Knowledge

Lie group–Lie algebra correspondence

Source 📝

587:. One can understand this more concretely by identifying the space of left-invariant vector fields with the tangent space at the identity, as follows: Given a left-invariant vector field, one can take its value at the identity, and given a tangent vector at the identity, one can extend it to a left-invariant vector field. This correspondence is one-to-one in both directions, so is bijective. Thus, the Lie algebra can be thought of as the tangent space at the identity and the bracket of 6603: 1854: 2659:
is simply connected cannot be omitted. For example, the Lie algebras of SO(3) and SU(2) are isomorphic, but there is no corresponding homomorphism of SO(3) into SU(2). Rather, the homomorphism goes from the simply connected group SU(2) to the non-simply connected group SO(3). If
4708: 805: 5319:, which is not simply connected. There is one irreducible representation of the Lie algebra in each dimension, but only the odd-dimensional representations of the Lie algebra come from representations of the group. (This observation is related to the distinction between 8456: 3025: 6721: 3436: 1975: 5987: 7891: 4936: 6472: 9535: 8149: 8718: 6929: 3154: 8595: 8297: 1171: 8854: 6804: 3811: 7257: 6428: 5540: 6292: 1734: 5175: 940: 8020: 1742: 2486: 8944: 5590: 9822: 9183: 4458: 4419: 3748: 3645: 2403: 698: 3694: 8320: 1099: 5876: 5768: 5840: 1244: 8204: 7495: 6185: 7943: 7541: 2269: 2087: 8767: 1611: 8502: 6089: 5098: 427: 3266: 2888: 7088: 3231: 6609: 3347: 7002: 5697: 1383: 262: 4794: 3062: 9268: 9035: 6851: 4024: 3992: 2617: 2313: 1459: 1427: 658: 577: 497: 7635: 4120: 3443: 2162: 1021: 5038: 3485: 3342: 5804: 5638: 2221: 5916: 7781: 6598:{\displaystyle {\mathfrak {z}}_{\mathfrak {g}}(A)=\{X\in {\mathfrak {g}}\mid \operatorname {ad} (a)X=0{\text{ or }}\operatorname {Ad} (a)X=0{\text{ for all }}a{\text{ in }}A\}} 5415: 3896: 3839: 3514: 7711: 7458: 7366: 7313: 7167: 4802: 4307: 3580: 3543: 1661: 95: 66: 9846: 9296: 8975: 7666: 7603: 7572: 7390: 7337: 7284: 6460: 5904: 5721: 5618: 5469: 5305: 5277: 3924: 3086: 2649: 2585: 7005: 2880:
from (finite dimensional) Lie algebras to Lie groups (which is necessarily unique up to canonical isomorphism). In other words there is a natural isomorphism of bifunctors
2819: 304: 7134: 1893: 349: 5230: 4257: 1888: 1519: 6320: 4056: 2551: 2522: 2017: 1318: 1286: 855: 7748: 7030: 4442: 3174: 2878: 5445: 2748: 623: 7050: 5205: 4731: 4212: 4185: 4150: 3960: 458: 9325: 9216: 9109: 9068: 8043: 6019: 3296: 2848: 8618: 2040: 5253: 2768: 2713: 6856: 537: 3095: 625:
can be computed by extending them to left-invariant vector fields, taking the bracket of the vector fields, and then evaluating the result at the identity.
9430: 8507: 8209: 1111: 7094: 8772: 6733: 3756: 7186: 6329: 5474: 6193: 1666: 5113: 1849:{\displaystyle \operatorname {Lie} (G_{1}\times \cdots \times G_{r})=\operatorname {Lie} (G_{1})\oplus \cdots \oplus \operatorname {Lie} (G_{r}).} 870: 10875: 7948: 10066: 2435: 4953:
are sufficiently small. This argument is only local, since the exponential map is only invertible in a small neighborhood of the identity in
10870: 39:
to each other have Lie algebras that are isomorphic to each other, but the converse is not necessarily true. One obvious counterexample is
8879: 5545: 5327:
is simply connected with Lie algebra isomorphic to that of SO(3), so every representation of the Lie algebra of SO(3) does give rise to a
4703:{\displaystyle f\left(e^{X}e^{Y}\right)=f\left(e^{Z}\right)=e^{\phi (Z)}=e^{\phi (X)+\phi (Y)+{\frac {1}{2}}+{\frac {1}{12}}]+\cdots },} 10157: 10181: 9762: 9122: 105:
respectively) which are non-isomorphic to each other as Lie groups but their Lie algebras are isomorphic to each other. However, for
4315: 3702: 9356: 4734: 3939: 2681: 3585: 2271:
defines a local homeomorphism from a neighborhood of the zero vector to the neighborhood of the identity element. For example, if
5593: 800:{\displaystyle \operatorname {Lie} (G)=\left\{X\in M(n;\mathbb {C} )\mid e^{tX}\in G{\text{ for all }}t\in \mathbb {R} \right\}.} 8451:{\displaystyle =\left\{A\in U(2n)\mid A^{\mathrm {T} }JA=J\right\},\,J={\begin{bmatrix}0&I_{n}\\-I_{n}&0\end{bmatrix}}} 3938:
One approach to proving the second part of the Lie group-Lie algebra correspondence (the homomorphisms theorem) is to use the
10246: 9977: 3657: 2322: 3310:, which says any finite-dimensional Lie algebra (over a field of any characteristic) is a Lie subalgebra of the Lie algebra 1039: 10472: 5845: 5737: 9936: 5809: 1188: 10525: 10053: 8156: 7470: 6130: 7898: 7503: 2230: 2048: 10809: 9927: 8725: 1564: 10009: 8463: 3020:{\displaystyle \mathrm {Hom} _{CLGrp}(\Gamma ({\mathfrak {g}}),H)\cong \mathrm {Hom} _{LAlg}({\mathfrak {g}},Lie(H)).} 9948: 4993: 10025: 6716:{\displaystyle Z_{G}(A)=\{g\in G\mid \operatorname {Ad} (g)a=0{\text{ or }}ga=ag{\text{ for all }}a{\text{ in }}A\}} 6047: 5050: 3431:{\displaystyle {\mathfrak {g}}\subset {\mathfrak {gl}}_{n}(\mathbb {R} )=\operatorname {Lie} (GL_{n}(\mathbb {R} ))} 354: 10574: 9969: 9186: 9079: 7672:
It is important to emphasize that the equivalence of the preceding conditions holds only under the assumption that
3236: 7055: 7004:
is a surjective group homomorphism. The kernel of it is a discrete group (since the dimension is zero) called the
5235:
The homomorphisms theorem (mentioned above as part of the Lie group-Lie algebra correspondence) then says that if
3186: 10557: 10166: 7178: 157: 6971: 5643: 3902:
its image. The preceding can be summarized to saying that there is a canonical bijective correspondence between
1323: 192: 10918: 9901: 5328: 140: 4744: 3034: 2854:
of connected (real) Lie groups to the category of finite-dimensional (real) Lie-algebras. This functor has a
10769: 10176: 10019: 9965: 9225: 9008: 6824: 5324: 3997: 3965: 2590: 2286: 1432: 1400: 631: 550: 470: 7608: 4064: 2096: 955: 10754: 10477: 10251: 9271: 5982:{\displaystyle 0\to Z(G)\to G\xrightarrow {\operatorname {Ad} } \operatorname {Int} ({\mathfrak {g}})\to 0} 2043: 1032: 504: 7886:{\displaystyle =\left\{A\in M_{n+1}(\mathbb {C} )\mid {\overline {A}}^{\mathrm {T} }A=I,\det(A)=1\right\}} 5002: 3449: 3313: 10799: 10014: 5773: 5623: 4931:{\displaystyle f\left(e^{X}e^{Y}\right)=e^{\phi (X)}e^{\phi (Y)}=f\left(e^{X}\right)f\left(e^{Y}\right).} 2183: 10804: 10774: 10482: 10438: 10419: 10186: 10130: 9071: 5362: 5181: 3860: 3816: 3490: 3442:
be the closed (without taking the closure one can get pathological dense example as in the case of the
430: 7687: 7434: 7342: 7289: 7143: 4262: 3556: 3519: 1620: 164: 71: 42: 10341: 10206: 9827: 9277: 8956: 7647: 7584: 7553: 7371: 7318: 7265: 6441: 5885: 5702: 5599: 5450: 5286: 5258: 3905: 3546: 3269: 3177: 3067: 2668:
are both simply connected and have isomorphic Lie algebras, the above result allows one to show that
2630: 2566: 1174: 110: 3813:
and exp for it is the identity, this homomorphism is the differential of the Lie group homomorphism
1970:{\displaystyle \operatorname {Lie} (H\cap H')=\operatorname {Lie} (H)\cap \operatorname {Lie} (H').} 10726: 10591: 10283: 10125: 9341: 9219: 5320: 2773: 1614: 1534: 946: 811: 2413:
The correspondence between Lie groups and Lie algebras includes the following three main results.
270: 10423: 10393: 10317: 10307: 10263: 10093: 10046: 7103: 2423: 1470: 685: 309: 4225: 10764: 10383: 10278: 10191: 10098: 8950: 5340: 3850: 2851: 2418: 1484: 861: 106: 6299: 4029: 2527: 2495: 1990: 1291: 1259: 828: 10923: 10413: 10408: 8144:{\displaystyle =\left\{A\in M_{2n+1}(\mathbb {R} )\mid A^{\mathrm {T} }A=I,\det(A)=1\right\}} 7720: 7638: 7015: 4427: 3159: 2863: 2691:
the correspondence can be summarised as follows: First, the operation of associating to each
98: 5420: 2718: 598: 10744: 10682: 10530: 10234: 10224: 10196: 10171: 10081: 8713:{\displaystyle =\left\{A\in M_{2n}(\mathbb {R} )\mid A^{\mathrm {T} }A=I,\det(A)=1\right\}} 7035: 5316: 5210: 5187: 4716: 4190: 4163: 4128: 3945: 2280: 1550: 436: 9301: 9192: 9085: 9044: 5995: 1862: 8: 10928: 10882: 10564: 10442: 10427: 10356: 10115: 9336: 6924:{\displaystyle \operatorname {Lie} (G/H)=\operatorname {Lie} (G)/\operatorname {Lie} (H)} 3275: 2827: 10855: 3149:{\displaystyle \epsilon \colon {\mathfrak {g}}\rightarrow Lie(\Gamma ({\mathfrak {g}}))} 2022: 10933: 10824: 10779: 10676: 10547: 10351: 10039: 9351: 8978: 5238: 2753: 2698: 10361: 510: 10759: 10739: 10734: 10641: 10552: 10366: 10346: 10201: 10140: 9983: 9973: 9944: 9923: 9897: 9530:{\displaystyle \operatorname {Lie} (f^{-1}(H'))=(df)^{-1}(\operatorname {Lie} (H')).} 7412: 7400: 7098: 6940: 3942:, as in Section 5.7 of Hall's book. Specifically, given the Lie algebra homomorphism 121: 35:
or vice versa, and study the conditions for such a relationship. Lie groups that are
8590:{\displaystyle =\left\{X\in M_{2n}(\mathbb {C} )\mid X^{\mathrm {T} }J+JX=0\right\}} 8292:{\displaystyle =\left\{X\in M_{2n+1}(\mathbb {C} )\mid X^{\mathrm {T} }+X=0\right\}} 1166:{\displaystyle \operatorname {Lie} (\operatorname {im} (f))=\operatorname {im} (df)} 10897: 10691: 10646: 10569: 10540: 10398: 10331: 10326: 10321: 10311: 10103: 10086: 10002: 9915: 9889: 7759: 6041: 3307: 1546: 136: 125: 8849:{\displaystyle =\left\{X\in M_{2n}(\mathbb {C} )\mid X^{\mathrm {T} }+X=0\right\}} 5878:
is in general not a closed subgroup; only an immersed subgroup.) It is called the
10840: 10749: 10579: 10535: 10301: 6799:{\displaystyle \operatorname {Lie} (Z_{G}(A))={\mathfrak {z}}_{\mathfrak {g}}(A)} 3806:{\displaystyle \operatorname {Lie} (\mathbb {R} )=T_{0}\mathbb {R} =\mathbb {R} } 2858: 2688: 660:
as the Lie algebra of primitive elements of the Hopf algebra of distributions on
7421:
be a connected Lie group with finite center. Then the following are equivalent.
5542:, called the adjoint representation. The corresponding Lie algebra homomorphism 10706: 10631: 10601: 10499: 10492: 10432: 10403: 10273: 10268: 10229: 8990: 7252:{\displaystyle 1\to \pi _{1}(G)\to {\widetilde {G}}{\overset {p}{\to }}G\to 1.} 6423:{\displaystyle T_{x}(G\cdot x)=\operatorname {im} (d\rho (x):T_{e}G\to T_{x}X)} 9919: 9893: 5535:{\displaystyle \operatorname {Ad} :G\to GL({\mathfrak {g}}),\,g\mapsto dc_{g}} 3064:
is the (up to isomorphism unique) simply-connected Lie group with Lie algebra
10912: 10892: 10716: 10711: 10696: 10686: 10636: 10613: 10487: 10447: 10388: 10336: 10135: 9987: 7396: 6287:{\displaystyle \operatorname {Lie} (G_{x})=\ker(d\rho (x):T_{e}G\to T_{x}X).} 5879: 4976:
from a local homomorphism to a global one. The extension is done by defining
1729:{\displaystyle dp_{i}:\operatorname {Lie} (G)\to \operatorname {Lie} (G_{i})} 461: 116:
In this article, a Lie group refers to a real Lie group. For the complex and
8985:. (Roughly, this is a consequence of the fact that any differential form on 5315:
be simply connected is essential. Consider, for example, the rotation group
5170:{\displaystyle d\pi :{\mathfrak {g}}\to {\mathfrak {gl}}_{n}(\mathbb {C} ),} 3582:
is a Lie group and that the covering map is a Lie group homomorphism. Since
935:{\displaystyle df=df_{e}:\operatorname {Lie} (G)\to \operatorname {Lie} (H)} 10819: 10814: 10656: 10623: 10596: 10504: 10145: 9346: 9112: 7547: 3344:
of square matrices. The proof goes as follows: by Ado's theorem, we assume
2176:
is a neighborhood of the identity element in a connected topological group
810:
For example, one can use the criterion to establish the correspondence for
102: 9545: 8015:{\displaystyle =\{X\in M_{n+1}(\mathbb {C} )\mid \operatorname {tr} X=0\}} 7368:
by discrete central subgroups and connected Lie groups having Lie algebra
10662: 10651: 10608: 10509: 10110: 9957: 9914:, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, 9912:
Lie Groups, Lie Algebras, and Representations: An Elementary Introduction
7765: 2619:, then there is a unique connected Lie subgroup (not necessarily closed) 2492:
is simply connected, then there exists a (unique) Lie group homomorphism
36: 32: 20: 2481:{\displaystyle \phi :\operatorname {Lie} (G)\to \operatorname {Lie} (H)} 10887: 10845: 10671: 10584: 10216: 10120: 10031: 2422:: Every finite-dimensional real Lie algebra is the Lie algebra of some 1253: 9078:
with support at the identity element with the multiplication given by
7750:. The last three conditions above are purely Lie algebraic in nature. 10701: 10666: 10371: 10258: 5724: 5041: 28: 8939:{\displaystyle H^{k}({\mathfrak {g}};\mathbb {R} )=H_{\text{dR}}(G)} 5948: 5585:{\displaystyle {\mathfrak {g}}\to {\mathfrak {gl}}({\mathfrak {g}})} 4160:
is a local homomorphism. Thus, given two elements near the identity
4156:, which has an inverse defined near the identity. We now argue that 10865: 10860: 10850: 10241: 10062: 4444:
indicating other terms expressed as repeated commutators involving
132: 4996:
of a Lie group and representations of the associated Lie algebra.
4984:
to show that the definition is independent of the choice of path.
4058:
locally (i.e., in a neighborhood of the identity) by the formula
156:
There are various ways one can understand the construction of the
6949:
be a connected Lie group. Since the Lie algebra of the center of
4992:
A special case of Lie correspondence is a correspondence between
2822: 6726:
be the Lie algebra centralizer and the Lie group centralizer of
10457: 9817:{\displaystyle \exp({\mathfrak {g}})^{n}=\exp({\mathfrak {g}})} 9178:{\displaystyle {\mathfrak {g}}=\operatorname {Lie} (G)=P(A(G))} 949:(brackets go to brackets), which has the following properties: 579:
is a Lie subalgebra of the Lie algebra of all vector fields on
4414:{\displaystyle Z=X+Y+{\frac {1}{2}}+{\frac {1}{12}}]+\cdots ,} 3743:{\displaystyle \mathbb {R} \to {\mathfrak {g}},\,t\mapsto tX.} 3306:
Perhaps the most elegant proof of the first result above uses
2655:
In the second part of the correspondence, the assumption that
499:
be the set of all left-translation-invariant vector fields on
8722: 8609: 8460: 8311: 8153: 8034: 7895: 7772: 4957:
and since the Baker–Campbell–Hausdorff formula only holds if
4259:. According to the Baker–Campbell–Hausdorff formula, we have 7339:, there is a one-to-one correspondence between quotients of 3640:{\displaystyle T_{e}{\widetilde {G}}=T_{e}G={\mathfrak {g}}} 2275:
is the Lie group of invertible real square matrices of size
2227:, since the former is an open (hence closed) subgroup. Now, 174:
is said to be invariant under left translations if, for any
7713:
is also compact. Clearly, this conclusion does not hold if
503:. It is a real vector space. Moreover, it is closed under 3156:
of the adjunction are isomorphisms, which corresponds to
4980:
along a path and then using the simple connectedness of
3180:(part of the second statement above). The corresponding 2398:{\textstyle \exp(X)=e^{X}=\sum _{0}^{\infty }{X^{j}/j!}} 109:
Lie groups, the Lie group-Lie algebra correspondence is
5255:
is the simply connected Lie group whose Lie algebra is
3689:{\displaystyle {\mathfrak {g}}=\operatorname {Lie} (G)} 9941:
Differential geometry, Lie groups and symmetric spaces
8400: 6961:
is abelian if and only if its Lie algebra is abelian.
