 677: 661:Annals of Botany 651: 645: 644: 622: 616: 615: 612:10.1039/b804854a 587: 581: 580: 578: 572:. Archived from 571: 562: 556: 555: 526: 520: 519: 490: 484: 469: 463: 462: 432: 423: 421: 404: 398: 397: 385: 376: 375: 366:(7): 1744–1750. 354: 348: 341: 335: 334: 294:Nature Materials 288: 229:Research history 200:Schoeller Textil 85:(prickly pear), 1201: 1200: 1196: 1195: 1194: 1192: 1191: 1190: 1186:Surface science 1171: 1170: 1141: 1125: 1120: 1067: 1063: 1058:Wayback Machine 1049: 1045: 1036: 1035: 1031: 1016: 994: 990: 975: 971: 932: 928: 896: 892: 879: 875: 824: 820: 781: 777: 736: 729: 722: 708: 704: 687: 683: 652: 648: 623: 619: 588: 584: 576: 569: 563: 559: 532:Europhys. Lett. 527: 523: 491: 487: 470: 466: 433: 426: 417: 415:Wayback Machine 405: 401: 386: 379: 355: 351: 342: 338: 315:10.1038/nmat924 289: 285: 281: 273:Salvinia effect 259: 231: 171: 117: 17: 12: 11: 5: 1199: 1189: 1188: 1183: 1181:Nanotechnology 1169: 1168: 1157: 1149: 1138: 1124: 1123:External links 1121: 1119: 1118: 1061: 1043: 1029: 1014: 988: 969: 926: 890: 873: 851:10.1.1.477.693 818: 775: 727: 720: 702: 681: 668:(6): 667–677. 646: 617: 582: 579:on 2007-09-30. 557: 521: 502:(14): 144101. 485: 464: 424: 399: 377: 360:J. Phys. Chem. 349: 336: 301:(7): 457–460. 282: 280: 277: 276: 275: 270: 265: 258: 255: 230: 227: 170: 167: 116: 113: 104:nanostructured 79:(nasturtium), 15: 9: 6: 4: 3: 2: 1198: 1187: 1184: 1182: 1179: 1178: 1176: 1167: 1163: 1162: 1158: 1156: 1153: 1150: 1148: 1144: 1139: 1136: 1131: 1127: 1126: 1114: 1110: 1105: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1065: 1059: 1055: 1052: 1047: 1039: 1033: 1025: 1021: 1017: 1011: 1007: 1003: 999: 992: 984: 980: 973: 965: 961: 957: 953: 950:(3): 033103. 949: 945: 941: 937: 930: 922: 918: 914: 910: 906: 903: 902: 894: 886: 885: 877: 869: 865: 861: 857: 852: 847: 843: 839: 835: 831: 830: 822: 814: 810: 806: 802: 798: 794: 791:(3): 032505. 790: 786: 779: 771: 767: 763: 759: 755: 751: 747: 743: 742: 734: 732: 723: 717: 713: 706: 698: 694: 693: 685: 676: 671: 667: 663: 662: 657: 650: 642: 638: 634: 630: 629: 621: 613: 609: 605: 601: 597: 593: 586: 575: 568: 561: 553: 549: 545: 541: 538:(1): 98–104. 537: 534: 533: 525: 517: 513: 509: 505: 501: 498: 497: 489: 482: 478: 474: 468: 460: 456: 452: 448: 444: 440: 439: 431: 429: 420: 416: 412: 409: 403: 395: 391: 384: 382: 373: 369: 365: 362: 361: 353: 347: 340: 332: 328: 324: 320: 316: 312: 308: 304: 300: 296: 295: 287: 283: 274: 271: 269: 266: 264: 261: 260: 254: 252: 248: 247: 242: 238: 237: 236:Bhagavad Gita 226: 224: 219: 216: 211: 209: 205: 201: 197: 191: 187: 184: 180: 175: 166: 163: 159: 155: 151: 147: 142: 138: 136: 135:contact angle 131: 128: 123: 112: 109: 105: 101: 98: 92: 90: 89: 84: 83: 78: 77: 72: 71: 66: 62: 53: 45: 38: 34: 29: 21: 1159: 1078: 1074: 1064: 1046: 1032: 997: 991: 982: 972: 947: 943: 936:Guo, Chunlei 929: 904: 899: 893: 882: 876: 833: 827: 821: 788: 784: 778: 748:(2): 67–75. 