Knowledge

Complete metric space

Source đź“ť

3062:'s construction of the real numbers is similar to the above construction; the real numbers are the completion of the rational numbers using the ordinary absolute value to measure distances. The additional subtlety to contend with is that it is not logically permissible to use the completeness of the real numbers in their own construction. Nevertheless, equivalence classes of Cauchy sequences are defined as above, and the set of equivalence classes is easily shown to be a 2688: 2512: 3086:
for more details). One way to visualize this identification with the real numbers as usually viewed is that the equivalence class consisting of those Cauchy sequences of rational numbers that "ought" to have a given real limit is identified with that real number. The truncations of the
3174:, spaces for which there exists at least one complete metric inducing the given topology. Completely metrizable spaces can be characterized as those spaces that can be written as an intersection of countably many open subsets of some complete metric space. Since the conclusion of the 2570: 2394: 3056:). This defines an isometry onto a dense subspace, as required. Notice, however, that this construction makes explicit use of the completeness of the real numbers, so completion of the rational numbers needs a slightly different treatment. 3020: 887: 696: 94:
is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below). It is always possible to "fill all the holes", leading to the
3506:
is called complete. One can furthermore construct a completion for an arbitrary uniform space similar to the completion of metric spaces. The most general situation in which Cauchy nets apply is
3230:, an alternative to relying on a metric structure for defining completeness and constructing the completion of a space is to use a group structure. This is most often seen in the context of 2914: 2866: 956: 2031: 2683:{\textstyle \operatorname {int} \left(\bigcap _{i\in \mathbb {N} }\operatorname {cl} S_{i}\right)=\operatorname {int} \operatorname {cl} \left(\bigcap _{i\in \mathbb {N} }S_{i}\right).} 2507:{\textstyle \operatorname {cl} \left(\bigcup _{i\in \mathbb {N} }\operatorname {int} S_{i}\right)=\operatorname {cl} \operatorname {int} \left(\bigcup _{i\in \mathbb {N} }S_{i}\right).} 172: 3356: 623: 3129:
If the earlier completion procedure is applied to a normed vector space, the result is a Banach space containing the original space as a dense subspace, and if it is applied to an
1075: 355: 3185:. However, the latter term is somewhat arbitrary since metric is not the most general structure on a topological space for which one can talk about completeness (see the section 2316: 1381: 1346: 2923: 2732: 1410: 3292: 1748: 1670: 1023: 91: 2119: 3434: 298: 2155: 992: 811: 2190: 1913: 1850: 752: 722: 240: 2541: 2369: 1722: 1644: 1488: 1457: 577: 394: 207: 3484: 3115: 2339: 1546: 1246: 910: 646: 542: 447: 3504: 3399: 3379: 3312: 3272: 3252: 2565: 2389: 2270: 2077: 2053: 1933: 1878: 1815: 1791: 1768: 1690: 1603: 1508: 1430: 1311: 1285: 509: 489: 469: 424: 263: 1136: 889:
This is a Cauchy sequence of rational numbers, but it does not converge towards any rational limit: If the sequence did have a limit
816: 1941: 651: 1196: 64:
Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of
3528: â€“ in algebra, any of several related functors on rings and modules that result in complete topological rings and modules 3591: 3234:, but requires only the existence of a continuous "subtraction" operation. In this setting, the distance between two points 3157:
to a non-complete one. An example is given by the real numbers, which are complete but homeomorphic to the open interval
302: 3549: 3714: 3699: 3686: 3665: 3616: 3543: 2871: 2823: 915: 3083: 3028:, not yet a metric, since two different Cauchy sequences may have the distance 0. But "having distance 0" is an 3194: 2122: 118: 3317: 2755: 3032:
on the set of all Cauchy sequences, and the set of equivalence classes is a metric space, the completion of
582: 1038: 3170: 2275: 1351: 1316: 3558: 2219: 54: 3546: â€“ A TVS where points that get progressively closer to each other will always converge to a point 2710: 2227: 1386: 549: 3552: â€“ theorem that asserts that there exist nearly optimal solutions to some optimization problems 3733: 3231: 2235: 1113: 46: 3446:
is a set of all pairs of points that are at no more than a particular "distance" from each other.
3443: 3277: 1727: 1649: 3743: 1582: 1004: 72: 3460: 2082: 1200: 3534: 3404: 3175: 2196: 1558: 1460: 268: 2128: 1035:, again with the absolute difference metric, is not complete either. The sequence defined by 961: 1086:
is complete; for example the given sequence does have a limit in this interval, namely zero.
783: 27: 2160: 1883: 1820: 1573:
is complete, though complete spaces need not be compact. In fact, a metric space is compact
727: 701: 219: 3525: 3029: 2519: 2347: 1695: 1617: 1570: 1466: 1435: 769: 555: 367: 180: 3217: 3015:{\displaystyle d\left(x_{\bullet },y_{\bullet }\right)=\lim _{n}d\left(x_{n},y_{n}\right)} 8: 3130: 3063: 2223: 2212: 1550: 1176: 1116: 3709:. Ramanujan, M.S. (trans.). Oxford: Clarendon Press; New York: Oxford University Press. 3466: 3097: 2321: 1528: 1228: 892: 628: 524: 429: 3489: 3384: 3364: 3359: 3297: 3257: 3237: 3025: 2743: 2550: 2374: 2255: 2231: 2204: 2062: 2038: 1918: 1863: 1800: 1776: 1753: 1675: 1588: 1493: 1415: 1296: 1270: 1109: 494: 474: 454: 409: 248: 3738: 3710: 3695: 3682: 3661: 3622: 3612: 3587: 3579: 3455: 3227: 3088: 3036:. The original space is embedded in this space via the identification of an element 2813: 2056: 1794: 1554: 1172: 999: 3510:; these too have a notion of completeness and completion just like uniform spaces. 1515: 1168: 545: 69: 20: 1192: 3223: 3201: 3067: 1578: 1102: 1078: 65: 1313:
becomes a complete metric space if we define the distance between the sequences
994:
yet no rational number has this property. However, considered as a sequence of
3674: 3653: 3071: 2739: 1574: 1523: 1098: 773: 3438:
A common generalisation of these definitions can be found in the context of a
3727: 3626: 3439: 3134: 3126:
arise by completing the rational numbers with respect to a different metric.