6322:
is locally closed, then the orbit is a submanifold of
5699:, which in particular implies that the Lie bracket of 2325: 2186: 1094:{\displaystyle \operatorname {Lie} (\ker(f))=\ker(df)} 9830: 9765: 9433: 9304: 9280: 9228: 9195: 9125: 9088: 9047: 9011: 8959: 8882: 8775: 8728: 8621: 8510: 8466: 8323: 8212: 8159: 8046: 7951: 7901: 7784: 7723: 7690: 7650: 7611: 7587: 7556: 7506: 7473: 7437: 7374: 7345: 7321: 7292: 7268: 7189: 7146: 7140:
is a central subgroup of a simply connected covering
7106: 7058: 7038: 7018: 6974: 6859: 6827: 6736: 6612: 6475: 6444: 6332: 6302: 6196: 6133: 6050: 5998: 5919: 5888: 5871:{\displaystyle \operatorname {Int} ({\mathfrak {g}})} 5848: 5812: 5776: 5763:{\displaystyle \operatorname {Int} ({\mathfrak {g}})} 5740: 5705: 5646: 5626: 5602: 5548: 5477: 5453: 5423: 5365: 5289: 5261: 5241: 5213: 5190: 5116: 5053: 5005: 4805: 4747: 4719: 4461: 4430: 4318: 4265: 4228: 4193: 4166: 4131: 4067: 4032: 4000: 3968: 3948: 3933: 3908: 3863: 3819: 3759: 3705: 3660: 3588: 3559: 3522: 3493: 3452: 3350: 3316: 3278: 3239: 3189: 3162: 3098: 3070: 3037: 2891: 2866: 2830: 2776: 2756: 2721: 2701: 2633: 2593: 2569: 2530: 2498: 2438: 2289: 2233: 2099: 2051: 2025: 1993: 1896: 1865: 1745: 1669: 1623: 1567: 1487: 1435: 1403: 1326: 1294: 1262: 1191: 1114: 1042: 958: 873: 831: 701: 634: 601: 553: 513: 473: 439: 357: 312: 273: 195: 74: 45: 9968:. Vol. 218 (Second ed.). New York London: 9738:, Ch. III, § 3, no. 16, Corollary to Proposition 55. 5835:{\displaystyle \operatorname {ad} ({\mathfrak {g}})} 5323:
in quantum mechanics.) On the other hand, the group
1239:{\displaystyle G/\ker(f)\to \operatorname {im} (f).} 664:
with support at the identity element; for this, see
163:. One approach uses left-invariant vector fields. A 8199:{\displaystyle {\mathfrak {so}}(2n+1,\mathbb {C} )} 7490:{\displaystyle \operatorname {Int} {\mathfrak {g}}} 6180:{\displaystyle \rho (x):G\to X,\,g\mapsto g\cdot x} 2315:is the Lie algebra of real square matrices of size 9840: 9816: 9529: 9319: 9290: 9262: 9210: 9177: 9103: 9062: 9029: 8969: 8938: 8848: 8761: 8712: 8589: 8496: 8450: 8291: 8198: 8143: 8014: 7938:{\displaystyle {\mathfrak {sl}}(n+1,\mathbb {C} )} 7937: 7885: 7742: 7705: 7660: 7629: 7597: 7566: 7536:{\displaystyle G\hookrightarrow O(n,\mathbb {R} )} 7535: 7489: 7452: 7384: 7360: 7331: 7307: 7278: 7251: 7161: 7128: 7082: 7044: 7024: 6996: 6923: 6845: 6798: 6715: 6597: 6454: 6422: 6314: 6286: 6179: 6083: 6013: 5981: 5898: 5870: 5834: 5798: 5762: 5715: 5691: 5632: 5612: 5584: 5534: 5463: 5439: 5409: 5299: 5271: 5247: 5224: 5199: 5169: 5092: 5032: 4930: 4788: 4725: 4702: 4436: 4413: 4301: 4251: 4206: 4179: 4144: 4114: 4050: 4018: 3986: 3954: 3918: 3890: 3833: 3805: 3742: 3688: 3639: 3574: 3537: 3508: 3479: 3430: 3336: 3290: 3260: 3225: 3168: 3148: 3080: 3056: 3019: 2872: 2842: 2813: 2762: 2742: 2707: 2643: 2611: 2579: 2545: 2516: 2480: 2397: 2307: 2264:{\displaystyle \exp :\operatorname {Lie} (G)\to G} 2263: 2215: 2156: 2082:{\displaystyle \exp :\operatorname {Lie} (G)\to G} 2081: 2034: 2011: 1969: 1882: 1848: 1728: 1655: 1605: 1513: 1453: 1421: 1377: 1312: 1280: 1238: 1165: 1093: 1015: 934: 849: 799: 652: 617: 571: 531: 491: 452: 421: 343: 298: 256: 139:; in particular, they have at most countably many 89: 60: 9369: 8762:{\displaystyle {\mathfrak {so}}(2n,\mathbb {C} )} 1606:{\displaystyle G=G_{1}\times \cdots \times G_{r}} 151: 10910: 8687: 8497:{\displaystyle {\mathfrak {sp}}(n,\mathbb {C} )} 8118: 7860: 6051: 5734:By Lie's third theorem, there exists a subgroup 5339:An example of a Lie group representation is the 1987:is a Lie group, then any Lie group homomorphism 864:, then its differential at the identity element 10003:Notes for Math 261A Lie groups and Lie algebras 9883: 5910:is connected, it fits into the exact sequence: 3301: 814:(cf. the table in "compact Lie groups" below.) 6084:{\displaystyle \det(\operatorname {Ad} (g))=1} 5093:{\displaystyle \pi :G\to GL_{n}(\mathbb {C} )} 422:{\displaystyle (dL_{g})_{h}:T_{h}G\to T_{gh}G} 10047: 9544:This requirement cannot be omitted; see also 9041:may be alternatively defined as follows. Let 7641:and has zero or purely imaginary eigenvalues. 6029:is discrete, then Ad here is a covering map. 5334: 4945:has the homomorphism property, at least when 3261:{\displaystyle {\widetilde {H}}\rightarrow H} 2770:of Lie groups the corresponding differential 135:(in particular Lie groups) are assumed to be 8009: 7955: 7083:{\displaystyle {\mathfrak {g}}/\Gamma \to G} 6710: 6635: 6592: 6504: 5180:is then a Lie algebra homomorphism called a 5103:is called a representation of the Lie group 4987: 4972:The next stage in the argument is to extend 3226:{\displaystyle \Gamma (Lie(H))\rightarrow H} 1477:is said to be an immersed (Lie) subgroup of 9005:be a Lie group. The associated Lie algebra 7644:There exists an invariant inner product on 5447:is then an automorphism of the Lie algebra 4969:is simply connected has not yet been used. 4741:, we see that this last expression becomes 3696:gives rise to the Lie algebra homomorphism 2019:is uniquely determined by its differential 16:Correspondence between topics in Lie theory 10054: 10040: 6997:{\displaystyle \exp :{\mathfrak {g}}\to G} 5692:{\displaystyle \operatorname {ad} (X)(Y)=} 3926:and the set of one-parameter subgroups of 3849:. This Lie group homomorphism, called the 1378:{\displaystyle d(g\circ f)=(dg)\circ (df)} 665: 257:{\displaystyle (dL_{g})_{h}(X_{h})=X_{gh}} 8907: 8807: 8752: 8653: 8542: 8487: 8388: 8250: 8189: 8084: 7984: 7928: 7819: 7676:has finite center. Thus, for example, if 7526: 6161: 5512: 5157: 5083: 5023: 4733:is a Lie algebra homomorphism. Using the 3821: 3799: 3791: 3770: 3724: 3707: 3470: 3418: 3382: 2821:at the neutral element, is a (covariant) 785: 744: 77: 48: 10061: 10026:Formal Lie theory in characteristic zero 9935: 9874: 9857: 9747: 9735: 9723: 9568: 9556: 9387: 9357:Distribution on a linear algebraic group 8996: 4789:{\displaystyle e^{\phi (X)}e^{\phi (Y)}} 3057:{\displaystyle \Gamma ({\mathfrak {g}})} 2676:are isomorphic. One method to construct 9877:Groupes et Algèbres de Lie (Chapitre 3) 9546:https://math.stackexchange.com/q/329753 9263:{\displaystyle U({\mathfrak {g}})=A(G)} 9030:{\displaystyle \operatorname {Lie} (G)} 6846:{\displaystyle \operatorname {Lie} (H)} 4019:{\displaystyle \operatorname {Lie} (H)} 3987:{\displaystyle \operatorname {Lie} (G)} 2612:{\displaystyle \operatorname {Lie} (G)} 2308:{\displaystyle \operatorname {Lie} (G)} 1890:are Lie subgroups of a Lie group, then 1454:{\displaystyle \operatorname {Lie} (G)} 1422:{\displaystyle \operatorname {Lie} (H)} 1181:induces the isomorphism of Lie groups: 653:{\displaystyle \operatorname {Lie} (G)} 572:{\displaystyle \operatorname {Lie} (G)} 492:{\displaystyle \operatorname {Lie} (G)} 10911: 9750:, Ch. III, § 1, no. 7, Proposition 14. 7630:{\displaystyle \operatorname {ad} (X)} 4115:{\displaystyle f(e^{X})=e^{\phi (X)},} 2157:{\displaystyle f(\exp(X))=\exp(df(X))} 1549:with the structure group its kernel. ( 1016:{\displaystyle \exp(df(X))=f(\exp(X))} 10035: 10007: 9559:, Ch. III, § 3, no. 8, Proposition 28 9222:, there is the canonical isomorphism 7431:(Weyl) The simply connected covering 7406: 6968:is abelian, then the exponential map 6934: 2488:is a Lie algebra homomorphism and if 2408: 628:There is also another incarnation of 9909: 9884:Duistermaat, J.J.; Kolk, A. (2000), 9711: 9700: 9688: 9676: 9664: 9652: 9640: 9628: 9616: 9604: 9592: 9580: 9399: 7032:. By the first isomorphism theorem, 6953:is the center of the Lie algebra of 6106:be a Lie group acting on a manifold 5471:. This way, we get a representation 5033:{\displaystyle GL_{n}(\mathbb {C} )} 3480:{\displaystyle GL_{n}(\mathbb {R} )} 3337:{\displaystyle {\mathfrak {gl}}_{n}} 1663:projections. Then the differentials 1393:is a closed subgroup of a Lie group 671: 25:Lie group–Lie algebra correspondence 9956: 9879:, Éléments de Mathématique, Hermann 9833: 9806: 9777: 9375: 9283: 9237: 9128: 8962: 8898: 8734: 8731: 8472: 8469: 8165: 8162: 7907: 7904: 7653: 7590: 7559: 7482: 7377: 7324: 7271: 7061: 6983: 6781: 6774: 6515: 6486: 6479: 6447: 5965: 5891: 5860: 5824: 5799:{\displaystyle GL({\mathfrak {g}})} 5788: 5752: 5708: 5633:{\displaystyle \operatorname {ad} } 5605: 5574: 5564: 5561: 5551: 5501: 5456: 5292: 5264: 5142: 5139: 5128: 3911: 3857:, is precisely the exponential map 3716: 3663: 3632: 3500: 3367: 3364: 3353: 3323: 3320: 3135: 3107: 3073: 3046: 2985: 2933: 2636: 2572: 2216:{\textstyle \bigcup _{n>0}U^{n}} 1736:give the canonical identification: 1556: 13: 10010:"Lie algebra of an analytic group" 8823: 8669: 8558: 8362: 8266: 8100: 7842: 7286:and a simply connected Lie group 7262:Equivalently, given a Lie algebra 7071: 7019: 6813:is a closed connected subgroup of 5321:integer spin and half-integer spin 4994:finite-dimensional representations 4222:small), we consider their product 3934:Proof of the homomorphisms theorem 3272:; its surjectivity corresponds to 3190: 3163: 3127: 3038: 2961: 2958: 2955: 2925: 2900: 2897: 2894: 2867: 2367: 1320:are Lie group homomorphisms, then 14: 10945: 9996: 5410:{\displaystyle c_{g}(h)=ghg^{-1}} 3891:{\displaystyle t\mapsto \exp(tX)} 3834:{\displaystyle \mathbb {R} \to H} 3509:{\displaystyle e^{\mathfrak {g}}} 2557:The subgroups–subalgebras theorem 583:and is called the Lie algebra of 539:is left-translation-invariant if 9962:Introduction to Smooth Manifolds 8949:where the left-hand side is the 7706:{\displaystyle {\widetilde {G}}} 7453:{\displaystyle {\widetilde {G}}} 7361:{\displaystyle {\widetilde {G}}} 7308:{\displaystyle {\widetilde {G}}} 7162:{\displaystyle {\widetilde {G}}} 4735:Baker–Campbell–Hausdorff formula 4302:{\displaystyle e^{X}e^{Y}=e^{Z}} 3940:Baker–Campbell–Hausdorff formula 3575:{\displaystyle {\widetilde {G}}} 3538:{\displaystyle {\widetilde {G}}} 2682:Baker–Campbell–Hausdorff formula 1656:{\displaystyle p_{i}:G\to G_{i}} 817: 684:), and thus a Lie group, by the 90:{\displaystyle \mathbb {T} ^{n}} 61:{\displaystyle \mathbb {R} ^{n}} 9851: 9841:{\displaystyle {\mathfrak {g}}} 9753: 9741: 9729: 9717: 9705: 9694: 9682: 9670: 9658: 9646: 9634: 9622: 9610: 9598: 9390:, Ch. II, § 2, Proposition 2.7. 