Knowledge

Contact angle

Source 📝

1545:
the drop and surface remains constant. The "downhill" side of the drop will adopt a higher contact angle while the "uphill" side of the drop will adopt a lower contact angle. As the tilt angle increases the contact angles will continue to change but the contact area between the drop and surface will remain constant. At a given surface tilt angle, the advancing and receding contact angles will be met and the drop will move on the surface. In practice, the measurement can be influenced by shear forces and momentum if the tilt velocity is high. The measurement method can also be challenging in practice for systems with high (>30 degrees) or low (<10 degrees) contact angle hysteresis.
105: 2704: 2728: 2640: 2440: 565: 2513:
selection of the organic molecules with varying molecular structures and amounts of hydrocarbon and/or perfluorinated terminations, the contact angle of the surface can tune. The deposition of these specialty silanes can be achieved in the gas phase through the use of a specialized vacuum ovens or liquid-phase process. Molecules that can bind more perfluorinated terminations to the surface can results in lowering the surface energy (high water contact angle).
2628: 1496:
measured from dynamic experiments where droplets or liquid bridges are in movement. In contrast, the equilibrium contact angle described by the Young-Laplace equation is measured from a static state. Static measurements yield values in-between the advancing and receding contact angle depending on deposition parameters (e.g. velocity, angle, and drop size) and drop history (e.g. evaporation from time of deposition). Contact angle hysteresis is defined as
2452: 20: 1985: 1106: 826: 1479: 1733: 836: 593: 1274: 1257: 2755:
In case of a porous materials many issues have been raised both about the physical meaning of the calculated pore diameter and the real possibility to use this equation for the calculation of the contact angle of the solid, even if this method is often offered by much software as consolidated. Change
1544:
Advancing and receding contact angles can be measured directly from the same measurement if drops are moved linearly on a surface. For example, a drop of liquid will adopt a given contact angle when static, but when the surface is tilted the drop will initially deform so that the contact area between
2512:
Control of the wetting contact angle can often be achieved through the deposition or incorporation of various organic and inorganic molecules onto the surface. This is often achieved through the use of specialty silane chemicals which can form a SAM (self-assembled monolayers) layer. With the proper
2459:
Contact angles are extremely sensitive to contamination; values reproducible to better than a few degrees are generally only obtained under laboratory conditions with purified liquids and very clean solid surfaces. If the liquid molecules are strongly attracted to the solid molecules then the liquid
1548:
Advancing and receding contact angle measurements can be carried out by adding and removing liquid from a drop deposited on a surface. If a sufficiently small volume of liquid is added to a drop, the contact line will still be pinned, and the contact angle will increase. Similarly, if a small amount
2690:
The dynamic sessile drop is similar to the static sessile drop but requires the drop to be modified. A common type of dynamic sessile drop study determines the largest contact angle possible without increasing its solid–liquid interfacial area by adding volume dynamically. This maximum angle is the
1989:
On a surface that is rough or contaminated, there will also be contact angle hysteresis, but now the local equilibrium contact angle (the Young equation is now only locally valid) may vary from place to place on the surface. According to the Young–Dupré equation, this means that the adhesion energy
1724: 1495:
A given substrate-liquid-vapor combination yields a continuous range of contact angle values in practice. The maximum contact angle is referred to as the advancing contact angle and the minimum contact angle is referred to as the receding contact angle. The advancing and receding contact angles are
2740:
An optical variation of the single-fiber Wilhelmy method. Instead of measuring with a balance, the shape of the meniscus on the fiber is directly imaged using a high resolution camera. Automated meniscus shape fitting can then directly measure the static, advancing or receding contact angle on the
2711:
The dynamic Wilhelmy method is a method for calculating average advancing and receding contact angles on solids of uniform geometry. Both sides of the solid must have the same properties. Wetting force on the solid is measured as the solid is immersed in or withdrawn from a liquid of known surface
2671:
Measuring contact angles for pendant drops is much more complicated than for sessile drops due to the inherent unstable nature of inverted drops. This complexity is further amplified when one attempts to incline the surface. Experimental apparatus to measure pendant drop contact angles on inclined
2662:
using an optical subsystem to capture the profile of a pure liquid on a solid substrate. The angle formed between the liquid–solid interface and the liquid–vapor interface is the contact angle. Older systems used a microscope optical system with a back light. Current-generation systems employ high
2430:
that governs the shape of a three-dimensional drop, in conjunction with appropriate boundary conditions, is complicated, and an alternate energy minimization approach to this is generally adopted. The shapes of three-dimensional sessile and pendant drops have been successfully predicted using this
2087:
If the surface is wetted heterogeneously, the droplet is in Cassie-Baxter state. The most stable contact angle can be connected to the Young contact angle. The contact angles calculated from the Wenzel and Cassie-Baxter equations have been found to be good approximations of the most stable contact
1997:
Because liquid advances over previously dry surface but recedes from previously wet surface, contact angle hysteresis can also arise if the solid has been altered due to its previous contact with the liquid (e.g., by a chemical reaction, or absorption). Such alterations, if slow, can also produce
584:, researchers were able to produce and image droplets at ever smaller scales. With the reduction in droplet size came new experimental observations of wetting. These observations confirmed that the modified Young's equation does not hold at the micro-nano scales. Jasper proposed that including a 1536:
The advancing contact angle can be described as a measure of the liquid-solid cohesion while the receding contact angle is a measure of liquid-solid adhesion. The advancing and receding contact angles can be measured directly using different methods and can also be calculated from other wetting
416:
The earliest study on the relationship between contact angle and surface tensions for sessile droplets on flat surfaces was reported by Thomas Young in 1805. A century later Gibbs proposed a modification to Young's equation to account for the volumetric dependence of the contact angle. Gibbs
2422: 2096:
For liquid moving quickly over a surface, the contact angle can be altered from its value at rest. The advancing contact angle will increase with speed, and the receding contact angle will decrease. The discrepancies between static and dynamic contact angles are closely proportional to the
535: 83:
is often observed, ranging from the advancing (maximal) contact angle to the receding (minimal) contact angle. The equilibrium contact is within those values, and can be calculated from them. The equilibrium contact angle reflects the relative strength of the liquid, solid, and vapour
2495:
If the contact angle is measured through the gas instead of through the liquid, then it should be replaced by 180° minus their given value. Contact angles are equally applicable to the interface of two liquids, though they are more commonly measured in solid products such as
1980:{\displaystyle {\begin{aligned}r_{\rm {A}}&={\sqrt{\frac {\sin ^{3}\theta _{\rm {A}}}{2-3\cos \theta _{\rm {A}}+\cos ^{3}\theta _{\rm {A}}}}}\\r_{\rm {R}}&={\sqrt{\frac {\sin ^{3}\theta _{\rm {R}}}{2-3\cos \theta _{\rm {R}}+\cos ^{3}\theta _{\rm {R}}}}}\end{aligned}}} 1552:
The Young's equation assumes a homogeneous surface and does not account for surface texture or outside forces such as gravity. Real surfaces are not atomically smooth or chemically homogeneous so a drop will assume contact angle hysteresis. The equilibrium contact angle
1101:{\displaystyle \cos(\theta \mp \alpha )=A+B\,{\frac {\cos \alpha }{a}}\pm C\sin(\theta \mp \alpha )(1+\cos \theta )^{2}{\biggl (}{\frac {\sin \alpha \,(2+\cos \alpha )}{(1+\cos \alpha )^{2}}}\mp {\frac {\sin \theta \,(2+\cos \theta )}{(1+\cos \theta )^{2}}}{\biggr )}} 1113: 1261:
This equation relates the contact angle, a geometric property of a sessile droplet to the bulk thermodynamics, the energy at the three phase contact boundary, and the mean curvature of the droplet. For the special case of a sessile droplet on a flat surface
91:
The contact angle depends upon the medium above the free surface of the liquid, and the nature of the liquid and solid in contact. It is independent of the inclination of solid to the liquid surface. It changes with surface tension and hence with the
2663:
resolution cameras and software to capture and analyze the contact angle. Angles measured in such a way are often quite close to advancing contact angles. Equilibrium contact angles can be obtained through the application of well defined vibrations.