3118: 2208: 1936: 1216: 1140: 1081: 1029: 518: 3463:. If every Cauchy net (or equivalently every Cauchy filter) has a limit in 2793:
by this property (among all complete metric spaces isometrically containing
3519: 3507: 3205: 3154: 3091:
give just one choice of Cauchy sequence in the relevant equivalence class.
3059: 1511: 1223: 1120: 1101:(with the metric given by the absolute difference) are complete, and so is 175: 31: 3024:(This limit exists because the real numbers are complete.) This is only a 3075: 3052:(i.e., the equivalence class containing the sequence with constant value 2544: 2200: 995: 777: 214: 19:"Cauchy completion" redirects here. For the use in category theory, see 3691: 1139:
is a Banach space, and so a complete metric space, with respect to the
1077:
is Cauchy, but does not have a limit in the given space. However the
1519: 515: 3165: 2790: 113: 780:, is not complete. Consider for instance the sequence defined by 1143:. However, the supremum norm does not give a norm on the space C 1137:
continuous real-valued functions on a closed and bounded interval
243: 882:{\displaystyle x_{n+1}={\frac {x_{n}}{2}}+{\frac {1}{x_{n}}}.} 3537: â€“ Topological space with a notion of uniform properties 2787: 691:{\displaystyle \operatorname {diam} \left(F_{n}\right)\to 0,} 400:
if any of the following equivalent conditions are satisfied:
3178:
is purely topological, it applies to these spaces as well.
2766:, then there exists a unique uniformly continuous function 1880:
is a complete metric space. Here we define the distance in
3074:, and is the unique totally ordered complete field (up to 3611:. River Edge, N.J. London: World Scientific. p. 33. 1119:
may or may not be complete; those that are complete are
3539:
Pages displaying short descriptions of redirect targets
2703:, it is possible to construct a complete metric space 2573: 2397: 1391: 1056: 3492: 3469: 3407: 3387: 3367: 3320: 3300: 3280: 3260: 3240: 3186: 3100: 2926: 2874: 2826: 2713: 2553: 2522: 2377: 2350: 2324: 2278: 2258: 2163: 2131: 2085: 2065: 2041: 1944: 1921: 1886: 1866: 1823: 1803: 1779: 1756: 1730: 1698: 1678: 1652: 1620: 1591: 1531: 1496: 1469: 1438: 1418: 1389: 1354: 1319: 1299: 1273: 1231: 1041: 1007: 964: 918: 895: 819: 786: 730: 704: 654: 631: 585: 558: 527: 497: 477: 457: 432: 412: 370: 305: 271: 251: 222: 183: 121: 75: 3554:
Pages displaying wikidata descriptions as a fallback
3530:
Pages displaying wikidata descriptions as a fallback
1585:, which states that any closed and bounded subspace 3600: 3211: 3137:containing the original space as a dense subspace. 3679:Introductory functional analysis with applications 3498: 3478: 3428: 3393: 3373: 3350: 3306: 3286: 3266: 3246: 3109: 3014: 2908: 2860: 2726: 2682: 2559: 2535: 2506: 2383: 2363: 2333: 2310: 2264: 2184: 2149: 2113: 2071: 2047: 2025: 1927: 1907: 1872: 1844: 1809: 1785: 1762: 1742: 1716: 1684: 1664: 1638: 1597: 1540: 1502: 1482: 1451: 1424: 1404: 1375: 1340: 1305: 1279: 1240: 1069: 1017: 986: 950: 904: 881: 805: 746: 716: 690: 640: 617: 571: 536: 503: 483: 463: 441: 418: 388: 349: 292: 257: 234: 201: 166: 85: 2238:on complete metric spaces such as Banach spaces. 3725: 3522: â€“ Concept in general topology and analysis 3140: 2967: 1966: 2909:{\displaystyle y_{\bullet }=\left(y_{n}\right)} 2861:{\displaystyle x_{\bullet }=\left(x_{n}\right)} 951:{\displaystyle x={\frac {x}{2}}+{\frac {1}{x}}} 3181:Completely metrizable spaces are often called 3153:, meaning that a complete metric space can be 3584:Introduction to Metric and Topological Spaces 3193:for a wider class of topological spaces, the 2026:{\displaystyle d(f,g)\equiv \sup\{d:x\in X\}} 3453:in the definition of completeness by Cauchy 2020: 1969: 1199:whose topology can be induced by a complete 3561: â€“ Theorem in order and lattice theory 3070:. This field is complete, admits a natural 3044:with the equivalence class of sequences in 2230:. The fixed-point theorem is often used to 2199:says that every complete metric space is a 3578: 1510:if there is no such index. This space is 3704: 3606: 2656: 2597: 2480: 2421: 2079:is a complete metric space, then the set 1817:is a complete metric space, then the set 167:{\displaystyle x_{1},x_{2},x_{3},\ldots } 3609:Convex analysis in general vector spaces 3705:Meise, Reinhold; Vogt, Dietmar (1997). 