9291:{\displaystyle {\mathfrak {g}}} 8977:and the right-hand side is the 8970:{\displaystyle {\mathfrak {g}}} 7661:{\displaystyle {\mathfrak {g}}} 7598:{\displaystyle {\mathfrak {g}}} 7567:{\displaystyle {\mathfrak {g}}} 7385:{\displaystyle {\mathfrak {g}}} 7332:{\displaystyle {\mathfrak {g}}} 7279:{\displaystyle {\mathfrak {g}}} 6853:is an ideal and in such a case 6455:{\displaystyle {\mathfrak {g}}} 6036:be a connected Lie group. Then 5899:{\displaystyle {\mathfrak {g}}} 5716:{\displaystyle {\mathfrak {g}}} 5613:{\displaystyle {\mathfrak {g}}} 5464:{\displaystyle {\mathfrak {g}}} 5307:comes from a representation of 5300:{\displaystyle {\mathfrak {g}}} 5272:{\displaystyle {\mathfrak {g}}} 5044:and any Lie group homomorphism 4965:are small. The assumption that 4737:again, this time for the group 3919:{\displaystyle {\mathfrak {g}}} 3444:irrational winding of the torus 3081:{\displaystyle {\mathfrak {g}}} 2644:{\displaystyle {\mathfrak {h}}} 2580:{\displaystyle {\mathfrak {h}}} 10094:Differentiable/Smooth manifold 9811: 9801: 9783: 9772: 9586: 9574: 9562: 9550: 9538: 9521: 9518: 9507: 9498: 9486: 9476: 9470: 9467: 9456: 9440: 9405: 9393: 9381: 9314: 9308: 9257: 9251: 9242: 9232: 9205: 9199: 9172: 9169: 9163: 9157: 9148: 9142: 9098: 9092: 9057: 9051: 9024: 9018: 8933: 8927: 8911: 8893: 8811: 8803: 8756: 8739: 8696: 8690: 8657: 8649: 8546: 8538: 8491: 8477: 8350: 8341: 8254: 8246: 8193: 8170: 8127: 8121: 8088: 8080: 7988: 7980: 7932: 7912: 7869: 7863: 7823: 7815: 7717:has infinite center, e.g., if 7624: 7618: 7530: 7516: 7510: 7243: 7232: 7215: 7212: 7206: 7193: 7123: 7117: 7074: 6988: 6918: 6912: 6898: 6892: 6880: 6866: 6840: 6834: 6793: 6787: 6765: 6762: 6756: 6743: 6662: 6656: 6629: 6623: 6564: 6558: 6535: 6529: 6498: 6492: 6417: 6401: 6382: 6376: 6367: 6355: 6343: 6278: 6262: 6243: 6237: 6228: 6216: 6203: 6165: 6152: 6143: 6137: 6072: 6069: 6063: 6054: 6008: 6002: 5973: 5970: 5960: 5938: 5935: 5929: 5923: 5865: 5855: 5829: 5819: 5793: 5783: 5757: 5747: 5686: 5674: 5668: 5662: 5659: 5653: 5579: 5569: 5556: 5516: 5506: 5496: 5487: 5382: 5376: 5161: 5153: 5133: 5087: 5079: 5063: 5027: 5019: 4875: 4869: 4856: 4850: 4781: 4775: 4762: 4756: 4686: 4683: 4680: 4674: 4665: 4659: 4653: 4647: 4641: 4635: 4619: 4616: 4610: 4601: 4595: 4589: 4573: 4567: 4558: 4552: 4536: 4530: 4399: 4396: 4384: 4375: 4359: 4347: 4104: 4098: 4084: 4071: 4042: 4013: 4007: 3981: 3975: 3885: 3876: 3867: 3825: 3774: 3766: 3728: 3711: 3683: 3677: 3553:; it is not hard to show that 3474: 3466: 3425: 3422: 3414: 3398: 3386: 3378: 3252: 3217: 3214: 3211: 3205: 3193: 3143: 3140: 3130: 3124: 3112: 3051: 3041: 3011: 3008: 3002: 2980: 2947: 2938: 2928: 2922: 2792: 2786: 2737: 2731: 2606: 2600: 2508: 2475: 2469: 2460: 2457: 2451: 2338: 2332: 2302: 2296: 2255: 2252: 2246: 2168:is connected, this determines 2151: 2148: 2142: 2133: 2121: 2118: 2112: 2103: 2073: 2070: 2064: 2003: 1961: 1950: 1938: 1932: 1920: 1903: 1840: 1827: 1809: 1796: 1784: 1752: 1723: 1710: 1701: 1698: 1692: 1640: 1508: 1502: 1448: 1442: 1416: 1410: 1372: 1363: 1357: 1348: 1342: 1330: 1304: 1272: 1230: 1224: 1215: 1212: 1206: 1160: 1151: 1139: 1136: 1130: 1121: 1088: 1079: 1067: 1064: 1058: 1049: 1010: 1007: 1001: 992: 983: 980: 974: 965: 929: 923: 914: 911: 905: 841: 748: 734: 714: 708: 647: 641: 566: 560: 526: 514: 486: 480: 400: 375: 358: 329: 323: 290: 235: 222: 213: 196: 152:The Lie algebra of a Lie group 1: 10028:, a blog post by Akhil Mathew 9966:Graduate Texts in Mathematics 9867: 9571:, Ch. III, § 1, Proposition 5 8873:is a compact Lie group, then 3233:is the canonical projection 2814:{\displaystyle Lie(f)=df_{e}} 1983:be a connected Lie group. If 680:is a closed subgroup of GL(n; 9362: 9272:universal enveloping algebra 8993:by the averaging argument.) 7835: 3647:, this completes the proof. 3302:Proof of Lie's third theorem 299:{\displaystyle L_{g}:G\to G} 7: 10800:Classification of manifolds 10015:Encyclopedia of Mathematics 9330: 7129:{\displaystyle \pi _{1}(G)} 5355:defines an automorphism of 5207:is often simply denoted by 4152:is the exponential map for 3841:for some immersed subgroup 3753:By Lie's third theorem, as 2750:, and to each homomorphism 1521:is an immersed subgroup of 344:{\displaystyle L_{g}(x)=gx} 27:allows one to correspond a 10: 10950: 9888:, Universitext, Springer, 7762:of associated Lie algebra 7500:There exists an embedding 7410: 6938: 6119:the stabilizer of a point 5335:The adjoint representation 5182:Lie algebra representation 4252:{\displaystyle e^{X}e^{Y}} 3298:being a faithful functor. 3088:. The associated natural 2687:For readers familiar with 2424:simply connected Lie group 2042:. Precisely, there is the 688:. Then the Lie algebra of 158:Lie algebra of a Lie group 10876:over commutative algebras 10833: 10792: 10725: 10622: 10518: 10465: 10456: 10292: 10215: 10154: 10074: 9920:10.1007/978-3-319-13467-3 9894:10.1007/978-3-642-56936-4 7136:of a connected Lie group 6821:is normal if and only if 4999:The general linear group 4988:Lie group representations 3547:simply connected covering 3438:is a Lie subalgebra. Let 3270:simply connected covering 2430:The homomorphisms theorem 2172:uniquely. In general, if 1514:{\displaystyle G/\ker(f)} 1175:first isomorphism theorem 146: 10592:Riemann curvature tensor 9759:It's surjective because 9423:is a closed subgroup of 7052:induces the isomorphism 6315:{\displaystyle G\cdot x} 4796:, and therefore we have 4051:{\displaystyle f:G\to H} 2546:{\displaystyle \phi =df} 2517:{\displaystyle f:G\to H} 2012:{\displaystyle f:G\to H} 1313:{\displaystyle g:H\to K} 1281:{\displaystyle f:G\to H} 947:Lie algebra homomorphism 850:{\displaystyle f:G\to H} 812:classical compact groups 686:closed subgroups theorem 9910:Hall, Brian C. (2015), 7743:{\displaystyle G=S^{1}} 7025:{\displaystyle \Gamma } 5329:representation of SU(2) 4437:{\displaystyle \cdots } 3169:{\displaystyle \Gamma } 2873:{\displaystyle \Gamma } 2587:is a Lie subalgebra of 1429:is a Lie subalgebra of 10384:Manifold with boundary 10099:Differential structure 9842: 9818: 9531: 9321: 9292: 9264: 9212: 9179: 9105: 9064: 9031: 8971: 8951:Lie algebra cohomology 8940: 8850: 8763: 8714: 8591: 8498: 8452: 8293: 8200: 8145: 8016: 7939: 7887: 7744: 7707: 7684:, the universal cover 7662: 7631: 7599: 7568: 7537: 7491: 7454: 7395:For the complex case, 7386: 7362: 7333: 7309: 7280: 7253: 7163: 7130: 7084: 7046: 7026: 6998: 6957:(cf. the previous §), 6925: 6847: 6800: 6717: 6599: 6456: 6424: 6316: 6288: 6181: 6085: 6015: 5983: 5900: 5872: 5836: 5800: 5764: 5717: 5693: 5634: 5614: 5594:adjoint representation 5586: 5536: 5465: 5441: 5440:{\displaystyle dc_{g}} 5411: 5341:adjoint representation 5311:. The assumption that 5301: 5273: 5249: 5226: 5201: 5171: 5094: 5034: 4932: 4790: 4727: 4704: 4438: 4415: 4303: 4253: 4208: 4181: 4146: 4116: 4052: 4020: 3988: 3956: 3920: 3892: 3851:one-parameter subgroup 3835: 3807: 3744: 3690: 3650:Example: Each element 3641: 3576: 3539: 3510: 3481: 3432: 3338: 3292: 3262: 3227: 3170: 3150: 3082: 3058: 3021: 2874: 2844: 2815: 2764: 2744: 2743:{\displaystyle Lie(G)} 2709: 2645: 2613: 2581: 2547: 2518: 2482: 2399: 2371: 2309: 2265: 2217: 2158: 2083: 2036: 2013: 1971: 1884: 1850: 1730: 1657: 1607: 1515: 1455: 1423: 1379: 1314: 1282: 1240: 1167: 1095: 1031:), where "exp" is the 1017: 936: 862:Lie group homomorphism 851: 801: 666:#Related constructions 654: 619: 618:{\displaystyle T_{e}G} 573: 533: 493: 454: 423: 345: 300: 258: 91: 62: 10919:Differential geometry 10008:Popov, V.L. (2001) , 9875:Bourbaki, N. (1981), 9860:, Ch. III, § 3. no. 7 9843: 9819: 9532: 9322: 9293: 9265: 9213: 9185:, the Lie algebra of 9180: 9115:. The Lie algebra of 9106: 9065: 9032: 8997:Related constructions 8972: 8941: 8851: 8764: 8715: 8592: 8499: 8453: 8294: 8201: 8146: 8017: 7940: 7888: 7745: 7708: 7663: 7632: 7600: 7574:is negative definite. 7569: 7543:as a closed subgroup. 7538: 7492: 7455: 7387: 7363: 7334: 7315:whose Lie algebra is 7310: 7281: 7254: 7164: 7131: 7085: 7047: 7045:{\displaystyle \exp } 7027: 6999: 6926: 6848: 6801: 6718: 6600: 6457: 6425: 6317: 6289: 6182: 6086: 6016: 5984: 5901: 5873: 5837: 5806:whose Lie algebra is 5801: 5765: 5723:is determined by the 5718: 5694: 5635: 5615: 5587: 5537: 5466: 5442: 5412: 5302: 5274: 5250: 5227: 5225:{\displaystyle \pi '} 5202: 5200:{\displaystyle d\pi } 5172: 5095: 5035: 4933: 4791: 4728: 4726:{\displaystyle \phi } 4705: 4439: 4416: 4304: 4254: 4209: 4207:{\displaystyle e^{Y}} 4182: 4180:{\displaystyle e^{X}} 4147: 4145:{\displaystyle e^{X}} 4117: 4053: 4021: 3989: 3957: 3955:{\displaystyle \phi } 3921: 3893: 3836: 3808: 3745: 3691: 3642: 3577: 3540: 3511: 3482: 3433: 3339: 3293: 3263: 3228: 3171: 3151: 3083: 3059: 3022: 2875: 2845: 2816: 2765: 2745: 2710: 2646: 2614: 2582: 2548: 2519: 2483: 2400: 2357: 2310: 2266: 2218: 2159: 2084: 2037: 2014: 1972: 1885: 1851: 1731: 1658: 1608: 1537:and if, in addition, 1516: 1456: 1424: 1380: 1315: 1283: 1241: 1168: 1096: 1018: 937: 852: 802: 655: 620: 574: 534: 494: 455: 453:{\displaystyle L_{g}} 424: 346: 301: 259: 99:real coordinate space 92: 63: 10531:Covariant derivative 10082:Topological manifold 9828: 9763: 9431: 9342:Milnor–Moore theorem 9320:{\displaystyle A(G)} 9302: 9278: 9226: 9220:Milnor–Moore theorem 9211:{\displaystyle A(G)} 9193: 9123: 9104:{\displaystyle A(G)} 9086: 9063:{\displaystyle A(G)} 9045: 9009: 8957: 8880: 8773: 8726: 8619: 8508: 8464: 8321: 8210: 8157: 8044: 7949: 7899: 7782: 7721: 7688: 7648: 7609: 7585: 7554: 7504: 7471: 7435: 7372: 7343: 7319: 7290: 7266: 7187: 7144: 7104: 7056: 7036: 7016: 6972: 6857: 6825: 6734: 6610: 6473: 6442: 6330: 6300: 6194: 6131: 6048: 6014:{\displaystyle Z(G)} 5996: 5917: 5886: 5846: 5810: 5774: 5738: 5703: 5644: 5624: 5600: 5546: 5475: 5451: 5421: 5363: 5287: 5259: 5239: 5211: 5188: 5184:. (The differential 5114: 5051: 5003: 4803: 4745: 4717: 4459: 4428: 4316: 4263: 4226: 4191: 4164: 4129: 4065: 4030: 3998: 3966: 3946: 3906: 3861: 3817: 3757: 3703: 3658: 3586: 3557: 3520: 3491: 3450: 3348: 3314: 3276: 3237: 3187: 3160: 3096: 3068: 3035: 2889: 2864: 2828: 2774: 2754: 2719: 2699: 2631: 2591: 2567: 2528: 2496: 2436: 2323: 2287: 2281:general linear group 2231: 2184: 2097: 2049: 2023: 1991: 1894: 1883:{\displaystyle H,H'} 1863: 1743: 1667: 1621: 1565: 1529:is surjective, then 1485: 1433: 1401: 1324: 1292: 1260: 1189: 1112: 1040: 956: 871: 829: 699: 632: 599: 551: 511: 471: 437: 355: 310: 271: 193: 141:connected components 72: 43: 10565:Exterior derivative 10167:Atiyah–Singer index 10116:Riemannian manifold 9416:More generally, if 9337:Compact Lie algebra 7399:are important; see 6696: for all  6578: for all  6025:. If the center of 5952: 5417:; the differential 5107:. The differential 3654:in the Lie algebra 3291:{\displaystyle Lie} 2843:{\displaystyle Lie} 2563:is a Lie group and 2419:Lie's third theorem 1465:is injective, then 775: for all  692:may be computed as 131:. In this article, 10871:Secondary calculus 10825:Singularity theory 10780:Parallel transport 10548:De Rham cohomology 10187:Generalized Stokes 9943:, Academic Press, 9937:Helgason, Sigurdur 9838: 9814: 9527: 9352:Malcev Lie algebra 9317: 9288: 9260: 9208: 9187:primitive elements 9175: 9101: 9070:be the algebra of 9060: 9027: 8979:de Rham cohomology 8967: 8936: 8846: 8759: 8710: 8587: 8494: 8448: 8442: 8289: 8196: 8141: 8012: 7935: 7883: 7756:Compact Lie group 7740: 7703: 7682:with finite center 7658: 7627: 7595: 7564: 7533: 7487: 7467:The adjoint group 7450: 7407:Compact Lie groups 7382: 7358: 7329: 7305: 7276: 7249: 7173:; in other words, 7159: 7126: 7080: 7042: 7022: 7012:and is denoted by 6994: 6935:Abelian Lie groups 6921: 6843: 6796: 6713: 6595: 6452: 6420: 6312: 6284: 6177: 6081: 6011: 5979: 5896: 5868: 5832: 5796: 5760: 5713: 5689: 5630: 5620:and is denoted by 5610: 5582: 5532: 5461: 5437: 5407: 5297: 5283:representation of 5269: 5245: 5222: 5197: 5167: 5090: 5030: 4928: 4786: 4723: 4700: 4434: 4411: 4299: 4249: 4204: 4177: 4142: 4112: 4048: 4016: 3984: 3952: 3916: 3888: 3831: 3803: 3740: 3686: 3637: 3572: 3535: 3506: 3477: 3428: 3334: 3288: 3258: 3223: 3166: 3146: 3078: 3054: 3017: 2870: 2840: 2811: 2760: 2740: 2705: 2641: 2609: 2577: 2543: 2514: 2478: 2409:The correspondence 2395: 