821:{\displaystyle 0={\frac {dA_{\rm {LG}}}{dA_{\rm {SL}}}}+{\frac {\gamma _{\rm {SL}}-\gamma _{\rm {SG}}}{\gamma _{\rm {LG}}}}-{\frac {\kappa }{\gamma _{\rm {LG}}}}{\frac {dL}{dA_{\rm {SL}}}}-{\frac {V}{\gamma _{\rm {LG}}}}{\frac {dP}{dA_{\rm {SL}}}}} 1585: 269: 2488:) materials may have water contact angles as high as ≈ 120°. Some materials with highly rough surfaces may have a water contact angle even greater than 150°, due to the presence of air pockets under the liquid drop. These are called 1474:{\displaystyle \cos \theta ={\frac {\gamma _{\rm {SG}}-\gamma _{\rm {SL}}}{\gamma _{\rm {LG}}}}+{\frac {\kappa }{\gamma _{\rm {LG}}}}{\frac {1}{a}}-{\frac {\gamma }{3\gamma _{\rm {LG}}}}(2+\cos \theta -2\cos ^{2}\theta -\cos ^{3}\theta )} 2006:
Surface roughness has a strong effect on the contact angle and wettability of a surface. The effect of roughness depends on if the droplet will wet the surface grooves or if air pockets will be left between the droplet and the surface.
2178: 422: 366: 2010:
If the surface is wetted homogeneously, the droplet is in Wenzel state. In Wenzel state, adding surface roughness will enhance the wettability caused by the chemistry of the surface. The Wenzel correlation can be written as
830:
The variation in the pressure at the free liquid-vapor boundary is due to Laplace pressure, which is proportional to the mean curvature. Solving the above equation for both convex and concave surfaces yields:
551:
is the droplet radius in meters. Although experimental data validates an affine relationship between the cosine of the contact angle and the inverse line radius, it does not account for the correct sign of
2712:
tension. Also in that case it is possible to measure the equilibrium contact angle by applying a very controlled vibration. That methodology, called VIECA, can be implemented in a quite simple way on every
1738: 1483:
In the above equation, the first two terms are the modified Young's equation, while the third term is due to the Laplace pressure. This nonlinear equation correctly predicts the sign and magnitude of
417:
postulated the existence of a line tension, which acts at the three-phase boundary and accounts for the excess energy at the confluence of the solid-liquid-gas phase interface, and is given as:
2064: 1529:. The static, advancing, or receding contact angle can be used in place of the equilibrium contact angle depending on the application. The overall effect can be seen as closely analogous to 3586:
Marco, Brugnara; Claudio, Della Volpe; Stefano, Siboni (2006). "Wettability of porous materials. II. Can we obtain the contact angle from the Washburn equation?". In Mittal, K. L. (ed.).
2672:
substrates has been developed recently. This method allows for the deposition of multiple microdrops on the underside of a textured substrate, which can be imaged using a high resolution
181: 2472:
layer or contaminants on the solid surface can significantly increase the contact angle. Generally, if the water contact angle is smaller than 90°, the solid surface is considered
3523:
Bhutani, Gaurav; Muralidhar, K.; Khandekar, Sameer (2013). "Determination of apparent contact angle and shape of a static pendant drop on a physically textured inclined surface".
1252:{\displaystyle A={\frac {\gamma _{\rm {SG}}-\gamma _{\rm {SL}}}{\gamma _{\rm {LG}}}},\quad B={\frac {\kappa }{\gamma _{\rm {LG}}}},\quad C={\frac {\gamma }{3\gamma _{\rm {LG}}}}.} 588:
term in the variation of the free energy may be the key to solving the contact angle problem at such small scales. Given that the variation in free energy is zero at equilibrium:
406: 79:
A given system of solid, liquid, and vapor at a given temperature and pressure has a unique equilibrium contact angle. However, in practice a dynamic phenomenon of contact angle
2691:
advancing angle. Volume is removed to produce the smallest possible angle, the receding angle. The difference between the advancing and receding angle is the contact angle
1994:: the extent of wetting, and therefore the observed contact angle (averaged along the contact line), depends on whether the liquid is advancing or receding on the surface. 2950:
Jasper, Warren J.; Anand, Nadish (May 2019). "A generalized variational approach for predicting contact angles of sessile nano-droplets on both flat and curved surfaces".
284: 3443: 2173: 3182: 2993:
Jasper, Warren J.; Rasipuram, Srinivasan (December 2017). "Relationship between contact angle and contact line radius for micro to atto liter size oil droplets".
132:
phase (G) (which could be a mixture of ambient atmosphere and an equilibrium concentration of the liquid vapor). (The "gaseous" phase could be replaced by another
2122: 1719:{\displaystyle \theta _{\rm {c}}=\arccos \left({\frac {r_{\rm {A}}\cos \theta _{\rm {A}}+r_{\rm {R}}\cos \theta _{\rm {R}}}{r_{\rm {A}}+r_{\rm {R}}}}\right)} 1990:
varies locally – thus, the liquid has to overcome local energy barriers in order to wet the surface. One consequence of these barriers is contact angle
2417:{\displaystyle \kappa _{m}={\frac {1}{2}}{\frac {(1+{f_{x}}^{2})f_{yy}-2f_{x}f_{y}f_{xy}+(1+{f_{y}}^{2})f_{xx}}{(1+{f_{x}}^{2}+{f_{y}}^{2})^{3/2}}}.} 2676:
camera. An automated system allows for tilting the substrate and analysing the images for the calculation of advancing and receding contact angles.
530:{\displaystyle \cos \theta ={\frac {\gamma _{\rm {SG}}-\gamma _{\rm {SL}}}{\gamma _{\rm {LG}}}}+{\frac {\kappa }{\gamma _{\rm {LG}}}}{\frac {1}{a}}} 3315: 2014: 2460:
drop will completely spread out on the solid surface, corresponding to a contact angle of 0°. This is often the case for water on bare
2132:
On the basis of interfacial energies, the profile of a surface droplet or a liquid bridge between two surfaces can be described by the
3104:
Chibowski, Emil (2008). "Surface free energy of sulfur—Revisited I. Yellow and orange samples solidified against glass surface".
3444:"About the possibility of experimentally measuring an equilibrium contact angle and its theoretical and practical consequences" 2427: 3724: 3688: 3407: 3271: 2136:. This equation is applicable for three-dimensional axisymmetric conditions and is highly non-linear. This is due to the 2084:
is the roughness ratio. The roughness ratio is defined as the ratio between the actual and projected solid surface area.
175: 2921: 3551: 3744: 3030:"Numerical simulation of droplet behavior on an inclined plate using the Moving Particle Semi-implicit method" 3069:
Tadmor, Rafael (2004). "Line energy and the relation between advancing, receding, and Young contact angles".
2543: 581: 373: 278: 73: 2133: 113: 3754: 3749: 2724:
Dynamic Wilhelmy method applied to single fibers to measure advancing and receding contact angles.