3351:{\displaystyle d(x,y)<\varepsilon ,} 3082:as the field of real numbers (see also 1197:locally convex topological vector space 768:of rational numbers, with the standard 3726: 3652: 3449:It is also possible to replace Cauchy 3200:A topological space homeomorphic to a 618:{\displaystyle F_{n+1}\subseteq F_{n}} 99:of a given space, as explained below. 3189:). Indeed, some authors use the term 1070:{\displaystyle x_{n}={\tfrac {1}{n}}} 2226:on a complete metric space admits a 350:{\displaystyle d(x_{m},x_{n})<r.} 265:such that for all positive integers 3707:Introduction to functional analysis 3066:that has the rational numbers as a 2311:{\displaystyle S_{1},S_{2},\ldots } 2272:be a complete metric space and let 1611:is compact and therefore complete. 548:tending to 0, has a non-empty 406:Every Cauchy sequence of points in 13: 3401:via subtraction in the comparison 3204:complete metric space is called a 3145:Completeness is a property of the 2920:, we may define their distance as 1581:. This is a generalization of the 1376:{\displaystyle \left(y_{n}\right)} 1341:{\displaystyle \left(x_{n}\right)} 1287:is an arbitrary set, then the set 1256:-adic metric in the same way that 14: 3755: 3694:, "Real and Functional Analysis" 3544:Complete topological vector space 3218:Uniform space § Completeness 2750:is any complete metric space and 3212:Alternatives and generalizations 3187:Alternatives and generalizations 3084:Construction of the real numbers 1564: 1557:; completeness follows from the 1432:is the smallest index for which 1191:can be given the structure of a 3550:Ekeland's variational principle 3274:is gauged not by a real number 3226:can also be defined in general 3195:completely uniformizable spaces 2820:. For any two Cauchy sequences 2812:can be constructed as a set of 2727:{\displaystyle {\overline {M}}} 2211:subsets of the space has empty 1646:be a complete metric space. If 1405:{\displaystyle {\tfrac {1}{N}}} 3633: 3572: 3336: 3324: 2179: 2167: 2141: 2108: 2096: 2005: 2002: 1996: 1987: 1981: 1975: 1960: 1948: 1902: 1890: 1839: 1827: 1711: 1699: 1633: 1621: 1553:which are complete are called 1093:of real numbers and the space 679: 383: 371: 335: 309: 196: 184: 68:is not complete, because e.g. 1: 3646: 3141:Topologically complete spaces 2756:uniformly continuous function 2694: 1750:is a complete subspace, then 698:then there is a unique point 514:Every decreasing sequence of 102: 3287:{\displaystyle \varepsilon } 3171:completely metrizable spaces 2719: 2318:be a sequence of subsets of 1915:in terms of the distance in 1743:{\displaystyle A\subseteq X} 1665:{\displaystyle A\subseteq X} 426:has a limit that is also in 7: 3639:Kelley, Problem 6.L, p. 208 3513: 1155:of continuous functions on 1018:{\displaystyle {\sqrt {2}}} 759: 491:(that is, to some point of 86:{\displaystyle {\sqrt {2}}} 10: 3760: 3215: 2707:(which is also denoted as 2220:Banach fixed-point theorem 2114:{\displaystyle C_{b}(X,M)} 998:, it does converge to the 18: 3681:(Wiley, New York, 1978). 3429:{\displaystyle x-y\in N.} 3232:topological vector spaces 3161:, which is not complete. 2192:and hence also complete. 1852:of all bounded functions 579:is closed and non-empty, 451:Every Cauchy sequence in 293:{\displaystyle m,n>N,} 3565: 2742:. It has the following 2236:inverse function theorem 2157:is a closed subspace of 2150:{\displaystyle f:X\to M} 1522:number of copies of the 987:{\displaystyle x^{2}=2,} 2816:of Cauchy sequences in 1264:with the usual metric. 806:{\displaystyle x_{1}=1} 3607:Zalinescu, C. (2002). 3559:Knaster–Tarski theorem 3535:Complete uniform space 3500: 3480: 3430: 3395: 3375: 3352: 3308: 3288: 3268: 3248: 3191:topologically complete 3183:topologically complete 3176:Baire category theorem 3111: 3016: 2910: 2862: 2728: 2684: 2561: 2537: 2508: 2385: 2365: 2335: 2312: 2266: 2197:Baire category theorem 2186: 2185:{\displaystyle B(X,M)} 2151: 2115: 2073: 2049: 2027: 1929: 1909: 1908:{\displaystyle B(X,M)} 1874: 1846: 1845:{\displaystyle B(X,M)} 1811: 1787: 1764: 1744: 1724:be a metric space. If 1718: 1692:is also complete. Let 1686: 1672:is a closed set, then 1666: 1640: 1599: 1542: 1504: 1484: 1453: 1426: 1406: 1377: 1342: 1307: 1281: 1242: 1112:metric. In contrast, 1071: 1019: 988: 952: 906: 883: 807: 748: 747:{\displaystyle F_{n}.