2305: 2261: 2213: 2202: 2154: 2079: 2035:{\displaystyle df} 2032: 2009: 1967: 1880: 1846: 1726: 1653: 1617:of Lie groups and 1603: 1511: 1451: 1419: 1389:In particular, if 1375: 1310: 1278: 1236: 1163: 1091: 1013: 932: 847: 797: 650: 615: 569: 529: 489: 450: 419: 341: 296: 254: 87: 58: 10906: 10905: 10788: 10787: 10553:Differential form 10207:Whitney embedding 10141:Differential form 9979:978-1-4419-9981-8 8924: 8867: 8866: 7838: 7700: 7447: 7413:Compact Lie group 7401:complex Lie group 7355: 7302: 7238: 7227: 7179:central extension 7156: 7099:fundamental group 7095:rigidity argument 6941:Abelian Lie group 6705: 6697: 6677: 6587: 6579: 6550: 6021:is the center of 5953: 5248:{\displaystyle G} 4633: 4587: 4373: 4345: 3608: 3569: 3532: 3249: 2763:{\displaystyle f} 2708:{\displaystyle G} 2627:with Lie algebra 2187: 1551:Ehresmann's lemma 1541:is compact, then 776: 672:Matrix Lie groups 122:complex Lie group 120:-adic cases, see 10941: 10898:Stratified space 10856:Fréchet manifold 10570:Interior product 10463: 10462: 10160: 10056: 10049: 10042: 10033: 10032: 10022: 9991: 9953: 9932: 9906: 9880: 9861: 9855: 9849: 9847: 9845: 9844: 9839: 9837: 9836: 9823: 9821: 9820: 9815: 9810: 9809: 9791: 9790: 9781: 9780: 9757: 9751: 9745: 9739: 9733: 9727: 9721: 9715: 9709: 9703: 9698: 9692: 9686: 9680: 9674: 9668: 9662: 9656: 9650: 9644: 9643:Proposition 4.35 9638: 9632: 9626: 9620: 9614: 9608: 9602: 9596: 9590: 9584: 9578: 9572: 9566: 9560: 9554: 9548: 9542: 9536: 9534: 9533: 9528: 9517: 9497: 9496: 9466: 9455: 9454: 9417: 9412: 9403: 9397: 9391: 9385: 9379: 9373: 9326: 9324: 9323: 9318: 9297: 9295: 9294: 9289: 9287: 9286: 9269: 9267: 9266: 9261: 9241: 9240: 9217: 9215: 9214: 9209: 9184: 9182: 9181: 9176: 9132: 9131: 9110: 9108: 9107: 9102: 9069: 9067: 9066: 9061: 9036: 9034: 9033: 9028: 8976: 8974: 8973: 8968: 8966: 8965: 8945: 8943: 8942: 8937: 8926: 8925: 8922: 8910: 8902: 8901: 8892: 8891: 8855: 8853: 8852: 8847: 8845: 8841: 8828: 8827: 8826: 8810: 8802: 8801: 8768: 8766: 8765: 8760: 8755: 8738: 8737: 8719: 8717: 8716: 8711: 8709: 8705: 8674: 8673: 8672: 8656: 8648: 8647: 8596: 8594: 8593: 8588: 8586: 8582: 8563: 8562: 8561: 8545: 8537: 8536: 8503: 8501: 8500: 8495: 8490: 8476: 8475: 8457: 8455: 8454: 8449: 8447: 8446: 8434: 8433: 8417: 8416: 8384: 8380: 8367: 8366: 8365: 8298: 8296: 8295: 8290: 8288: 8284: 8271: 8270: 8269: 8253: 8245: 8244: 8205: 8203: 8202: 8197: 8192: 8169: 8168: 8150: 8148: 8147: 8142: 8140: 8136: 8105: 8104: 8103: 8087: 8079: 8078: 8021: 8019: 8018: 8013: 7987: 7979: 7978: 7944: 7942: 7941: 7936: 7931: 7911: 7910: 7892: 7890: 7889: 7884: 7882: 7878: 7847: 7846: 7845: 7839: 7831: 7822: 7814: 7813: 7760:Complexification 7753: 7752: 7749: 7747: 7746: 7741: 7739: 7738: 7712: 7710: 7709: 7704: 7702: 7701: 7693: 7667: 7665: 7664: 7659: 7657: 7656: 7636: 7634: 7633: 7628: 7604: 7602: 7601: 7596: 7594: 7593: 7573: 7571: 7570: 7565: 7563: 7562: 7542: 7540: 7539: 7534: 7529: 7496: 7494: 7493: 7488: 7486: 7485: 7459: 7457: 7456: 7451: 7449: 7448: 7440: 7403:for this topic. 7391: 7389: 7388: 7383: 7381: 7380: 7367: 7365: 7364: 7359: 7357: 7356: 7348: 7338: 7336: 7335: 7330: 7328: 7327: 7314: 7312: 7311: 7306: 7304: 7303: 7295: 7285: 7283: 7282: 7277: 7275: 7274: 7258: 7256: 7255: 7250: 7239: 7231: 7229: 7228: 7220: 7205: 7204: 7168: 7166: 7165: 7160: 7158: 7157: 7149: 7135: 7133: 7132: 7127: 7116: 7115: 7089: 7087: 7086: 7081: 7070: 7065: 7064: 7051: 7049: 7048: 7043: 7031: 7029: 7028: 7023: 7003: 7001: 7000: 6995: 6987: 6986: 6930: 6928: 6927: 6922: 6905: 6876: 6852: 6850: 6849: 6844: 6805: 6803: 6802: 6797: 6786: 6785: 6784: 6778: 6777: 6755: 6754: 6722: 6720: 6719: 6714: 6706: 6703: 6698: 6695: 6678: 6675: 6622: 6621: 6604: 6602: 6601: 6596: 6588: 6585: 6580: 6577: 6551: 6548: 6519: 6518: 6491: 6490: 6489: 6483: 6482: 6461: 6459: 6458: 6453: 6451: 6450: 6429: 6427: 6426: 6421: 6413: 6412: 6397: 6396: 6342: 6341: 6321: 6319: 6318: 6313: 6293: 6291: 6290: 6285: 6274: 6273: 6258: 6257: 6215: 6214: 6186: 6184: 6183: 6178: 6090: 6088: 6087: 6082: 6020: 6018: 6017: 6012: 5988: 5986: 5985: 5980: 5969: 5968: 5944: 5905: 5903: 5902: 5897: 5895: 5894: 5877: 5875: 5874: 5869: 5864: 5863: 5841: 5839: 5838: 5833: 5828: 5827: 5805: 5803: 5802: 5797: 5792: 5791: 5769: 5767: 5766: 5761: 5756: 5755: 5722: 5720: 5719: 5714: 5712: 5711: 5698: 5696: 5695: 5690: 5639: 5637: 5636: 5631: 5619: 5617: 5616: 5611: 5609: 5608: 5591: 5589: 5588: 5583: 5578: 5577: 5568: 5567: 5555: 5554: 5541: 5539: 5538: 5533: 5531: 5530: 5505: 5504: 5470: 5468: 5467: 5462: 5460: 5459: 5446: 5444: 5443: 5438: 5436: 5435: 5416: 5414: 5413: 5408: 5406: 5405: 5375: 5374: 5359:by conjugation: 5306: 5304: 5303: 5298: 5296: 5295: 5278: 5276: 5275: 5270: 5268: 5267: 5254: 5252: 5251: 5246: 5231: 5229: 5228: 5223: 5221: 5206: 5204: 5203: 5198: 5176: 5174: 5173: 5168: 5160: 5152: 5151: 5146: 5145: 5132: 5131: 5099: 5097: 5096: 5091: 5086: 5078: 5077: 5039: 5037: 5036: 5031: 5026: 5018: 5017: 4937: 4935: 4934: 4929: 4924: 4920: 4919: 4903: 4899: 4898: 4879: 4878: 4860: 4859: 4838: 4834: 4833: 4832: 4823: 4822: 4795: 4793: 4792: 4787: 4785: 4784: 4766: 4765: 4732: 4730: 4729: 4724: 4709: 4707: 4706: 4701: 4696: 4695: 4634: 4626: 4588: 4580: 4540: 4539: 4518: 4514: 4513: 4494: 4490: 4489: 4488: 4479: 4478: 4443: 4441: 4440: 4435: 4420: 4418: 4417: 4412: 4374: 4366: 4346: 4338: 4308: 4306: 4305: 4300: 4298: 4297: 4285: 4284: 4275: 4274: 4258: 4256: 4255: 4250: 4248: 4247: 4238: 4237: 4213: 4211: 4210: 4205: 4203: 4202: 4186: 4184: 4183: 4178: 4176: 4175: 4151: 4149: 4148: 4143: 4141: 4140: 4121: 4119: 4118: 4113: 4108: 4107: 4083: 4082: 4057: 4055: 4054: 4049: 4026:, we may define 4025: 4023: 4022: 4017: 3993: 3991: 3990: 3985: 3961: 3959: 3958: 3953: 3925: 3923: 3922: 3917: 3915: 3914: 3897: 3895: 3894: 3889: 3840: 3838: 3837: 3832: 3824: 3812: 3810: 3809: 3804: 3802: 3794: 3789: 3788: 3773: 3749: 3747: 3746: 3741: 3720: 3719: 3710: 3695: 3693: 3692: 3687: 3667: 3666: 3646: 3644: 3643: 3638: 3636: 3635: 3623: 3622: 3610: 3609: 3601: 3598: 3597: 3581: 3579: 3578: 3573: 3571: 3570: 3562: 3544: 3542: 3541: 3536: 3534: 3533: 3525: 3515: 3513: 3512: 3507: 3505: 3504: 3503: 3486: 3484: 3483: 3478: 3473: 3465: 3464: 3437: 3435: 3434: 3429: 3421: 3413: 3412: 3385: 3377: 3376: 3371: 3370: 3357: 3356: 3343: 3341: 3340: 3335: 3333: 3332: 3327: 3326: 3297: 3295: 3294: 3289: 3267: 3265: 3264: 3259: 3251: 3250: 3242: 3232: 3230: 3229: 3224: 3175: 3173: 3172: 3167: 3155: 3153: 3152: 3147: 3139: 3138: 3111: 3110: 3087: 3085: 3084: 3079: 3077: 3076: 3063: 3061: 3060: 3055: 3050: 3049: 3026: 3024: 3023: 3018: 2989: 2988: 2979: 2978: 2964: 2937: 2936: 2921: 2920: 2903: 2879: 2877: 2876: 2871: 2849: 2847: 2846: 2841: 2820: 2818: 2817: 2812: 2810: 2809: 2769: 2767: 2766: 2761: 2749: 2747: 2746: 2741: 2715:its Lie algebra 2714: 2712: 2711: 2706: 2650: 2648: 2647: 2642: 2640: 2639: 2618: 2616: 2615: 2610: 2586: 2584: 2583: 2578: 2576: 2575: 2552: 2550: 2549: 2544: 2523: 2521: 2520: 2515: 2487: 2485: 2484: 2479: 2404: 2402: 2401: 2396: 2394: 2387: 2382: 2381: 2370: 2365: 2353: 2352: 2314: 2312: 2311: 2306: 2270: 2268: 2267: 2262: 2222: 2220: 2219: 2214: 2212: 2211: 2201: 2163: 2161: 2160: 2155: 2088: 2086: 2085: 2080: 2041: 2039: 2038: 2033: 2018: 2016: 2015: 2010: 1976: 1974: 1973: 1968: 1960: 1919: 1889: 1887: 1886: 1881: 1879: 1855: 1853: 1852: 1847: 1839: 1838: 1808: 1807: 1783: 1782: 1764: 1763: 1735: 1733: 1732: 1727: 1722: 1721: 1682: 1681: 1662: 1660: 1659: 1654: 1652: 1651: 1633: 1632: 1612: 1610: 1609: 1604: 1602: 1601: 1583: 1582: 1557:Other properties 1547:principal bundle 1520: 1518: 1517: 1512: 1495: 1460: 1458: 1457: 1452: 1428: 1426: 1425: 1420: 1384: 1382: 1381: 1376: 1319: 1317: 1316: 1311: 1287: 1285: 1284: 1279: 1245: 1243: 1242: 1237: 1199: 1172: 1170: 1169: 1164: 1108:is closed, then 1104:If the image of 1100: 1098: 1097: 1092: 1022: 1020: 1019: 1014: 941: 939: 938: 933: 895: 894: 856: 854: 853: 848: 806: 804: 803: 798: 793: 789: 788: 777: 774: 766: 765: 747: 659: 657: 656: 651: 624: 622: 621: 616: 611: 610: 578: 576: 575: 570: 538: 536: 535: 532:{\displaystyle } 530: 498: 496: 495: 490: 459: 457: 456: 451: 449: 448: 428: 426: 425: 420: 415: 414: 396: 395: 383: 382: 373: 372: 350: 348: 347: 342: 322: 321: 305: 303: 302: 297: 283: 282: 263: 261: 260: 255: 253: 252: 234: 233: 221: 220: 211: 210: 137:second countable 107:simply connected 96: 94: 93: 88: 86: 85: 80: 67: 65: 64: 59: 57: 56: 51: 10949: 10948: 10944: 10943: 10942: 10940: 10939: 10938: 10909: 10908: 10907: 10902: 10841:Banach manifold 10834:Generalizations 10829: 10784: 10721: 10618: 10580:Ricci curvature 10536:Cotangent space 10514: 10452: 10294: 10288: 10247:Exponential map 10211: 10156: 10150: 10070: 10060: 9999: 9994: 9980: 9970:Springer-Verlag 9951: 9930: 9904: 9870: 9865: 9864: 9856: 9852: 9832: 9831: 9829: 9826: 9825: 9805: 9804: 9786: 9782: 9776: 9775: 9764: 9761: 9760: 9758: 9754: 9746: 9742: 9734: 9730: 9722: 9718: 9710: 9706: 9699: 9695: 9687: 9683: 9675: 9671: 9663: 9659: 9651: 9647: 9639: 9635: 9627: 9623: 9615: 9611: 9603: 9599: 9591: 9587: 9579: 9575: 9567: 9563: 9555: 9551: 9543: 9539: 9510: 9489: 9485: 9459: 9447: 9443: 9432: 9429: 9428: 9415: 9406: 9398: 9394: 9386: 9382: 9374: 9370: 9365: 9333: 9303: 9300: 9299: 9282: 9281: 9279: 9276: 9275: 9236: 9235: 9227: 9224: 9223: 9194: 9191: 9190: 9127: 9126: 9124: 9121: 9120: 9087: 9084: 9083: 9046: 9043: 9042: 9010: 9007: 9006: 8999: 8961: 8960: 8958: 8955: 8954: 8921: 8917: 8906: 8897: 8896: 8887: 8883: 8881: 8878: 8877: 8863: 8822: 8821: 8817: 8806: 8794: 8790: 8783: 8779: 8774: 8771: 8770: 8751: 8730: 8729: 8727: 8724: 8723: 8668: 8667: 8663: 8652: 8640: 8636: 8629: 8625: 8620: 8617: 8616: 8604: 8557: 8556: 8552: 8541: 8529: 8525: 8518: 8514: 8509: 8506: 8505: 8486: 8468: 8467: 8465: 8462: 8461: 8441: 8440: 8435: 8429: 8425: 8419: 8418: 8412: 8408: 8406: 8396: 8395: 8361: 8360: 8356: 8331: 8327: 8322: 8319: 8318: 8306: 8265: 8264: 8260: 8249: 8231: 8227: 8220: 8216: 8211: 8208: 8207: 8188: 8161: 8160: 8158: 8155: 8154: 8099: 8098: 8094: 8083: 8065: 8061: 8054: 8050: 8045: 8042: 8041: 8029: 7983: 7968: 7964: 7950: 7947: 7946: 7927: 7903: 7902: 7900: 7897: 7896: 7841: 7840: 7830: 7829: 7818: 7803: 7799: 7792: 7788: 7783: 7780: 7779: 7734: 7730: 7722: 7719: 7718: 7692: 7691: 7689: 7686: 7685: 7652: 7651: 7649: 7646: 7645: 7610: 7607: 7606: 7589: 7588: 7586: 7583: 7582: 7558: 7557: 7555: 7552: 7551: 7525: 7505: 7502: 7501: 7481: 7480: 7472: 7469: 7468: 7439: 7438: 7436: 7433: 7432: 7415: 7409: 7376: 7375: 7373: 7370: 7369: 7347: 7346: 7344: 7341: 7340: 7323: 7322: 7320: 7317: 7316: 7294: 7293: 7291: 7288: 7287: 7270: 7269: 7267: 7264: 7263: 7230: 7219: 7218: 7200: 7196: 7188: 7185: 7184: 7148: 7147: 7145: 7142: 7141: 7111: 7107: 7105: 7102: 7101: 7066: 7060: 7059: 7057: 7054: 7053: 7037: 7034: 7033: 7017: 7014: 7013: 7006:integer lattice 6982: 6981: 6973: 6970: 6969: 6943: 6937: 6901: 6872: 6858: 6855: 6854: 6826: 6823: 6822: 6780: 6779: 6773: 6772: 6771: 6750: 6746: 6735: 6732: 6731: 6702: 6694: 6674: 6617: 6613: 6611: 6608: 6607: 6584: 6576: 6547: 6514: 6513: 6485: 6484: 6478: 6477: 6476: 6474: 6471: 6470: 6446: 6445: 6443: 6440: 6439: 6408: 6404: 6392: 6388: 6337: 6333: 6331: 6328: 