Knowledge

Metrizable space

Source 📝

36: 365:
extends this to the non-separable case. It states that a topological space is metrizable if and only if it is regular, Hausdorff and has a σ-locally finite base. A σ-locally finite base is a base which is a union of countably many
594:
is not metrizable. The usual distance function is not a metric on this space because the topology it determines is the usual topology, not the lower limit topology. This space is Hausdorff, paracompact and first countable.
426: 488: 343:
Hausdorff space is metrizable.) The converse does not hold: there exist metric spaces that are not second countable, for example, an uncountable set endowed with the discrete metric. The
207: 512: 580: 154: 250: 227: 780: 428:
that is, the countably infinite product of the unit interval (with its natural subspace topology from the reals) with itself, endowed with the
65: 854: 17: 694: 362: 344: 679: 387: 733: 583: 87: 58: 458: 787: 162: 859: 330: 294:, cannot be said to be inherited. This is also true of other structures linked to the metric. A metrizable 864: 440: 839: 367: 350:
Several other metrization theorems follow as simple corollaries to Urysohn's theorem. For example, a
334: 48: 493: 673: 626: 550: 515: 371: 52: 44: 563: 443:. Smirnov proved that a locally metrizable space is metrizable if and only if it is Hausdorff and 630: 849: 685: 614: 554: 271:
Metrizable spaces inherit all topological properties from metric spaces. For example, they are
127: 69: 644: 604: 291: 287: 232: 655: 618: 591: 260: 157: 329:
is metrizable. (Historical note: The form of the theorem shown here was in fact proved by
8: 299: 844: 823: 712: 667: 543: 539: 212: 810:
Neeb, Karl-Hermann, On a theorem of S. Banach. J. Lie Theory 7 (1997), no. 2, 293–300.
337:
had shown, in a paper published posthumously in 1925, was that every second-countable
648: 535: 113: 700: 531: 429: 319: 347:, described below, provides a more specific theorem where the converse does hold. 634: 622: 361:
and metrizable if and only if it is regular, Hausdorff and second-countable. The
358: 283: 272: 377:
Separable metrizable spaces can also be characterized as those spaces which are
833: 757: 708: 351: 322: 295: 117: 703: – Topological space whose topology is generated by a uniform structure 682: – A topological vector space whose topology can be defined by a metric 447:. In particular, a manifold is metrizable if and only if it is paracompact. 382: 378: 339: 279: 121: 765: 444: 275: 105: 819: 658:
is locally metrizable but not metrizable; in a sense it is "too long".
558: 354:
Hausdorff space is metrizable if and only if it is second-countable.
781:"Math 395 - Honors Analysis I: 10. Some counterexamples in topology" 638: 526:
Non-normal spaces cannot be metrizable; important examples include
326: 101: 707:, the property of a topological space of being homeomorphic to a 256: 357:
Urysohn's Theorem can be restated as: A topological space is
711:, or equivalently the topology being defined by a family of 697: – Characterizes when a topological space is metrizable 676: – Characterizes when a topological space is metrizable 310:
One of the first widely recognized metrization theorems was
617:(and thus cannot be metrizable). Like all manifolds, it is 598: 27:
Topological space that is homeomorphic to a metric space
705:
Pages displaying short descriptions of redirect targets
325:
is metrizable. So, for example, every second-countable
818:
This article incorporates material from Metrizable on
566: 496: 461: 390: 235: 215: 165: 130: 690:
