Knowledge

Exponential map (Lie theory)

Source đź“ť

42: 2468: 1383:, there will not exist a Riemannian metric invariant under both left and right translations. Although there is always a Riemannian metric invariant under, say, left translations, the exponential map in the sense of Riemannian geometry for a left-invariant metric will 1278: 4350: 712:(whose Lie algebra is the additive group of all real numbers). The exponential map of a Lie group satisfies many properties analogous to those of the ordinary exponential function, however, it also differs in many important respects. 3800: 1501:. This is usually different from the canonical left-invariant connection, but both connections have the same geodesics (orbits of 1-parameter subgroups acting by left or right multiplication) so give the same exponential map. 2563: 680:
to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups.
2929: 2286: 4672: 3012: 2706: 3590: 4569: 4524: 1649: 3420: 1826: 4129: 2861: 2275: 2818: 3535: 841: 3245: 964: 1885: 1141: 2005: 4137: 2646: 1717: 4068: 3313: 3916: 3805:
Globally, the exponential map is not necessarily surjective. Furthermore, the exponential map may not be a local diffeomorphism at all points. For example, the exponential map from
4791: 3057: 881: 3107: 1074: 4449: 4027: 1464: 928: 1575: 3830: 2136: 2057: 1957: 4473: 4403: 3684: 3621: 1534: 1330: 766: 658: 4732: 2188: 1607: 4054: 2748: 1908: 2595: 1484: 1094: 4615: 2091: 3987: 3964: 4589: 4379: 4096: 3641: 3491: 3464: 3444: 3155: 3131: 2159: 2028: 1928: 1350: 1302: 1122: 1016: 992: 798: 738: 706: 678: 3689: 3943:-diagonalizable matrices with eigenvalues either positive or with modulus 1, and of non-diagonalizable matrices with a repeated eigenvalue 1, and the matrix 2485: 459: 2463:{\displaystyle \mathbf {w} :=(it+ju+kv)\mapsto \exp(it+ju+kv)=\cos(|\mathbf {w} |)1+\sin(|\mathbf {w} |){\frac {\mathbf {w} }{|\mathbf {w} |}}.\,} 2870: 1391:
is a Lie group equipped with a left- but not right-invariant metric, the geodesics through the identity will not be one-parameter subgroups of
4623: 2940: 507: 2661: 512: 3548: 502: 497: 4529: 4490: 1612: 3324: 1728: 1505: 317: 4101: 1308:. Thus, in the setting of matrix Lie groups, the exponential map is the restriction of the matrix exponential to the Lie algebra 581: 464: 2823: 5015: 4842: 4075: 1373: 20: 5034: 612: 2204: 4681:. It is called by various names such as logarithmic coordinates, exponential coordinates or normal coordinates. See the 2762: 4988: 1124:. That the integral curve exists for all real parameters follows by right- or left-translating the solution near zero. 3504: 810: 5044: 4807: 3841: 3163: 935: 1273:{\displaystyle \exp(X)=\sum _{k=0}^{\infty }{\frac {X^{k}}{k!}}=I+X+{\frac {1}{2}}X^{2}+{\frac {1}{6}}X^{3}+\cdots } 4866: 4345:{\displaystyle \mathrm {Ad} _{\exp X}(Y)=\exp(\mathrm {ad} _{X})(Y)=Y++{\frac {1}{2!}}]+{\frac {1}{3!}}]]+\cdots } 2610:
be a finite dimensional real vector space and view it as a Lie group under the operation of vector addition. Then
5003: 3837: 1847: 474: 1969: 2613: 1676: 3251: 5064: 5007: 2598: 469: 449: 3874: 414: 4745: 4682: 3032: 856: 5059: 5054: 3922:
For groups not satisfying any of the above conditions, the exponential map may or may not be surjective.