6327: 6301: 6298: 6297: 6269: 6265: 6253: 6249: 6210: 6206: 6195: 6192: 6191: 6132: 6129: 6128: 6118: 6049: 6046: 6045: 6044:if and only if 5997: 5994: 5993: 5964: 5963: 5918: 5915: 5914: 5890: 5889: 5887: 5884: 5883: 5859: 5858: 5847: 5844: 5843: 5823: 5822: 5811: 5808: 5807: 5787: 5786: 5775: 5772: 5771: 5751: 5750: 5739: 5736: 5735: 5707: 5706: 5704: 5701: 5700: 5645: 5642: 5641: 5640:. One can show 5625: 5622: 5621: 5604: 5603: 5601: 5598: 5597: 5573: 5572: 5560: 5559: 5550: 5549: 5547: 5544: 5543: 5526: 5522: 5500: 5499: 5476: 5473: 5472: 5455: 5454: 5452: 5449: 5448: 5431: 5427: 5422: 5419: 5418: 5398: 5394: 5370: 5366: 5364: 5361: 5360: 5351:in a Lie group 5347:; each element 5343:of a Lie group 5337: 5291: 5290: 5288: 5285: 5284: 5263: 5262: 5260: 5257: 5256: 5240: 5237: 5236: 5214: 5212: 5209: 5208: 5189: 5186: 5185: 5156: 5147: 5138: 5137: 5136: 5127: 5126: 5115: 5112: 5111: 5082: 5073: 5069: 5052: 5049: 5048: 5022: 5013: 5009: 5004: 5001: 5000: 4990: 4915: 4911: 4907: 4894: 4890: 4886: 4865: 4861: 4846: 4842: 4828: 4824: 4818: 4814: 4813: 4809: 4804: 4801: 4800: 4771: 4767: 4752: 4748: 4746: 4743: 4742: 4718: 4715: 4714: 4625: 4579: 4548: 4544: 4526: 4522: 4509: 4505: 4501: 4484: 4480: 4474: 4470: 4469: 4465: 4460: 4457: 4456: 4429: 4426: 4425: 4365: 4337: 4317: 4314: 4313: 4293: 4289: 4280: 4276: 4270: 4266: 4264: 4261: 4260: 4243: 4239: 4233: 4229: 4227: 4224: 4223: 4198: 4194: 4192: 4189: 4188: 4171: 4167: 4165: 4162: 4161: 4136: 4132: 4130: 4127: 4126: 4094: 4090: 4078: 4074: 4066: 4063: 4062: 4031: 4028: 4027: 3999: 3996: 3995: 3967: 3964: 3963: 3947: 3944: 3943: 3936: 3910: 3909: 3907: 3904: 3903: 3862: 3859: 3858: 3820: 3818: 3815: 3814: 3798: 3790: 3784: 3780: 3769: 3758: 3755: 3754: 3715: 3714: 3706: 3704: 3701: 3700: 3662: 3661: 3659: 3656: 3655: 3631: 3630: 3618: 3614: 3600: 3599: 3593: 3589: 3587: 3584: 3583: 3561: 3560: 3558: 3555: 3554: 3524: 3523: 3521: 3518: 3517: 3499: 3498: 3494: 3492: 3489: 3488: 3469: 3460: 3456: 3451: 3448: 3447: 3417: 3408: 3404: 3381: 3372: 3363: 3362: 3361: 3352: 3351: 3349: 3346: 3345: 3328: 3319: 3318: 3317: 3315: 3312: 3311: 3304: 3277: 3274: 3273: 3241: 3240: 3238: 3235: 3234: 3188: 3185: 3184: 3161: 3158: 3157: 3134: 3133: 3106: 3105: 3097: 3094: 3093: 3072: 3071: 3069: 3066: 3065: 3045: 3044: 3036: 3033: 3032: 2984: 2983: 2965: 2954: 2953: 2932: 2931: 2904: 2893: 2892: 2890: 2887: 2886: 2865: 2862: 2861: 2859:adjoint functor 2829: 2826: 2825: 2805: 2801: 2775: 2772: 2771: 2755: 2752: 2751: 2720: 2717: 2716: 2700: 2697: 2696: 2689:category theory 2635: 2634: 2632: 2629: 2628: 2592: 2589: 2588: 2571: 2570: 2568: 2565: 2564: 2529: 2526: 2525: 2497: 2494: 2493: 2437: 2434: 2433: 2411: 2383: 2377: 2373: 2372: 2366: 2361: 2348: 2344: 2324: 2321: 2320: 2288: 2285: 2284: 2232: 2229: 2228: 2223:coincides with 2207: 2203: 2191: 2185: 2182: 2181: 2098: 2095: 2094: 2050: 2047: 2046: 2044:exponential map 2024: 2021: 2020: 1992: 1989: 1988: 1953: 1912: 1895: 1892: 1891: 1872: 1864: 1861: 1860: 1834: 1830: 1803: 1799: 1778: 1774: 1759: 1755: 1744: 1741: 1740: 1717: 1713: 1677: 1673: 1668: 1665: 1664: 1647: 1643: 1628: 1624: 1622: 1619: 1618: 1597: 1593: 1578: 1574: 1566: 1563: 1562: 1559: 1491: 1486: 1483: 1482: 1481:. For example, 1434: 1431: 1430: 1402: 1399: 1398: 1325: 1322: 1321: 1293: 1290: 1289: 1261: 1258: 1257: 1195: 1190: 1187: 1186: 1113: 1110: 1109: 1041: 1038: 1037: 1033:exponential map 957: 954: 953: 890: 886: 872: 869: 868: 830: 827: 826: 820: 784: 773: 758: 754: 743: 724: 720: 700: 697: 696: 674: 633: 630: 629: 606: 602: 600: 597: 596: 552: 549: 548: 512: 509: 508: 472: 469: 468: 444: 440: 438: 435: 434: 407: 403: 391: 387: 378: 374: 368: 364: 356: 353: 352: 317: 313: 311: 308: 307: 278: 274: 272: 269: 268: 245: 241: 229: 225: 216: 212: 206: 202: 194: 191: 190: 154: 149: 129:-adic Lie group 81: 76: 75: 73: 70: 69: 52: 47: 46: 44: 41: 40: 17: 12: 11: 5: 10947: 10937: 10936: 10931: 10926: 10921: 10904: 10903: 10901: 10900: 10895: 10890: 10885: 10880: 10879: 10878: 10868: 10863: 10858: 10853: 10848: 10843: 10837: 10835: 10831: 10830: 10828: 10827: 10822: 10817: 10812: 10807: 10802: 10796: 10794: 10790: 10789: 10786: 10785: 10783: 10782: 10777: 10772: 10767: 10762: 10757: 10752: 10747: 10742: 10737: 10731: 10729: 10723: 10722: 10720: 10719: 10714: 10709: 10704: 10699: 10694: 10689: 10679: 10674: 10669: 10659: 10654: 10649: 10644: 10639: 10634: 10628: 10626: 10620: 10619: 10617: 10616: 10611: 10606: 10605: 10604: 10594: 10589: 10588: 10587: 10577: 10572: 10567: 10562: 10561: 10560: 10550: 10545: 10544: 10543: 10533: 10528: 10522: 10520: 10516: 10515: 10513: 10512: 10507: 10502: 10497: 10496: 10495: 10485: 10480: 10475: 10469: 10467: 10460: 10454: 10453: 10451: 10450: 10445: 10435: 10430: 10416: 10411: 10406: 10401: 10396: 10394:Parallelizable 10391: 10386: 10381: 10380: 10379: 10369: 10364: 10359: 10354: 10349: 10344: 10339: 10334: 10329: 10324: 10314: 10304: 10298: 10296: 10290: 10289: 10287: 10286: 10281: 10276: 10274:Lie derivative 10271: 10269:Integral curve 10266: 10261: 10256: 10255: 10254: 10244: 10239: 10238: 10237: 10230:Diffeomorphism 10227: 10221: 10219: 10213: 10212: 10210: 10209: 10204: 10199: 10194: 10189: 10184: 10179: 10174: 10169: 10163: 10161: 10152: 10151: 10149: 10148: 10143: 10138: 10133: 10128: 10123: 10118: 10113: 10108: 10107: 10106: 10101: 10091: 10090: 10089: 10078: 10076: 10075:Basic concepts 10072: 10071: 10059: 10058: 10051: 10044: 10036: 10030: 10029: 10023: 10005: 9998: 9997:External links 9995: 9993: 9992: 9978: 9954: 9949: 9933: 9929:978-3319134666 9928: 9907: 9902: 9881: 9871: 9869: 9866: 9863: 9862: 9850: 9835: 9813: 9808: 9803: 9800: 9797: 9794: 9789: 9785: 9779: 9774: 9771: 9768: 9752: 9740: 9728: 9716: 9704: 9693: 9681: 9669: 9657: 9645: 9633: 9621: 9609: 9597: 9585: 9583:Corollary 3.49 9573: 9561: 9549: 9537: 9526: 9523: 9520: 9516: 9513: 9509: 9506: 9503: 9500: 9495: 9492: 9488: 9484: 9481: 9478: 9475: 9472: 9469: 9465: 9462: 9458: 9453: 9450: 9446: 9442: 9439: 9436: 9404: 9392: 9380: 9378:, p. 530. 9367: 9366: 9364: 9361: 9360: 9359: 9354: 9349: 9344: 9339: 9332: 9329: 9316: 9313: 9310: 9307: 9285: 9259: 9256: 9253: 9250: 9247: 9244: 9239: 9234: 9231: 9207: 9204: 9201: 9198: 9174: 9171: 9168: 9165: 9162: 9159: 9156: 9153: 9150: 9147: 9144: 9141: 9138: 9135: 9130: 9100: 9097: 9094: 9091: 9059: 9056: 9053: 9050: 9026: 9023: 9020: 9017: 9014: 8998: 8995: 8991:left invariant 8964: 8947: 8946: 8935: 8932: 8929: 8920: 8916: 8913: 8909: 8905: 8900: 8895: 8890: 8886: 8865: 8864: 8861: 8856: 8844: 8840: 8837: 8834: 8831: 8825: 8820: 8816: 8813: 8809: 8805: 8800: 8797: 8793: 8789: 8786: 8782: 8778: 8758: 8754: 8750: 8747: 8744: 8741: 8736: 8733: 8720: 8708: 8704: 8701: 8698: 8695: 8692: 8689: 8686: 8683: 8680: 8677: 8671: 8666: 8662: 8659: 8655: 8651: 8646: 8643: 8639: 8635: 8632: 8628: 8624: 8606: 8605: 8602: 8597: 8585: 8581: 8578: 8575: 8572: 8569: 8566: 8560: 8555: 8551: 8548: 8544: 8540: 8535: 8532: 8528: 8524: 8521: 8517: 8513: 8493: 8489: 8485: 8482: 8479: 8474: 8471: 8458: 8445: 8439: 8436: 8432: 8428: 8424: 8421: 8420: 8415: 8411: 8407: 8405: 8402: 8401: 8399: 8394: 8391: 8387: 8383: 8379: 8376: 8373: 8370: 8364: 8359: 8355: 8352: 8349: 8346: 8343: 8340: 8337: 8334: 8330: 8326: 8308: 8307: 8304: 8299: 8287: 8283: 8280: 8277: 8274: 8268: 8263: 8259: 8256: 8252: 8248: 8243: 8240: 8237: 8234: 8230: 8226: 8223: 8219: 8215: 8195: 8191: 8187: 8184: 8181: 8178: 8175: 8172: 8167: 8164: 8151: 8139: 8135: 8132: 8129: 8126: 8123: 8120: 8117: 8114: 8111: 8108: 8102: 8097: 8093: 8090: 8086: 8082: 8077: 8074: 8071: 8068: 8064: 8060: 8057: 8053: 8049: 8031: 8030: 8027: 8022: 8011: 8008: 8005: 8002: 7999: 7996: 7993: 7990: 7986: 7982: 7977: 7974: 7971: 7967: 7963: 7960: 7957: 7954: 7934: 7930: 7926: 7923: 7920: 7917: 7914: 7909: 7906: 7893: 7881: 7877: 7874: 7871: 7868: 7865: 7862: 7859: 7856: 7853: 7850: 7844: 7837: 7834: 7828: 7825: 7821: 7817: 7812: 7809: 7806: 7802: 7798: 7795: 7791: 7787: 7769: 7768: 7763: 7757: 7737: 7733: 7729: 7726: 7699: 7696: 7670: 7669: 7655: 7642: 7639:diagonalizable 7626: 7623: 7620: 7617: 7614: 7592: 7575: 7561: 7544: 7532: 7528: 7524: 7521: 7518: 7515: 7512: 7509: 7498: 7484: 7479: 7476: 7465: 7446: 7443: 7429: 7411:Main article: 7408: 7405: 7379: 7354: 7351: 7326: 7301: 7298: 7273: 7260: 7259: 7248: 7245: 7242: 7237: 7234: 7226: 7223: 7217: 7214: 7211: 7208: 7203: 7199: 7195: 7192: 7177:fits into the 7155: 7152: 7125: 7122: 7119: 7114: 7110: 7079: 7076: 7073: 7069: 7063: 7041: 7021: 6993: 6990: 6985: 6980: 6977: 6939:Main article: 6936: 6933: 6920: 6917: 6914: 6911: 6908: 6904: 6900: 6897: 6894: 6891: 6888: 6885: 6882: 6879: 6875: 6871: 6868: 6865: 6862: 6842: 6839: 6836: 6833: 6830: 6795: 6792: 6789: 6783: 6776: 6770: 6767: 6764: 6761: 6758: 6753: 6749: 6745: 6742: 6739: 6724: 6723: 6712: 6709: 6704: in  6701: 6693: 6690: 6687: 6684: 6681: 6676: or  6673: 6670: 6667: 6664: 6661: 6658: 6655: 6652: 6649: 6646: 6643: 6640: 6637: 6634: 6631: 6628: 6625: 6620: 6616: 6605: 6594: 6591: 6586: in  6583: 6575: 6572: 6569: 6566: 6563: 6560: 6557: 6554: 6549: or  6546: 6543: 6540: 6537: 6534: 6531: 6528: 6525: 6522: 6517: 6512: 6509: 6506: 6503: 6500: 6497: 6494: 6488: 6481: 6449: 6432: 6431: 6419: 6416: 6411: 6407: 6403: 6400: 6395: 6391: 6387: 6384: 6381: 6378: 6375: 6372: 6369: 6366: 6363: 6360: 6357: 6354: 6351: 6348: 6345: 6340: 6336: 6311: 6308: 6305: 6294: 6283: 6280: 6277: 6272: 6268: 6264: 6261: 6256: 6252: 6248: 6245: 6242: 6239: 6236: 6233: 6230: 6227: 6224: 6221: 6218: 6213: 6209: 6205: 6202: 6199: 6176: 6173: 6170: 6167: 6164: 6160: 6157: 6154: 6151: 6148: 6145: 6142: 6139: 6136: 6114: 6080: 6077: 6074: 6071: 6068: 6065: 6062: 6059: 6056: 6053: 6010: 6007: 6004: 6001: 5990: 5989: 5978: 5975: 5972: 5967: 5962: 5959: 5956: 5951: 5947: 5943: 5940: 5937: 5934: 5931: 5928: 5925: 5922: 5893: 5867: 5862: 5857: 5854: 5851: 5831: 5826: 5821: 5818: 5815: 5795: 5790: 5785: 5782: 5779: 5759: 5754: 5749: 5746: 5743: 5710: 5688: 5685: 5682: 5679: 5676: 5673: 5670: 5667: 5664: 5661: 5658: 5655: 5652: 5649: 5629: 5607: 5592:is called the 5581: 5576: 5571: 5566: 5563: 5558: 5553: 5529: 5525: 5521: 5518: 5515: 5511: 5508: 5503: 5498: 5495: 5492: 5489: 5486: 5483: 5480: 5458: 5434: 5430: 5426: 5404: 5401: 5397: 5393: 5390: 5387: 5384: 5381: 5378: 5373: 5369: 5336: 5333: 5294: 5266: 5244: 5220: 5217: 5196: 5193: 5178: 5177: 5166: 5163: 5159: 5155: 5150: 5144: 5141: 5135: 5130: 5125: 5122: 5119: 5101: 5100: 5089: 5085: 5081: 5076: 5072: 5068: 5065: 5062: 5059: 5056: 5029: 5025: 5021: 5016: 5012: 5008: 4989: 4986: 4939: 4938: 4927: 4923: 4918: 4914: 4910: 4906: 4902: 4897: 4893: 4889: 4885: 4882: 4877: 4874: 4871: 4868: 4864: 4858: 4855: 4852: 4849: 4845: 4841: 4837: 4831: 4827: 4821: 4817: 4812: 4808: 4783: 4780: 4777: 4774: 4770: 4764: 4761: 4758: 4755: 4751: 4722: 4711: 4710: 4699: 4694: 4691: 4688: 4685: 4682: 4679: 4676: 4673: 4670: 4667: 4664: 4661: 4658: 4655: 4652: 4649: 4646: 4643: 4640: 4637: 4632: 4629: 4624: 4621: 4618: 4615: 4612: 4609: 4606: 4603: 4600: 4597: 4594: 4591: 4586: 4583: 4578: 4575: 4572: 4569: 4566: 4563: 4560: 4557: 4554: 4551: 4547: 4543: 4538: 4535: 4532: 4529: 4525: 4521: 4517: 4512: 4508: 4504: 4500: 4497: 4493: 4487: 4483: 