Knowledge

Closed-subgroup theorem

Source 📝

4919: 3000: 1571: 1851: 1363: 1134: 1358: 1566:{\displaystyle H=\left\{\left.{\begin{pmatrix}e^{2\pi i\theta }&0\\0&e^{2\pi ia\theta }\end{pmatrix}}\right|\theta \in \mathbf {R} \right\}{\text{with Lie algebra }}{\mathfrak {h}}=\left\{\left.{\begin{pmatrix}i\theta &0\\0&ia\theta \end{pmatrix}}\right|\theta \in \mathbf {R} \right\},} 3045:
for concreteness and relative simplicity, since matrices and their exponential mapping are easier concepts than in the general case. Historically, this case was proven first, by John von Neumann in 1929, and inspired Cartan to prove the full closed subgroup theorem in 1930. The proof for general
2469:. In this setting, one proves that every element of the group sufficiently close to the identity is the exponential of an element of the Lie algebra. (The proof is practically identical to the proof of the closed subgroup theorem presented below.) It follows every closed subgroup is an 1220: 298: 4288: 3474: 893: 811: 771: 987: 945: 219: 4144: 5266: 1084: 1054: 859: 835: 668: 567: 519: 492: 468: 426: 396: 372: 348: 324: 208: 142: 2607:
The closed subgroup theorem now simplifies the hypotheses considerably, a priori widening the class of homogeneous spaces. Every closed subgroup yields a homogeneous space.
1353:{\displaystyle G=\mathbb {T} ^{2}=\left\{\left.{\begin{pmatrix}e^{2\pi i\theta }&0\\0&e^{2\pi i\phi }\end{pmatrix}}\right|\theta ,\phi \in \mathbf {R} \right\},} 593: 2268: 4500:. The topology generated by these bases is the relative topology. The conclusion is that the relative topology is the same as the group topology. 3366: 186:
is not assumed to have any smoothness and therefore it is not clear how one may define its tangent space. To proceed, define the "Lie algebra"
2316: 2321: 2311: 2306: 4661:. By translating the charts obtained from the countable neighborhood basis used above one obtains slice charts around every point in 2126: 2390: 2273: 17: 5333: 864: 782: 742: 2421: 91: 5378: 1817:
for which one can find points in an arbitrarily small neighborhood (in the relative topology) of the identity that are
4928:, Theorem 1, Section 2.7 Rossmann states the theorem for linear groups. The statement is that there is an open subset 5489: 5465: 5414: 5396: 3164: 4706:
and restriction to a submanifold (embedded or immersed) with the relative topology again yield analytic operations
527:
that are sufficiently close to the identity. That is to say, it is necessary to prove the following critical lemma:
4907: 2957: 2283: 4979: 5426:(1929), "Über die analytischen Eigenschaften von Gruppen linearer Transformationen und ihrer Darstellungen", 2278: 2258: 1214: 950: 908: 2223: 2131: 1605:
is composed of infinitely many almost parallel line segments on the surface of the torus. This means that
3477: 3019: 2263: 5428: 1065: 1035: 840: 816: 649: 548: 500: 473: 449: 407: 377: 353: 329: 305: 189: 123: 1104:
coming from these coordinates is not the subset topology. That it so say, the identity component of
4793: 3560: 2544: 2414: 1898: 2610:
In a similar way, the closed subgroup theorem simplifies the hypothesis in the following theorem.
4458:. This is, by the way it is constructed, a neighborhood basis both in the group topology and the 2621: 990: 675: 2985:
is closed so a subgroup is an embedded Lie subgroup if and only if it is closed. Equivalently,
2865: 2522: 2218: 2181: 2149: 2136: 1612: 293:{\displaystyle {\mathfrak {h}}=\left\{X\mid e^{tX}\in H,\,\,\forall t\in \mathbf {R} \right\}.} 5346: 4283:{\displaystyle (e^{S_{i}})^{m_{i}}=e^{m_{i}S_{i}}=e^{m_{i}\|S_{i}\|Y_{i}}\rightarrow e^{tY}.} 3252: 2250: 1918: 5072: 2991:
is an embedded Lie subgroup if and only if its group topology equals its relative topology.
1993: 1983: 1973: 1963: 5108: 1878: 1868: 8: 5484: 4468:
is analytic, the left and right translates of this neighborhood basis by a group element
2407: 2395: 2236: 2066: 5445: 4798: 3682: 2167: 2157: 1804: 578: 5461: 5449: 5410: 5392: 5374: 4459: 3011: 2594: 2231: 2194: 1827:. For closed subgroups this is not the case as the proof below of the theorem shows. 1596: 87: 2346: 2084: 5437: 5423: 5205: 3003: 2904: 2366: 2046: 2038: 2030: 2022: 2014: 1947: 1928: 1888: 99: 83: 47: 5329: 2672: 2351: 2104: 2089: 1860: 57: 1209:
For an example of a subgroup that is not an embedded Lie subgroup, consider the
3150:
We begin by establishing the key lemma stated in the "overview" section above.
2625: 2371: 2189: 2094: 612:
be the inverse of the exponential map. Then there is some smaller neighborhood
5353: 2356: 95: 5478: 5279:
is sequentially compact, meaning every sequence has a convergent subsequence.
3990: 3679: 3624: 3160: 2722:
is closed. A subgroup is locally closed if every point has a neighborhood in
2079: 1908: 1808: 3056: 3027: 3007: 2999: 2376: 2361: 2162: 2144: 2074: 168:. The first step is to identify something that could be the Lie algebra of 5241: 5193: 5181: 5169: 5157: 4894:. Here the metric obtained from the Hilbert–Schmidt inner product is used. 5373:, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, 5371:
Lie groups, Lie algebras, and representations: An elementary introduction
4658: 2202: 2118: 1842: 1098:
into a Lie group. It is important to note, however, that the topology on
31: 5217: 5441: 4539:. This is an analytic bijection with analytic inverse. Furthermore, if 3268: 3015: 2712: 2341: 2207: 2099: 103: 4916:, Theorem 20.10. Lee states and proves this theorem in all generality. 2648:
has a unique smooth manifold structure such that the action is smooth.
1658:, yet they cannot be connected to the identity with a path staying in 5409:, Oxford Graduate Texts in Mathematics, Oxford Science Publications, 1838: 1698:
is an analytic bijection, its inverse is not continuous. That is, if
1586: 79: 76: 61: 4988:, For linear groups, Hall proves a similar result in Corollary 3.45. 3713:. Suppose for the purpose of obtaining a contradiction that for all 3052:
is formally identical, except that elements of the Lie algebra are
5282: 2298: 428:
must be big enough to capture some interesting information about
43: 2434:
Because of the conclusion of the theorem, some authors chose to
773:. That is to say, in exponential coordinates near the identity, 5294: 5084: 90:) agreeing with the embedding. One of several results known as 5229: 5145: 5050: 5048: 5306: 4009:
henceforth refers to this subsequence. It will be shown that
1210: 1144: 2667:
being closed, hence an embedded Lie group, are given below.
1811:, hence not an embedding. There are also examples of groups 5045: 5033: 1850: 1493: 1379: 1251: 5096: 2890:
to a diagonal matrix with two entries of irrational ratio.