2659: 2632: 3536: 559: 264:{\displaystyle \gamma _{\rm {SG}}-\gamma _{\rm {SL}}-\gamma _{\rm {LG}}\cos \theta _{\rm {C}}=0\,} 3643: 573: 3354: 3667:, 2nd revised edition, Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York (1976) 2781: 2750: 2685: 2653: 2594: 2140:
term which includes products of first- and second-order derivatives of the drop shape function
3397: 2673: 63: 3552:"An experimental procedure to obtain the equilibrium contact angle from the Wilhelmy method" 3292: 2143: 104: 3614: 3330: 3280: 3156: 3113: 2484:
exhibit hydrophobic surfaces. Highly hydrophobic surfaces made of low surface energy (e.g.
85: 1487:, the flattening of the contact angle at very small scales, and contact angle hysteresis. 8: 3759: 3653: 2727: 1533:, i.e., a minimal amount of work per unit distance is required to move the contact line. 577: 3618: 3424: 3334: 3284: 3160: 3117: 2703: 2104: 3714: 3702: 3505: 2975: 2894: 2846: 2828: 66:
and the tangent on the solid–liquid interface at their intersection. It quantifies the
3720: 3706: 3694: 3684: 3497: 3489: 3403: 3346: 3296: 3251: 3216: 3129: 3086: 3051: 3010: 2979: 2967: 2927: 2917: 2898: 2886: 2771: 2501: 3509: 3199:
Wenzel, Robert N. (1936-08-01). "Resistance of Solid Surfaces to Wetting by Water".
2850: 2639: 3676: 3622: 3602: 3566: 3532: 3481: 3469: 3338: 3288: 3243: 3208: 3164: 3121: 3078: 3041: 3002: 2959: 2876: 2842: 2838: 2819:
Shi, Z.; et al. (2018). "Dynamic contact angle hysteresis in liquid bridges".
2476:
and if the water contact angle is larger than 90°, the solid surface is considered
2098: 1580:
as was shown theoretically by Tadmor and confirmed experimentally by Chibowski as,
361:{\displaystyle \gamma _{\rm {LG}}(1+\cos \theta _{\rm {C}})=\Delta W_{\rm {SLG}}\,} 2455:
A water drop on a lotus leaf surface showing contact angles of approximately 147°.
3006: 2963: 2786: 2489: 1530: 155: 56: 3395: 112:
The theoretical description of contact angle arises from the consideration of a
3739: 3342: 3125: 2713: 2137: 1538: 568:
Schematic Diagrams for droplets on flat (a) concave (b) and convex (c) surfaces
560:
Contact angle prediction while accounting for line tension and Laplace pressure
137: 117: 3680: 3671:
Yuan, Yuehua; Lee, T. Randall (2013). "Contact Angle and Wetting Properties".
3485: 3441: 3168: 3733: 3698: 3493: 3468:
Huhtamäki, Tommi; Tian, Xuelin; Korhonen, Juuso T.; Ras, Robin H. A. (2018).
3300: 3255: 3234:
Cassie, A. B. D.; Baxter, S. (1944-01-01). "Wettability of porous surfaces".
3220: 3055: 3014: 2971: 2890: 2497: 3626: 3571: 3549: 3501: 3350: 3269:
Marmur, Abraham (2009-07-06). "Solid-Surface Characterization by Wetting".
3133: 3090: 2881: 2864: 2485: 2931: 2578:
BIS(Tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylsiloxymethylchlorosilane
408:
is the solid – liquid adhesion energy per unit area when in the medium G.
3442:
Volpe, C. D.; Brugnara, M.; Maniglio, D.; Siboni, S.; Wangdu, T. (2006).
3247: 3046: 3029: 2776: 133: 93: 68: 3212: 2707:
Measuring dynamic contact angle of a rod/fiber with a force tensiometer.
55:
surface where they meet. More specifically, it is the angle between the
23:
Schematic of a liquid drop showing the quantities in the Young equation.
2766: 2692: 2627: 2477: 2473: 1991: 80: 3082: 2451: 2439: 2535:
Henicosyl-1,1,2,2-tetrahydrododecyldimethyltris(dimethylaminosilane)
3470:"Surface-wetting characterization using contact-angle measurements" 2833: 1549:
of liquid is removed from a drop, the contact angle will decrease.
564: 274: 3429:
209th Electrochemical Society meeting, May 7–12, 2006, Denver, CO
3183:"Influence of surface roughness on contact angle and wettability" 2791: 2481: 2465: 544: 48: 3648:
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
2821:
Colloids and Surfaces A: Physicochemical and Engineering Aspects
19: 121: 45: 3399:
Surface design: applications in bioscience and nanotechnology
3396:
Renate Förch; Holger Schönherr; A. Tobias A. Jenkins (2009).
2570:
Tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane – (FOTS)
2469: 2461: 2444: 129: 125: 108:
Cloth, treated to be hydrophobic, shows a high contact angle.
60: 52: 41: 2744: 556:
and overestimates its value by several orders of magnitude.
2554:
Nonafluoro-1,1,2,2-tetrahydrohexyltris(dimethylamino)silane
3550:
Volpe, C. D.; Maniglio, D.; Siboni, S.; Morra, M. (2001).
3522: 3425:"Choice of precursors in Vapor-phase Surface Modification" 1512:
although the term is also used to describe the expression
16:
Angle between a liquid–vapor interface and a solid surface
3147:
de Gennes, P.G. (1985). "Wetting: statics and dynamics".
2869:
Philosophical Transactions of the Royal Society of London
3467: 3422: 2001: 2443:
Image from a video contact angle device. Water drop on
2544:
Heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane
3675:. Springer Series in Surface Sciences. Vol. 51. 2181: 2146: 2107: 2017: 1736: 1588: 1277: 1116: 839: 596: 425: 376: 287: 273:
The contact angle can also be related to the work of