} 718: 717:{\displaystyle x\in X} 692: 642: 619: 573: 538: 505: 485: 465: 443: 420: 390: 351: 294: 259: 236: 235:{\displaystyle r>0} 213:if for every positive 203: 168: 87: 3580:Sutherland, Wilson A. 3501: 3481: 3431: 3396: 3376: 3353: 3309: 3289: 3269: 3249: 3112: 3017: 2911: 2863: 2797:), and is called the 2729: 2699:For any metric space 2685: 2562: 2538: 2536:{\displaystyle S_{i}} 2509: 2386: 2366: 2364:{\displaystyle S_{i}} 2336: 2313: 2267: 2187: 2152: 2116: 2074: 2050: 2028: 1930: 1910: 1875: 1847: 1812: 1788: 1765: 1745: 1719: 1717:{\displaystyle (X,d)} 1687: 1667: 1641: 1639:{\displaystyle (X,d)} 1600: 1543: 1505: 1485: 1483:{\displaystyle y_{N}} 1454: 1452:{\displaystyle x_{N}} 1427: 1407: 1378: 1343: 1308: 1282: 1248:This space completes 1243: 1201:translation-invariant 1171:. Instead, with the 1167:, for it may contain 1072: 1020: 989: 953: 907: 884: 808: 749: 719: 693: 643: 620: 574: 572:{\displaystyle F_{n}} 539: 506: 486: 466: 444: 421: 391: 389:{\displaystyle (X,d)} 352: 295: 260: 237: 204: 202:{\displaystyle (X,d)} 169: 88: 28:mathematical analysis 3526:Completion (algebra) 3490: 3467: 3405: 3385: 3365: 3318: 3298: 3278: 3258: 3238: 3098: 3030:equivalence relation 2924: 2872: 2824: 2711: 2571: 2551: 2520: 2395: 2375: 2348: 2322: 2276: 2256: 2161: 2129: 2083: 2063: 2039: 1942: 1919: 1884: 1864: 1821: 1801: 1777: 1754: 1728: 1696: 1676: 1650: 1618: 1589: 1571:compact metric space 1551:Riemannian manifolds 1529: 1494: 1467: 1436: 1416: 1387: 1352: 1317: 1297: 1293:of all sequences in 1271: 1229: 1222:is complete for any 1117:normed vector spaces 1114:infinite-dimensional 1039: 1005: 962: 916: 893: 817: 784: 728: 702: 652: 629: 583: 556: 525: 495: 475: 455: 430: 410: 368: 303: 269: 249: 242:there is a positive 220: 181: 119: 73: 3131:inner product space 2814:equivalence classes 2250: —  2224:contraction mapping 1583:Heine–Borel theorem 1577:it is complete and 1177:compact convergence 1169:unbounded functions 724:common to all sets 3496: 3479:{\displaystyle X,} 3476: 3426: 3391: 3371: 3360:open neighbourhood 3348: 3314:in the comparison 3304: 3284: 3264: 3244: 3228:topological groups 3133:, the result is a 3110:{\displaystyle p,} 3107: 3012: 2975: 2906: 2858: 2808:The completion of 2744:universal property 2734:), which contains 2724: 2680: 2661: 2602: 2557: 2533: 2504: 2485: 2426: 2381: 2361: 2334:{\displaystyle X.} 2331: 2308: 2262: 2244: 2207:of countably many 2182: 2147: 2125:bounded functions 2121:consisting of all 2111: 2069: 2045: 2023: 1925: 1905: 1870: 1842: 1807: 1783: 1760: 1740: 1714: 1682: 1662: 1636: 1595: 1559:Hopf–Rinow theorem 1555:geodesic manifolds 1541:{\displaystyle S.} 1538: 1500: 1480: 1449: 1422: 1402: 1400: 1373: 1338: 1303: 1277: 1241:{\displaystyle p.} 1238: 1067: 1065: 1015: 984: 948: 905:{\displaystyle x,} 902: 879: 803: 744: 714: 688: 641:{\displaystyle n,} 638: 615: 569: 537:{\displaystyle X,} 534: 501: 481: 461: 442:{\displaystyle X.} 439: 416: 386: 347: 290: 255: 232: 199: 164: 83: 3593:978-0-19-853161-6 3499:{\displaystyle X} 3394:{\displaystyle 0} 3374:{\displaystyle N} 3307:{\displaystyle d} 3267:{\displaystyle y} 3247:{\displaystyle x} 3089:decimal expansion 2966: 2722: 2644: 2585: 2560:{\displaystyle X} 2468: 2409: 2384:{\displaystyle X} 2265:{\displaystyle X} 2242: 2072:{\displaystyle M} 2057:topological space 2048:{\displaystyle X} 1928:{\displaystyle M} 1873:{\displaystyle M} 1810:{\displaystyle M} 1786:{\displaystyle X} 1763:{\displaystyle A} 1685:{\displaystyle A} 1598:{\displaystyle S} 1503:{\displaystyle 0} 1425:{\displaystyle N} 1399: 1306:{\displaystyle S} 1280:{\displaystyle S} 1064: 1013: 1000:irrational number 946: 933: 874: 854: 504:{\displaystyle X} 484:{\displaystyle X} 464:{\displaystyle X} 419:{\displaystyle X} 258:{\displaystyle N} 81: 3751: 3720: 3671: 3658:General Topology 3640: 3637: 3631: 3630: 3604: 3598: 3597: 3576: 3555: 3540: 3531: 3505: 3503: 3502: 3497: 3485: 3483: 3482: 3477: 3435: 3433: 3432: 3427: 3400: 3398: 3397: 3392: 3380: 3378: 3377: 3372: 3357: 3355: 3354: 3349: 3313: 3311: 3310: 3305: 3293: 3291: 3290: 3285: 3273: 3271: 3270: 3265: 3253: 3251: 3250: 3245: 3224:Cauchy sequences 3160: 3123: 3116: 3114: 3113: 3108: 3021: 3019: 3018: 3013: 3011: 3007: 3006: 3005: 2993: 2992: 2974: 2962: 2958: 2957: 2956: 2944: 2943: 2915: 