4477: 4473: 4468: 4464: 4433: 4422: 4421: 4410: 4407: 4404: 4401: 4398: 4395: 4392: 4389: 4386: 4383: 4380: 4377: 4372: 4369: 4364: 4361: 4358: 4355: 4352: 4349: 4344: 4341: 4336: 4333: 4330: 4327: 4324: 4321: 4296: 4292: 4288: 4283: 4279: 4273: 4269: 4246: 4242: 4236: 4232: 4201: 4197: 4174: 4170: 4139: 4135: 4123: 4122: 4111: 4106: 4103: 4100: 4097: 4093: 4089: 4086: 4081: 4077: 4073: 4070: 4047: 4044: 4041: 4038: 4035: 4015: 4012: 4009: 4006: 4003: 3983: 3980: 3977: 3974: 3971: 3951: 3935: 3932: 3913: 3887: 3884: 3881: 3878: 3875: 3872: 3869: 3866: 3830: 3827: 3823: 3801: 3797: 3793: 3787: 3783: 3779: 3776: 3772: 3768: 3765: 3762: 3751: 3750: 3739: 3736: 3733: 3730: 3727: 3723: 3718: 3713: 3709: 3685: 3682: 3679: 3676: 3673: 3670: 3665: 3634: 3629: 3626: 3621: 3617: 3613: 3607: 3604: 3596: 3592: 3568: 3565: 3531: 3528: 3502: 3497: 3476: 3472: 3468: 3463: 3459: 3455: 3446:) subgroup of 3427: 3424: 3420: 3416: 3411: 3407: 3403: 3400: 3397: 3394: 3391: 3388: 3384: 3380: 3375: 3369: 3366: 3360: 3355: 3331: 3325: 3322: 3303: 3300: 3287: 3284: 3281: 3257: 3254: 3248: 3245: 3222: 3219: 3216: 3213: 3210: 3207: 3204: 3201: 3198: 3195: 3192: 3178:fully faithful 3165: 3145: 3142: 3137: 3132: 3129: 3126: 3123: 3120: 3117: 3114: 3109: 3104: 3101: 3075: 3053: 3048: 3043: 3040: 3030: 3029: 3028: 3027: 3016: 3013: 3010: 3007: 3004: 3001: 2998: 2995: 2992: 2987: 2982: 2977: 2974: 2971: 2968: 2963: 2960: 2957: 2952: 2949: 2946: 2943: 2940: 2935: 2930: 2927: 2924: 2919: 2916: 2913: 2910: 2907: 2902: 2899: 2896: 2869: 2839: 2836: 2833: 2808: 2804: 2800: 2797: 2794: 2791: 2788: 2785: 2782: 2779: 2759: 2739: 2736: 2733: 2730: 2727: 2724: 2704: 2680:is to use the 2653: 2652: 2638: 2608: 2605: 2602: 2599: 2596: 2574: 2554: 2542: 2539: 2536: 2533: 2513: 2510: 2507: 2504: 2501: 2477: 2474: 2471: 2468: 2465: 2462: 2459: 2456: 2453: 2450: 2447: 2444: 2441: 2427: 2410: 2407: 2393: 2390: 2386: 2380: 2376: 2369: 2364: 2360: 2356: 2351: 2347: 2343: 2340: 2337: 2334: 2331: 2328: 2304: 2301: 2298: 2295: 2292: 2260: 2257: 2254: 2251: 2248: 2245: 2242: 2239: 2236: 2210: 2206: 2200: 2197: 2194: 2190: 2153: 2150: 2147: 2144: 2141: 2138: 2135: 2132: 2129: 2126: 2123: 2120: 2117: 2114: 2111: 2108: 2105: 2102: 2078: 2075: 2072: 2069: 2066: 2063: 2060: 2057: 2054: 2031: 2028: 2008: 2005: 2002: 1999: 1996: 1966: 1963: 1959: 1956: 1952: 1949: 1946: 1943: 1940: 1937: 1934: 1931: 1928: 1925: 1922: 1918: 1915: 1911: 1908: 1905: 1902: 1899: 1878: 1875: 1871: 1868: 1857: 1856: 1845: 1842: 1837: 1833: 1829: 1826: 1823: 1820: 1817: 1814: 1811: 1806: 1802: 1798: 1795: 1792: 1789: 1786: 1781: 1777: 1773: 1770: 1767: 1762: 1758: 1754: 1751: 1748: 1725: 1720: 1716: 1712: 1709: 1706: 1703: 1700: 1697: 1694: 1691: 1688: 1685: 1680: 1676: 1672: 1650: 1646: 1642: 1639: 1636: 1631: 1627: 1615:direct product 1600: 1596: 1592: 1589: 1586: 1581: 1577: 1573: 1570: 1558: 1555: 1510: 1507: 1504: 1501: 1498: 1494: 1490: 1450: 1447: 1444: 1441: 1438: 1418: 1415: 1412: 1409: 1406: 1387: 1386: 1374: 1371: 1368: 1365: 1362: 1359: 1356: 1353: 1350: 1347: 1344: 1341: 1338: 1335: 1332: 1329: 1309: 1306: 1303: 1300: 1297: 1277: 1274: 1271: 1268: 1265: 1250: 1249: 1248: 1247: 1246: 1235: 1232: 1229: 1226: 1223: 1220: 1217: 1214: 1211: 1208: 1205: 1202: 1198: 1194: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1120: 1117: 1102: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1069: 1066: 1063: 1060: 1057: 1054: 1051: 1048: 1045: 1035: 1012: 1009: 1006: 1003: 1000: 997: 994: 991: 988: 985: 982: 979: 976: 973: 970: 967: 964: 961: 943: 942: 931: 928: 925: 922: 919: 916: 913: 910: 907: 904: 901: 898: 893: 889: 885: 882: 879: 876: 858: 857: 846: 843: 840: 837: 834: 819: 816: 808: 807: 796: 792: 787: 783: 780: 772: 769: 764: 761: 757: 753: 750: 746: 742: 739: 736: 733: 730: 727: 723: 719: 716: 713: 710: 707: 704: 673: 670: 649: 646: 643: 640: 637: 614: 609: 605: 568: 565: 562: 559: 556: 528: 525: 522: 519: 516: 488: 485: 482: 479: 476: 462:tangent spaces 447: 443: 418: 413: 410: 406: 402: 399: 394: 390: 386: 381: 377: 371: 367: 363: 360: 340: 337: 334: 331: 328: 325: 320: 316: 306:is defined by 295: 292: 289: 286: 281: 277: 265: 264: 251: 248: 244: 240: 237: 232: 228: 224: 219: 215: 209: 205: 201: 198: 153: 150: 148: 145: 84: 79: 55: 50: 15: 9: 6: 4: 3: 2: 10946: 10935: 10932: 10930: 10927: 10925: 10922: 10920: 10917: 10916: 10914: 10899: 10896: 10894: 10893:Supermanifold 10891: 10889: 10886: 10884: 10881: 10877: 10874: 10873: 10872: 10869: 10867: 10864: 10862: 10859: 10857: 10854: 10852: 10849: 10847: 10844: 10842: 10839: 10838: 10836: 10832: 10826: 10823: 10821: 10818: 10816: 10813: 10811: 10808: 10806: 10803: 10801: 10798: 10797: 10795: 10791: 10781: 10778: 10776: 10773: 10771: 10768: 10766: 10763: 10761: 10758: 10756: 10753: 10751: 10748: 10746: 10743: 10741: 10738: 10736: 10733: 10732: 10730: 10728: 10724: 10718: 10715: 10713: 10710: 10708: 10705: 10703: 10700: 10698: 10695: 10693: 10690: 10688: 10684: 10680: 10678: 10675: 10673: 10670: 10668: 10664: 10660: 10658: 10655: 10653: 10650: 10648: 10645: 10643: 10640: 10638: 10635: 10633: 10630: 10629: 10627: 10625: 10621: 10615: 10614:Wedge product 10612: 10610: 10607: 10603: 10600: 10599: 10598: 10595: 10593: 10590: 10586: 10583: 10582: 10581: 10578: 10576: 10573: 10571: 10568: 10566: 10563: 10559: 10558:Vector-valued 10556: 10555: 10554: 10551: 10549: 10546: 10542: 10539: 10538: 10537: 10534: 10532: 10529: 10527: 10524: 10523: 10521: 10517: 10511: 10508: 10506: 10503: 10501: 10498: 10494: 10491: 10490: 10489: 10488:Tangent space 10486: 10484: 10481: 10479: 10476: 10474: 10471: 10470: 10468: 10464: 10461: 10459: 10455: 10449: 10446: 10444: 10440: 10436: 10434: 10431: 10429: 10425: 10421: 10417: 10415: 10412: 10410: 10407: 10405: 10402: 10400: 10397: 10395: 10392: 10390: 10387: 10385: 10382: 10378: 10375: 10374: 10373: 10370: 10368: 10365: 10363: 10360: 10358: 10355: 10353: 10350: 10348: 10345: 10343: 10340: 10338: 10335: 10333: 10330: 10328: 10325: 10323: 10319: 10315: 10313: 10309: 10305: 10303: 10300: 10299: 10297: 10291: 10285: 10282: 10280: 10277: 10275: 10272: 10270: 10267: 10265: 10262: 10260: 10257: 10253: 10252:in Lie theory 10250: 10249: 10248: 10245: 10243: 10240: 10236: 10233: 10232: 10231: 10228: 10226: 10223: 10222: 10220: 10218: 10214: 10208: 10205: 10203: 10200: 10198: 10195: 10193: 10190: 10188: 10185: 10183: 10180: 10178: 10175: 10173: 10170: 10168: 10165: 10164: 10162: 10159: 10155:Main results 10153: 10147: 10144: 10142: 10139: 10137: 10136:Tangent space 10134: 10132: 10129: 10127: 10124: 10122: 10119: 10117: 10114: 10112: 10109: 10105: 10102: 10100: 10097: 10096: 10095: 10092: 10088: 10085: 10084: 10083: 10080: 10079: 10077: 10073: 10068: 10064: 10057: 10052: 10050: 10045: 10043: 10038: 10037: 10034: 10027: 10024: 10021: 10017: 10016: 10011: 10006: 10004: 10001: 10000: 9989: 9985: 9981: 9975: 9971: 9967: 9963: 9959: 9955: 9952: 9950:0-12-338460-5 9946: 9942: 9938: 9934: 9931: 9925: 9921: 9917: 9913: 9908: 9905: 9899: 9895: 9891: 9887: 9882: 9878: 9873: 9872: 9859: 9858:Bourbaki 1981 9854: 9798: 9795: 9792: 9787: 9769: 9766: 9756: 9749: 9748:Bourbaki 1981 9744: 9737: 9736:Bourbaki 1981 9732: 9725: 9724:Helgason 1978 9720: 9714:, Section 4.7 9713: 9708: 9702: 9697: 9690: 9685: 9678: 9673: 9667:Corollary 5.7 9666: 9661: 9654: 9649: 9642: 9637: 9630: 9625: 9618: 9613: 9606: 9601: 9594: 9589: 9582: 9577: 9570: 9569:Bourbaki 1981 9565: 9558: 9557:Bourbaki 1981 9553: 9547: 9541: 9524: 9514: 9511: 9504: 9501: 9493: 9490: 9482: 9479: 9473: 9463: 9460: 9451: 9448: 9444: 9437: 9434: 9426: 9422: 9419: 9418: 9411: 9410: 9401: 9396: 9389: 9388:Helgason 1978 9384: 9377: 9372: 9368: 9358: 9355: 9353: 9350: 9348: 9345: 9343: 9340: 9338: 9335: 9334: 9328: 9311: 9305: 9273: 9254: 9248: 9245: 9229: 9221: 9202: 9196: 9188: 9166: 9160: 9154: 9151: 9145: 9139: 9136: 9133: 9118: 9114: 9111:is in fact a 9095: 9089: 9081: 9077: 9073: 9072:distributions 9054: 9048: 9040: 9021: 9015: 9012: 9004: 8994: 8992: 8988: 8984: 8980: 8952: 8930: 8918: 8914: 8903: 8888: 8884: 8876: 8875: 8874: 8872: 8860: 8857: 8842: 8838: 8835: 8832: 8829: 8818: 8814: 8798: 8795: 8791: 8787: 8784: 8780: 8776: 8769: 8748: 8745: 8742: 8721: 8706: 8702: 8699: 8693: 8684: 8681: 8678: 8675: 8664: 8660: 8644: 8641: 8637: 8633: 8630: 8626: 8622: 8615: 8613: 8608: 8607: 8601: 8598: 8583: 8579: 8576: 8573: 8570: 8567: 8564: 8553: 8549: 8533: 8530: 8526: 8522: 8519: 8515: 8511: 8504: 8483: 8480: 8459: 8443: 8437: 8430: 8426: 8422: 8413: 8409: 8403: 8397: 8392: 8389: 8385: 8381: 8377: 8374: 8371: 8368: 8357: 8353: 8347: 8344: 8338: 8335: 8332: 8328: 8324: 8317: 8315: 8310: 8309: 8303: 8300: 8285: 8281: 8278: 8275: 8272: 8261: 8257: 8241: 8238: 8235: 8232: 8228: 8224: 8221: 8217: 8213: 8206: 8185: 8182: 8179: 8176: 8173: 8152: 8137: 8133: 8130: 8124: 8115: 8112: 8109: 8106: 8095: 8091: 8075: 8072: 8069: 8066: 8062: 8058: 8055: 8051: 8047: 8040: 8038: 8033: 8032: 8026: 8023: 8006: 8003: 8000: 7997: 7994: 7991: 7975: 7972: 7969: 7965: 7961: 7958: 7952: 7945: 7924: 7921: 7918: 7915: 7894: 7879: 7875: 7872: 7866: 7857: 7854: 7851: 7848: 7832: 7826: 7810: 7807: 7804: 7800: 7796: 7793: 7789: 7785: 7778: 7776: 7771: 7770: 7767: 7764: 7761: 7758: 7755: 7754: 7751: 7735: 7731: 7727: 7724: 7716: 7697: 7694: 7683: 7679: 7675: 7643: 7640: 7621: 7615: 7612: 7580: 7576: 7549: 7545: 7522: 7519: 7513: 7507: 7499: 7477: 7474: 7466: 7463: 7444: 7441: 7430: 7427: 7424: 7423: 7422: 7420: 7414: 7404: 7402: 7398: 7393: 7352: 7349: 7299: 7296: 7246: 7240: 7235: 7224: 7221: 7209: 7201: 7197: 7190: 7183: 7182: 7181: 7180: 7176: 7172: 7153: 7150: 7139: 7120: 7112: 7108: 7100: 7096: 7091: 7077: 7067: 7039: 7011: 7007: 6991: 6978: 6975: 6967: 6962: 6960: 6956: 6952: 6948: 6942: 6932: 6915: 6909: 6906: 6902: 6895: 6889: 6886: 6883: 6877: 6873: 6869: 6863: 6860: 6837: 6831: 6828: 6820: 6816: 6812: 6807: 6790: 6768: 6759: 6751: 6747: 6740: 6737: 6729: 6707: 6699: 6691: 6688: 6685: 6682: 6679: 6671: 6668: 6665: 6659: 6653: 6650: 6647: 6644: 6641: 6638: 6632: 6626: 6618: 6614: 6606: 6589: 6581: 6573: 6570: 6567: 6561: 6555: 6552: 6544: 6541: 6538: 6532: 6526: 6523: 6520: 6510: 6507: 6501: 6495: 6469: 6468: 6467: 6465: 6437: 6434:For a subset 6414: 6409: 6405: 6398: 6393: 6389: 6385: 6379: 6373: 6370: 6364: 6361: 6358: 6352: 6349: 6346: 6338: 6334: 6325: 6309: 6306: 6303: 6296:If the orbit 6295: 6281: 6275: 6270: 6266: 6259: 6254: 6250: 6246: 6240: 6234: 6231: 6225: 6222: 6219: 6211: 6207: 6200: 6197: 6190: 6189: 6188: 6174: 6171: 6168: 6162: 6158: 6155: 6149: 6146: 6140: 6134: 6126: 6122: 6117: 6113: 6109: 6105: 6100: 6098: 6094: 6078: 6075: 6066: 6060: 6057: 6043: 6039: 6035: 6030: 6028: 6024: 6005: 5999: 5976: 5957: 5954: 5949: 5945: 5941: 5932: 5926: 5920: 5913: 5912: 5911: 5909: 5881: 5880:adjoint group 5852: 5849: 5816: 5813: 5780: 5777: 5744: 5741: 5732: 5730: 5726: 5683: 5680: 5677: 5671: 5665: 5656: 5650: 5647: 5627: 5595: 5527: 5523: 5519: 5513: 5509: 5493: 5490: 5484: 5481: 5478: 5432: 5428: 5424: 5402: 5399: 5395: 5391: 5388: 5385: 5379: 5371: 5367: 5358: 5354: 5350: 5346: 5342: 5332: 5330: 5326: 5322: 5318: 5314: 5310: 5282: 5242: 5233: 5218: 5215: 5194: 5191: 5183: 5164: 5148: 5123: 5120: 5117: 5110: 5109: 5108: 5106: 5074: 5070: 