184: 154:, and the liquid–vapor interfacial energy (i.e. the 3600: 3585: 3021: 2679: 2416: 2167: 2116: 2059:{\displaystyle \cos \theta _{m}=r\cos \theta _{Y}} 2058: 1979: 1718: 1473: 1251: 1100: 820: 572:With improvements in measuring techniques such as 529: 400: 360: 263: 3313: 2647: 1093: 949: 3731: 3027: 2945: 2943: 2941: 2731:Single-fiber meniscus contact angle measurement. 2658:The sessile drop contact angle is measured by a 2562:3,3,3,4,4,5,5,6,6-Nonafluorohexyltrichlorosilane 2992: 2735: 2719: 3028:Hattori, Tsuyoshi; Koshizuka, Seiichi (2019). 3537:10.1615/InterfacPhenomHeatTransfer.2013007038 3316:"Anisotropy in the wetting of rough surfaces" 2938: 2756:of weight as a function of time is measured. 3233: 2507: 1537:measurements such as force tensiometry (aka 411: 2949: 2912:Gibbs, J. Willard (Josiah Willard) (1961). 2519:Effect of surface fluorine on contact angle 1490: 174:is determined from these quantities by the 2698: 2666: 2127: 1998:measurably time-dependent contact angles. 3646:, Françoise Brochard-Wyart, David Quéré, 3570: 3376: 3374: 3314:Chen Y, He B, Lee J, Patankar NA (2005). 3146: 3103: 3045: 2880: 2865:"III. An essay on the cohesion of fluids" 2832: 2745:Washburn's equation capillary rise method 2434: 2091: 1036: 966: 873: 357: 260: 147:, the solid–liquid interfacial energy by 3594: 3579: 3383:Contact Angle, Wettability, and Adhesion 3323:Journal of Colloid and Interface Science 3106:Journal of Colloid and Interface Science 2726: 2702: 2638: 2626: 2450: 2438: 563: 103: 18: 3670: 3588:Contact Angle, Wettability and Adhesion 3525:Interfacial Phenomena and Heat Transfer 3516: 3448:Contact Angle, Wettability and Adhesion 3293:10.1146/annurev.matsci.38.060407.132425 3140: 72:of a solid surface by a liquid via the 3732: 3381:Zisman, W.A. (1964). F. Fowkes (ed.). 3380: 3371: 3268: 3201:Industrial & Engineering Chemistry 3198: 3068: 2613:Pentafluorophenylpropyltrichlorosilane 2468:surfaces, although the presence of an 2428:elliptic partial differential equation 3463: 3461: 2911: 2814: 2812: 2810: 2808: 2635:is used to measure the contact angle. 2002:Effect of roughness to contact angles 165:, then the equilibrium contact angle 3559:Oil & Gas Science and Technology 2622: 401:{\displaystyle \Delta W_{\rm {SLG}}} 3272:Annual Review of Materials Research 3236:Transactions of the Faraday Society 3097: 3062: 2818: 2605:10-Undecenyltrichlorosilane – (V11) 13: 3637: 3458: 2805: 1958: 1930: 1901: 1865: 1840: 1812: 1783: 1747: 1703: 1688: 1674: 1656: 1641: 1623: 1595: 1400: 1397: 1361: 1358: 1336: 1333: 1320: 1317: 1302: 1299: 1237: 1234: 1201: 1198: 1169: 1166: 1153: 1150: 1135: 1132: 809: 806: 778: 775: 752: 749: 721: 718: 696: 693: 680: 677: 662: 659: 638: 635: 618: 615: 509: 506: 484: 481: 468: 465: 450: 447: 392: 389: 386: 377: 351: 348: 345: 336: 324: 297: 294: 248: 230: 227: 212: 209: 194: 191: 136:liquid phase.) If the solid–vapor 14: 3771: 3658:Intermolecular and Surface Forces 3423:Kobrin, B.; Zhang, T.; Chinn, J. 99: 3603:"The Dynamics of Capillary Flow" 3543: 3435: 3416: 3389: 3307: 3262: 3227: 3192: 3175: 2680:The dynamic sessile drop method 2586:Dodecyltrichlorosilane – (DDTS) 2080:is the Young contact angle and 2073:is the measured contact angle, 1212: 1180: 3034:Mechanical Engineering Journal 2986: 2905: 2857: 2843:10.1016/j.colsurfa.2018.07.004 2648:The static sessile drop method 2391: 2340: 2322: 2294: 2236: 2208: 2162: 2150: 1468: 1409: 1079: 1060: 1055: 1037: 1009: 990: 985: 967: 938: 919: 916: 904: 858: 846: 330: 303: 1: 2798: 3660:, Academic Press (1985–2004) 3601:Washburn, Edward W. (1921). 3007:10.1016/j.molliq.2017.10.134 2995:Journal of Molecular Liquids 2964:10.1016/j.molliq.2019.02.039 2952:Journal of Molecular Liquids 2736:Single-fiber meniscus method 2720:Single-fiber Wilhelmy method 2431:energy minimisation method. 582:scanning electron microscope 7: 2759: 2643:Dynamic sessile drop method 2530:on polished silicon (deg.) 2088:angles with real surfaces. 10: 3776: 3673:Surface Science Techniques 3402:. Wiley-VCH. p. 471. 3343:10.1016/j.jcis.2004.07.038 3126:10.1016/j.jcis.2007.10.059 2748: 2683: 2651: 128:phase (S), and the gas or 96:and purity of the liquid. 3681:10.1007/978-3-642-34243-1 3486:10.1038/s41596-018-0003-z 3169:10.1103/RevModPhys.57.827 3149:Reviews of Modern Physics 2508:Control of contact angles 1562:) can be calculated from 412:Modified Young’s equation 114:thermodynamic equilibrium 3745:Condensed matter physics 3040:(5): 19-00204–19-00204. 2660:contact angle goniometer 2633:contact angle goniometer 2447:, with reflection below. 1491:Contact angle hysteresis 3716:Contact Angle Made Easy 3644:Pierre-Gilles de Gennes 2875:: 65–87. January 1805. 2699:Dynamic Wilhelmy method 2667:The pendant drop method 2128:Contact angle curvature 574:atomic force microscopy 543:is the line tension in 3665:Properties of Polymers 3627:10.1103/PhysRev.17.273 2916:. Dover Publications. 2882:10.1098/rstl.1805.0005 2782:Sessile drop technique 2732: 2708: 2686:Sessile drop technique 2654:Sessile drop technique 2644: 2636: 2595:Dimethyldichlorosilane 2456: 2448: 2435:Typical contact angles 2418: 2169: 2168:{\displaystyle f(x,y)} 2134:Young–Laplace equation 2118: 2092:Dynamic contact angles 2060: 1981: 1720: 1475: 1253: 1102: 822: 569: 531: 402: 362: 265: 109: 24: 3385:. ACS. pp. 1–51. 