3062: 1029: 19:
For the exponential map from a subset of the tangent space of a Riemannian manifold to the manifold, see
4408: 4000: 1422: 886: 4802: 4057: 3542: 1539: 454: 3808: 2099: 2033: 1933: 4454: 4384: 3665: 3602: 1515: 1311: 747: 639: 4694: 4484: 605: 89: 2171: 1580: 3595:
It follows from the inverse function theorem that the exponential map, therefore, restricts to a
4735: 4032: 3110: 2715: 971: 409: 372: 340: 327: 4837:. Herbert Lange (Second, augmented ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. 1893: 5082: 2568: 2201:) whose tangent space at 1 can be identified with the space of purely imaginary quaternions, 1469: 1079: 709: 441: 109: 4594: 2066: 184: 174: 164: 154: 5025: 3833: 2756: 1673:) whose tangent space at 1 can be identified with the imaginary line in the complex plane, 685: 69: 59: 8: 5087: 4061: 3795:{\displaystyle g=\exp(X_{1})\exp(X_{2})\cdots \exp(X_{n}),\quad X_{j}\in {\mathfrak {g}}} 1833: 598: 586: 427: 257: 3969: 3946: 3852:
In these important special cases, the exponential map is known to always be surjective:
4812: 4574: 4364: 4081: 3626: 3476: 3470: 3449: 3429: 3140: 3116: 2144: 2013: 1913: 1416: 1335: 1287: 1132: 1107: 1001: 977: 846:
which can be defined in several different ways. The typical modern definition is this:
783: 723: 691: 663: 358: 348: 5040: 5011: 4984: 4848: 4838: 1408: 1387:
in general agree with the exponential map in the Lie group sense. That is to say, if
422: 385: 537: 275: 2060: 1577:
is the unique Lie group homomorphism corresponding to the Lie algebra homomorphism
1128: 777: 557: 237: 229: 221: 213: 205: 138: 119: 79: 5021: 3966:. (Thus, the image excludes matrices with real, negative eigenvalues, other than 2558:{\displaystyle \{s\in S^{3}\subset \mathbf {H} :\operatorname {Re} (s)=\cos(R)\}} 1960: 1888: 1305: 542: 295: 280: 51: 3596: 3134: 2864: 1097: 995: 562: 380: 285: 1497:
It is the exponential map of a canonical right-invariant affine connection on
547: 5076: 4852: 1842: 1666: 773: 270: 99: 1670: 1101: 567: 552: 353: 335: 265: 4832: 2924:{\displaystyle \lbrace \cosh t+\jmath \ \sinh t:t\in \mathbb {R} \rbrace } 1403:
Other equivalent definitions of the Lie-group exponential are as follows:
4983:, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, 4981:
Lie Groups, Lie Algebras, and Representations: An Elementary Introduction
2166: 1662: 769: 634: 393: 309: 33: 4667:{\displaystyle \log :U{\overset {\sim }{\to }}N\subset \mathbb {R} ^{n}} 3925:
The image of the exponential map of the connected but non-compact group
3007:{\displaystyle \jmath t\mapsto \exp(\jmath t)=\cosh t+\jmath \ \sinh t.} 1490:
with the initial point at the identity element and the initial velocity
3538: 2479: 1023: 688:
of mathematical analysis is a special case of the exponential map when
532: 398: 290: 3426:
The preceding identity does not hold in general; the assumption that
741: 626: 29: 4067: 2701:{\displaystyle \operatorname {exp} :\operatorname {Lie} (V)=V\to V} 1487: 3585:{\displaystyle \exp _{*}\colon {\mathfrak {g}}\to {\mathfrak {g}}} 489: 4564:{\displaystyle N\subset {\mathfrak {g}}\simeq \mathbb {R} ^{n}} 4519:{\displaystyle \operatorname {exp} :N{\overset {\sim }{\to }}U} 3926: 2191: 1644:{\displaystyle \operatorname {Lie} (\mathbb {R} )=\mathbb {R} } 1368:
right translations, then the Lie-theoretic exponential map for
4956: 3415:{\displaystyle \exp(X+Y)=\exp(X)\exp(Y),\quad {\text{if }}=0} 2141:
corresponds to the exponential map for the complex Lie group
1821:{\displaystyle it\mapsto \exp(it)=e^{it}=\cos(t)+i\sin(t),\,} 1355: 1364:
is compact, it has a Riemannian metric invariant under left
4124:{\displaystyle \operatorname {Ad} _{*}=\operatorname {ad} } 3024: 41: 2856:{\displaystyle \lbrace \jmath t:t\in \mathbb {R} \rbrace } 2194:
form a Lie group (isomorphic to the special unitary group
4475:
determines a coordinate system near the identity element
3592:, is the identity map (with the usual identifications). 1407:
It is the exponential map of a canonical left-invariant
5000:
Differential geometry, Lie groups, and symmetric spaces
4748: 4697: 4685:
for an example of how they are used in applications.