2913: 2912: 2907: 2905: 2901: 2900: 2884: 2883: 2867: 2865: 2864: 2859: 2857: 2853: 2852: 2836: 2835: 2733: 2731: 2730: 2725: 2723: 2715: 2689: 2687: 2686: 2681: 2676: 2672: 2671: 2670: 2660: 2659: 2623: 2619: 2618: 2617: 2601: 2600: 2566: 2564: 2563: 2558: 2542: 2540: 2539: 2534: 2532: 2531: 2513: 2511: 2510: 2505: 2500: 2496: 2495: 2494: 2484: 2483: 2447: 2443: 2442: 2441: 2425: 2424: 2390: 2388: 2387: 2382: 2370: 2368: 2367: 2362: 2360: 2359: 2340: 2338: 2337: 2332: 2317: 2315: 2314: 2309: 2301: 2300: 2288: 2287: 2271: 2269: 2268: 2263: 2251: 2248: 2191: 2189: 2188: 2183: 2156: 2154: 2153: 2148: 2120: 2118: 2117: 2112: 2095: 2094: 2078: 2076: 2075: 2070: 2054: 2052: 2051: 2046: 2032: 2030: 2029: 2024: 1934: 1932: 1931: 1926: 1914: 1912: 1911: 1906: 1879: 1877: 1876: 1871: 1859: 1855: 1851: 1849: 1848: 1843: 1816: 1814: 1813: 1808: 1792: 1790: 1789: 1784: 1770:is also closed. 1769: 1767: 1766: 1761: 1749: 1747: 1746: 1741: 1723: 1721: 1720: 1715: 1691: 1689: 1688: 1683: 1671: 1669: 1668: 1663: 1645: 1643: 1642: 1637: 1610: 1604: 1602: 1601: 1596: 1547: 1545: 1544: 1539: 1509: 1507: 1506: 1501: 1489: 1487: 1486: 1481: 1479: 1478: 1458: 1456: 1455: 1450: 1448: 1447: 1431: 1429: 1428: 1423: 1411: 1409: 1408: 1403: 1401: 1392: 1382: 1380: 1379: 1374: 1372: 1368: 1367: 1347: 1345: 1344: 1339: 1337: 1333: 1332: 1312: 1310: 1309: 1304: 1292: 1286: 1284: 1283: 1278: 1247: 1245: 1244: 1239: 1190: 1166: 1154: 1134: 1084: 1076: 1074: 1073: 1068: 1066: 1057: 1051: 1050: 1034: 1024: 1022: 1021: 1016: 1014: 1009: 993: 991: 990: 985: 974: 973: 957: 955: 954: 949: 947: 939: 934: 926: 912:then by solving 911: 909: 908: 903: 888: 886: 885: 880: 875: 873: 872: 860: 855: 850: 849: 840: 835: 834: 812: 810: 809: 804: 796: 795: 753: 751: 750: 745: 740: 739: 723: 721: 720: 715: 697: 695: 694: 689: 678: 674: 673: 647: 645: 644: 639: 624: 622: 621: 616: 614: 613: 601: 600: 578: 576: 575: 570: 568: 567: 543: 541: 540: 535: 510: 508: 507: 502: 490: 488: 487: 482: 470: 468: 467: 462: 448: 446: 445: 440: 425: 423: 422: 417: 395: 393: 392: 387: 356: 354: 353: 348: 334: 333: 321: 320: 299: 297: 296: 291: 264: 262: 261: 256: 241: 239: 238: 233: 208: 206: 205: 200: 173: 171: 170: 165: 157: 156: 144: 143: 131: 130: 92: 90: 89: 84: 82: 77: 66:rational numbers 60: 57:that is also in 52: 36: 21:Karoubi envelope 3759: 3758: 3754: 3753: 3752: 3750: 3749: 3748: 3734:Metric geometry 3724: 3723: 3717: 3675:Kreyszig, Erwin 3668: 3654:Kelley, John L. 3649: 3644: 3643: 3638: 3634: 3619: 3605: 3601: 3594: 3577: 3573: 3568: 3553: 3538: 3529: 3516: 3491: 3488: 3487: 3468: 3465: 3464: 3406: 3403: 3402: 3386: 3383: 3382: 3366: 3363: 3362: 3319: 3316: 3315: 3299: 3296: 3295: 3294:via the metric 3279: 3276: 3275: 3259: 3256: 3255: 3239: 3236: 3235: 3220: 3214: 3158: 3149:and not of the 3143: 3119: 3099: 3096: 3095: 3001: 2997: 2988: 2984: 2983: 2979: 2970: 2952: 2948: 2939: 2935: 2934: 2930: 2925: 2922: 2921: 2896: 2892: 2888: 2879: 2875: 2873: 2870: 2869: 2848: 2844: 2840: 2831: 2827: 2825: 2822: 2821: 2714: 2712: 2709: 2708: 2697: 2692: 2666: 2662: 2655: 2648: 2643: 2639: 2613: 2609: 2596: 2589: 2584: 2580: 2572: 2569: 2568: 2552: 2549: 2548: 2527: 2523: 2521: 2518: 2517: 2490: 2486: 2479: 2472: 2467: 2463: 2437: 2433: 2420: 2413: 2408: 2404: 2396: 2393: 2392: 2376: 2373: 2372: 2355: 2351: 2349: 2346: 2345: 2323: 2320: 2319: 2296: 2292: 2283: 2279: 2277: 2274: 2273: 2257: 2254: 2253: 2249: 2246: 2203:. That is, the 2162: 2159: 2158: 2130: 2127: 2126: 2090: 2086: 2084: 2081: 2080: 2064: 2061: 2060: 2040: 2037: 2036: 1943: 1940: 1939: 1920: 1917: 1916: 1885: 1882: 1881: 1865: 1862: 1861: 1857: 1853: 1822: 1819: 1818: 1802: 1799: 1798: 1778: 1775: 1774: 1755: 1752: 1751: 1729: 1726: 1725: 1697: 1694: 1693: 1677: 1674: 1673: 1651: 1648: 1647: 1619: 1616: 1615: 1606: 1590: 1587: 1586: 1579:totally bounded 1567: 1530: 1527: 1526: 1495: 1492: 1491: 1474: 1470: 1468: 1465: 1464: 1443: 1439: 1437: 1434: 1433: 1417: 1414: 1413: 1390: 1388: 1385: 1384: 1363: 1359: 1355: 1353: 1350: 1349: 1328: 1324: 1320: 1318: 1315: 1314: 1298: 1295: 1294: 1288: 1272: 1269: 1268: 1230: 1227: 1226: 1214: 1180: 1156: 1144: 1124: 1103:Euclidean space 1099:complex numbers 1082: 1079:closed interval 1055: 1046: 1042: 1040: 1037: 1036: 1032: 1008: 1006: 1003: 1002: 969: 965: 963: 960: 959: 