Knowledge

Limits of computation

Source đź“ť

254:, Ray Kurzweil cites the calculations of Seth Lloyd that a universal-scale computer is capable of 10 operations per second. The mass of the universe can be estimated at 3 × 10 kilograms. If all matter in the universe was turned into a black hole, it would have a lifetime of 2.8 × 10 seconds before evaporating due to Hawking radiation. During that lifetime such a universal-scale black hole computer would perform 2.8 × 10 operations. 168:, without spending more energy on cooling than is saved in computation. However, on a timescale of 10 – 10 years, the cosmic microwave background radiation will be decreasing exponentially, which has been argued to eventually enable 10 as much computations per unit of energy. Important parts of this argument have been disputed. 245:). Lloyd notes that "Interestingly, although this hypothetical computation is performed at ultra-high densities and speeds, the total number of bits available to be processed is not far from the number available to current computers operating in more familiar surroundings." 371:
Many limits derived in terms of physical constants and abstract models of computation in computer science are loose. Very few known limits directly obstruct leading-edge technologies, but many engineering obstacles currently cannot be explained by closed-form limits.
232:
calculated the computational abilities of an "ultimate laptop" formed by compressing a kilogram of matter into a black hole of radius 1.485 × 10 meters, concluding that it would only last about 10 seconds before
357: 189:
used for these purposes. Such a star would have to be artificially constructed, as no natural degenerate stars will cool to this temperature for an extremely long time. It is also possible that
279:
describes the degree to which problems are computable, whereas complexity theory describes the asymptotic degree of resource consumption. Computational problems are therefore confined into
359:
of the arithmetical hierarchy classifies computable, partial functions. Moreover, this hierarchy is strict such that at any other class in the arithmetic hierarchy classifies strictly
665:
Sandberg, Anders; Armstrong, Stuart; Cirkovic, Milan M. (2017-04-27). "That is not dead which can eternal lie: the aestivation hypothesis for resolving Fermi's paradox".
216:
as a data storage or computing device, if a practical mechanism for extraction of contained information can be found. Such extraction may in principle be possible (
241:, but that during this brief time it could compute at a rate of about 5 × 10 operations per second, ultimately performing about 10 operations on 10 bits (~1 75:
limit the data storage of a system based on its energy, number of particles and particle modes. In practice, it is a stronger bound than the Bekenstein bound.
857: 185:
could conceivably be used as a giant data storage device, by carefully perturbing it to various excited states, in the same manner as an atom or
118:. Computational algorithms can then be designed that require arbitrarily small amounts of energy/time per one elementary computation step. 177:
Several methods have been proposed for producing computing devices or data storage devices that approach physical and practical limits:
769: 294: 23:
are governed by a number of different factors. In particular, there are several physical and practical limits to the amount of
439: 291:
classify the degree to which problems are respectively computable and computable in polynomial time. For instance, the level
165: 197:
could form complex "molecules", which some have suggested might be used for computing purposes, creating a type of
916: 272: 1022: 1017: 221: 234: 264: 107: 110:
sets a bound on the maximum computational speed per unit of energy: 6 × 10 operations per second per
89: 88:
is the maximum computational speed of a self-contained system in the material universe, and is based on
417: 751: 250: 128: 397: 284: 582: 360: 93: 85: 969: 884: 814: 709: 607: 547: 494: 288: 276: 268: 153: 8: 440:"The Physics of Information Processing Superobjects: Daily Life Among the Jupiter Brains" 402: 973: 888: 818: 713: 611: 551: 498: 993: 959: 908: 874: 838: 804: 773: 733: 699: 666: 647: 623: 597: 563: 537: 510: 484: 280: 145: 985: 900: 830: 737: 725: 639: 514: 407: 238: 61:
limits the amount of information that can be stored within a spherical volume to the
567: 997: 977: 950: 892: 865: 822: 717: 651: 631: 615: 559: 555: 502: 392: 387: 225: 58: 528:
Sinitsyn, Nikolai A. (2018). "Is there a quantum limit on speed of computation?".