2730: 2706: 2642: 2630: 2454: 2442: 2419: 2170: 2119: 2061: 1982: 1721: 1476: 1254: 1103: 823: 567: 532: 403: 363: 266: 107: 86:molecular interaction 22: 3719:, ramé-hart (2013), 3572:10.2516/ogst:2001002 3248:10.1039/tf9444000546 3047:10.1299/mej.19-00204 2522:Water contact angle 2179: 2144: 2105: 2015: 1734: 1586: 1275: 1114: 837: 594: 423: 374: 285: 279:Young–Dupré equation 182: 3663:D.W. Van Krevelen, 3654:Jacob Israelachvili 3619:1921PhRv...17..273W 3335:2005JCIS..281..458C 3285:2009AnRMS..39..473M 3213:10.1021/ie50320a024 3161:1985RvMP...57..827D 3118:2008JCIS..319..505C 2751:Washburn's equation 578:confocal microscopy 2733: 2709: 2645: 2637: 2502:waterproof fabrics 2457: 2449: 2414: 2165: 2117:{\displaystyle Ca} 2114: 2056: 1977: 1975: 1716: 1471: 1249: 1098: 818: 570: 527: 398: 358: 261: 138:interfacial energy 116:between the three 110: 25: 3725:978-1-300-66298-3 3690:978-3-642-34242-4 3650:, Springer (2004) 3409:978-3-527-40789-7 3083:10.1021/la049410h 2914:Scientific papers 2772:Meniscus (liquid) 2623:Measuring methods 2620: 2619: 2409: 2203: 1971: 1965: 1853: 1847: 1710: 1407: 1377: 1367: 1342: 1244: 1207: 1175: 1089: 1019: 890: 816: 784: 759: 727: 702: 645: 525: 515: 490: 3767: 3710: 3631: 3630: 3598: 3592: 3591: 3583: 3577: 3576: 3574: 3556: 3547: 3541: 3540: 3520: 3514: 3513: 3480:(7): 1521–1538. 3474:Nature Protocols 3465: 3456: 3455: 3439: 3433: 3432: 3420: 3414: 3413: 3393: 3387: 3386: 3378: 3369: 3368: 3366: 3365: 3359: 3353:. Archived from 3320: 3311: 3305: 3304: 3266: 3260: 3259: 3231: 3225: 3224: 3196: 3190: 3189: 3187: 3179: 3173: 3172: 3144: 3138: 3137: 3101: 3095: 3094: 3066: 3060: 3059: 3049: 3025: 3019: 3018: 2990: 2984: 2983: 2947: 2936: 2935: 2909: 2903: 2902: 2884: 2861: 2855: 2854: 2836: 2816: 2516: 2515: 2490:superhydrophobic 2423: 2421: 2420: 2415: 2410: 2408: 2407: 2406: 2402: 2389: 2388: 2383: 2382: 2381: 2367: 2366: 2361: 2360: 2359: 2338: 2337: 2336: 2321: 2320: 2315: 2314: 2313: 2290: 2289: 2277: 2276: 2267: 2266: 2251: 2250: 2235: 2234: 2229: 2228: 2227: 2206: 2204: 2196: 2191: 2190: 2174: 2172: 2171: 2166: 2123: 2121: 2120: 2115: 2099:capillary number 2083: 2079: 2072: 2065: 2063: 2062: 2057: 2055: 2054: 2033: 2032: 1986: 1984: 1983: 1978: 1976: 1972: 1970: 1964: 1963: 1962: 1961: 1948: 1947: 1935: 1934: 1933: 1907: 1906: 1905: 1904: 1891: 1890: 1880: 1879: 1870: 1869: 1868: 1854: 1852: 1846: 1845: 1844: 1843: 1830: 1829: 1817: 1816: 1815: 1789: 1788: 1787: 1786: 1773: 1772: 1762: 1761: 1752: 1751: 1750: 1725: 1723: 1722: 1717: 1715: 1711: 1709: 1708: 1707: 1706: 1693: 1692: 1691: 1680: 1679: 1678: 1677: 1661: 1660: 1659: 1646: 1645: 1644: 1628: 1627: 1626: 1615: 1600: 1599: 1598: 1579: 1570: 1561: 1528: 1511: 1486: 1480: 1478: 1477: 1472: 1461: 1460: 1442: 1441: 1408: 1406: 1405: 1404: 1403: 1383: 1378: 1370: 1368: 1366: 1365: 1364: 1348: 1343: 1341: 1340: 1339: 1326: 1325: 1324: 1323: 1307: 1306: 1305: 1291: 1268: 1258: 1256: 1255: 1250: 1245: 1243: 1242: 1241: 1240: 1220: 1208: 1206: 1205: 1204: 1188: 1176: 1174: 1173: 1172: 1159: 1158: 1157: 1156: 1140: 1139: 1138: 1124: 1107: 1105: 1104: 1099: 1097: 1096: 1090: 1088: 1087: 1086: 1058: 1025: 1020: 1018: 1017: 1016: 988: 955: 953: 952: 946: 945: 891: 886: 875: 827: 825: 824: 819: 817: 815: 814: 813: 812: 795: 787: 785: 783: 782: 781: 765: 760: 758: 757: 756: 755: 738: 730: 728: 726: 725: 724: 708: 703: 701: 700: 699: 686: 685: 684: 683: 667: 666: 665: 651: 646: 644: 643: 642: 641: 624: 623: 622: 621: 604: 587: 555: 550: 542: 536: 534: 533: 528: 526: 518: 516: 514: 513: 512: 496: 491: 489: 488: 487: 474: 473: 472: 471: 455: 454: 453: 439: 407: 405: 404: 399: 397: 396: 395: 367: 365: 364: 359: 356: 355: 354: 329: 328: 327: 302: 301: 300: 270: 268: 267: 262: 253: 252: 251: 235: 234: 233: 217: 216: 215: 199: 198: 197: 173: 164: 153: 146: 39: 3775: 3774: 3770: 3769: 3768: 3766: 3765: 3764: 3755:Surface science 3750:Fluid mechanics 3730: 3729: 3691: 3640: 3638:Further reading 3635: 3634: 3607:Physical Review 3599: 3595: 3584: 3580: 3554: 3548: 3544: 3521: 3517: 3466: 3459: 3440: 3436: 3421: 3417: 3410: 3394: 3390: 3379: 3372: 3363: 3361: 3357: 3318: 3312: 3308: 3267: 3263: 3232: 3228: 3197: 3193: 3185: 3181: 3180: 3176: 3145: 3141: 3102: 3098: 3077:(18): 7659–64. 3067: 3063: 3026: 3022: 2991: 2987: 2948: 2939: 2924: 2910: 2906: 2863: 2862: 2858: 2817: 2806: 2801: 2796: 2787:Surface tension 2762: 2753: 2747: 2738: 2722: 2701: 2688: 2682: 2669: 2656: 2650: 2625: 2510: 2437: 2398: 2394: 2390: 2384: 2377: 2373: 2372: 2371: 2362: 2355: 2351: 2350: 2349: 2339: 2329: 2325: 2316: 2309: 2305: 2304: 2303: 2282: 2278: 2272: 2268: 2262: 2258: 2243: 2239: 2230: 2223: 2219: 2218: 2217: 2207: 2205: 2195: 2186: 2182: 2180: 2177: 2176: 2145: 2142: 2141: 2130: 2106: 2103: 2102: 2094: 2081: 2078: 2074: 2071: 2067: 2050: 2046: 2028: 2024: 2016: 2013: 2012: 2004: 1974: 1973: 1966: 1957: 1956: 1952: 1943: 1939: 1929: 1928: 1924: 1908: 1900: 1899: 1895: 1886: 1882: 1881: 1878: 1871: 1864: 1863: 1859: 1856: 1855: 1848: 1839: 1838: 1834: 1825: 1821: 1811: 1810: 1806: 1790: 1782: 1781: 1777: 1768: 1764: 1763: 1760: 1753: 1746: 1745: 1741: 1737: 1735: 1732: 1731: 1702: 1701: 1697: 1687: 1686: 1682: 1681: 1673: 1672: 1668: 1655: 1654: 1650: 