5391:, Springer Graduate Texts in Mathematics, vol. 218, 5008: 5006: 3469:{\displaystyle \Phi (S,T)=e^{tS}e^{tT}=I+tS+tT+O(t^{2}),} 3010:
as given here. He was prominent in many areas, including
1637:
one can find points in an arbitrarily small neighborhood
5341:
Biographical Memoirs of the National Academy of Sciences
1133: 5356:(1930), "La théorie des groupes finis et continus et l' 5060: 1119:
In particular, the lemma stated above does not hold if
5003: 4964:
is an analytic bijection onto an open neighborhood of
1500: 1386: 1258: 1173:
in lowest terms, the helix will close up on itself at
1013:, which is the condition for an embedded submanifold. 888:{\displaystyle {\mathfrak {h}}\subset {\mathfrak {g}}} 806:{\displaystyle {\mathfrak {h}}\subset {\mathfrak {g}}} 766:{\displaystyle {\mathfrak {h}}\subset {\mathfrak {g}}} 5023: 5021: 4991: 4147: 3369: 1652:
of the identity that are exponentials of elements of
1366: 1223: 1068: 1038: 953: 911: 867: 843: 819: 785: 745: 652: 581: 551: 503: 476: 452: 410: 380: 356: 332: 308: 222: 192: 126: 5120: 4700:
are analytic since these operations are analytic in
1086:. Rossmann then goes on to introduce coordinates on 2960:, then the connected Lie subgroup with Lie algebra 1128: 5407:Lie Groups – An Introduction Through Linear Groups 5018: 4282: 3993:, there is a convergent subsequence converging to 3468: 1565: 1352: 1078: 1048: 981: 939: 887: 853: 829: 805: 765: 662: 587: 561: 513: 486: 462: 420: 398:, which one might hope to be the tangent space of 390: 366: 342: 318: 292: 202: 136: 1782:is a Lie group. With this topology the injection 1615:. In the group topology, the small open sets are 404:at the identity. For this idea to work, however, 5476: 2269:Representation theory of semisimple Lie algebras 1016:It is worth noting that Rossmann shows that for 4385:and the exponential restricted to the open set 3675:such that the conclusion of the theorem holds. 3645:with analytic inverse. It remains to show that 2652: 1619:line segments on the surface of the torus and 102:'s 1929 proof of a special case for groups of 3697:, linearly ordered by reverse inclusion with 2415: 4246: 4233: 3983:. It takes its values in the unit sphere in 3065:and the exponential mapping is the time one 1205:is irrational, the helix winds indefinitely. 721:. In these coordinates, the lemma says that 674:Once this has been established, one can use 5422: 5081:, Chapter 2, Proposition 1 and Corollary 7. 5012: 4400:is in analytic bijection with the open set 4340:. This is a contradiction. Hence, for some 5117:, See comment to Corollary 5, Section 2.2. 3006:in 1929 proved the theorem in the case of 2422: 2408: 2307:Particle physics and representation theory 1849: 1032:(not necessarily closed), the Lie algebra 3145: 1232: 575:diffeomorphically onto some neighborhood 267: 266: 5404: 5247: 5199: 5187: 5175: 5163: 5126: 5114: 5090: 5078: 4925: 2998: 1132: 5455: 5328: 5288: 5272: 5027: 4418: 3567:analytic, and thus there are open sets 2274:Representations of classical Lie groups 1631:The example shows that for some groups 982:{\displaystyle n=\dim({\mathfrak {g}})} 940:{\displaystyle k=\dim({\mathfrak {h}})} 180:at the identity. The challenge is that 14: 5477: 5352: 5214:, The result follows from Theorem 5.6. 4997: 3559:, the identity. The hypothesis of the 2491:homogeneous space construction theorem 521:actually captures all the elements of 4503:Next, construct coordinate charts on 4298:is a group, the left hand side is in 2813:is a Lie subalgebra such that for no 2525:structure such that the quotient map 2521:, the left coset space, has a unique 1708:corresponds to a small open interval 5368: 5223: 5211: 5151: 5139: 5054: 5039: 4985: 4817:For this one can choose open balls, 2127:Lie group–Lie algebra correspondence 1092:that make the identity component of 569:such that the exponential map sends 497:The key step, then, is to show that 162:is a smooth embedded submanifold of 94:, it was first published in 1930 by 5386: 5312: 5300: 5260: 5235: 5102: 5066: 4913: 2903:be a Lie subalgebra. If there is a 1758:. However, with the group topology 1479: 1071: 1041: 971: 929: 880: 870: 846: 822: 798: 788: 758: 748: 655: 554: 506: 479: 455: 413: 383: 359: 335: 311: 225: 195: 150:be an arbitrary closed subgroup of 129: 24: 3370: 1752:due to the appearance of the sets 1679:is not a Lie group. While the map 1147:laid out on the surface picturing 268: 25: 5501: 1116:but not an embedded submanifold. 302:It is not difficult to show that 5389:Introduction to Smooth manifolds 4490:gives neighborhood bases at all 2657:A few sufficient conditions for 1551: 1463: 1338: 1129:Example of a non-closed subgroup 278: 174:, that is, the tangent space of 120:be a Lie group with Lie algebra 5364:, vol. XLII, pp. 1–61 5253: 5132: 4811: 2642:is a closed Lie subgroup, then 1830: 1215:irrational winding of the torus 1079:{\displaystyle {\mathfrak {g}}} 1049:{\displaystyle {\mathfrak {h}}} 854:{\displaystyle {\mathfrak {g}}} 830:{\displaystyle {\mathfrak {h}}} 663:{\displaystyle {\mathfrak {h}}} 562:{\displaystyle {\mathfrak {g}}} 514:{\displaystyle {\mathfrak {h}}} 487:{\displaystyle {\mathfrak {h}}} 463:{\displaystyle {\mathfrak {h}}} 421:{\displaystyle {\mathfrak {h}}} 391:{\displaystyle {\mathfrak {g}}} 367:{\displaystyle {\mathfrak {h}}} 343:{\displaystyle {\mathfrak {g}}} 319:{\displaystyle {\mathfrak {h}}} 203:{\displaystyle {\mathfrak {h}}} 156:. It is necessary to show that 137:{\displaystyle {\mathfrak {g}}} 5142:. See definition in Chapter 1. 4673:is an embedded submanifold of 4478:gives a neighborhood basis at 4261: 4169: 4148: 3881:is a neighborhood basis, with 3460: 3447: 3385: 3373: 2322:Galilean group representations 2317:Poincaré group representations 1110:is an immersed submanifold of 976: 966: 934: 924: 13: 1: 5321: 4454:form a neighborhood basis at 3793:, there is a unique sequence 3165:Hilbert–Schmidt inner product 2312:Lorentz group representations 2279:Theorem of the highest weight 1595:and hence not closed. In the 989:. Thus, we have exhibited a " 5334:"John von Neumann 1903–1957" 4901: 4592:, then in these coordinates 4484:. These bases restricted to 1821:exponentials of elements of 440:were some large subgroup of 7: 5226:, Exercise 14 in Chapter 5. 