938: 925: 917: 914: 913: 894: 891: 890: 868: 864: 859: 845: 841: 839: 824: 820: 818: 815: 814: 791: 787: 785: 782: 781: 762: 735: 731: 729: 726: 725: 703: 700: 699: 669: 665: 661: 653: 650: 649: 630: 627: 626: 609: 605: 590: 586: 584: 581: 580: 563: 559: 557: 554: 553: 526: 523: 522: 496: 493: 492: 476: 473: 472: 456: 453: 452: 431: 428: 427: 411: 408: 407: 369: 366: 365: 364:A metric space 329: 325: 316: 312: 304: 301: 300: 270: 267: 266: 250: 247: 246: 221: 218: 217: 182: 179: 178: 152: 148: 139: 135: 126: 122: 120: 117: 116: 108:Cauchy sequence 105: 76: 74: 71: 70: 58: 50: 47:Cauchy sequence 34: 24: 17: 16:Metric geometry 12: 11: 5: 3757: 3747: 3746: 3744:Uniform spaces 3741: 3736: 3722: 3721: 3715: 3702: 3689: 3672: 3666: 3648: 3645: 3642: 3641: 3632: 3617: 3599: 3592: 3570: 3569: 3567: 3564: 3563: 3562: 3556: 3547: 3541: 3532: 3523: 3515: 3512: 3495: 3475: 3472: 3425: 3422: 3419: 3416: 3413: 3410: 3390: 3370: 3347: 3344: 3341: 3338: 3335: 3332: 3329: 3326: 3323: 3303: 3283: 3263: 3243: 3216:Main article: 3213: 3210: 3168:one considers 3142: 3139: 3106: 3103: 3072:total ordering 3048:converging to 3010: 3004: 3000: 2996: 2991: 2987: 2982: 2978: 2973: 2969: 2965: 2961: 2955: 2951: 2947: 2942: 2938: 2933: 2929: 2904: 2899: 2895: 2891: 2887: 2882: 2878: 2856: 2851: 2847: 2843: 2839: 2834: 2830: 2786:is determined 2740:dense subspace 2721: 2718: 2696: 2693: 2691: 2690: 2679: 2675: 2669: 2665: 2658: 2654: 2651: 2647: 2642: 2638: 2635: 2632: 2629: 2626: 2622: 2616: 2612: 2608: 2605: 2599: 2595: 2592: 2588: 2583: 2579: 2576: 2556: 2530: 2526: 2514: 2503: 2499: 2493: 2489: 2482: 2478: 2475: 2471: 2466: 2462: 2459: 2456: 2453: 2450: 2446: 2440: 2436: 2432: 2429: 2423: 2419: 2416: 2412: 2407: 2403: 2400: 2380: 2358: 2354: 2330: 2327: 2307: 2304: 2299: 2295: 2291: 2286: 2282: 2261: 2240: 2222:states that a 2181: 2178: 2175: 2172: 2169: 2166: 2146: 2143: 2140: 2137: 2134: 2110: 2107: 2104: 2101: 2098: 2093: 2089: 2068: 2044: 2022: 2019: 2016: 2013: 2010: 2007: 2004: 2001: 1998: 1995: 1992: 1989: 1986: 1983: 1980: 1977: 1974: 1971: 1968: 1965: 1962: 1959: 1956: 1953: 1950: 1947: 1924: 1904: 1901: 1898: 1895: 1892: 1889: 1869: 1841: 1838: 1835: 1832: 1829: 1826: 1806: 1782: 1759: 1739: 1736: 1733: 1713: 1710: 1707: 1704: 1701: 1681: 1661: 1658: 1655: 1635: 1632: 1629: 1626: 1623: 1594: 1575:if and only if 1566: 1563: 1537: 1534: 1524:discrete space 1499: 1477: 1473: 1446: 1442: 1421: 1398: 1395: 1371: 1366: 1362: 1358: 1336: 1331: 1327: 1323: 1302: 1276: 1237: 1234: 1210: 1123:. The space C 1110:usual distance 1063: 1060: 1054: 1049: 1045: 1012: 983: 980: 977: 972: 968: 945: 942: 937: 932: 929: 924: 921: 901: 898: 878: 871: 867: 863: 858: 853: 848: 844: 838: 833: 830: 827: 823: 802: 799: 794: 790: 774:absolute value 761: 758: 757: 756: 755: 754: 743: 738: 734: 713: 710: 707: 687: 684: 681: 677: 672: 668: 664: 660: 657: 637: 634: 612: 608: 604: 599: 596: 593: 589: 566: 562: 533: 530: 519:closed subsets 512: 500: 480: 460: 449: 438: 435: 415: 385: 382: 379: 376: 373: 360:Complete space 346: 343: 340: 337: 332: 328: 324: 319: 315: 311: 308: 289: 286: 283: 280: 277: 274: 254: 231: 228: 225: 198: 195: 192: 189: 186: 163: 160: 155: 151: 147: 142: 138: 134: 129: 125: 104: 101: 80: 15: 9: 6: 4: 3: 2: 3756: 3745: 3742: 3740: 3737: 3735: 3732: 3731: 3729: 3718: 3716:0-19-851485-9 3712: 3708: 3703: 3701: 3700:0-387-94001-4 3697: 3693: 3690: 3688: 3687:0-471-03729-X 3684: 3680: 3676: 3673: 3669: 3667:0-387-90125-6 3663: 3659: 3655: 3651: 3650: 3636: 3628: 3624: 3620: 3618:981-238-067-1 3614: 3610: 3603: 3595: 3589: 3585: 3581: 3575: 3571: 3560: 3557: 3551: 3548: 3545: 3542: 3536: 3533: 3527: 3524: 3521: 3518: 3517: 3511: 3509: 3508:Cauchy spaces 3493: 3473: 3470: 3462: 3458: 3457: 3452: 3447: 3445: 3441: 3440:uniform space 3436: 3423: 3420: 3417: 3414: 3411: 3408: 3388: 3368: 3361: 3345: 3342: 3339: 3333: 3330: 3327: 3321: 3301: 3281: 3261: 3241: 3233: 3229: 3225: 3219: 3209: 3207: 3203: 3198: 3196: 3192: 3188: 3184: 3179: 3177: 3173: 3172: 3167: 3162: 3156: 3152: 3148: 3138: 3136: 3135:Hilbert space 3132: 3127: 3125: 3124:-adic numbers 3122: 3104: 3101: 3092: 3090: 3085: 3081: 3077: 3073: 3069: 3065: 3061: 3057: 3055: 3051: 3047: 3043: 3039: 3035: 3031: 3027: 3022: 3008: 3002: 2998: 2994: 2989: 2985: 2980: 2976: 2971: 2963: 2959: 