5066: 5060: 5057: 5054: 5047: 5046: 5045: 5043: 5014: 5010: 5006: 4997: 4995: 4985: 4983: 4979: 4975: 4970: 4968: 4964: 4960: 4956: 4952: 4948: 4944: 4925: 4921: 4916: 4912: 4908: 4904: 4900: 4895: 4891: 4887: 4883: 4880: 4872: 4866: 4862: 4853: 4847: 4843: 4839: 4835: 4829: 4825: 4819: 4815: 4810: 4806: 4799: 4798: 4797: 4778: 4772: 4768: 4759: 4753: 4749: 4740: 4736: 4720: 4697: 4692: 4689: 4677: 4671: 4668: 4662: 4656: 4650: 4644: 4638: 4630: 4627: 4622: 4613: 4607: 4604: 4598: 4592: 4584: 4581: 4576: 4570: 4564: 4561: 4555: 4549: 4545: 4541: 4533: 4527: 4523: 4519: 4515: 4510: 4506: 4502: 4498: 4495: 4491: 4485: 4481: 4475: 4471: 4466: 4462: 4455: 4454: 4453: 4451: 4447: 4431: 4408: 4405: 4402: 4393: 4390: 4387: 4381: 4378: 4370: 4367: 4362: 4356: 4353: 4350: 4342: 4339: 4334: 4331: 4328: 4325: 4322: 4319: 4312: 4311: 4310: 4294: 4290: 4286: 4281: 4277: 4271: 4267: 4244: 4240: 4234: 4230: 4221: 4217: 4199: 4195: 4172: 4168: 4159: 4155: 4137: 4133: 4109: 4101: 4095: 4091: 4087: 4079: 4075: 4068: 4061: 4060: 4059: 4045: 4039: 4036: 4033: 4010: 4004: 4001: 3978: 3972: 3969: 3949: 3941: 3931: 3929: 3901: 3882: 3879: 3873: 3870: 3864: 3856: 3853:generated by 3852: 3848: 3844: 3828: 3795: 3785: 3781: 3777: 3763: 3760: 3737: 3734: 3731: 3725: 3721: 3699: 3698: 3697: 3680: 3674: 3671: 3668: 3653: 3648: 3627: 3624: 3619: 3615: 3611: 3605: 3602: 3594: 3590: 3566: 3563: 3552: 3548: 3529: 3526: 3495: 3487:generated by 3461: 3457: 3453: 3445: 3441: 3409: 3405: 3401: 3395: 3392: 3389: 3373: 3358: 3329: 3309: 3308:Ado's theorem 3299: 3285: 3282: 3279: 3271: 3255: 3246: 3243: 3220: 3208: 3202: 3199: 3196: 3183: 3179: 3121: 3118: 3115: 3102: 3099: 3091: 3014: 3005: 2999: 2996: 2993: 2990: 2975: 2972: 2969: 2966: 2950: 2944: 2941: 2917: 2914: 2911: 2908: 2905: 2885: 2884: 2883: 2882: 2881: 2860: 2857: 2853: 2837: 2834: 2831: 2824: 2806: 2802: 2798: 2795: 2789: 2783: 2780: 2777: 2757: 2734: 2728: 2725: 2722: 2702: 2694: 2690: 2685: 2683: 2679: 2675: 2671: 2667: 2663: 2658: 2626: 2622: 2603: 2597: 2594: 2562: 2558: 2555: 2540: 2537: 2534: 2531: 2511: 2505: 2502: 2499: 2491: 2472: 2466: 2463: 2454: 2448: 2445: 2442: 2439: 2431: 2428: 2425: 2421: 2420: 2416: 2415: 2414: 2406: 2391: 2388: 2384: 2378: 2374: 2362: 2358: 2354: 2349: 2345: 2341: 2335: 2329: 2326: 2318: 2299: 2293: 2290: 2282: 2278: 2274: 2258: 2249: 2243: 2240: 2237: 2234: 2226: 2208: 2204: 2198: 2195: 2192: 2188: 2179: 2175: 2171: 2167: 2145: 2139: 2136: 2130: 2127: 2124: 2115: 2109: 2106: 2100: 2092: 2089:(and one for 2076: 2067: 2061: 2058: 2055: 2052: 2045: 2029: 2026: 2006: 2000: 1997: 1994: 1986: 1982: 1977: 1964: 1957: 1954: 1947: 1944: 1941: 1935: 1929: 1926: 1923: 1916: 1913: 1909: 1906: 1900: 1897: 1876: 1873: 1869: 1866: 1843: 1835: 1831: 1824: 1821: 1818: 1815: 1812: 1804: 1800: 1793: 1790: 1787: 1779: 1775: 1771: 1768: 1765: 1760: 1756: 1749: 1746: 1739: 1738: 1737: 1718: 1714: 1707: 1704: 1695: 1689: 1686: 1683: 1678: 1674: 1670: 1648: 1644: 1637: 1634: 1629: 1625: 1616: 1598: 1594: 1590: 1587: 1584: 1579: 1575: 1571: 1568: 1554: 1552: 1548: 1544: 1540: 1536: 1532: 1528: 1524: 1505: 1499: 1496: 1492: 1488: 1480: 1476: 1472: 1468: 1464: 1445: 1439: 1436: 1413: 1407: 1404: 1396: 1392: 1369: 1366: 1360: 1354: 1351: 1345: 1339: 1336: 1333: 1327: 1307: 1301: 1298: 1295: 1275: 1269: 1266: 1263: 1255: 1251: 1233: 1227: 1221: 1218: 1209: 1203: 1200: 1196: 1192: 1185: 1184: 1183: 1182: 1180: 1176: 1157: 1154: 1148: 1145: 1142: 1133: 1127: 1124: 1118: 1115: 1107: 1103: 1085: 1082: 1076: 1073: 1070: 1061: 1055: 1052: 1046: 1043: 1036: 1034: 1030: 1026: 1004: 998: 995: 989: 986: 977: 971: 968: 962: 959: 952: 951: 950: 948: 926: 920: 917: 908: 902: 899: 896: 891: 887: 883: 880: 877: 874: 867: 866: 865: 863: 844: 838: 835: 832: 825: 824: 823: 818:Homomorphisms 815: 813: 794: 790: 781: 778: 770: 767: 762: 759: 755: 751: 740: 737: 731: 728: 725: 721: 717: 711: 705: 702: 695: 694: 693: 691: 687: 683: 679: 669: 667: 663: 644: 638: 635: 626: 612: 607: 603: 594: 590: 586: 582: 563: 557: 554: 546: 542: 523: 520: 517: 506: 502: 483: 477: 474: 465: 463: 445: 441: 432: 416: 411: 408: 404: 397: 392: 388: 384: 379: 369: 365: 361: 338: 335: 332: 326: 318: 314: 293: 287: 284: 279: 275: 249: 246: 242: 238: 230: 226: 217: 207: 203: 199: 189: 188: 187: 185: 181: 177: 173: 169: 166: 162: 159: 144: 142: 138: 134: 130: 128: 123: 119: 114: 112: 108: 104: 100: 82: 53: 38: 34: 30: 26: 22: 10924:Lie algebras 10820:Moving frame 10815:Morse theory 10805:Gauge theory 10597:Tensor field 10526:Closed/Exact 10505:Vector field 10473:Distribution 10414:Hypercomplex 10409:Quaternionic 10376: 10146:Vector field 10104:Smooth atlas 10013: 9961: 9958:Lee, John M. 9940: 9911: 9885: 9876: 9853: 9755: 9743: 9731: 9726:, Ch II, § 5 9719: 9707: 9696: 9691:Theorem 2.14 9684: 9672: 9660: 9648: 9636: 9631:Example 3.27 9624: 9619:Theorem 5.20 9612: 9600: 9595:Theorem 5.25 9588: 9576: 9564: 9552: 9540: 9424: 9420: 9414: 9413: 9409: 9408: 9395: 9383: 9371: 9347:Formal group 9270:between the 9116: 9113:Hopf algebra 9075: 9038: 9002: 9000: 8989:can be made 8986: 8982: 8948: 8870: 8868: 8858: 8611: 8599: 8313: 8301: 8036: 8024: 7774: 7714: 7681: 7677: 7673: 7671: 7578: 7548:Killing form 7461: 7425: 7418: 7416: 7397:complex tori 7394: 7261: 7174: 7170: 7137: 7092: 7009: 6965: 6963: 6958: 6954: 6950: 6946: 6944: 6818: 6814: 6810: 6808: 6727: 6725: 6463: 6435: 6433: 6323: 6124: 6120: 6115: 6111: 6107: 6103: 6101: 6096: 6092: 6037: 6033: 6031: 6026: 6022: 5991: 5907: 5733: 5728: 5356: 5352: 5348: 5344: 5338: 5312: 5308: 5280: 5234: 5179: 5104: 5102: 5040:is a (real) 4998: 4991: 4981: 4977: 4973: 4971: 4966: 4962: 4958: 4954: 4950: 4946: 4942: 4940: 4738: 4712: 4449: 4445: 4423: 4219: 4215: 4157: 4153: 4124: 3937: 3927: 3899: 3854: 3846: 3842: 3752: 3651: 3649: 3550: 3439: 3305: 3181: 3089: 3031: 2855: 2692: 2686: 2677: 2673: 2669: 2665: 2661: 2656: 2654: 2624: 2620: 2560: 2556: 2489: 2429: 2417: 2412: 2316: 2276: 2272: 2224: 2177: 2173: 2169: 2165: 2093:) such that 2090: 1984: 1980: 1978: 1858: 1560: 1542: 1538: 1530: 1526: 1522: 1478: 1474: 1466: 1462: 1394: 1390: 1388: 1178: 1105: 1028: 1024: 944: 859: 821: 809: 689: 681: 677: 675: 661: 627: 592: 588: 584: 580: 544: 540: 500: 466: 431:differential 266: 183: 179: 175: 171: 167: 165:vector field 160: 155: 126: 117: 115: 103:circle group 24: 18: 10765:Levi-Civita 10755:Generalized 10727:Connections 10677:Lie algebra 10609:Volume form 10510:Vector flow 10483:Pushforward 10478:Lie bracket 10377:Lie algebra 10342:G-structure 10131:Pushforward 10111:Submanifold 9848:is abelian. 9679:Section 5.7 9655:Section 1.4 9607:Theorem 5.6 9402:Section 3.3 9080:convolution 7766:Root system 7680:is compact 7497:is compact. 7464:is compact. 7428:is compact. 3092:morphisms 2164:and, since 1461:. Also, if 547:are. Thus, 505:Lie bracket 33:Lie algebra 21:mathematics 10929:Lie groups 10913:Categories 10888:Stratifold 10846:Diffeology 10642:Associated 10443:Symplectic 10428:Riemannian 10357:Hyperbolic 10284:Submersion 10192:Hopf–Rinow 10126:Submersion 10121:Smooth map 9903:3540152938 9886:Lie groups 9868:References 6042:unimodular 3268:from the 2695:Lie group 2524:such that 1535:submersion 1256:holds: if 1254:chain rule 111:one-to-one 37:isomorphic 10934:Manifolds 10770:Principal 10745:Ehresmann 10702:Subbundle 10692:Principal 10667:Fibration 10647:Cotangent 10519:Covectors 10372:Lie group 10352:Hermitian 10295:manifolds 10264:Immersion 10259:Foliation 10197:Noether's 10182:Frobenius 10177:De Rham's 10172:Darboux's 10063:Manifolds 10020:EMS Press 9988:808682771 9799:⁡ 9770:⁡ 9712:Hall 2015 9701:Hall 2015 9689:Hall 2015 9677:Hall 2015 9665:Hall 2015 9653:Hall 2015 9641:Hall 2015 9629:Hall 2015 9617:Hall 2015 9605:Hall 2015 9593:Hall 2015 9581:Hall 2015 9505:⁡ 9491:− 9449:− 9438:⁡ 9400:Hall 2015 9363:Citations 9218:. By the 9140:⁡ 9016:⁡ 8815:∣ 8788:∈ 8661:∣ 8634:∈ 8550:∣ 8523:∈ 8423:− 8354:∣ 8336:∈ 8258:∣ 8225:∈ 8092:∣ 8059:∈ 7998:⁡ 7992:∣ 7962:∈ 7836:¯ 7827:∣ 7797:∈ 7698:~ 7616:⁡ 7577:For each 7511:↪ 7478:⁡ 7445:~ 7353:~ 7300:~ 7244:→ 7233:→ 7225:~ 7216:→ 7198:π 7194:→ 7154:~ 7109:π 7075:→ 7072:Γ 7020:Γ 6989:→ 6910:⁡ 6890:⁡ 6864:⁡ 6832:⁡ 6741:⁡ 6654:⁡ 6648:∣ 6642:∈ 6556:⁡ 6527:⁡ 6521:∣ 6511:∈ 6402:→ 6374:ρ 6365:⁡ 6350:⋅ 6307:⋅ 6263:→ 6235:ρ 6226:⁡ 6201:⁡ 6172:⋅ 6166:↦ 6153:→ 6135:ρ 6061:⁡ 5974:→ 5958:⁡ 5939:→ 5924:→ 5853:⁡ 5817:⁡ 5745:⁡ 5725:group law 5651:⁡ 5557:→ 5517:↦ 5488:→ 5400:− 5216:π 5195:π 5134:→ 5121:π 5064:→ 5055:π 5042:Lie group 4867:ϕ 4848:ϕ 4773:ϕ 4754:ϕ 4721:ϕ 4693:⋯ 4672:ϕ 4657:ϕ 4639:ϕ 4608:ϕ 4593:ϕ 4565:ϕ 4550:ϕ 4528:ϕ 4452:. Thus, 4432:⋯ 4406:⋯ 4309:, where 4096:ϕ 4043:→ 4005:⁡ 3973:⁡ 3950:ϕ 3874:⁡ 3868:↦ 3826:→ 3764:⁡ 3729:↦ 3712:→ 3675:⁡ 3606:~ 3567:~ 3530:~ 3396:⁡ 3359:⊂ 3253:→ 3247:~ 3218:→ 3191:Γ 3164:Γ 3128:Γ 3113:→ 3103:: 3100:ϵ 3039:Γ 2951:≅ 2926:Γ 2868:Γ 2850:from the 2693:connected 2598:⁡ 2532:ϕ 2509:→ 2467:⁡ 2461:→ 2449:⁡ 2440:ϕ 2368:∞ 2359:∑ 2330:⁡ 2294:⁡ 2256:→ 2244:⁡ 2189:⋃ 2131:⁡ 2110:⁡ 2074:→ 2062:⁡ 2004:→ 1948:⁡ 1942:∩ 1930:⁡ 1910:∩ 1901:⁡ 1825:⁡ 1819:⊕ 1816:⋯ 1813:⊕ 1794:⁡ 1772:× 1769:⋯ 1766:× 1750:⁡ 1708:⁡ 1702:→ 1690:⁡ 1641:→ 1591:× 1588:⋯ 1585:× 1500:⁡ 1471:immersion 1440:⁡ 1408:⁡ 1361:∘ 1337:∘ 1305:→ 1273:→ 1222:⁡ 1216:→ 1204:⁡ 1149:⁡ 1128:⁡ 1119:⁡ 1077:⁡ 1056:⁡ 1047:⁡ 999:⁡ 963:⁡ 921:⁡ 915:→ 903:⁡ 842:→ 782:∈ 768:∈ 752:∣ 729:∈ 706:⁡ 639:⁡ 558:⁡ 478:⁡ 401:→ 291:→ 133:manifolds 29:Lie group 10866:Orbifold 10861:K-theory 10851:Diffiety 10575:Pullback 10389:Oriented 10367:Kenmotsu 10347:Hadamard 10293:Types of 10242:Geodesic 10067:Glossary 9960:(2012). 9939:(1978), 9515:′ 9464:′ 9376:Lee 2012 9331:See also 9119:is then 6091:for all 5946:→ 5219:′ 4713:because 3516:and let 2852:category 2283:), then 1958:′ 1917:′ 1877:′ 1173:and the 1023:for all 676:Suppose 507:; i.e., 460:between 101:and the 10810:History 10793:Related 10707:Tangent 10685:)  10665:)  10632:Adjoint 10624:Bundles 10602:density 10500:Torsion 10466:Vectors 10458:Tensors 10441:)  10426:)  10422:,  10420:Pseudo− 10399:Poisson 10332:Finsler 10327:Fibered 10322:Contact 10320:)  10312:Complex 10310:)  10279:Section 9427:, then 7093:By the 6817:, then 6730:. Then 6187:. Then 2823:functor 2180:, then 1473:and so 1397:, then 1177:holds: 1027:in Lie( 668:below. 429:is the 10775:Vector 10760:Koszul 10740:Cartan 10735:Affine 10717:Vector 10712:Tensor 10697:Spinor 10687:Normal 10683:Stable 10637:Affine 10541:bundle 10493:bundle 10439:Almost 10362:Kähler 10318:Almost 10308:Almost 10302:Closed 10202:Sard's 10158:(list) 9986:  9976:  9947:  9926:  9900:  7097:, the 6466:, let 6127:. Let 5992:where 4941:Thus, 4214:(with 4125:where 3182:counit 3176:being 1469:is an 267:where 147:Basics 10883:Sheaf 10657:Fiber 10433:Rizza 10404:Prime 10235:Local 10225:Curve 10087:Atlas 5906:. If 5325:SU(2) 5317:SO(3) 5281:every 4424:with 3962:from 3545:be a 2559:: If 2432:: If 1613:be a 1545:is a 1533:is a 1525:. If 945:is a 860:is a 97:(see 31:to a 10750:Form 10652:Dual 10585:flow 10448:Tame 10424:Sub− 10337:Flat 10217:Maps 9984:OCLC 9974:ISBN 9945:ISBN 9924:ISBN 9898:ISBN 9298:and 9001:Let 8610:SO(2 8035:SO(2 7546:The 7417:Let 6945:Let 6326:and 6110:and 6102:Let 6032:Let 4961:and 4949:and 4448:and 4218:and 4187:and 3898:and 3090:unit 2856:left 2672:and 2664:and 2319:and 2196:> 1979:Let 1561:Let 1288:and 1252:The 591:and 467:Let 351:and 124:and 68:and 10672:Jet 9916:doi 9890:doi 9824:as 9796:exp 9767:exp 9502:Lie 9435:Lie 9274:of 9189:in 9137:Lie 9074:on 9037:of 9013:Lie 8981:of 8953:of 8869:If 8688:det 8312:Sp( 8119:det 8039:+1) 7861:det 7777:+1) 7773:SU( 7637:is 7581:in 7550:on 7475:Int 7460:of 7169:of 7040:exp 7008:of 6976:exp 6964:If 6907:Lie 6887:Lie 6861:Lie 6829:Lie 6809:If 6738:Lie 6462:or 6438:of 6223:ker 6198:Lie 6123:in 6095:in 6052:det 6040:is 5955:Int 5882:of 5850:Int 5842:. ( 5770:of 5742:Int 5727:on 5596:of 5331:. 