4787: 3363:. Expand the exponentials, 3115:, so the specialization to 2970: 2653:Conditions for being closed 2547:. The left action given by 109: 10: 5506: 4462:. Since multiplication in 3934:Normalize the sequence in 3020:foundations of mathematics 2264:Lie algebra representation 727:corresponds to a point in 539:Take a small neighborhood 38:(sometimes referred to as 5456:Willard, Stephen (1970), 5429:Mathematische Zeitschrift 5250:, Problem 2. Section 2.7. 5202:, Problem 5. Section 2.7. 5190:, Problem 4. Section 2.7. 5178:, Problem 3. Section 2.7. 5166:, Problem 1. Section 2.7. 4682:Moreover, multiplication 4415:. This proves the lemma. 3294:is uniquely expressed as 2975:An embedded Lie subgroup 2839:, the group generated by 1643:in the relative topology 1599:, a small open subset of 5490:Theorems in group theory 4804: 4794:Inverse function theorem 4566:. By fixing a basis for 3561:inverse function theorem 3069:of the vector field. If 2994: 2946:is simply connected and 2259:Lie group representation 1628:locally path connected. 684:, that is, writing each 5405:Rossmann, Wulf (2002), 5369:Hall, Brian C. (2015), 4872:for some large enough 3026:The proof is given for 2788:is a compact group and 2622:transitive group action 2445:as closed subgroups of 2284:Borel–Weil–Bott theorem 1062:is a Lie subalgebra of 991:slice coordinate system 676:exponential coordinates 470:turned out to be zero, 326:is a Lie subalgebra of 36:closed-subgroup theorem 18:Closed subgroup theorem 5460:, Dover Publications, 4784:are analytic as well. 4284: 4044:of integers such that 4033:and choose a sequence 3782:is a bijection on the 3470: 3173:be the Lie algebra of 3146:Proof of the key lemma 3023: 2866:one-parameter subgroup 2794:is a closed set, then 2523:real-analytic manifold 2182:Semisimple Lie algebra 2137:Adjoint representation 1613:locally path connected 1567: 1474:with Lie algebra  1354: 1206: 1080: 1050: 983: 941: 889: 855: 837:is just a subspace of 831: 807: 767: 664: 589: 563: 515: 494:would not be helpful. 488: 464: 422: 392: 368: 344: 320: 294: 204: 138: 104:linear transformations 98:, who was inspired by 4285: 3471: 3253:orthogonal complement 3127:instead of arbitrary 3002: 2251:Representation theory 1807:immersion, but not a 1568: 1355: 1136: 1081: 1051: 984: 942: 890: 856: 832: 808: 768: 665: 590: 564: 516: 489: 465: 423: 393: 369: 345: 321: 295: 205: 139: 5345:. See in particular 4636:is the dimension of 4419:Proof of the theorem 4145: 3735:contains an element 3367: 1364: 1221: 1066: 1036: 951: 909: 865: 841: 817: 783: 743: 694:(not necessarily in 650: 579: 549: 501: 474: 450: 408: 378: 354: 330: 306: 220: 190: 124: 50:. It states that if 27:Group theory theorem 5387:Lee, J. M. (2003), 5303:, Proposition 8.22. 2718:A subgroup that is 2509:closed Lie subgroup 2495: —  2396:Table of Lie groups 2237:Compact Lie algebra 1723:, there is no open 1003:looks locally like 595:of the identity in 537: —  434:. If, for example, 5442:10.1007/BF01187749 5362:Mémorial Sc. Math. 5275:, By problem 17G, 5238:, Corollary 15.30. 4799:Lie correspondence 4667:. This shows that 4642:. This shows that 4280: 3683:neighborhood basis 3663:contain open sets 3563:is satisfied with 3466: 3267:decomposes as the 3024: 2493: 2168:Affine Lie algebra 2158:Simple Lie algebra 1899:Special orthogonal 1563: 1534: 1446: 1350: 1315: 1207: 1076: 1046: 979: 937: 885: 861:, this means that 851: 827: 803: 763: 660: 585: 559: 535: 511: 484: 460: 418: 388: 364: 340: 316: 290: 200: 134: 5424:von Neumann, John 5315:, Corollary 8.25. 5291:, Corollary 10.5. 5259:See for instance 5154:, Corollary 3.45. 4460:relative topology 3012:quantum mechanics 2488: 2443:matrix Lie groups 2439:linear Lie groups 2432: 2431: 2232:Split Lie algebra 2195:Cartan subalgebra 2057: 2056: 1948:Simple Lie groups 1597:relative topology 1579:irrational. Then 1475: 1360:and its subgroup 1143:. Imagine a bent 588:{\displaystyle V} 545:of the origin in 531: 374:is a subspace of 350:. In particular, 46:in the theory of 16:(Redirected from 5497: 5470: 5458:General Topology 5452: 5419: 5401: 5383: 5365: 5344: 5338: 5316: 5310: 5304: 5298: 5292: 5286: 5280: 5270: 5264: 5257: 5251: 5245: 5239: 5233: 5227: 5221: 5215: 5209: 5203: 5197: 5191: 5185: 5179: 5173: 5167: 5161: 5155: 5149: 5143: 5136: 5130: 5124: 5118: 5112: 5106: 5100: 5094: 5088: 5082: 5076: 5070: 5064: 5058: 5052: 5043: 5037: 5031: 5025: 5016: 5013:von Neumann 1929 5010: 5001: 4995: 4989: 4983: 4977: 4975: 4969: 4963: 4937: 4923: 4917: 4911: 4895: 4893: 4877: 4871: 4861: 4859: 4858: 4849: 4846: 4815: 4783: 4765: 4747: 4741: 4723: 4705: 4699: 4693: 4688:, and inversion 4687: 4678: 4672: 4666: 4656: 4641: 4635: 4629: 4591: 4585: 4580:and identifying 4579: 4565: 4548: 4538: 4508: 4499: 4489: 4483: 4477: 4467: 4457: 4453: 4449: 4438: 4432: 4414: 4399: 4384: 4370: 4357: 4345: 4339: 4329: 4315: 4309: 4303: 4297: 4289: 4287: 4286: 4281: 4276: 4275: 4260: 4259: 4258: 4257: 4245: 4244: 4232: 4231: 4214: 4213: 4212: 4211: 4202: 4201: 4184: 4183: 4182: 4181: 4167: 4166: 4165: 4164: 4140: 4128: 4085: 4074: 4067: 4043: 4032: 4026: 4008: 4002: 3989:and since it is 3988: 3982: 3981: 3979: 3978: 3966: 3963: 3939: 3930: 3920: 3905: 3895: 3880: 3876: 3872: 3852: 3837: 3821: 3792: 3781: 3777: 3745: 3734: 3718: 3712: 3696: 3689: 3674: 3668: 3662: 3653: 3644: 3635: 3622: 3618: 3605: 3595: 3566: 3558: 3550: 3540: 3533: 3521: 3519: 3518: 3513: 3510: 3487: 3475: 3473: 3472: 3467: 3459: 3458: 3416: 3415: 3403: 3402: 3362: 3344: 3325: 3307: 3293: 3283: 3266: 3260: 3250: 3219: 3178: 3172: 3158: 3142:matters little. 