Pages displaying wikidata descriptions as a fallback
370:
of open sets. For a closely related theorem see the
421:{\displaystyle \lbrack 0,1\rbrack ^{\mathbb {N} },} 290:. However, some properties of the metric, such as 574: 506: 482: 420: 244: 221: 201: 148: 778: 302:than a metric space to which it is homeomorphic. 831: 824:Creative Commons Attribution/Share-Alike License 57:but its sources remain unclear because it lacks 483:{\displaystyle \mathbb {U} ({\mathcal {H}})} 404: 391: 688: – developable regular Hausdorff space 298:, for example, may have a different set of 518:is metrizable (see Proposition II.1 in ). 263:for a topological space to be metrizable. 202:{\displaystyle d:X\times X\to [0,\infty )} 568: 463: 409: 88:Learn how and when to remove this message 756: 670: – Romanian mathematician and poet 305: 156:is said to be metrizable if there is a 14: 832: 599:Locally metrizable but not metrizable 29: 680:Metrizable topological vector space 318:. This states that every Hausdorff 24: 695:Nagata–Smirnov metrization theorem 499: 472: 363:Nagata–Smirnov metrization theorem 345:Nagata–Smirnov metrization theorem 209:such that the topology induced by 193: 25: 876: 731: 584:topology of pointwise convergence 522:Examples of non-metrizable spaces 855:Properties of topological spaces 439:if every point has a metrizable 34: 779:Mitya Boyarchenko (Fall 2010). 455:The group of unitary operators 124:. That is, a topological space 822:, which is licensed under the 804: 772: 750: 725: 507:{\displaystyle {\mathcal {H}}} 477: 467: 196: 184: 181: 143: 131: 13: 1: 718: 490:on a separable Hilbert space 314:Urysohn's metrization theorem 266: 575:{\displaystyle \mathbb {R} } 7: 661: 450: 10: 881: 368:locally finite collections 629:(but not metrizable) and 149:{\displaystyle (X,\tau )} 674:Bing metrization theorem 551:topological vector space 516:strong operator topology 372:Bing metrization theorem 43:This article includes a 18:Locally metrizable space 590:The real line with the 72:more precise citations. 734:"Metrization Theorems" 686:Moore space (topology) 615:non-Hausdorff manifold 576: 508: 484: 435:A space is said to be 422: 246: 245:{\displaystyle \tau .} 223: 203: 150: 645:locally regular space 605:Line with two origins 577: 509: 485: 423: 381:to a subspace of the 261:sufficient conditions 247: 224: 204: 151: 104:and related areas of 860:Theorems in topology 619:locally homeomorphic 592:lower limit topology 582:to itself, with the 564: 494: 459: 388: 306:Metrization theorems 253:Metrization theorems 233: 213: 163: 128: 764:(second ed.). 865:Topological spaces 627:locally metrizable 607:, also called the 572: 544:algebraic geometry 540:spectrum of a ring 504: 480: 437:locally metrizable 418: 278:spaces (and hence 242: 219: 199: 146: 45:list of references 732:Simon, Jonathan. 668:Apollonian metric 649:semiregular space 631:locally Hausdorff 536:algebraic variety 514:endowed with the 222:{\displaystyle d} 114:topological space 98: 97: 90: 16:(Redirected from 872: 840:General topology 811: 808: 802: 801: 799: 798: 792: 786:. Archived from 785: 776: 770: 769: 754: 748: 747: 745: 743: 738: 729: 706: 701:Uniformizability 691: 637:). It is also a 581: 579: 578: 573: 571: 532:Zariski topology 513: 511: 510: 505: 503: 502: 489: 487: 486: 481: 476: 475: 466: 430:product topology 427: 425: 424: 419: 414: 413: 412: 320:second-countable 316: 315: 300:contraction maps 251: 249: 248: 243: 228: 226: 225: 220: 208: 206: 205: 200: 155: 153: 152: 147: 110:metrizable space 93: 86: 82: 79: 73: 68:this article by 59:inline citations 38: 37: 30: 21: 880: 879: 875: 874: 873: 871: 870: 869: 830: 829: 815: 814: 809: 805: 796: 794: 790: 783: 777: 773: 755: 751: 741: 739: 736: 730: 726: 721: 704: 689: 664: 642: 623:Euclidean space 611: 601: 567: 565: 562: 561: 498: 497: 495: 492: 491: 471: 470: 462: 460: 457: 456: 453: 408: 407: 403: 389: 386: 385: 313: 312: 308: 288:first-countable 269: 234: 231: 230: 214: 211: 210: 164: 161: 160: 129: 126: 125: 94: 83: 77: 74: 63: 49:related reading 39: 35: 28: 23: 22: 15: 12: 11: 5: 878: 868: 867: 862: 857: 852: 847: 842: 813: 812: 803: 771: 768:. p. 119. 