912: 842: 475:
Jordan, Stephen P. (2017). "Fast quantum computation at arbitrarily low energy".
382: 217: 202: 182: 583:"The physics of forgetting: Landauer's erasure principle and information theory" 450: 721: 506: 206: 115: 72: 619: 1011: 729: 687: 643: 627: 989: 904: 834: 198: 194: 186: 28: 879: 809: 635: 602: 134: 24: 981: 688:"Comment on 'The Aestivation Hypothesis for Resolving Fermi's Paradox'" 229: 213: 66: 896: 826: 686:
Bennett, Charles H.; Hanson, Robin; Riedel, C. Jess (1 August 2019).
412: 948:
Markov, Igor (2014). "Limits on Fundamental Limits to Computation".
704: 671: 542: 489: 242: 964: 190: 172: 161: 62: 795:
Lloyd, Seth (2000). "Ultimate physical limits to computation".
40: 36: 205:, which would be faster and denser than computronium based on 111: 352:{\displaystyle \Sigma _{0}^{0}=\Pi _{0}^{0}=\Delta _{0}^{0}} 114:. This bound, however, can be avoided if there is access to 770:"Femtotech? (Sub)Nuclear Scale Engineering and Computation" 224:). This would achieve storage density exactly equal to the 32: 131:
defines a lower theoretical limit for energy consumption:
664: 258: 297: 46: 685: 275:of computational problems are often sought-after. 351: 1009: 51: 152:is the operating temperature of the computer. 173:Building devices that approach physical limits 140:consumed per irreversible state change, where 580: 160:cannot, even in theory, be made lower than 3 31:that can be performed with a given amount of 963: 878: 858:"Ultimate physical limits to computation" 808: 703: 670: 601: 541: 488: 366: 932: 527: 437: 100: 1010: 947: 474: 855: 794: 438:Sandberg, Anders (22 December 1999). 166:cosmic microwave background radiation 164:, the approximate temperature of the 156:is not subject to this lower bound. 16:Overview of the limits of computation 756:The Internet Encyclopedia of Science 447:Journal of Evolution and Technology 259:Abstract limits in computer science 79: 13: 581:Vitelli, M.B.; Plenio, V. (2001). 335: 317: 299: 47:Hardware limits or physical limits 14: 1034: 937:. New York: Viking. p. 911. 122: 941: 926: 849: 788: 762: 744: 679: 658: 574: 560:10.1016/j.physleta.2017.12.042 521: 468: 431: 222:black hole information paradox 220:'s proposed resolution to the 1: 424: 52:Processing and memory density 265:theoretical computer science 212:It may be possible to use a 7: 375: 69:with the same surface area. 10: 1039: 722:10.1007/s10701-019-00289-5 507:10.1103/physreva.95.032305 418:Transcomputational problem 620:10.1080/00107510010018916 108:Margolus–Levitin theorem 935:The Singularity is Near 752:"Life on neutron stars" 251:The Singularity Is Near 933:Kurzweil, Ray (2005). 692:Foundations of Physics 398:Physics of computation 367:Loose and tight limits 353: 285:arithmetical hierarchy 1023:Theory of computation 1018:Limits of computation 354: 21:limits of computation 856:Lloyd, Seth (2000). 590:Contemporary Physics 295: 289:polynomial hierarchy 277:Computability theory 154:Reversible computing 129:Landauer's principle 101:Communication delays 982:10.1038/nature13570 974:2014Natur.512..147M 889:2000Natur.406.1047L 873:(6799): 1047–1054. 