3141: 3126: 3114: 3102: 3096: 3084: 3078: 3064: 3051: 3044: 3004:John von Neumann 2990: 2984: 2965: 2955: 2938: 2932: 2924: 2918: 2912: 2905:simply connected 2902: 2889: 2884:is similar over 2883: 2873: 2863: 2850: 2844: 2838: 2830: 2812: 2799: 2793: 2787: 2781: 2747: 2741: 2731: 2710: 2704: 2698: 2692: 2686: 2673:classical groups 2666: 2647: 2641: 2619: 2600: 2592: 2582: 2542: 2520: 2506: 2496: 2484: 2468: 2456: 2424: 2417: 2410: 2367:Claude Chevalley 2224:Complexification 2067:Other Lie groups 1953: 1952: 1861:Classical groups 1853: 1835: 1834: 1826: 1816: 1802: 1781: 1766: 1757: 1751: 1740: 1722: 1707: 1697: 1678: 1663: 1657: 1651: 1642: 1636: 1624: 1610: 1604: 1594: 1584: 1578: 1572: 1570: 1569: 1564: 1559: 1555: 1554: 1543: 1539: 1538: 1483: 1482: 1476: 1473: 1471: 1467: 1466: 1455: 1451: 1450: 1443: 1442: 1407: 1406: 1359: 1357: 1356: 1351: 1346: 1342: 1341: 1324: 1320: 1319: 1312: 1311: 1279: 1278: 1241: 1240: 1235: 1204: 1198: 1188: 1182: 1176: 1172: 1171: 1170: 1164: 1152: 1142: 1124: 1115: 1109: 1103: 1097: 1091: 1085: 1083: 1082: 1077: 1075: 1074: 1061: 1055: 1053: 1052: 1047: 1045: 1044: 1031: 1025: 1012: 1002: 988: 986: 985: 980: 975: 974: 946: 944: 943: 938: 933: 932: 904: 894: 892: 891: 886: 884: 883: 874: 873: 860: 858: 857: 852: 850: 849: 836: 834: 833: 828: 826: 825: 812: 810: 809: 804: 802: 801: 792: 791: 778: 772: 770: 769: 764: 762: 761: 752: 751: 738: 732: 726: 720: 709: 699: 693: 683: 669: 667: 666: 661: 659: 658: 645: 637: 627: 621: 611: 600: 594: 592: 591: 586: 574: 568: 566: 565: 560: 558: 557: 544: 538: 526: 520: 518: 517: 512: 510: 509: 493: 491: 490: 485: 483: 482: 469: 467: 466: 461: 459: 458: 445: 439: 433: 427: 425: 424: 419: 417: 416: 403: 397: 395: 394: 389: 387: 386: 373: 371: 370: 365: 363: 362: 349: 347: 346: 341: 339: 338: 325: 323: 322: 317: 315: 314: 299: 297: 296: 291: 286: 282: 281: 256: 255: 229: 228: 215: 209: 207: 206: 201: 199: 198: 185: 179: 173: 167: 161: 155: 149: 143: 141: 140: 135: 133: 132: 119: 100:John von Neumann 92:Cartan's theorem 84:smooth structure 74: 68: 55: 40:Cartan's theorem 21: 5505: 5504: 5500: 5499: 5498: 5496: 5495: 5494: 5475: 5474: 5473: 5468: 5417: 5399: 5381: 5336: 5324: 5319: 5311: 5307: 5299: 5295: 5287: 5283: 5271: 5267: 5258: 5254: 5246: 5242: 5234: 5230: 5222: 5218: 5210: 5206: 5198: 5194: 5186: 5182: 5174: 5170: 5162: 5158: 5150: 5146: 5137: 5133: 5125: 5121: 5113: 5109: 5101: 5097: 5089: 5085: 5077: 5073: 5065: 5061: 5057:, Theorem 3.42. 5053: 5046: 5042:, Theorem 3.20. 5038: 5034: 5026: 5019: 5011: 5004: 4996: 4992: 4984: 4980: 4971: 4965: 4939: 4929: 4924: 4920: 4912: 4908: 4904: 4899: 4898: 4892: 4885: 4879: 4873: 4850: 4847: 4844: 4843: 4841: 4839: 4830: 4818: 4816: 4812: 4807: 4790: 4767: 4749: 4743: 4725: 4707: 4701: 4695: 4689: 4683: 4674: 4668: 4662: 4654: 4643: 4637: 4631: 4623: 4610: 4599: 4593: 4587: 4581: 4567: 4556: 4550: 4540: 4516: 4510: 4509:. First define 4504: 4491: 4485: 4479: 4469: 4463: 4455: 4451: 4448: 4440: 4434: 4433:, the image in 4424: 4421: 4401: 4386: 4372: 4368: 4359: 4356: 4347: 4341: 4331: 4317: 4311: 4305: 4299: 4293: 4268: 4264: 4253: 4249: 4240: 4236: 4227: 4223: 4222: 4218: 4207: 4203: 4197: 4193: 4192: 4188: 4177: 4173: 4172: 4168: 4160: 4156: 4155: 4151: 4146: 4143: 4142: 4138: 4130: 4126: 4117: 4104: 4095: 4087: 4084: 4076: 4075:. For example, 4069: 4062: 4053: 4045: 4042: 4034: 4028: 4010: 4004: 3994: 3984: 3976: 3967: 3964: 3962: 3954: 3953: 3951: 3949: 3941: 3935: 3922: 3915: 3907: 3897: 3894: 3882: 3878: 3874: 3871: 3862: 3854: 3847: 3839: 3832: 3823: 3820: 3811: 3802: 3794: 3791: 3783: 3779: 3772: 3759: 3751: 3744: 3736: 3729: 3720: 3714: 3711: 3704: 3698: 3691: 3685: 3670: 3664: 3661: 3655: 3652: 3646: 3643: 3637: 3634: 3628: 3627:bijection from 3620: 3617: 3607: 3604: 3597: 3585: 3574: 3568: 3564: 3556: 3552: 3542: 3539: 3531: 3514: 3511: 3506: 3505: 3503: 3493: 3489: 3485: 3454: 3450: 3408: 3404: 3395: 3391: 3368: 3365: 3364: 3346: 3330: 3309: 3295: 3285: 3271: 3262: 3256: 3221: 3193: 3180: 3174: 3168: 3154: 3148: 3128: 3116: 3104: 3098: 3086: 3080: 3070: 3060: 3047: 3031: 2997: 2986: 2976: 2973: 2961: 2947: 2934: 2926: 2920: 2914: 2908: 2894: 2885: 2879: 2878:if and only if 2869: 2855: 2846: 2845:, is closed in 2840: 2832: 2814: 2804: 2795: 2789: 2783: 2752: 2743: 2733: 2723: 2706: 2700: 2694: 2688: 2676: 2658: 2655: 2643: 2633: 2615: 2605: 2596: 2584: 2577: 2571: 2561: 2554: 2548: 2543:is an analytic 2526: 2512: 2498: 2494: 2474: 2473:submanifold of 2458: 2446: 2428: 2383: 2382: 2381: 2352:Wilhelm Killing 2336: 2328: 2327: 2326: 2301: 2290: 2289: 2288: 2253: 2243: 2242: 2241: 2228: 2212: 2190:Dynkin diagrams 2184: 2174: 2173: 2172: 2154: 2132:Exponential map 2121: 2111: 2110: 2109: 2090:Conformal group 2069: 2059: 2058: 2050: 2042: 2034: 2026: 2018: 1999: 1989: 1979: 1969: 1950: 1940: 1939: 1938: 1919:Special unitary 1863: 1833: 1822: 1812: 1803:is an analytic 1797: 1783: 1779: 1768: 1765: 1759: 1753: 1742: 1738: 1724: 1709: 1699: 1695: 1680: 1676: 1665: 1659: 1653: 1650: 1644: 1638: 1632: 1620: 1606: 1600: 1590: 1580: 1574: 1550: 1533: 1532: 1521: 1515: 1514: 1509: 1496: 1495: 1492: 1491: 1487: 1478: 1477: 1472: 1462: 1445: 1444: 1426: 1422: 1420: 1414: 1413: 1408: 1393: 1389: 1382: 1381: 1378: 1377: 1373: 1365: 1362: 1361: 1337: 1314: 1313: 1298: 1294: 1292: 1286: 1285: 1280: 1265: 1261: 1254: 1253: 1250: 1249: 1245: 1236: 1231: 1230: 1222: 1219: 1218: 1200: 1194: 1184: 1178: 1174: 1166: 1160: 1159: 1154: 1148: 1138: 1131: 1125:is not closed. 1120: 1111: 1105: 1099: 1093: 1087: 1070: 1069: 1067: 1064: 1063: 1057: 1040: 1039: 1037: 1034: 1033: 1027: 1021: 1004: 994: 970: 969: 952: 949: 948: 928: 927: 910: 907: 906: 896: 879: 878: 869: 868: 866: 863: 862: 845: 844: 842: 839: 838: 821: 820: 818: 815: 814: 797: 796: 787: 786: 784: 781: 780: 774: 757: 756: 747: 746: 744: 741: 740: 734: 728: 722: 711: 701: 695: 685: 679: 672: 654: 653: 651: 648: 647: 639: 629: 623: 613: 602: 596: 580: 577: 576: 570: 553: 552: 550: 547: 546: 540: 536: 522: 505: 504: 502: 499: 498: 478: 477: 475: 472: 471: 454: 453: 451: 448: 447: 441: 435: 429: 412: 411: 409: 406: 405: 399: 382: 381: 379: 376: 375: 358: 357: 355: 352: 351: 334: 333: 331: 328: 327: 310: 309: 307: 304: 303: 277: 248: 244: 237: 233: 224: 223: 221: 218: 217: 216:by the formula 211: 194: 193: 191: 188: 187: 181: 175: 169: 163: 157: 151: 145: 128: 127: 125: 122: 121: 115: 112: 86:(and hence the 70: 64: 58:closed subgroup 51: 28: 23: 22: 15: 12: 11: 5: 5503: 5493: 5492: 5487: 5472: 5471: 5466: 5453: 5420: 5415: 5402: 5397: 5384: 5380:978-3319134666 5379: 5366: 5358:Analysis Situs 5350: 5325: 5323: 5320: 5318: 5317: 5305: 5293: 5281: 5265: 5252: 5240: 5228: 5216: 5204: 5192: 5180: 5168: 5156: 5144: 5131: 5119: 5107: 5105:, Example 7.3. 