1640: 1639: 1635: 1622: 1621: 1617: 1616: 1614: 1610: 1594: 1593: 1589: 1587: 1584: 1583: 1578: 1572: 1569: 1563: 1560: 1554: 1531:static friction 1527: 1520: 1513: 1510: 1503: 1497: 1493: 1484: 1456: 1452: 1437: 1433: 1396: 1395: 1391: 1387: 1382: 1369: 1357: 1356: 1352: 1347: 1332: 1331: 1327: 1316: 1315: 1311: 1298: 1297: 1293: 1292: 1290: 1276: 1273: 1272: 1263: 1233: 1232: 1228: 1224: 1219: 1197: 1196: 1192: 1187: 1165: 1164: 1160: 1149: 1148: 1144: 1131: 1130: 1126: 1125: 1123: 1115: 1112: 1111: 1092: 1091: 1082: 1078: 1059: 1026: 1024: 1012: 1008: 989: 956: 954: 948: 947: 941: 937: 876: 874: 838: 835: 834: 805: 804: 800: 796: 788: 786: 774: 773: 769: 764: 748: 747: 743: 739: 731: 729: 717: 716: 712: 707: 692: 691: 687: 676: 675: 671: 658: 657: 653: 652: 650: 634: 633: 629: 625: 614: 613: 609: 605: 603: 595: 592: 591: 585: 562: 553: 548: 540: 517: 505: 504: 500: 495: 480: 479: 475: 464: 463: 459: 446: 445: 441: 440: 438: 424: 421: 420: 414: 385: 384: 380: 375: 372: 371: 344: 343: 339: 323: 322: 318: 293: 292: 288: 286: 283: 282: 247: 246: 242: 226: 225: 221: 208: 207: 203: 190: 189: 185: 183: 180: 179: 172: 166: 163: 159: 156:surface tension 152: 148: 145: 141: 124:phase (L), the 102: 57:surface tangent 38: 32: 17: 12: 11: 5: 3773: 3763: 3762: 3757: 3752: 3747: 3742: 3728: 3727: 3711: 3689: 3668: 3661: 3651: 3639: 3636: 3633: 3632: 3593: 3578: 3542: 3515: 3457: 3434: 3415: 3408: 3388: 3370: 3329:(2): 458–464. 3306: 3279:(1): 473–489. 3261: 3226: 3207:(8): 988–994. 3191: 3174: 3155:(3): 827–863. 3139: 3096: 3061: 3020: 2985: 2937: 2923:978-0486607214 2922: 2904: 2856: 2803: 2802: 2800: 2797: 2795: 2794: 2789: 2784: 2779: 2774: 2769: 2763: 2761: 2758: 2749:Main article: 2746: 2743: 2737: 2734: 2721: 2718: 2700: 2697: 2684:Main article: 2681: 2678: 2668: 2665: 2652:Main article: 2649: 2646: 2624: 2621: 2618: 2617: 2614: 2610: 2609: 2606: 2602: 2601: 2598: 2591: 2590: 2587: 2583: 2582: 2579: 2575: 2574: 2571: 2567: 2566: 2563: 2559: 2558: 2555: 2551: 2550: 2547: 2540: 2539: 2536: 2532: 2531: 2528: 2524: 2523: 2520: 2509: 2506: 2498:non-stick pans 2436: 2433: 2413: 2405: 2401: 2397: 2393: 2387: 2380: 2376: 2370: 2365: 2358: 2354: 2348: 2345: 2342: 2335: 2332: 2328: 2324: 2319: 2312: 2308: 2302: 2299: 2296: 2293: 2288: 2285: 2281: 2275: 2271: 2265: 2261: 2257: 2254: 2249: 2246: 2242: 2238: 2233: 2226: 2222: 2216: 2213: 2210: 2202: 2199: 2194: 2189: 2185: 2164: 2161: 2158: 2155: 2152: 2149: 2138:mean curvature 2129: 2126: 2113: 2110: 2093: 2090: 2076: 2069: 2053: 2049: 2045: 2042: 2039: 2036: 2031: 2027: 2023: 2020: 2003: 2000: 1969: 1960: 1955: 1951: 1946: 1942: 1938: 1932: 1927: 1923: 1920: 1917: 1914: 1911: 1903: 1898: 1894: 1889: 1885: 1877: 1874: 1872: 1867: 1862: 1858: 1857: 1851: 1842: 1837: 1833: 1828: 1824: 1820: 1814: 1809: 1805: 1802: 1799: 1796: 1793: 1785: 1780: 1776: 1771: 1767: 1759: 1756: 1754: 1749: 1744: 1740: 1739: 1714: 1705: 1700: 1696: 1690: 1685: 1676: 1671: 1667: 1664: 1658: 1653: 1649: 1643: 1638: 1634: 1631: 1625: 1620: 1613: 1609: 1606: 1603: 1597: 1592: 1576: 1567: 1558: 1525: 1518: 1508: 1501: 1492: 1489: 1470: 1467: 1464: 1459: 1455: 1451: 1448: 1445: 1440: 1436: 1432: 1429: 1426: 1423: 1420: 1417: 1414: 1411: 1402: 1399: 1394: 1390: 1386: 1381: 1376: 1373: 1363: 1360: 1355: 1351: 1346: 1338: 1335: 1330: 1322: 1319: 1314: 1310: 1304: 1301: 1296: 1289: 1286: 1283: 1280: 1248: 1239: 1236: 1231: 1227: 1223: 1218: 1215: 1211: 1203: 1200: 1195: 1191: 1186: 1183: 1179: 1171: 1168: 1163: 1155: 1152: 1147: 1143: 1137: 1134: 1129: 1122: 1119: 1095: 1085: 1081: 1077: 1074: 1071: 1068: 1065: 1062: 1057: 1054: 1051: 1048: 1045: 1042: 1039: 1035: 1032: 1029: 1023: 1015: 1011: 1007: 1004: 1001: 998: 995: 992: 987: 984: 981: 978: 975: 972: 969: 965: 962: 959: 951: 944: 940: 936: 933: 930: 927: 924: 921: 918: 915: 912: 909: 906: 903: 900: 897: 894: 889: 885: 882: 879: 872: 869: 866: 863: 860: 857: 854: 851: 848: 845: 842: 811: 808: 803: 799: 794: 791: 780: 777: 772: 768: 763: 754: 751: 746: 742: 737: 734: 723: 720: 715: 711: 706: 698: 695: 690: 682: 679: 674: 670: 664: 661: 656: 649: 640: 637: 632: 628: 620: 617: 612: 608: 602: 599: 561: 558: 524: 521: 511: 508: 503: 499: 494: 486: 483: 478: 470: 467: 462: 458: 452: 449: 444: 437: 434: 431: 428: 413: 410: 394: 391: 388: 383: 379: 353: 350: 347: 342: 338: 335: 332: 326: 321: 317: 314: 311: 308: 305: 299: 296: 291: 259: 256: 250: 245: 241: 238: 232: 229: 224: 220: 214: 211: 206: 202: 196: 193: 188: 176:Young equation 170: 161: 150: 143: 140:is denoted by 101: 100:Thermodynamics 98: 74:Young equation 59:on the liquid– 36: 15: 9: 6: 4: 3: 2: 3772: 3761: 3758: 3756: 3753: 3751: 3748: 3746: 3743: 3741: 3738: 3737: 3735: 3726: 3722: 3718: 3717: 3712: 3708: 3704: 3700: 3696: 3692: 3686: 3682: 3678: 3674: 3669: 3666: 3662: 3659: 3655: 3652: 3649: 3645: 3642: 3641: 3628: 3624: 3620: 3616: 3612: 3608: 3604: 3597: 3589: 3582: 3573: 3568: 3564: 3560: 3553: 3546: 3538: 3534: 3530: 3526: 3519: 3511: 3507: 3503: 3499: 3495: 3491: 3487: 3483: 3479: 3475: 3471: 3464: 3462: 3453: 3449: 3445: 3438: 3430: 3426: 3419: 3411: 3405: 3401: 3400: 3392: 3384: 3377: 3375: 3360:on 2017-08-10 3356: 3352: 3348: 3344: 3340: 3336: 3332: 3328: 3324: 3317: 3310: 3302: 3298: 3294: 3290: 3286: 3282: 3278: 3274: 3273: 3265: 3257: 3253: 3249: 3245: 3241: 3237: 3230: 3222: 3218: 3214: 3210: 3206: 3202: 3195: 3184: 3178: 3170: 3166: 3162: 3158: 3154: 3150: 3143: 3135: 3131: 3127: 3123: 3119: 3115: 3112:(2): 505–13. 