758:Munkres, James 749: 723: 722: 720: 717: 716: 715: 698: 692: 683: 677: 671: 663: 660: 640: 609: 600: 597: 588: 587: 570: 547: 501: 479: 474: 469: 465: 452: 449: 417: 411: 406: 402: 399: 396: 393: 333:in 1926. What 307: 304: 268: 265: 241: 238: 218: 198: 195: 192: 189: 186: 183: 180: 177: 174: 171: 168: 145: 142: 139: 136: 133: 96: 95: 78:September 2024 53:external links 42: 40: 33: 26: 9: 6: 4: 3: 2: 877: 866: 863: 861: 858: 856: 853: 851: 850:Metric spaces 848: 846: 843: 841: 838: 837: 835: 828: 827: 825: 821: 807: 793:on 2011-09-25 789: 782: 775: 767: 763: 759: 753: 735: 728: 724: 714: 713:pseudometrics 710: 709:uniform space 702: 699: 696: 693: 687: 684: 681: 678: 675: 672: 669: 666: 665: 659: 657: 652: 650: 646: 643: 636: 632: 628: 624: 620: 616: 612: 610:bug-eyed line 606: 596: 593: 585: 560: 556: 552: 548: 545: 541: 537: 533: 529: 528: 527: 524: 523: 519: 517: 448: 446: 442: 441:neighbourhood 438: 433: 431: 415: 400: 397: 394: 384: 380: 375: 373: 369: 364: 360: 355: 353: 348: 346: 342: 341: 336: 332: 328: 324: 323:regular space 321: 317: 303: 301: 297: 296:uniform space 293: 289: 285: 281: 277: 274: 264: 262: 258: 254: 239: 236: 216: 190: 187: 178: 175: 172: 169: 166: 159: 140: 137: 134: 123: 119: 115: 111: 107: 103: 92: 89: 81: 71: 67: 61: 60: 54: 50: 46: 41: 32: 31: 19: 817: 816: 806: 795:. Retrieved 788:the original 774: 761: 752: 740:. Retrieved 727: 653: 608: 602: 589: 525: 521: 520: 454: 436: 434: 383:Hilbert cube 379:homeomorphic 376: 356: 349: 338: 311: 309: 292:completeness 270: 252: 122:metric space 118:homeomorphic 109: 99: 84: 75: 64:Please help 56: 445:paracompact 276:paracompact 106:mathematics 70:introducing 834:Categories 820:PlanetMath 797:2012-08-08 719:References 647:but not a 542:, used in 538:or on the 267:Properties 259:that give 845:Manifolds 656:long line 635:Hausdorff 633:(but not 625:and thus 559:real line 557:from the 555:functions 359:separable 284:Tychonoff 273:Hausdorff 237:τ 194:∞ 182:→ 176:× 141:τ 762:Topology 760:(1999). 662:See also 451:Examples 331:Tikhonov 327:manifold 257:theorems 116:that is 102:topology 766:Pearson 742:16 June 553:of all 352:compact 335:Urysohn 66:improve 534:on an 340:normal 286:) and 280:normal 158:metric 791:(PDF) 784:(PDF) 737:(PDF) 613:is a 120:to a 112:is a 51:, or 744:2016 654:The 603:The 549:the 530:the 282:and 255:are 108:, a 621:to 229:is 100:In 836:: 651:. 432:. 374:. 55:, 47:, 826:. 800:. 746:. 641:1 639:T 586:. 569:R 546:, 500:H 478:) 473:H 468:( 464:U 416:, 410:N 405:] 401:1 398:, 395:0 392:[ 240:. 217:d 197:) 191:, 188:0 185:[ 179:X 173:X 170:: 167:d 144:) 138:, 135:X 132:( 91:) 85:( 80:) 76:( 62:. 20:)

Index

Locally metrizable space
list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message
topology
mathematics
topological space
homeomorphic
metric space
metric
theorems
sufficient conditions
Hausdorff
paracompact
normal
Tychonoff
first-countable
completeness
uniform space
contraction maps
second-countable
regular space
manifold
Tikhonov
Urysohn
normal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.