5095: 5093:, Section 2.3. 5083: 5071: 5059: 5044: 5032: 5017: 5002: 4990: 4978: 4918: 4905: 4903: 4900: 4897: 4896: 4890: 4883: 4835: 4826: 4809: 4808: 4806: 4803: 4802: 4801: 4796: 4789: 4786: 4652: 4619: 4608: 4597: 4554: 4514: 4444: 4420: 4417: 4364: 4352: 4279: 4274: 4271: 4267: 4263: 4256: 4252: 4248: 4243: 4239: 4235: 4230: 4226: 4221: 4217: 4210: 4206: 4200: 4196: 4191: 4187: 4180: 4176: 4171: 4163: 4159: 4154: 4150: 4134: 4122: 4113: 4100: 4091: 4080: 4058: 4049: 4038: 3972: 3958: 3945: 3911: 3890: 3873:converging to 3867: 3858: 3843: 3828: 3816: 3807: 3798: 3787: 3778:. Then, since 3768: 3755: 3740: 3725: 3709: 3702: 3659: 3650: 3641: 3632: 3615: 3602: 3583: 3572: 3554: 3541:is seen to be 3534: 3491: 3465: 3462: 3457: 3453: 3449: 3446: 3443: 3440: 3437: 3434: 3431: 3428: 3425: 3422: 3419: 3414: 3411: 3407: 3401: 3398: 3394: 3390: 3387: 3384: 3381: 3378: 3375: 3372: 3189: 3147: 3144: 3054:left invariant 2996: 2993: 2972: 2969: 2968: 2967: 2940: 2919:isomorphic to 2907:compact group 2891: 2852: 2801: 2749: 2720:locally closed 2716: 2675:are closed in 2654: 2651: 2650: 2649: 2626:isotropy group 2620:is a set with 2575: 2569: 2559: 2552: 2486: 2430: 2429: 2427: 2426: 2419: 2412: 2404: 2401: 2400: 2399: 2398: 2393: 2385: 2384: 2380: 2379: 2374: 2372:Harish-Chandra 2369: 2364: 2359: 2354: 2349: 2347:Henri Poincaré 2344: 2338: 2337: 2334: 2333: 2330: 2329: 2325: 2324: 2319: 2314: 2309: 2303: 2302: 2297:Lie groups in 2296: 2295: 2292: 2291: 2287: 2286: 2281: 2276: 2271: 2266: 2261: 2255: 2254: 2249: 2248: 2245: 2244: 2240: 2239: 2234: 2229: 2227: 2226: 2221: 2215: 2213: 2211: 2210: 2205: 2199: 2197: 2192: 2186: 2185: 2180: 2179: 2176: 2175: 2171: 2170: 2165: 2160: 2155: 2153: 2152: 2147: 2141: 2139: 2134: 2129: 2123: 2122: 2117: 2116: 2113: 2112: 2108: 2107: 2102: 2097: 2095:Diffeomorphism 2092: 2087: 2082: 2077: 2071: 2070: 2065: 2064: 2061: 2060: 2055: 2054: 2053: 2052: 2048: 2044: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2009: 2008: 2004: 2003: 2002: 2001: 1995: 1991: 1985: 1981: 1975: 1971: 1965: 1958: 1957: 1951: 1946: 1945: 1942: 1941: 1937: 1936: 1926: 1916: 1906: 1896: 1886: 1879:Special linear 1876: 1869:General linear 1865: 1864: 1859: 1858: 1855: 1854: 1846: 1845: 1832: 1829: 1795: 1777: 1763: 1736: 1693: 1674: 1648: 1562: 1558: 1553: 1549: 1546: 1542: 1537: 1531: 1528: 1525: 1522: 1520: 1517: 1516: 1513: 1510: 1508: 1505: 1502: 1501: 1499: 1494: 1490: 1486: 1481: 1470: 1465: 1461: 1458: 1454: 1449: 1441: 1438: 1435: 1432: 1429: 1425: 1421: 1419: 1416: 1415: 1412: 1409: 1405: 1402: 1399: 1396: 1392: 1388: 1387: 1385: 1380: 1376: 1372: 1369: 1349: 1345: 1340: 1336: 1333: 1330: 1327: 1323: 1318: 1310: 1307: 1304: 1301: 1297: 1293: 1291: 1288: 1287: 1284: 1281: 1277: 1274: 1271: 1268: 1264: 1260: 1259: 1257: 1252: 1248: 1244: 1239: 1234: 1229: 1226: 1130: 1127: 1073: 1043: 978: 973: 968: 965: 962: 959: 956: 936: 931: 926: 923: 920: 917: 914: 882: 877: 872: 848: 824: 800: 795: 790: 760: 755: 750: 657: 584: 556: 529: 508: 481: 457: 415: 385: 361: 337: 313: 289: 285: 280: 276: 273: 270: 265: 262: 259: 254: 251: 247: 243: 240: 236: 232: 227: 197: 131: 111: 108: 88:group topology 26: 9: 6: 4: 3: 2: 5502: 5491: 5488: 5486: 5483: 5482: 5480: 5469: 5467:0-486-43479-6 5463: 5459: 5454: 5451: 5447: 5443: 5439: 5435: 5432:(in German), 5431: 5430: 5425: 5421: 5418: 5416:0-19-859683-9 5412: 5408: 5403: 5400: 5398:0-387-95448-1 5394: 5390: 5385: 5382: 5376: 5372: 5367: 5363: 5359: 5355: 5351: 5348: 5342: 5335: 5331: 5327: 5326: 5314: 5309: 5302: 5297: 5290: 5285: 5278: 5274: 5269: 5262: 5256: 5249: 5248:Rossmann 2002 5244: 5237: 5232: 5225: 5220: 5213: 5208: 5201: 5200:Rossmann 2002 5196: 5189: 5188:Rossmann 2002 5184: 5177: 5176:Rossmann 2002 5172: 5165: 5164:Rossmann 2002 5160: 5153: 5148: 5141: 5135: 5128: 5127:Rossmann 2002 5123: 5116: 5115:Rossmann 2002 5111: 5104: 5099: 5092: 5091:Rossmann 2002 5087: 5080: 5079:Rossmann 2002 5075: 5068: 5063: 5056: 5051: 5049: 5041: 5036: 5029: 5024: 5022: 5014: 5009: 5007: 4999: 4994: 4987: 4982: 4974: 4968: 4962: 4958: 4954: 4950: 4946: 4942: 4936: 4932: 4927: 4926:Rossmann 2002 4922: 4915: 4910: 4906: 4889: 4882: 4876: 4869: 4865: 4857: 4853: 4838: 4834: 4829: 4825: 4821: 4814: 4810: 4800: 4797: 4795: 4792: 4791: 4785: 4782: 4778: 4774: 4770: 4764: 4760: 4756: 4752: 4748:is embedded, 4746: 4740: 4736: 4732: 4728: 4722: 4718: 4714: 4710: 4704: 4698: 4692: 4686: 4680: 4677: 4671: 4665: 4660: 4651: 4647: 4640: 4634: 4628:), 0, ..., 0) 4627: 4622: 4618: 4614: 4607: 4603: 4596: 4590: 4584: 4578: 4574: 4570: 4564: 4560: 4553: 4547: 4543: 4536: 4532: 4528: 4524: 4520: 4513: 4507: 4501: 4498: 4494: 4488: 4482: 4476: 4472: 4466: 4461: 4447: 4443: 4437: 4431: 4427: 4416: 4413: 4409: 4405: 4398: 4394: 4390: 4383: 4379: 4375: 4367: 4362: 4355: 4350: 4344: 4338: 4334: 4328: 4324: 4320: 4314: 4308: 4302: 4296: 4290: 4277: 4272: 4269: 4265: 4254: 4250: 4241: 4237: 4228: 4224: 4219: 4215: 4208: 4204: 4198: 4194: 4189: 4185: 4178: 4174: 4161: 4157: 4152: 4137: 4133: 4125: 4121: 4116: 4112: 4108: 4103: 4099: 4094: 4090: 4083: 4079: 4072: 4066: 4061: 4057: 4052: 4048: 4041: 4037: 4031: 4025: 4021: 4017: 4013: 4007: 4001: 3997: 3992: 3987: 3975: 3971: 3961: 3957: 3948: 3944: 3938: 3932: 3929: 3925: 3919: 3914: 3910: 3904: 3900: 3893: 3889: 3885: 3870: 3866: 3861: 3857: 3851: 3846: 3842: 3836: 3831: 3827: 3819: 3815: 3810: 3806: 3801: 3797: 3790: 3786: 3776: 3771: 3767: 3763: 3758: 3754: 3749: 3743: 3739: 3733: 3728: 3724: 3717: 3708: 3701: 3695: 3688: 3684: 3681: 3676: 3673: 