819:2000Natur.406.1047L 803:(6799): 1047–1054. 776:on October 25, 2004 714:2019FoPh...49..820B 612:2001ConPh..42...25P 552:2018PhLA..382..477S 499:2017PhRvA..95c2305J 403:Programmable matter 348: 330: 312: 94:quantum uncertainty 922:on August 7, 2008. 349: 334: 316: 298: 281:complexity classes 193:on the surface of 146:Boltzmann constant 86:Bremermann's limit 958:(7513): 147–154. 530:Physics Letters A 408:Quantum computing 239:Hawking radiation 1030: 1002: 1001: 967: 945: 939: 938: 930: 924: 923: 921: 915:. Archived from 897:10.1038/35023282 882: 880:quant-ph/9908043 862: 853: 847: 846: 827:10.1038/35023282 812: 810:quant-ph/9908043 792: 786: 785: 783: 781: 772:. Archived from 766: 760: 759: 748: 742: 741: 707: 683: 677: 676: 674: 662: 656: 655: 605: 603:quant-ph/0103108 587: 578: 572: 571: 545: 525: 519: 518: 492: 472: 466: 465: 463: 461: 455: 449:. Archived from 444: 435: 393:Matrioshka brain 388:Hypercomputation 358: 356: 355: 350: 347: 342: 329: 324: 311: 306: 263:In the field of 226:Bekenstein bound 139: 80:Processing speed 59:Bekenstein bound 1038: 1037: 1033: 1032: 1031: 1029: 1028: 1027: 1008: 1007: 1006: 1005: 946: 942: 931: 927: 919: 860: 854: 850: 793: 789: 779: 777: 768: 767: 763: 750: 749: 745: 684: 680: 663: 659: 585: 579: 575: 526: 522: 473: 469: 459: 457: 456:on 5 March 2015 453: 442: 436: 432: 427: 422: 383:Digital physics 378: 369: 343: 338: 325: 320: 307: 302: 296: 293: 292: 261: 218:Stephen Hawking 203:femtotechnology 183:degenerate star 175: 132: 125: 103: 82: 54: 49: 17: 12: 11: 5: 1036: 1026: 1025: 1020: 1004: 1003: 940: 925: 848: 787: 761: 743: 698:(8): 820–829. 678: 657: 573: 536:(7): 477–481. 520: 467: 429: 428: 426: 423: 421: 420: 415: 410: 405: 400: 395: 390: 385: 379: 377: 374: 368: 365: 346: 341: 337: 333: 328: 323: 319: 315: 310: 305: 301: 260: 257: 256: 255: 246: 210: 207:nanotechnology 174: 171: 170: 169: 124: 121: 120: 119: 116:quantum memory 102: 99: 98: 97: 81: 78: 77: 76: 73:Thermodynamics 70: 53: 50: 48: 45: 15: 9: 6: 4: 3: 2: 1035: 1024: 1021: 1019: 1016: 1015: 1013: 999: 995: 991: 987: 983: 979: 975: 971: 966: 961: 957: 953: 952: 944: 936: 929: 918: 914: 910: 906: 902: 898: 894: 890: 886: 881: 876: 872: 868: 867: 859: 852: 844: 840: 836: 832: 828: 824: 820: 816: 811: 806: 802: 798: 791: 775: 771: 765: 757: 753: 747: 739: 735: 731: 727: 723: 719: 715: 711: 706: 701: 697: 693: 689: 682: 673: 668: 661: 653: 649: 645: 641: 637: 633: 629: 625: 621: 617: 613: 609: 604: 599: 595: 591: 584: 577: 569: 565: 561: 557: 553: 549: 544: 539: 535: 531: 524: 516: 512: 508: 504: 500: 496: 491: 486: 483:(3): 032305. 