2953: 2949: 2945: 2940: 2936: 2931: 2927: 2919: 2902: 2897: 2893: 2889: 2885: 2880: 2876: 2854: 2849: 2845: 2841: 2837: 2832: 2828: 2819: 2815: 2811: 2806: 2804: 2800: 2796: 2792: 2789: 2785: 2782:. The space 2781: 2778:that extends 2777: 2773: 2769: 2765: 2761: 2757: 2753: 2749: 2745: 2741: 2737: 2716: 2706: 2702: 2677: 2673: 2667: 2663: 2652: 2649: 2645: 2640: 2636: 2633: 2630: 2627: 2624: 2620: 2614: 2610: 2606: 2603: 2593: 2590: 2586: 2581: 2577: 2574: 2554: 2546: 2528: 2524: 2515: 2501: 2497: 2491: 2487: 2476: 2473: 2469: 2464: 2460: 2457: 2454: 2451: 2448: 2444: 2438: 2434: 2430: 2427: 2417: 2414: 2410: 2405: 2401: 2398: 2378: 2371:is closed in 2356: 2352: 2343: 2342: 2341: 2328: 2325: 2305: 2302: 2297: 2293: 2289: 2284: 2280: 2259: 2239: 2237: 2233: 2229: 2225: 2221: 2216: 2214: 2210: 2209:nowhere dense 2206: 2202: 2198: 2193: 2176: 2173: 2170: 2164: 2144: 2138: 2135: 2132: 2124: 2105: 2102: 2099: 2091: 2087: 2066: 2058: 2042: 2033: 2017: 2014: 2011: 2008: 1999: 1993: 1990: 1984: 1978: 1972: 1963: 1957: 1954: 1951: 1945: 1938: 1937:supremum norm 1922: 1899: 1896: 1893: 1887: 1867: 1836: 1833: 1830: 1824: 1804: 1796: 1780: 1771: 1757: 1737: 1734: 1731: 1708: 1705: 1702: 1679: 1659: 1656: 1653: 1630: 1627: 1624: 1612: 1609: 1592: 1584: 1580: 1576: 1572: 1565:Some theorems 1562: 1560: 1556: 1552: 1548: 1535: 1532: 1525: 1521: 1517: 1513: 1497: 1475: 1471: 1462: 1444: 1440: 1419: 1396: 1393: 1369: 1364: 1360: 1356: 1334: 1329: 1325: 1321: 1300: 1291: 1274: 1265: 1263: 1259: 1255: 1251: 1235: 1232: 1225: 1221: 1220:-adic numbers 1219: 1213: 1209: 1204: 1202: 1198: 1194: 1193:FrĂ©chet space 1188: 1184: 1178: 1174: 1170: 1164: 1160: 1152: 1148: 1142: 1141:supremum norm 1138: 1132: 1128: 1122: 1121:Banach spaces 1118: 1115: 1111: 1107: 1104: 1100: 1096: 1092: 1087: 1085: 1083:[0,1] 1080: 1061: 1058: 1052: 1047: 1043: 1031: 1030:open interval 1026: 1010: 1001: 997: 981: 978: 975: 970: 966: 943: 940: 935: 930: 927: 922: 919: 899: 896: 876: 869: 865: 861: 856: 851: 846: 842: 836: 831: 828: 825: 821: 800: 797: 792: 788: 779: 775: 772:given by the 771: 767: 741: 736: 732: 711: 708: 705: 685: 682: 675: 670: 666: 662: 658: 655: 635: 632: 610: 606: 602: 597: 594: 591: 587: 564: 560: 551: 547: 531: 528: 520: 517: 513: 498: 478: 471:converges in 458: 450: 436: 433: 413: 405: 404: 403: 402: 401: 399: 380: 377: 374: 362: 361: 357: 344: 341: 338: 330: 326: 322: 317: 313: 306: 287: 284: 281: 278: 275: 272: 252: 245: 229: 226: 223: 216: 212: 193: 190: 187: 177: 161: 158: 153: 149: 145: 140: 136: 132: 127: 123: 115: 110: 109: 100: 98: 93: 78: 67: 62: 56: 49:of points in 48: 44: 40: 33: 29: 22: 3706: 3678: 3660:. Springer. 3657: 3635: 3608: 3602: 3583: 3574: 3520:Cauchy space 3454: 3450: 3448: 3437: 3221: 3206:Polish space 3199: 3190: 3182: 3180: 3169: 3163: 3155:homeomorphic 3150: 3146: 3144: 3128: 3120: 3094:For a prime 3093: 3079: 3058: 3053: 3049: 3045: 3041: 3037: 3033: 3026:pseudometric 3023: 2917: 2817: 2809: 2807: 2802: 2798: 2794: 2783: 2779: 2775: 2771: 2767: 2763: 2759: 2751: 2747: 2735: 2704: 2700: 2698: 2247:(C. Ursescu) 2241: 2217: 2194: 2034: 1772: 1613: 1607: 1568: 1549: 1512:homeomorphic 1289: 1266: 1261: 1257: 1253: 1249: 1224:prime number 1217: 1211: 1207: 1205: 1186: 1182: 1162: 1158: 1150: 1146: 1130: 1126: 1105: 1094: 1090: 1088: 1027: 996:real numbers 958:necessarily 765: 763: 550:intersection 397: 363: 359: 358: 210: 176:metric space 111: 107: 106: 96: 63: 43:Cauchy space 42: 38: 32:metric space 25: 3692:Lang, Serge 3442:, where an 3076:isomorphism 2228:fixed point 2201:Baire space 1108:, with the 215:real number 45:) if every 3728:Categories 3647:References 3459:or Cauchy 3358:but by an 3078:). It is 2799:completion 2695:Completion 2123:continuous 1260:completes 1206:The space 1089:The space 778:difference 764:The space 625:for every 209:is called 103:Definition 97:completion 37:is called 3627:285163112 3451:sequences 3444:entourage 3418:∈ 3412:− 3343:ε 3282:ε 3202:separable 2954:∙ 2941:∙ 2881:∙ 2833:∙ 2720:¯ 2653:∈ 2646:⋂ 2637:⁡ 2631:⁡ 2607:⁡ 2594:∈ 2587:⋂ 2578:⁡ 2477:∈ 2470:⋃ 2461:⁡ 2455:⁡ 2431:⁡ 2418:∈ 2411:⋃ 2402:⁡ 2306:… 2142:→ 2015:∈ 1964:≡ 1935:with the 1735:⊆ 1657:⊆ 1520:countable 1252:with the 709:∈ 680:→ 659:⁡ 603:⊆ 546:diameters 516:non-empty 162:… 3739:Topology 3656:(1975). 3582:(1975). 