3667: 3658: 3649: 3640: 3631: 3626: 3625:real-analytic 3614: 3610: 3601: 3593: 3589: 3582: 3578: 3571: 3562: 3549: 3545: 3537: 3529: 3525: 3517: 3509: 3501: 3497: 3483: 3479: 3463: 3455: 3451: 3444: 3441: 3438: 3435: 3432: 3429: 3426: 3423: 3420: 3417: 3412: 3409: 3405: 3399: 3396: 3392: 3388: 3382: 3379: 3376: 3361: 3358: 3354: 3350: 3342: 3338: 3334: 3329:Define a map 3327: 3324: 3320: 3316: 3312: 3306: 3302: 3298: 3292: 3288: 3282: 3278: 3274: 3270: 3265: 3259: 3254: 3248: 3244: 3240: 3236: 3232: 3228: 3224: 3217: 3213: 3209: 3205: 3201: 3197: 3192: 3187: 3183: 3177: 3171: 3166: 3162: 3161:inner product 3157: 3151: 3143: 3139: 3135: 3131: 3124: 3120: 3112: 3108: 3103:is closed in 3101: 3094: 3090: 3083: 3077: 3073: 3068: 3063: 3058: 3057:vector fields 3055: 3050: 3042: 3038: 3034: 3029: 3028:matrix groups 3021: 3017: 3013: 3009: 3008:matrix groups 3005: 3001: 2992: 2989: 2983: 2979: 2964: 2959: 2954: 2950: 2945: 2941: 2937: 2933:is closed in 2930: 2923: 2917: 2911: 2906: 2901: 2897: 2892: 2888: 2882: 2877: 2872: 2868:generated by 2867: 2862: 2858: 2853: 2849: 2843: 2836: 2829: 2825: 2821: 2817: 2811: 2807: 2802: 2798: 2792: 2786: 2779: 2775: 2771: 2767: 2763: 2759: 2755: 2750: 2746: 2742:is closed in 2740: 2736: 2730: 2726: 2721: 2717: 2714: 2709: 2703: 2697: 2691: 2684: 2680: 2674: 2670: 2669: 2668: 2665: 2661: 2646: 2640: 2636: 2631: 2627: 2623: 2618: 2613: 2612: 2611: 2608: 2604: 2602: 2599: 2591: 2587: 2581: 2574: 2568: 2564: 2558: 2551: 2546: 2541: 2537: 2533: 2529: 2524: 2519: 2515: 2510: 2505: 2501: 2492: 2485: 2482: 2478: 2472: 2466: 2462: 2454: 2450: 2444: 2440: 2437: 2425: 2420: 2418: 2413: 2411: 2406: 2405: 2403: 2402: 2397: 2394: 2392: 2389: 2388: 2387: 2386: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2340: 2339: 2332: 2331: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2304: 2300: 2294: 2293: 2285: 2282: 2280: 2277: 2275: 2272: 2270: 2267: 2265: 2262: 2260: 2257: 2256: 2252: 2247: 2246: 2238: 2235: 2233: 2230: 2225: 2222: 2220: 2217: 2216: 2214: 2209: 2206: 2204: 2201: 2200: 2198: 2196: 2193: 2191: 2188: 2187: 2183: 2178: 2177: 2169: 2166: 2164: 2161: 2159: 2156: 2151: 2148: 2146: 2143: 2142: 2140: 2138: 2135: 2133: 2130: 2128: 2125: 2124: 2120: 2115: 2114: 2106: 2103: 2101: 2098: 2096: 2093: 2091: 2088: 2086: 2083: 2081: 2078: 2076: 2073: 2072: 2068: 2063: 2062: 2051: 2045: 2043: 2037: 2035: 2029: 2027: 2021: 2019: 2013: 2012: 2011: 2010: 2006: 2005: 2000: 1998: 1992: 1990: 1988: 1982: 1980: 1978: 1972: 1970: 1968: 1962: 1961: 1960: 1959: 1955: 1954: 1949: 1944: 1943: 1934: 1930: 1927: 1924: 1920: 1917: 1914: 1910: 1907: 1904: 1900: 1897: 1894: 1890: 1887: 1884: 1880: 1877: 1874: 1870: 1867: 1866: 1862: 1857: 1856: 1852: 1848: 1847: 1844: 1840: 1837: 1836: 1828: 1825: 1820: 1815: 1810: 1809:homeomorphism 1806: 1801: 1794: 1790: 1786: 1776: 1772: 1762: 1756: 1750: 1746: 1735: 1731: 1727: 1721: 1717: 1713: 1706: 1702: 1692: 1688: 1684: 1673: 1669: 1662: 1656: 1647: 1641: 1635: 1629: 1627: 1623: 1618: 1614: 1609: 1603: 1598: 1593: 1588: 1583: 1577: 1560: 1556: 1547: 1544: 1540: 1535: 1529: 1526: 1523: 1518: 1511: 1506: 1503: 1497: 1488: 1484: 1468: 1459: 1456: 1452: 1447: 1439: 1436: 1433: 1430: 1427: 1423: 1417: 1410: 1403: 1400: 1397: 1394: 1390: 1383: 1374: 1370: 1367: 1347: 1343: 1334: 1331: 1328: 1325: 1321: 1316: 1308: 1305: 1302: 1299: 1295: 1289: 1282: 1275: 1272: 1269: 1266: 1262: 1255: 1246: 1242: 1237: 1227: 1224: 1216: 1212: 1203: 1197: 1193:rotations in 1192: 1187: 1183:rotations in 1181: 1169: 1163: 1157: 1151: 1146: 1141: 1135: 1126: 1123: 1117: 1114: 1108: 1102: 1096: 1090: 1060: 1030: 1024: 1019: 1014: 1011: 1007: 1001: 997: 992: 963: 960: 957: 954: 921: 918: 915: 912: 903: 899: 895:is just like 875: 793: 777: 753: 737: 733:precisely if 731: 725: 718: 714: 708: 704: 698: 692: 688: 682: 677: 671: 643: 636: 632: 626: 622:such that if 620: 616: 610: 606: 599: 582: 573: 543: 534: 528: 525: 495: 444: 438: 432: 402: 300: 287: 283: 274: 271: 263: 260: 257: 252: 249: 245: 241: 238: 234: 230: 214: 184: 178: 172: 166: 160: 154: 148: 118: 107: 105: 101: 97: 93: 89: 85: 81: 78: 73: 67: 63: 59: 54: 49: 45: 41: 37: 33: 19: 5457: 5433: 5427: 5406: 5388: 5370: 5361: 5357: 5354:Cartan, Élie 5340: 5308: 5296: 5289:Willard 1970 5284: 5276: 5273:Willard 1970 5268: 5255: 5243: 5231: 5219: 5207: 5195: 5183: 5171: 5159: 5147: 5134: 5122: 5110: 5098: 5086: 5074: 5069:, Chapter 5. 5062: 5035: 5028:Bochner 1958 4993: 4981: 4972: 4966: 4960: 4956: 4952: 4948: 4944: 4940: 4934: 4930: 4921: 4909: 4887: 4880: 4874: 4867: 4863: 4855: 4851: 4836: 4832: 4827: 4823: 4819: 4813: 4780: 4776: 4772: 4768: 4762: 4758: 4754: 4750: 4744: 4742:. But since 4738: 4734: 4730: 4726: 4720: 4716: 4712: 4708: 4702: 4696: 4690: 4684: 4681: 4675: 4669: 4663: 4649: 4645: 4638: 4632: 4625: 4620: 4616: 4612: 4605: 4601: 4594: 4588: 4582: 4576: 4572: 4568: 4562: 4558: 4551: 4545: 4541: 4534: 4530: 4526: 4522: 4518: 4511: 4505: 4502: 4496: 4492: 4486: 4480: 4474: 4470: 4464: 4445: 4441: 4435: 4429: 4425: 4422: 4411: 4407: 4403: 4396: 4392: 4388: 4381: 4377: 4373: 4365: 4360: 4353: 4348: 4342: 4336: 4332: 4326: 4322: 4318: 4312: 4306: 4300: 4294: 4291: 4135: 4131: 4129:will do, as 4123: 4119: 4114: 4110: 4106: 4101: 4097: 4092: 4088: 4081: 4077: 4070: 4064: 4059: 4055: 4050: 4046: 4039: 4035: 4029: 4023: 4019: 4015: 4011: 4005: 4003:. The index 3999: 3995: 3985: 3973: 3969: 3959: 3955: 3946: 3942: 3936: 3933: 3927: 3923: 3917: 3912: 3908: 3902: 3898: 3891: 3887: 3883: 3868: 3864: 3859: 3855: 3849: 3844: 3840: 3834: 3829: 3825: 3817: 3813: 3808: 3804: 3799: 3795: 3788: 3784: 3774: 3769: 3765: 3761: 3756: 3752: 3750:on the form 3747: 3741: 3737: 3731: 3726: 3722: 3715: 3706: 3699: 3693: 3686: 3677: 3671: 3665: 3656: 3647: 3638: 3629: 3612: 3608: 3599: 3591: 3587: 3580: 3576: 3569: 3547: 3543: 3535: 3527: 3523: 3515: 3507: 3499: 3495: 3482:differential 3481: 3359: 3356: 3352: 3348: 3340: 3336: 3332: 3328: 3322: 3318: 3314: 3310: 3304: 3300: 3296: 3290: 3286: 3280: 3276: 3272: 3263: 3257: 3246: 3242: 3238: 3234: 