3111: 3107: 3100: 3092: 3088: 3084: 3080: 3076: 3072: 3065: 3057: 3053: 3048: 3043: 3039: 3035: 3031: 3024: 3016: 3012: 3008: 3004: 3000: 2996: 2989: 2981: 2977: 2973: 2969: 2965: 2961: 2957: 2953: 2946: 2944: 2942: 2933: 2929: 2925: 2919: 2915: 2908: 2900: 2896: 2892: 2888: 2883: 2878: 2874: 2870: 2866: 2860: 2852: 2848: 2844: 2840: 2835: 2830: 2826: 2822: 2815: 2813: 2811: 2809: 2804: 2793: 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2773: 2770: 2768: 2765: 2764: 2757: 2752: 2742: 2729: 2725: 2717: 2715: 2705: 2696: 2694: 2687: 2677: 2675: 2664: 2661: 2655: 2641: 2634: 2629: 2615: 2612: 2611: 2607: 2604: 2603: 2599: 2596: 2593: 2592: 2588: 2585: 2584: 2580: 2577: 2576: 2572: 2569: 2568: 2564: 2561: 2560: 2556: 2553: 2552: 2548: 2545: 2542: 2541: 2537: 2534: 2533: 2529: 2526: 2525: 2521: 2518: 2517: 2514: 2505: 2503: 2499: 2493: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2453: 2446: 2441: 2432: 2429: 2426:Solving this 2424: 2411: 2403: 2399: 2395: 2385: 2378: 2374: 2368: 2363: 2356: 2352: 2346: 2343: 2333: 2330: 2326: 2317: 2310: 2306: 2300: 2297: 2291: 2286: 2283: 2279: 2273: 2269: 2263: 2259: 2255: 2252: 2247: 2244: 2240: 2231: 2224: 2220: 2214: 2211: 2200: 2197: 2192: 2187: 2183: 2159: 2156: 2153: 2147: 2139: 2135: 2125: 2111: 2108: 2100: 2089: 2085: 2051: 2047: 2043: 2040: 2037: 2034: 2029: 2025: 2021: 2018: 2008: 1999: 1995: 1993: 1987: 1967: 1953: 1949: 1944: 1940: 1936: 1925: 1921: 1918: 1915: 1912: 1909: 1896: 1892: 1887: 1883: 1875: 1873: 1860: 1849: 1835: 1831: 1826: 1822: 1818: 1807: 1803: 1800: 1797: 1794: 1791: 1778: 1774: 1769: 1765: 1757: 1755: 1742: 1729: 1726: 1712: 1698: 1694: 1683: 1669: 1665: 1662: 1651: 1647: 1636: 1632: 1629: 1618: 1611: 1607: 1604: 1601: 1590: 1581: 1575: 1566: 1557: 1550: 1546: 1542: 1540: 1539:Wilhemy-Plate 1534: 1532: 1524: 1517: 1507: 1500: 1488: 1481: 1465: 1462: 1457: 1453: 1449: 1446: 1443: 1438: 1434: 1430: 1427: 1424: 1421: 1418: 1415: 1412: 1392: 1388: 1384: 1379: 1374: 1371: 1353: 1349: 1344: 1328: 1312: 1308: 1294: 1287: 1284: 1281: 1278: 1270: 1266: 1259: 1246: 1229: 1225: 1221: 1216: 1213: 1209: 1193: 1189: 1184: 1181: 1177: 1161: 1145: 1141: 1127: 1120: 1117: 1108: 1083: 1075: 1072: 1069: 1066: 1063: 1052: 1049: 1046: 1043: 1040: 1033: 1030: 1027: 1021: 1013: 1005: 1002: 999: 996: 993: 982: 979: 976: 973: 970: 963: 960: 957: 942: 934: 931: 928: 925: 922: 913: 910: 907: 901: 898: 895: 892: 887: 883: 880: 877: 870: 867: 864: 861: 855: 852: 849: 843: 840: 832: 828: 801: 797: 792: 789: 770: 766: 761: 744: 740: 735: 732: 713: 709: 704: 688: 672: 668: 654: 647: 630: 626: 610: 606: 600: 597: 589: 583: 579: 575: 566: 557: 546: 537: 522: 519: 501: 497: 492: 476: 460: 456: 442: 435: 432: 429: 426: 418: 409: 381: 368: 340: 333: 319: 315: 312: 309: 306: 289: 280: 276: 271: 257: 254: 243: 239: 236: 222: 218: 204: 200: 186: 177: 169: 157: 139: 135: 131: 127: 123: 119: 115: 106: 97: 95: 89: 87: 82: 77: 75: 71: 70: 65: 62: 58: 54: 50: 47: 43: 35: 30: 29:contact angle 21: 3715: 3713:Clegg, Carl 3672: 3664: 3657: 3647: 3610: 3606: 3596: 3590:. Mass. VSP. 3587: 3581: 3562: 3558: 3545: 3528: 3524: 3518: 3477: 3473: 3451: 3447: 3437: 3428: 3418: 3398: 3391: 3382: 3362:. Retrieved 3355:the original 3326: 3322: 3309: 3276: 3270: 3264: 3239: 3235: 3229: 3204: 3200: 3194: 3177: 3152: 3148: 3142: 3109: 3105: 3099: 3074: 3070: 3064: 3037: 3033: 3023: 2998: 2994: 2988: 2955: 2951: 2913: 2907: 2872: 2868: 2859: 2824: 2820: 2754: 2739: 2723: 2710: 2689: 2670: 2657: 2511: 2494: 2458: 2425: 2131: 2095: 2086: 2009: 2005: 1996: 1988: 1730: 1727: 1582: 1573: 1564: 1555: 1551: 1547: 1543: 1535: 1522: 1515: 1505: 1498: 1494: 1482: 1271: 1264: 1260: 1109: 833: 829: 590: 571: 538: 419: 415: 369: 272: 167: 111: 90: 78: 67: 33: 28: 26: 3001:: 920–926. 2958:: 196–203. 2827:: 365–371. 2777:Porosimetry 2486:fluorinated 2478:hydrophobic 2474:hydrophilic 94:temperature 69:wettability 3760:Hysteresis 3734:Categories 3613:(3): 273. 3364:2017-03-31 2834:1712.04703 2799:References 2767:Goniometer 2693:hysteresis 2492:surfaces. 1992:hysteresis 134:immiscible 81:hysteresis 44:between a 3707:137147527 3699:0931-5195 3531:: 29–49. 3494:1754-2189 3454:: 79–100. 3301:1531-7331 3256:0014-7672 3221:0019-7866 3056:2187-9745 3015:0167-7322 2980:104412970 2972:0167-7322 2899:116124581 2891:0261-0523 2716:balance. 2527:Precursor 2253:− 2184:κ 2048:θ 2044:⁡ 2026:θ 2022:⁡ 1954:θ 1950:⁡ 1926:θ 1922:⁡ 1913:− 1897:θ 1893:⁡ 1836:θ 1832:⁡ 1808:θ 1804:⁡ 1795:− 1779:θ 1775:⁡ 1670:θ 1666:⁡ 1637:θ 1633:⁡ 1608:⁡ 1591:θ 1541:method). 1466:θ 1463:⁡ 1450:− 1447:θ 1444:⁡ 1428:− 1425:θ 1422:⁡ 1393:γ 1385:γ 1380:− 1354:γ 1350:κ 1329:γ 1313:γ 1309:− 1295:γ 1285:θ 1282:⁡ 1230:γ 1222:γ 1194:γ 1190:κ 1162:γ 1146:γ 1142:− 1128:γ 1076:θ 1073:⁡ 1053:θ 1050:⁡ 1034:θ 1031:⁡ 1022:∓ 1006:α 1003:⁡ 983:α 980:⁡ 964:α 961:⁡ 935:θ 932:⁡ 914:α 911:∓ 908:θ 902:⁡ 893:± 884:α 881:⁡ 856:α 853:∓ 850:θ 844:⁡ 771:γ 762:− 714:γ 710:κ 705:− 689:γ 673:γ 669:− 655:γ 502:γ 498:κ 477:γ 461:γ 457:− 443:γ 433:θ 430:⁡ 378:Δ 337:Δ 320:θ 316:⁡ 290:γ 244:θ 240:⁡ 223:γ 219:− 205:γ 201:− 187:γ 64:interface 40:) is the 3565:: 9–22. 