745: 739: 711: 705: 696: 690: 684: 665: 659: 649: 632: 628:The Sciences 626: 620: 598:(10): 1943. 595: 591: 585: 574:the original 565:Lai, S.C.S. 560: 535: 530: 524: 499: 494: 488: 476: 472: 467: 442: 436: 402: 393: 389: 363: 358: 352: 339: 298: 292: 286: 268:Petal effect 250: 244: 234: 232: 220: 212: 204:HeiQ Eco Dry 192: 188: 176: 172: 143: 139: 132: 118: 93: 86: 80: 74: 68: 61:lotus effect 60: 58: 592:Soft Matter 263:Biomimetics 249:and lotus ( 162:dragonflies 158:butterflies 1175:Categories 1081:(1): 935. 983:gizmag.com 279:References 246:Tropaeolum 208:nanosphere 88:Alchemilla 76:Tropaeolum 37:millimetre 1164:article: 846:CiteSeerX 813:1042-346X 635:: 12–15. 215:rain fade 146:pathogens 1113:31969578 1054:Archived 1024:17875477 938:(2015). 921:16277486 868:18037722 770:18666684 459:37872229 411:Archived 331:19652818 323:12819775 257:See also 1147:YouTube 1104:6976613 1083:Bibcode 952:Bibcode 838:Bibcode 793:Bibcode 750:Bibcode 699:: 8–12. 600:Bibcode 540:Bibcode 504:Bibcode 445:: 1–8. 303:Bibcode 251:Nelumbo 206:" and " 183:fabrics 122:wetting 100:telomer 82:Opuntia 70:Nelumbo 1111:  1101:  1022:  1012:  919:  866:  848:  811:  768:  718:  479:(23), 457:  438:Planta 406:Brown 396:: 110. 329:  321:  887:: 68. 577:(PDF) 570:(PDF) 455:S2CID 327:S2CID 177:Some 154:algae 150:fungi 148:like 1109:PMID 1020:PMID 1010:ISBN 917:PMID 864:PMID 809:ISSN 766:PMID 716:ISBN 319:PMID 198:and 196:HeiQ 97:PTFE 59:The 33:taro 1145:on 1099:PMC 1091:doi 1002:doi 960:doi 948:117 909:doi 905:127 856:doi 801:doi 758:doi 746:299 670:doi 637:doi 608:doi 548:doi 512:doi 447:doi 443:202 368:doi 311:doi 152:or 1177:: 1107:. 1097:. 1089:. 1079:10 1077:. 1073:. 1018:. 1008:. 981:. 958:. 946:. 942:. 915:. 862:. 854:. 844:. 832:. 807:. 799:. 789:30 787:. 764:. 756:. 744:. 730:^ 695:. 666:79 664:. 658:. 633:40 631:. 606:. 594:. 546:. 536:75 510:. 500:86 475:, 453:. 441:. 427:^ 394:19 392:. 380:^ 364:68 325:. 317:. 309:. 297:. 160:, 1115:. 1093:: 1085:: 1040:. 1026:. 1004:: 985:. 966:. 962:: 954:: 923:. 911:: 870:. 858:: 840:: 834:2 815:. 803:: 795:: 772:. 760:: 752:: 724:. 697:1 678:. 672:: 643:. 639:: 614:. 610:: 602:: 596:4 554:. 550:: 542:: 518:. 514:: 506:: 483:. 477:9 461:. 449:: 374:. 370:: 333:. 313:: 305:: 299:2

Index



taro
millimetre


ultrahydrophobicity
Nelumbo
Tropaeolum
Opuntia
Alchemilla
PTFE
telomer
nanostructured
Wilhelm Barthlott
wetting
epicuticular waxes
contact angle
pathogens
fungi
algae
butterflies
dragonflies
nanotechnologists
fabrics
HeiQ
Schoeller Textil
HeiQ Eco Dry
nanosphere
rain fade

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