3230: 3226: 3222: 3215: 3211: 3207: 3203: 3199: 3195: 3190: 3185: 3181: 3175: 3169: 3155: 3152: 3149: 3137: 3133: 3129: 3122: 3118: 3110: 3106: 3099: 3092: 3088: 3081: 3075: 3071: 3066: 3061: 3053: 3048: 3040: 3036: 3032: 3025: 2987: 2981: 2977: 2974: 2962: 2952: 2948: 2943: 2935: 2928: 2921: 2915: 2909: 2899: 2895: 2886: 2880: 2875: 2870: 2860: 2856: 2847: 2841: 2834: 2827: 2823: 2819: 2815: 2809: 2805: 2796: 2790: 2784: 2777: 2773: 2769: 2765: 2761: 2757: 2753: 2744: 2738: 2734: 2728: 2724: 2719: 2707: 2701: 2695: 2689: 2682: 2678: 2663: 2659: 2656: 2644: 2638: 2634: 2629: 2616: 2609: 2606: 2597: 2595:homogeneous 2589: 2585: 2579: 2572: 2566: 2562: 2556: 2549: 2539: 2535: 2531: 2527: 2517: 2513: 2508: 2503: 2499: 2490: 2487: 2480: 2476: 2470: 2464: 2460: 2452: 2448: 2442: 2438: 2435: 2433: 2377:Armand Borel 2362:Hermann Weyl 2163:Loop algebra 2145:Killing form 2119:Lie algebras 1996: 1986: 1976: 1966: 1932: 1922: 1912: 1902: 1892: 1882: 1872: 1843:Lie algebras 1831:Applications 1823: 1818: 1813: 1799: 1792: 1788: 1784: 1774: 1770: 1760: 1754: 1748: 1744: 1733: 1729: 1725: 1719: 1715: 1711: 1704: 1700: 1690: 1686: 1682: 1671: 1667: 1664:. The group 1660: 1654: 1645: 1639: 1633: 1630: 1625: 1621: 1616: 1607: 1601: 1591: 1581: 1575: 1208: 1201: 1195: 1190: 1185: 1179: 1167: 1161: 1155: 1149: 1139: 1121: 1118: 1112: 1106: 1100: 1094: 1088: 1058: 1028: 1022: 1017: 1015: 1009: 1005: 999: 995: 901: 897: 775: 735: 729: 723: 716: 712: 706: 702: 696: 690: 686: 680: 673: 641: 634: 630: 624: 618: 614: 608: 604: 597: 571: 541: 532: 530: 523: 496: 442: 436: 430: 400: 301: 212: 182: 176: 170: 164: 158: 152: 146: 116: 113: 71: 65: 52: 39: 35: 29: 5436:(1): 3–42, 5347:p. 441 5330:Bochner, S. 4998:Cartan 1930 4659:slice chart 4316:is closed, 3678:Consider a 3478:pushforward 3179:defined as 3167:), and let 3163:(e.g., the 2966:is closed. 2864:, then the 2713:quaternions 2632:of a point 2357:Élie Cartan 2203:Root system 2007:Exceptional 1681:exp : 993:" in which 779:looks like 739:belongs to 646:belongs to 628:belongs to 96:Élie Cartan 32:mathematics 5485:Lie groups 5479:Categories 5322:References 5263:Chapter 21 4938:such that 4878:such that 4086:such that 3853:such that 3619:such that 3284:, so each 3269:direct sum 3085:closed in 3016:set theory 2876:not closed 2800:is closed. 2732:such that 2630:stabilizer 2545:submersion 2342:Sophus Lie 2335:Scientists 2208:Weyl group 1929:Symplectic 1889:Orthogonal 1839:Lie groups 1137:The torus 601:, and let 144:. Now let 48:Lie groups 5450:122565679 5343:: 438–456 5224:Hall 2015 5212:Hall 2015 5152:Hall 2015 5140:Hall 2015 5055:Hall 2015 5040:Hall 2015 4986:Hall 2015 4902:Citations 4346:the sets 4262:→ 4247:‖ 4234:‖ 3931:as well. 3680:countable 3371:Φ 3331:Φ : 2219:Real form 2105:Euclidean 1956:Classical 1805:injective 1787: : ( 1548:∈ 1545:θ 1530:θ 1507:θ 1460:∈ 1457:θ 1440:θ 1431:π 1404:θ 1398:π 1335:∈ 1332:ϕ 1326:θ 1309:ϕ 1303:π 1276:θ 1270:π 1020:subgroup 964:⁡ 922:⁡ 876:⊂ 794:⊂ 754:⊂ 275:∈ 269:∀ 258:∈ 242:∣ 82:with the 80:Lie group 62:Lie group 5332:(1958), 5313:Lee 2003 5301:Lee 2003 5261:Lee 2003 5236:Lee 2003 5103:Lee 2003 5067:Lee 2003 4914:Lee 2003 4788:See also 4771: : 4753: : 4729: : 4711: : 4630:, where 4615:), ..., 4517: : 4371:satisfy 4330:, hence 4310:. Since 4304:for all 3896:. Since 3877:because 3746:that is 3476:and the 3159:with an 3018:and the 2971:Converse 2822:∖ 2782:, where 2687:, where 2624:and the 2471:embedded 2391:Glossary 2085:Poincaré 1213:and an " 813:. Since 110:Overview 77:embedded 5000:, § 26. 4860:⁠ 4842:⁠ 4831:| diam( 4549:, then 4141:. Then 4118:+ 1) || 3991:compact 3980:⁠ 3952:⁠ 3822:, with 3551:, i.e. 3520:⁠ 3504:⁠ 3261:. Then 3241:) = 0 ∀ 3097:, then 2925:, then 2831:, then 2593:into a 2511:, then 2299:physics 2080:Lorentz 1909:Unitary 1611:is not 1165:⁄ 905:, with 638:, then 69:, then 44:theorem 42:) is a 5464:  5448:  5413:  5395:  5377:  4533:↦ log( 4450:under 4292:Since 4027:. Fix 3251:, the 3220:. Let 3153:Endow 2956:is an 2711:, the 2601:-space 2583:turns 2436:define 2075:Circle 1617:single 1177:after 1175:(1, 1) 715:= log( 75:is an 34:, the 5446:S2CID 5337:(PDF) 5138:E.g. 4959:) → e 4805:Notes 4657:is a 4604:) = ( 4586:with 4363:= Φ(Β 4105:|| ≤ 4063:|| → 3623:is a 3596:with 3586:⊂ GL( 3335:→ GL( 3308:with 3132:⊂ GL( 3079:with 3035:= GL( 3030:with 2995:Proof 2958:ideal 2913:with 2826:, ∈ 2705:, or 2565:) = ( 2507:is a 2150:Index 1741:with 1718:< 1714:< 1587:dense 1573:with 1211:torus 1199:. If 1153:. If 1145:helix 700:) as 603:log: 533:Lemma 60:of a 56:is a 5462:ISBN 5411:ISBN 5393:ISBN 5375:ISBN 4840:) = 4766:and 4724:and 4561:) ∈ 4423:For 4406:) ∩ 4395:) ⊂ 4358:and 3906:and 3886:e = 3838:and 3824:0 ≠ 3730:) ∩ 3692:0 ∈ 3669:and 3654:and 3606:and 3598:0 ∈ 3557:= Id 3502:) = 3355:) ↦ 3198:) = 3067:flow 2893:Let 2671:All 2489:The 2100:Loop 1841:and 1798:) → 1747:) ⊂ 1743:log( 1189:and 947:and 710:for 640:log( 446:but 114:Let 5438:doi 5360:", 4970:in 4951:, ( 4822:= { 4694:in 4439:of 4351:= Β 4325:, ∀ 4139:→ 0 4109:≤ ( 4073:→ ∞ 4068:as 4018:, ∀ 3748:not 3690:at 3636:to 3538:= 0 3484:at 3480:or 3345:by 3255:of 3233:| ( 3225:= { 3188:∈ M 3184:= { 3117:GL( 3105:GL( 3087:GL( 3059:on 2942:If 2874:is 2854:If 2803:If 2760:= { 2751:If 2693:is 2677:GL( 2628:or 2614:If 2555:⋅ ( 2497:If 2475:GL( 2459:GL( 2457:or 2447:GL( 2441:or 1931:Sp( 1921:SU( 1901:SO( 1881:SL( 1871:GL( 1819:not 1728:⊂ ( 1685:→ ( 1589:in 1585:is 1217:". 1056:of 1026:of 1018:any 961:dim 919:dim 678:on 210:of 30:In 5481:: 5444:, 5434:30 5339:, 5047:^ 5020:^ 5005:^ 4955:, 4947:→ 4943:× 4933:⊂ 4886:⊂ 4866:∈ 4862:, 4854:+ 4779:→ 4775:× 4761:→ 4757:× 4737:→ 4733:× 4719:→ 4715:× 4679:. 4648:, 4575:⊕ 4571:= 4544:∈ 4529:, 4525:→ 4521:⊂ 4495:∈ 4473:∈ 4428:≥ 4410:⊂ 4402:Φ( 4391:∩ 4380:∩ 4376:= 4335:∈ 4321:∈ 4127:|| 4096:|| 4054:|| 4022:∈ 4014:∈ 3998:∈ 3977:|| 3968:|| 3950:= 3940:, 3926:∈ 3921:, 3916:∈ 3901:∈ 3863:∈ 3848:∈ 3833:∈ 3812:+ 3803:= 3773:∈ 3764:, 3760:= 3721:Φ( 3719:, 3705:⊂ 3611:∈ 3590:, 3579:, 3575:⊂ 3546:+ 3528:tT 3526:, 3524:tS 3522:Φ( 3516:dt 3498:, 3488:, 3351:, 3339:, 3326:. 