3510:51605807 3502:29988109 3351:15571703 3134:18177886 3091:15323516 3071:Langmuir 2851:51916594 2760:See also 2714:Wilhelmy 2597:– (DDMS) 2546:– (FDTS) 2482:polymers 2462:metallic 2101:, noted 277:via the 275:adhesion 31:(symbol 3615:Bibcode 3331:Bibcode 3281:Bibcode 3242:: 546. 3157:Bibcode 3114:Bibcode 2792:Wetting 2741:fiber. 2480:. Many 2466:ceramic 1110:where 545:Newtons 49:surface 3723:  3705:  3697:  3687:  3508:  3500:  3492:  3406:  3349:  3299:  3254:  3219:  3132:  3089:  3054:  3013:  2978:  2970:  2932:964884 2930:  2920:  2897:  2889:  2849:  2608:100.0 2600:103.0 2589:105.0 2581:107.0 2573:108.0 2565:108.0 2557:110.0 2549:110.0 2538:118.0 2066:where 1728:where 1605:arccos 1574:θ 1565:θ 1556:θ 1523:θ 1521:– cos 1516:θ 1506:θ 1499:θ 1265:α 580:, and 539:where 370:where 168:θ 160:γ 149:γ 142:γ 122:liquid 120:: the 118:phases 51:and a 46:liquid 3740:Angle 3703:S2CID 3555:(PDF) 3506:S2CID 3358:(PDF) 3319:(PDF) 3186:(PDF) 2976:S2CID 2895:S2CID 2847:S2CID 2829:arXiv 2616:90.0 2470:oxide 2445:glass 158:) by 130:vapor 126:solid 61:vapor 53:solid 42:angle 3721:ISBN 3695:ISSN 3685:ISBN 3498:PMID 3490:ISSN 3404:ISBN 3347:PMID 3297:ISSN 3252:ISSN 3217:ISSN 3130:PMID 3087:PMID 3052:ISSN 3011:ISSN 2968:ISSN 2928:OCLC 2918:ISBN 2887:ISSN 2500:and 1571:and 1514:cos 586:V dP 547:and 27:The 3677:doi 3623:doi 3567:doi 3533:doi 3482:doi 3339:doi 3327:281 3289:doi 3244:doi 3209:doi 3165:doi 3122:doi 3110:319 3079:doi 3042:doi 3003:doi 2999:248 2960:doi 2956:281 2877:doi 2839:doi 2825:555 2674:CCD 2464:or 2041:cos 2019:cos 1941:cos 1919:cos 1884:sin 1823:cos 1801:cos 1766:sin 1663:cos 1630:cos 1454:cos 1435:cos 1419:cos 1279:cos 1269:): 1267:= 0 1070:cos 1047:cos 1028:sin 1000:cos 977:cos 958:sin 929:cos 899:sin 878:cos 841:cos 427:cos 313:cos 237:cos 3736:: 3701:. 3693:. 3683:. 3656:, 3621:. 3611:17 3609:. 3605:. 3563:56 3561:. 3557:. 3527:. 3504:. 3496:. 3488:. 3478:13 3476:. 3472:. 3460:^ 3450:. 3446:. 3427:. 3373:^ 3345:. 3337:. 3325:. 3321:. 3295:. 3287:. 3277:39 3275:. 3250:. 3240:40 3238:. 3215:. 3205:28 3203:. 3163:. 3153:57 3151:. 3128:. 3120:. 3108:. 3085:. 3075:20 3073:. 3050:. 3036:. 3032:. 3009:. 2997:. 2974:. 2966:. 2954:. 2940:^ 2926:. 2893:. 2885:. 2873:95 2871:. 2867:. 2845:. 2837:. 2823:. 2807:^ 2695:. 2631:A 2504:. 2175:: 2124:. 1504:– 576:, 281:: 178:: 162:LG 151:SL 144:SG 88:. 76:. 3709:. 3679:: 3629:. 3625:: 3617:: 3575:. 3569:: 3539:. 3535:: 3529:1 3512:. 3484:: 3452:4 3431:. 3412:. 3367:. 3341:: 3333:: 3303:. 3291:: 3283:: 3258:. 3246:: 3223:. 3211:: 3188:. 3171:. 3167:: 3159:: 3136:. 3124:: 3116:: 3093:. 3081:: 3058:. 3044:: 3038:6 3017:. 3005:: 2982:. 2962:: 2934:. 2901:. 2879:: 2853:. 2841:: 2831:: 2412:. 2404:2 2400:/ 2396:3 2392:) 2386:2 2379:y 2375:f 2369:+ 2364:2 2357:x 2353:f 2347:+ 2344:1 2341:( 2334:x 2331:x 2327:f 2323:) 2318:2 2311:y 2307:f 2301:+ 2298:1 2295:( 2292:+ 2287:y 2284:x 2280:f 2274:y 2270:f 2264:x 2260:f 2256:2 2248:y 2245:y 2241:f 2237:) 2232:2 2225:x 2221:f 2215:+ 2212:1 2209:( 2201:2 2198:1 2193:= 2188:m 2163:) 2160:y 2157:, 2154:x 2151:( 2148:f 2112:a 2109:C 2082:r 2077:Y 2075:θ 2070:m 2068:θ 2052:Y 2038:r 2035:= 2030:m 1968:3 1959:R 1945:3 1937:+ 1931:R 1916:3 1910:2 1902:R 1888:3 1876:= 1866:R 1861:r 1850:3 1841:A 1827:3 1819:+ 1813:A 1798:3 1792:2 1784:A 1770:3 1758:= 1748:A 1743:r 1713:) 1704:R 1699:r 1695:+ 1689:A 1684:r 1675:R 1657:R 1652:r 1648:+ 1642:A 1624:A 1619:r 1612:( 1602:= 1596:c 1577:R 1568:A 1559:C 1553:( 1526:A 1519:R 1509:R 1502:A 1485:κ 1469:) 1458:3 1439:2 1431:2 1416:+ 1413:2 1410:( 1401:G 1398:L 1389:3 1375:a 1372:1 1362:G 1359:L 1345:+ 1337:G 1334:L 1321:L 1318:S 1303:G 1300:S 1288:= 1262:( 1247:. 1238:G 1235:L 1226:3 1217:= 1214:C 1210:, 1202:G 1199:L 1185:= 1182:B 1178:, 1170:G 1167:L 1154:L 1151:S 1136:G 1133:S 1121:= 1118:A 1094:) 1084:2 1080:) 1067:+ 1064:1 1061:( 1056:) 1044:+ 1041:2 1038:( 1014:2 1010:) 997:+ 994:1 991:( 986:) 974:+ 971:2 968:( 950:( 943:2 939:) 926:+ 923:1 920:( 917:) 905:( 896:C 888:a 871:B 868:+ 865:A 862:= 859:) 847:( 810:L 807:S 802:A 798:d 793:P 790:d 779:G 776:L 767:V 753:L 750:S 745:A 741:d 736:L 733:d 722:G 719:L 697:G 694:L 681:G 678:S 663:L 660:S 648:+ 639:L 636:S 631:A 627:d 619:G 616:L 611:A 607:d 601:= 598:0 554:κ 549:a 541:κ 523:a 520:1 510:G 507:L 493:+ 485:G 482:L 469:L 466:S 451:G 448:S 436:= 393:G 390:L 387:S 382:W 352:G 349:L 346:S 341:W 334:= 331:) 325:C 310:+ 307:1 304:( 298:G 295:L 258:0 255:= 249:C 231:G 228:L 213:L 210:S 195:G 192:S 171:C 37:C 34:θ

Index


angle
liquid
surface
solid
surface tangent
vapor
interface
wettability
Young equation
hysteresis
molecular interaction
temperature
side view of a drop of water on a gray cloth. Looks like about a 120 degree angle.
thermodynamic equilibrium
phases
liquid
solid
vapor
immiscible
interfacial energy
surface tension
Young equation
adhesion
Young–Dupré equation
Newtons

atomic force microscopy
confocal microscopy
scanning electron microscope

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.