5232:.) 4002:Lie 3994:to 3970:Lie 3871:exp 3845:of 3761:Lie 3672:Lie 3549:of 3393:Lie 2623:of 2595:Lie 2464:Lie 2446:Lie 2327:exp 2291:Lie 2241:Lie 2235:exp 2128:exp 2107:exp 2059:Lie 2053:exp 1945:Lie 1927:Lie 1898:Lie 1859:If 1822:Lie 1791:Lie 1747:Lie 1705:Lie 1687:Lie 1497:ker 1437:Lie 1405:Lie 1201:ker 1116:Lie 1074:ker 1053:ker 1044:Lie 996:exp 960:exp 918:Lie 900:Lie 822:If 703:Lie 636:Lie 595:in 555:Lie 475:Lie 464:. 433:of 182:in 170:on 19:In 10915:: 10663:Co 10018:, 10012:, 9982:. 9972:. 9964:. 9922:, 9896:, 9327:. 9082:. 8923:dR 7995:tr 7613:ad 7605:, 7392:. 7247:1. 7090:. 6931:. 6806:. 6651:Ad 6553:Ad 6524:ad 6362:im 6099:. 6058:Ad 5950:Ad 5814:ad 5731:. 5648:ad 5628:ad 5479:Ad 5279:, 4631:12 4371:12 3930:. 2684:. 2405:. 1553:) 1219:im 1146:im 1125:im 543:, 186:, 178:, 143:. 113:. 23:, 10681:( 10661:( 10437:( 10418:( 10316:( 10306:( 10069:) 10065:( 10055:e 10048:t 10041:v 9990:. 9918:: 9892:: 9834:g 9812:) 9807:g 9802:( 9793:= 9788:n 9784:) 9778:g 9773:( 9525:. 9522:) 9519:) 9512:H 9508:( 9499:( 9494:1 9487:) 9483:f 9480:d 9477:( 9474:= 9471:) 9468:) 9461:H 9457:( 9452:1 9445:f 9441:( 9425:H 9421:H 9407:' 9315:) 9312:G 9309:( 9306:A 9284:g 9258:) 9255:G 9252:( 9249:A 9246:= 9243:) 9238:g 9233:( 9230:U 9206:) 9203:G 9200:( 9197:A 9173:) 9170:) 9167:G 9164:( 9161:A 9158:( 9155:P 9152:= 9149:) 9146:G 9143:( 9134:= 9129:g 9117:G 9099:) 9096:G 9093:( 9090:A 9076:G 9058:) 9055:G 9052:( 9049:A 9039:G 9025:) 9022:G 9019:( 9003:G 8987:G 8983:G 8963:g 8934:) 8931:G 8928:( 8919:H 8915:= 8912:) 8908:R 8904:; 8899:g 8894:( 8889:k 8885:H 8871:G 8862:n 8859:D 8843:} 8839:0 8836:= 8833:X 8830:+ 8824:T 8819:X 8812:) 8808:C 8804:( 8799:n 8796:2 8792:M 8785:X 8781:{ 8777:= 8757:) 8753:C 8749:, 8746:n 8743:2 8740:( 8735:o 8732:s 8707:} 8703:1 8700:= 8697:) 8694:A 8691:( 8685:, 8682:I 8679:= 8676:A 8670:T 8665:A 8658:) 8654:R 8650:( 8645:n 8642:2 8638:M 8631:A 8627:{ 8623:= 8614:) 8612:n 8603:n 8600:C 8584:} 8580:0 8577:= 8574:X 8571:J 8568:+ 8565:J 8559:T 8554:X 8547:) 8543:C 8539:( 8534:n 8531:2 8527:M 8520:X 8516:{ 8512:= 8492:) 8488:C 8484:, 8481:n 8478:( 8473:p 8470:s 8444:] 8438:0 8431:n 8427:I 8414:n 8410:I 8404:0 8398:[ 8393:= 8390:J 8386:, 8382:} 8378:J 8375:= 8372:A 8369:J 8363:T 8358:A 8351:) 8348:n 8345:2 8342:( 8339:U 8333:A 8329:{ 8325:= 8316:) 8314:n 8305:n 8302:B 8286:} 8282:0 8279:= 8276:X 8273:+ 8267:T 8262:X 8255:) 8251:C 8247:( 8242:1 8239:+ 8236:n 8233:2 8229:M 8222:X 8218:{ 8214:= 8194:) 8190:C 8186:, 8183:1 8180:+ 8177:n 8174:2 8171:( 8166:o 8163:s 8138:} 8134:1 8131:= 8128:) 8125:A 8122:( 8116:, 8113:I 8110:= 8107:A 8101:T 8096:A 8089:) 8085:R 8081:( 8076:1 8073:+ 8070:n 8067:2 8063:M 8056:A 8052:{ 8048:= 8037:n 8028:n 8025:A 8010:} 8007:0 8004:= 8001:X 7989:) 7985:C 7981:( 7976:1 7973:+ 7970:n 7966:M 7959:X 7956:{ 7953:= 7933:) 7929:C 7925:, 7922:1 7919:+ 7916:n 7913:( 7908:l 7905:s 7880:} 7876:1 7873:= 7870:) 7867:A 7864:( 7858:, 7855:I 7852:= 7849:A 7843:T 7833:A 7824:) 7820:C 7816:( 7811:1 7808:+ 7805:n 7801:M 7794:A 7790:{ 7786:= 7775:n 7736:1 7732:S 7728:= 7725:G 7715:G 7695:G 7678:G 7674:G 7668:. 7654:g 7625:) 7622:X 7619:( 7591:g 7579:X 7560:g 7531:) 7527:R 7523:, 7520:n 7517:( 7514:O 7508:G 7483:g 7462:G 7442:G 7426:G 7419:G 7378:g 7350:G 7325:g 7297:G 7272:g 7241:G 7236:p 7222:G 7213:) 7210:G 7207:( 7202:1 7191:1 7175:G 7171:G 7151:G 7138:G 7124:) 7121:G 7118:( 7113:1 7078:G 7068:/ 7062:g 7010:G 6992:G 6984:g 6979:: 6966:G 6959:G 6955:G 6951:G 6947:G 6919:) 6916:H 6913:( 6903:/ 6899:) 6896:G 6893:( 6884:= 6881:) 6878:H 6874:/ 6870:G 6867:( 6841:) 6838:H 6835:( 6819:H 6815:G 6811:H 6794:) 6791:A 6788:( 6782:g 6775:z 6769:= 6766:) 6763:) 6760:A 6757:( 6752:G 6748:Z 6744:( 6728:A 6711:} 6708:A 6700:a 6692:g 6689:a 6686:= 6683:a 6680:g 6672:0 6669:= 6666:a 6663:) 6660:g 6657:( 6645:G 6639:g 6636:{ 6633:= 6630:) 6627:A 6624:( 6619:G 6615:Z 6593:} 6590:A 6582:a 6574:0 6571:= 6568:X 6565:) 6562:a 6559:( 6545:0 6542:= 6539:X 6536:) 6533:a 6530:( 6516:g 6508:X 6505:{ 6502:= 6499:) 6496:A 6493:( 6487:g 6480:z 6464:G 6448:g 6436:A 6430:. 6418:) 6415:X 6410:x 6406:T 6399:G 6394:e 6390:T 6386:: 6383:) 6380:x 6377:( 6371:d 6368:( 6359:= 6356:) 6353:x 6347:G 6344:( 6339:x 6335:T 6324:X 6310:x 6304:G 6282:. 6279:) 6276:X 6271:x 6267:T 6260:G 6255:e 6251:T 6247:: 6244:) 6241:x 6238:( 6232:d 6229:( 6220:= 6217:) 6212:x 6208:G 6204:( 6175:x 6169:g 6163:g 6159:, 6156:X 6150:G 6147:: 6144:) 6141:x 6138:( 6125:X 6121:x 6116:x 6112:G 6108:X 6104:G 6097:G 6093:g 6079:1 6076:= 6073:) 6070:) 6067:g 6064:( 6055:( 6038:G 6034:G 6027:G 6023:G 6009:) 6006:G 6003:( 6000:Z 5977:0 5971:) 5966:g 5961:( 5942:G 5936:) 5933:G 5930:( 5927:Z 5921:0 5908:G 5892:g 5866:) 5861:g 5856:( 5830:) 5825:g 5820:( 5794:) 5789:g 5784:( 5781:L 5778:G 5758:) 5753:g 5748:( 5729:G 5709:g 5687:] 5684:Y 5681:, 5678:X 5675:[ 5672:= 5669:) 5666:Y 5663:( 5660:) 5657:X 5654:( 5606:g 5580:) 5575:g 5570:( 5565:l 5562:g 5552:g 5528:g 5524:c 5520:d 5514:g 5510:, 5507:) 5502:g 5497:( 5494:L 5491:G 5485:G 5482:: 5457:g 5433:g 5429:c 5425:d 5403:1 5396:g 5392:h 5389:g 5386:= 5383:) 5380:h 5377:( 5372:g 5368:c 5357:G 5353:G 5349:g 5345:G 5313:G 5309:G 5293:g 5265:g 5243:G 5192:d 5165:, 5162:) 5158:C 5154:( 5149:n 5143:l 5140:g 5129:g 5124:: 5118:d 5105:G 5088:) 5084:C 5080:( 5075:n 5071:L 5067:G 5061:G 5058:: 5028:) 5024:C 5020:( 5015:n 5011:L 5007:G 4982:G 4978:f 4974:f 4967:G 4963:Y 4959:X 4955:G 4951:Y 4947:X 4943:f 4926:. 4922:) 4917:Y 4913:e 4909:( 4905:f 4901:) 4896:X 4892:e 4888:( 4884:f 4881:= 4876:) 4873:Y 4870:( 4863:e 4857:) 4854:X 4851:( 4844:e 4840:= 4836:) 4830:Y 4826:e 4820:X 4816:e 4811:( 4807:f 4782:) 4779:Y 4776:( 4769:e 4763:) 4760:X 4757:( 4750:e 4739:H 4698:, 4690:+ 4687:] 4684:] 4681:) 4678:Y 4675:( 4669:, 4666:) 4663:X 4660:( 4654:[ 4651:, 4648:) 4645:X 4642:( 4636:[ 4628:1 4623:+ 4620:] 4617:) 4614:Y 4611:( 4605:, 4602:) 4599:X 4596:( 4590:[ 4585:2 4582:1 4577:+ 4574:) 4571:Y 4568:( 4562:+ 4559:) 4556:X 4553:( 4546:e 4542:= 4537:) 4534:Z 4531:( 4524:e 4520:= 4516:) 4511:Z 4507:e 4503:( 4499:f 4496:= 4492:) 4486:Y 4482:e 4476:X 4472:e 4467:( 4463:f 4450:Y 4446:X 4409:, 4403:+ 4400:] 4397:] 4394:Y 4391:, 4388:X 4385:[ 4382:, 4379:X 4376:[ 4368:1 4363:+ 4360:] 4357:Y 4354:, 4351:X 4348:[ 4343:2 4340:1 4335:+ 4332:Y 4329:+ 4326:X 4323:= 4320:Z 4295:Z 4291:e 4287:= 4282:Y 4278:e 4272:X 4268:e 4245:Y 4241:e 4235:X 4231:e 4220:Y 4216:X 4200:Y 4196:e 4173:X 4169:e 4158:f 4154:G 4138:X 4134:e 4110:, 4105:) 4102:X 4099:( 4092:e 4088:= 4085:) 4080:X 4076:e 4072:( 4069:f 4046:H 4040:G 4037:: 4034:f 4014:) 4011:H 4008:( 3982:) 3979:G 3976:( 3928:G 3912:g 3900:H 3886:) 3883:X 3880:t 3877:( 3865:t 3855:X 3847:G 3843:H 3829:H 3822:R 3800:R 3796:= 3792:R 3786:0 3782:T 3778:= 3775:) 3771:R 3767:( 3738:. 3735:X 3732:t 3726:t 3722:, 3717:g 3708:R 3684:) 3681:G 3678:( 3669:= 3664:g 3652:X 3633:g 3628:= 3625:G 3620:e 3616:T 3612:= 3603:G 3595:e 3591:T 3564:G 3551:G 3527:G 3501:g 3496:e 3475:) 3471:R 3467:( 3462:n 3458:L 3454:G 3440:G 3426:) 3423:) 3419:R 3415:( 3410:n 3406:L 3402:G 3399:( 3390:= 3387:) 3383:R 3379:( 3374:n 3368:l 3365:g 3354:g 3330:n 3324:l 3321:g 3286:e 3283:i 3280:L 3256:H 3244:H 3221:H 3215:) 3212:) 3209:H 3206:( 3203:e 3200:i 3197:L 3194:( 3144:) 3141:) 3136:g 3131:( 3125:( 3122:e 3119:i 3116:L 3108:g 3074:g 3052:) 3047:g 3042:( 3015:. 3012:) 3009:) 3006:H 3003:( 3000:e 2997:i 2994:L 2991:, 2986:g 2981:( 2976:g 2973:l 2970:A 2967:L 2962:m 2959:o 2956:H 2948:) 2945:H 2942:, 2939:) 2934:g 2929:( 2923:( 2918:p 2915:r 2912:G 2909:L 2906:C 2901:m 2898:o 2895:H 2838:e 2835:i 2832:L 2807:e 2803:f 2799:d 2796:= 2793:) 2790:f 2787:( 2784:e 2781:i 2778:L 2758:f 2738:) 2735:G 2732:( 2729:e 2726:i 2723:L 2703:G 2678:f 2674:H 2670:G 2666:H 2662:G 2657:G 2651:. 2637:h 2625:G 2621:H 2607:) 2604:G 2601:( 2573:h 2561:G 2553:. 2541:f 2538:d 2535:= 2512:H 2506:G 2503:: 2500:f 2490:G 2476:) 2473:H 2470:( 2458:) 2455:G 2452:( 2443:: 2426:. 2392:! 2389:j 2385:/ 2379:j 2375:X 2363:0 2355:= 2350:X 2346:e 2342:= 2339:) 2336:X 2333:( 2317:n 2303:) 2300:G 2297:( 2279:( 2277:n 2273:G 2259:G 2253:) 2250:G 2247:( 2238:: 2225:G 2209:n 2205:U 2199:0 2193:n 2178:G 2174:U 2170:f 2166:G 2152:) 2149:) 2146:X 2143:( 2140:f 2137:d 2134:( 2125:= 2122:) 2119:) 2116:X 2113:( 2104:( 2101:f 2091:H 2077:G 2071:) 2068:G 2065:( 2056:: 2030:f 2027:d 2007:H 2001:G 1998:: 1995:f 1985:H 1981:G 1965:. 1962:) 1955:H 1951:( 1939:) 1936:H 1933:( 1924:= 1921:) 1914:H 1907:H 1904:( 1874:H 1870:, 1867:H 1844:. 1841:) 1836:r 1832:G 1828:( 1810:) 1805:1 1801:G 1797:( 1788:= 1785:) 1780:r 1776:G 1761:1 1757:G 1753:( 1724:) 1719:i 1715:G 1711:( 1699:) 1696:G 1693:( 1684:: 1679:i 1675:p 1671:d 1649:i 1645:G 1638:G 1635:: 1630:i 1626:p 1599:r 1595:G 1580:1 1576:G 1572:= 1569:G 1543:f 1539:G 1531:f 1527:f 1523:H 1509:) 1506:f 1503:( 1493:/ 1489:G 1479:H 1475:G 1467:f 1463:f 1449:) 1446:G 1443:( 1417:) 1414:H 1411:( 1395:G 1391:H 1385:. 1373:) 1370:f 1367:d 1364:( 1358:) 1355:g 1352:d 1349:( 1346:= 1343:) 1340:f 1334:g 1331:( 1328:d 1308:K 1302:H 1299:: 1296:g 1276:H 1270:G 1267:: 1264:f 1234:. 1231:) 1228:f 1225:( 1213:) 1210:f 1207:( 1197:/ 1193:G 1179:f 1161:) 1158:f 1155:d 1152:( 1143:= 1140:) 1137:) 1134:f 1131:( 1122:( 1106:f 1101:. 1089:) 1086:f 1083:d 1080:( 1071:= 1068:) 1065:) 1062:f 1059:( 1050:( 1029:G 1025:X 1011:) 1008:) 1005:X 1002:( 993:( 990:f 987:= 984:) 981:) 978:X 975:( 972:f 969:d 966:( 930:) 927:H 924:( 912:) 909:G 906:( 897:: 892:e 888:f 884:d 881:= 878:f 875:d 845:H 839:G 836:: 833:f 795:. 791:} 786:R 779:t 771:G 763:X 760:t 756:e 749:) 745:C 741:; 738:n 735:( 732:M 726:X 722:{ 718:= 715:) 712:G 709:( 690:G 682:C 678:G 662:G 648:) 645:G 642:( 613:G 608:e 604:T 593:Y 589:X 585:G 581:G 567:) 564:G 561:( 545:Y 541:X 527:] 524:Y 521:, 518:X 515:[ 501:G 487:) 484:G 481:( 446:g 442:L 417:G 412:h 409:g 405:T 398:G 393:h 389:T 385:: 380:h 376:) 370:g 366:L 362:d 359:( 339:x 336:g 333:= 330:) 327:x 324:( 319:g 315:L 294:G 288:G 285:: 280:g 276:L 250:h 247:g 243:X 239:= 236:) 231:h 227:X 223:( 218:h 214:) 208:g 204:L 200:d 197:( 184:G 180:h 176:g 172:G 168:X 161:G 127:p 118:p 83:n 78:T 54:n 49:R

Index

mathematics
Lie group
Lie algebra
isomorphic
real coordinate space
circle group
simply connected
one-to-one
complex Lie group
p-adic Lie group
manifolds
second countable
connected components
Lie algebra of a Lie group
vector field
differential
tangent spaces
Lie bracket
#Related constructions
closed subgroups theorem
classical compact groups
Lie group homomorphism
Lie algebra homomorphism
exponential map
first isomorphism theorem
chain rule
immersion
submersion
principal bundle
Ehresmann's lemma

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.