3321:∈ 3317:, 3313:∈ 3303:+ 3299:= 3289:∈ 3279:⊕ 3275:= 3245:∈ 3237:, 3229:∈ 3214:∈ 3206:∈ 3202:| 3136:, 3121:, 3109:, 3091:, 3074:⊂ 3039:, 3014:, 2980:⊂ 2951:⊂ 2939:. 2927:Γ( 2898:⊂ 2859:∈ 2833:Γ( 2818:∈ 2808:⊂ 2776:∈ 2772:, 2768:∈ 2764:| 2762:ab 2758:AB 2756:= 2737:∩ 2699:, 2681:, 2662:⊂ 2637:∈ 2603:. 2534:→ 2502:⊂ 2479:, 2463:, 2451:, 1911:U( 1891:O( 1791:, 1773:, 1767:, 1732:, 1703:⊂ 1689:, 1670:, 1626:is 1158:= 1008:⊂ 998:⊂ 900:⊂ 705:= 689:∈ 670:. 633:∩ 617:⊂ 607:→ 106:. 5440:: 5349:. 5277:s 5129:. 5030:. 5015:. 4976:. 4973:G 4967:H 4961:H 4957:H 4953:X 4949:G 4945:H 4941:U 4935:g 4931:U 4891:1 4888:U 4884:1 4881:B 4875:m 4870:} 4868:N 4864:k 4856:m 4852:k 4848:/ 4845:1 4837:k 4833:B 4828:k 4824:B 4820:Β 4781:H 4777:H 4773:H 4769:i 4763:H 4759:H 4755:H 4751:m 4745:H 4739:G 4735:H 4731:H 4727:i 4721:G 4717:H 4713:H 4709:m 4703:G 4697:H 4691:i 4685:m 4676:G 4670:H 4664:H 4655:) 4653:1 4650:φ 4646:e 4644:( 4639:h 4633:m 4626:h 4624:( 4621:m 4617:x 4613:h 4611:( 4609:1 4606:x 4602:h 4600:( 4598:1 4595:φ 4589:R 4583:g 4577:s 4573:h 4569:g 4563:h 4559:h 4557:( 4555:1 4552:φ 4546:H 4542:h 4537:) 4535:g 4531:g 4527:g 4523:G 4519:e 4515:1 4512:φ 4506:H 4497:H 4493:h 4487:H 4481:g 4475:G 4471:g 4465:G 4456:I 4452:Φ 4446:j 4442:B 4436:H 4430:i 4426:j 4412:H 4408:H 4404:U 4397:h 4393:h 4389:U 4387:( 4382:V 4378:H 4374:e 4369:) 4366:i 4361:V 4354:i 4349:U 4343:i 4337:h 4333:Y 4327:t 4323:H 4319:e 4313:H 4307:i 4301:H 4295:H 4278:. 4273:Y 4270:t 4266:e 4255:i 4251:Y 4242:i 4238:S 4229:i 4225:m 4220:e 4216:= 4209:i 4205:S 4199:i 4195:m 4190:e 4186:= 4179:i 4175:m 4170:) 4162:i 4158:S 4153:e 4149:( 4136:i 4132:S 4124:i 4120:S 4115:i 4111:m 4107:t 4102:i 4098:S 4093:i 4089:m 4082:i 4078:m 4071:i 4065:t 4060:i 4056:S 4051:i 4047:m 4040:i 4036:m 4030:t 4024:R 4020:t 4016:H 4012:e 4006:i 4000:s 3996:Y 3986:s 3974:i 3970:S 3965:/ 3960:i 3956:S 3947:i 3943:Y 3937:s 3928:H 3924:e 3918:H 3913:i 3909:h 3903:H 3899:e 3892:i 3888:h 3884:e 3879:Β 3875:0 3869:i 3865:B 3860:i 3856:X 3850:h 3845:i 3841:T 3835:s 3830:i 3826:S 3818:i 3814:T 3809:i 3805:S 3800:i 3796:X 3789:i 3785:B 3780:Φ 3775:h 3770:i 3766:T 3762:e 3757:i 3753:h 3742:i 3738:h 3732:H 3727:i 3723:B 3716:i 3710:1 3707:U 3703:1 3700:B 3694:g 3687:Β 3672:V 3666:U 3660:1 3657:V 3651:1 3648:U 3642:1 3639:V 3633:1 3630:U 3621:Φ 3616:1 3613:V 3609:I 3603:1 3600:U 3594:) 3592:R 3588:n 3584:1 3581:V 3577:g 3573:1 3570:U 3565:Φ 3555:∗ 3553:Φ 3548:T 3544:S 3536:t 3532:| 3530:) 3512:/ 3508:d 3500:T 3496:S 3494:( 3492:∗ 3490:Φ 3486:0 3464:, 3461:) 3456:2 3452:t 3448:( 3445:O 3442:+ 3439:T 3436:t 3433:+ 3430:S 3427:t 3424:+ 3421:I 3418:= 3413:T 3410:t 3406:e 3400:S 3397:t 3393:e 3389:= 3386:) 3383:T 3380:, 3377:S 3374:( 3360:e 3357:e 3353:T 3349:S 3347:( 3343:) 3341:R 3337:n 3333:g 3323:h 3319:T 3315:s 3311:S 3305:T 3301:S 3297:X 3291:g 3287:X 3281:h 3277:s 3273:g 3264:g 3258:h 3249:} 3247:h 3243:T 3239:T 3235:S 3231:g 3227:S 3223:s 3218:} 3216:R 3212:t 3210:∀ 3208:H 3204:e 3200:g 3196:R 3194:( 3191:n 3186:X 3182:h 3176:H 3170:h 3156:g 3140:) 3138:R 3134:n 3130:G 3125:) 3123:R 3119:n 3113:) 3111:R 3107:n 3100:H 3095:) 3093:R 3089:n 3082:G 3076:G 3072:H 3062:G 3049:G 3043:) 3041:R 3037:n 3033:G 3022:. 2988:H 2982:G 2978:H 2963:h 2953:g 2949:h 2944:G 2936:G 2931:) 2929:h 2922:h 2916:k 2910:k 2900:g 2896:h 2887:C 2881:X 2871:X 2861:g 2857:X 2851:. 2848:G 2842:e 2837:) 2835:h 2828:h 2824:h 2820:g 2816:X 2810:g 2806:h 2797:H 2791:B 2785:A 2780:} 2778:B 2774:b 2770:A 2766:a 2754:H 2748:. 2745:U 2739:U 2735:H 2729:G 2727:⊂ 2725:U 2715:. 2708:H 2702:C 2696:R 2690:F 2685:) 2683:n 2679:F 2664:G 2660:H 2645:X 2639:X 2635:x 2617:X 2598:G 2590:H 2588:/ 2586:G 2580:H 2578:) 2576:2 2573:g 2570:1 2567:g 2563:H 2560:2 2557:g 2553:1 2550:g 2540:H 2538:/ 2536:G 2532:G 2530:: 2528:π 2518:H 2516:/ 2514:G 2504:G 2500:H 2483:) 2481:C 2477:n 2467:) 2465:C 2461:n 2455:) 2453:R 2449:n 2423:e 2416:t 2409:v 2049:8 2047:E 2041:7 2039:E 2033:6 2031:E 2025:4 2023:F 2017:2 2015:G 1997:n 1994:D 1987:n 1984:C 1977:n 1974:B 1967:n 1964:A 1935:) 1933:n 1925:) 1923:n 1915:) 1913:n 1905:) 1903:n 1895:) 1893:n 1885:) 1883:n 1875:) 1873:n 1824:h 1814:H 1800:G 1796:g 1793:τ 1789:H 1785:ι 1780:) 1778:g 1775:τ 1771:H 1769:( 1764:g 1761:τ 1755:V 1749:U 1745:V 1739:) 1737:r 1734:τ 1730:H 1726:V 1720:ε 1716:θ 1712:ε 1710:− 1705:h 1701:U 1696:) 1694:r 1691:τ 1687:H 1683:h 1677:) 1675:r 1672:τ 1668:H 1666:( 1661:U 1655:h 1649:r 1646:τ 1640:U 1634:H 1622:H 1608:H 1602:H 1592:G 1582:H 1576:a 1561:, 1557:} 1552:R 1541:| 1536:) 1527:a 1524:i 1519:0 1512:0 1504:i 1498:( 1489:{ 1485:= 1480:h 1469:} 1464:R 1453:| 1448:) 1437:a 1434:i 1428:2 1424:e 1418:0 1411:0 1401:i 1395:2 1391:e 1384:( 1375:{ 1371:= 1368:H 1348:, 1344:} 1339:R 1329:, 1322:| 1317:) 1306:i 1300:2 1296:e 1290:0 1283:0 1273:i 1267:2 1263:e 1256:( 1247:{ 1243:= 1238:2 1233:T 1228:= 1225:G 1202:a 1196:θ 1191:q 1186:φ 1180:p 1168:q 1162:p 1156:a 1150:H 1140:G 1122:H 1113:G 1107:H 1101:H 1095:H 1089:H 1072:g 1059:H 1042:h 1029:G 1023:H 1010:R 1006:R 1000:G 996:H 977:) 972:g 967:( 958:= 955:n 935:) 930:h 925:( 916:= 913:k 902:R 898:R 881:g 871:h 847:g 823:h 799:g 789:h 776:H 759:g 749:h 736:X 730:H 724:X 719:) 717:g 713:X 707:e 703:g 697:H 691:W 687:g 681:W 656:h 644:) 642:h 635:H 631:W 625:h 619:V 615:W 609:U 605:V 598:G 583:V 572:U 555:g 542:U 524:H 507:h 480:h 456:h 443:G 437:H 431:H 414:h 401:H 384:g 360:h 336:g 312:h 288:. 284:} 279:R 272:t 264:, 261:H 253:X 250:t 246:e 239:X 235:{ 231:= 226:h 213:H 196:h 183:H 177:H 171:H 165:G 159:H 153:G 147:H 130:g 117:G 72:H 66:G 53:H 20:)

Index

Closed subgroup theorem
mathematics
theorem
Lie groups
closed subgroup
Lie group
embedded
Lie group
smooth structure
group topology
Cartan's theorem
Élie Cartan
John von Neumann
linear transformations
exponential coordinates
slice coordinate system

helix
torus
irrational winding of the torus
dense
relative topology
locally path connected
injective
homeomorphism
Lie groups
Lie algebras

Classical groups
General linear

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.