3514:See also 3166:topology 3151:topology 3068:subfield 2791:isometry 2516:If each 2344:If each 2213:interior 1461:distinct 1203:metric. 1173:topology 760:Examples 398:complete 114:sequence 39:complete 3461:filters 3080:defined 2754:is any 2243:Theorem 1516:product 1514:to the 776:of the 244:integer 3713:  3698:  3685:  3664:  3625:  3615:  3590:  3222:Since 3147:metric 3060:Cantor 2245:  1569:Every 1412:where 1383:to be 770:metric 211:Cauchy 53:has a 41:(or a 3566:Notes 3486:then 3159:(0,1) 3064:field 2788:up to 2770:from 2758:from 2746:: if 2738:as a 2567:then 2391:then 2232:prove 2205:union 2055:is a 1856:from 1793:is a 1518:of a 1463:from 1133:] 1125:[ 1033:(0,1) 552:: if 544:with 174:in a 55:limit 3711:ISBN 3696:ISBN 3683:ISBN 3662:ISBN 3623:OCLC 3613:ISBN 3588:ISBN 3456:nets 3340:< 3254:and 3117:the 2868:and 2545:open 2252:Let 2234:the 2218:The 2195:The 2059:and 1797:and 1614:Let 1348:and 1195:: a 1028:The 813:and 656:diam 648:and 339:< 282:> 227:> 30:, a 3381:of 3164:In 3040:of 2968:lim 2916:in 2801:of 2774:to 2762:to 2628:int 2575:int 2547:in 2543:is 2458:int 2428:int 2035:If 1967:sup 1860:to 1795:set 1773:If 1605:of 1490:or 1459:is 1267:If 1215:of 1179:, C 1175:of 1135:of 1097:of 521:of 396:is 26:In 3730:: 3677:, 3621:. 3586:. 3208:. 3197:. 3042:M' 2805:. 2784:M' 2772:M′ 2768:f′ 2705:M′ 2634:cl 2604:cl 2452:cl 2399:cl 2215:. 1561:. 1185:, 1161:, 1149:, 1129:, 1025:. 511:). 112:A 61:. 3719:. 3670:. 3629:. 3596:. 3494:X 3474:, 3471:X 3424:. 3421:N 3415:y 3409:x 3389:0 3369:N 3346:, 3337:) 3334:y 3331:, 3328:x 3325:( 3322:d 3302:d 3262:y 3242:x 3121:p 3105:, 3102:p 3054:x 3050:x 3046:M 3038:x 3034:M 3009:) 3003:n 2999:y 2995:, 2990:n 2986:x 2981:( 2977:d 2972:n 2964:= 2960:) 2950:y 2946:, 2937:x 2932:( 2928:d 2918:M 2903:) 2898:n 2894:y 2890:( 2886:= 2877:y 2855:) 2850:n 2846:x 2842:( 2838:= 2829:x 2818:M 2810:M 2803:M 2795:M 2780:f 2776:N 2764:N 2760:M 2752:f 2748:N 2736:M 2717:M 2701:M 2678:. 2674:) 2668:i 2664:S 2657:N 2650:i 2641:( 2625:= 2621:) 2615:i 2611:S 2598:N 2591:i 2582:( 2555:X 2529:i 2525:S 2502:. 2498:) 2492:i 2488:S 2481:N 2474:i 2465:( 2449:= 2445:) 2439:i 2435:S 2422:N 2415:i 2406:( 2379:X 2357:i 2353:S 2329:. 2326:X 2303:, 2298:2 2294:S 2290:, 2285:1 2281:S 2260:X 2180:) 2177:M 2174:, 2171:X 2168:( 2165:B 2145:M 2139:X 2136:: 2133:f 2109:) 2106:M 2103:, 2100:X 2097:( 2092:b 2088:C 2067:M 2043:X 2021:} 2018:X 2012:x 2009:: 2006:] 2003:) 2000:x 1997:( 1994:g 1991:, 1988:) 1985:x 1982:( 1979:f 1976:[ 1973:d 1970:{ 1961:) 1958:g 1955:, 1952:f 1949:( 1946:d 1923:M 1903:) 1900:M 1897:, 1894:X 1891:( 1888:B 1868:M 1858:X 1854:f 1840:) 1837:M 1834:, 1831:X 1828:( 1825:B 1805:M 1781:X 1758:A 1738:X 1732:A 1712:) 1709:d 1706:, 1703:X 1700:( 1680:A 1660:X 1654:A 1634:) 1631:d 1628:, 1625:X 1622:( 1608:R 1593:S 1536:. 1533:S 1498:0 1476:N 1472:y 1445:N 1441:x 1420:N 1397:N 1394:1 1370:) 1365:n 1361:y 1357:( 1335:) 1330:n 1326:x 1322:( 1301:S 1290:S 1275:S 1262:Q 1258:R 1254:p 1250:Q 1236:. 1233:p 1218:p 1212:p 1208:Q 1189:) 1187:b 1183:a 1181:( 1165:) 1163:b 1159:a 1157:( 1153:) 1151:b 1147:a 1145:( 1131:b 1127:a 1106:R 1095:C 1091:R 1062:n 1059:1 1053:= 1048:n 1044:x 1011:2 982:, 979:2 976:= 971:2 967:x 944:x 941:1 936:+ 931:2 928:x 923:= 920:x 900:, 897:x 877:. 870:n 866:x 862:1 857:+ 852:2 847:n 843:x 837:= 832:1 829:+ 826:n 822:x 801:1 798:= 793:1 789:x 766:Q 742:. 737:n 733:F 712:X 706:x 686:, 683:0 676:) 671:n 667:F 663:( 636:, 633:n 611:n 607:F 598:1 595:+ 592:n 588:F 565:n 561:F 532:, 529:X 499:X 479:X 459:X 437:. 434:X 414:X 384:) 381:d 378:, 375:X 372:( 345:. 342:r 336:) 331:n 327:x 323:, 318:m 314:x 310:( 307:d 288:, 285:N 279:n 276:, 273:m 253:N 230:0 224:r 197:) 194:d 191:, 188:X 185:( 159:, 154:3 150:x 146:, 141:2 137:x 133:, 128:1 124:x 79:2 59:M 51:M 35:M 23:.

Index

Karoubi envelope
mathematical analysis
metric space
Cauchy sequence
limit
rational numbers
2 {\displaystyle {\sqrt {2}}}
sequence
metric space
real number
integer
non-empty
closed subsets
diameters
intersection
metric
absolute value
difference
real numbers
irrational number
open interval
closed interval
[0,1]
complex numbers
Euclidean space
usual distance
infinite-dimensional
normed vector spaces
Banach spaces
continuous real-valued functions on a closed and bounded interval

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