482: 478: 471: 452: 448: 441: 434: 430: 419: 416: 414: 411: 409: 406: 404: 401: 399: 396: 394: 391: 389: 386: 384: 381: 380: 373: 364: 362: 344: 339: 331: 326: 321: 313: 308: 303: 290: 286: 282: 278: 274: 270: 269:computability 266: 253: 252: 247: 244: 240: 236: 231: 227: 223: 219: 215: 211: 208: 204: 200: 196: 195:neutron stars 192: 188: 184: 180: 179: 178: 167: 163: 159: 155: 151: 147: 143: 137: 136: 130: 127: 126: 123:Energy supply 117: 113: 109: 105: 104: 95: 91: 87: 84: 83: 74: 71: 68: 64: 60: 56: 55: 44: 42: 38: 34: 30: 26: 22: 955: 949: 943: 934: 928: 917:the original 870: 864: 851: 800: 796: 790: 778:. Retrieved 774:the original 764: 755: 746: 695: 691: 681: 660: 596:(1): 25–60. 593: 589: 576: 533: 529: 523: 480: 477:Phys. Rev. A 476: 470: 458:. Retrieved 451:the original 446: 433: 370: 361:uncomputable 262: 249: 199:computronium 187:quantum well 176: 157: 149: 141: 133: 96:constraints. 29:data storage 20: 18: 780:October 30, 636:10044/1/435 363:functions. 235:evaporating 90:mass–energy 25:computation 1012:Categories 705:1902.06730 672:1705.03394 543:1701.05550 490:1701.01175 425:References 273:complexity 230:Seth Lloyd 214:black hole 67:black hole 965:1408.3821 738:119045181 730:1572-9516 644:0010-7514 628:1366-5812 515:118953874 413:Supertask 336:Δ 318:Π 300:Σ 201:based on 990:25119233 905:10984064 835:10984064 568:55887738 376:See also 191:nucleons 998:4458968 970:Bibcode 885:Bibcode 815:Bibcode 710:Bibcode 652:9092795 608:Bibcode 548:Bibcode 495:Bibcode 283:. The 237:due to 181:A cold 162:kelvins 144:is the 92:versus 63:entropy 996:  988:  951:Nature 911:  903:  866:Nature 841:  833:  797:Nature 736:  728:  650:  642:  626:  566:  513:  460:30 May 41:energy 37:volume 994:S2CID 960:arXiv 920:(PDF) 913:75923 909:S2CID 875:arXiv 861:(PDF) 843:75923 839:S2CID 805:arXiv 734:S2CID 700:arXiv 667:arXiv 648:S2CID 624:eISSN 598:arXiv 586:(PDF) 564:S2CID 538:arXiv 511:S2CID 485:arXiv 454:(PDF) 443:(PDF) 112:joule 65:of a 39:, or 986:PMID 901:PMID 831:PMID 782:2006 726:ISSN 640:ISSN 462:2014 287:and 271:and 267:the 148:and 138:ln 2 106:The 57:The 33:mass 19:The 978:doi 956:512 893:doi 871:406 823:doi 801:406 718:doi 632:hdl 616:doi 556:doi 534:382 503:doi 248:In 27:or 1014:: 992:. 984:. 976:. 968:. 954:. 907:. 899:. 891:. 883:. 869:. 863:. 837:. 829:. 821:. 813:. 799:. 754:. 732:. 724:. 716:. 708:. 696:49 694:. 690:. 646:. 638:. 630:. 622:. 614:. 606:. 594:42 592:. 588:. 562:. 554:. 546:. 532:. 509:. 501:. 493:. 481:95 479:. 445:. 243:PB 228:. 135:kT 43:. 35:, 1000:. 980:: 972:: 962:: 895:: 887:: 877:: 845:. 825:: 817:: 807:: 784:. 758:. 740:. 720:: 712:: 702:: 675:. 669:: 654:. 634:: 618:: 610:: 600:: 570:. 558:: 550:: 540:: 517:. 505:: 497:: 487:: 464:. 345:0 340:0 332:= 327:0 322:0 314:= 309:0 304:0 209:. 158:T 150:T 142:k

Index

computation
data storage
mass
volume
energy
Bekenstein bound
entropy
black hole
Thermodynamics
Bremermann's limit
mass–energy
quantum uncertainty
Margolus–Levitin theorem
joule
quantum memory
Landauer's principle
kT
Boltzmann constant
Reversible computing
kelvins
cosmic microwave background radiation
degenerate star
quantum well
nucleons
neutron stars
computronium
femtotechnology
nanotechnology
black hole
Stephen Hawking

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