4626: 4597: 4577: 4532: 4493: 4457: 4411: 4387: 4367: 4140: 4104: 4084: 4035: 4003: 3972: 3949: 3877: 3811: 3692: 3668: 3629: 3605: 3551: 3507: 3479: 3452: 3432: 3327: 3254: 3166: 3143: 3119: 3065: 3035: 2943: 2873: 2826: 2765: 2718: 2664: 2616: 2571: 2488: 2289: 2207: 2174: 2147: 2102: 2069: 2036: 2016: 1972: 1936: 1916: 1896: 1850: 1731: 1679: 1615: 1583: 1542: 1518: 1472: 1425: 1338: 1314: 1290: 1144: 1110: 1082: 1032: 1004: 980: 938: 889: 859: 813: 786: 750: 726: 694: 666: 642: 3992: 3496: 3469:
The image of the exponential map always lies in the
2652:
with its tangent space at 0, and the exponential map
1127:
We have a more concrete definition in the case of a
2270:{\displaystyle \{it+ju+kv:t,u,v\in \mathbb {R} \}.} 5039:, vol. 1 (New ed.), Wiley-Interscience, 4785: 4726: 4666: 4609: 4583: 4563: 4518: 4467: 4443: 4397: 4373: 4344: 4123: 4090: 4048: 4021: 3981: 3958: 3910: 3847: 3824: 3794: 3678: 3635: 3615: 3584: 3529: 3485: 3458: 3438: 3414: 3307: 3239: 3149: 3125: 3101: 3051: 3006: 2923: 2855: 2813:{\displaystyle z=x+y\jmath ,\quad \jmath ^{2}=+1,} 2812: 2742: 2700: 2640: 2589: 2557: 2462: 2277:The exponential map for this Lie group is given by 2269: 2182: 2153: 2130: 2085: 2051: 2022: 1999: 1951: 1922: 1902: 1879: 1820: 1719:The exponential map for this Lie group is given by 1711: 1643: 1601: 1569: 1528: 1478: 1458: 1344: 1324: 1296: 1272: 1116: 1088: 1068: 1010: 986: 958: 922: 875: 835: 792: 760: 732: 700: 672: 652: 5074: 3530:{\displaystyle \exp \colon {\mathfrak {g}}\to G} 836:{\displaystyle \exp \colon {\mathfrak {g}}\to G} 460:Representation theory of semisimple Lie algebras 5032: 4962: 3240:{\displaystyle \exp((t+s)X)=\exp(tX)\exp(sX)\,} 1135:and is given by the ordinary series expansion: 959:{\displaystyle \gamma \colon \mathbb {R} \to G} 5033:Kobayashi, Shoshichi; Nomizu, Katsumi (1996), 3939:is not the whole group. Its image consists of 606: 4721: 4698: 4060:at the identity. Then the following diagram 2918: 2874: 2850: 2827: 2552: 2489: 2261: 2208: 2063:, we can identify it with the tangent space 1703: 1680: 4526:is a diffeomorphism from some neighborhood 2601:). Compare this to the first example above. 1880:{\displaystyle X=\mathbb {C} ^{n}/\Lambda } 4830: 4356: 2000:{\displaystyle \pi :\mathbb {C} ^{n}\to X} 1832:that is, the same formula as the ordinary 1356:Comparison with Riemannian exponential map 613: 599: 498:Particle physics and representation theory 40: 4654: 4551: 3901: 3865:is connected and nilpotent (for example, 3646:It is then not difficult to show that if 3304: 3236: 2914: 2846: 2641:{\displaystyle \operatorname {Lie} (V)=V} 2459: 2257: 2176: 2039: 1981: 1939: 1859: 1817: 1712:{\displaystyle \{it:t\in \mathbb {R} \}.} 1699: 1637: 1626: 1374:exponential map of this Riemannian metric 1131:. The exponential map coincides with the 946: 4997: 3836:is not a local diffeomorphism; see also 3308:{\displaystyle \exp(-X)=\exp(X)^{-1}.\,} 3025:Elementary properties of the exponential 2010:from the quotient by the lattice. Since 1419:is given by left translation. That is, 1100:of either the right- or left-invariant 465:Representations of classical Lie groups 16:Map from a Lie algebra to its Lie group 5075: 3911:{\displaystyle G=GL_{n}(\mathbb {C} )} 2474:This map takes the 2-sphere of radius 2931:since the exponential map is given by 21:Exponential map (Riemannian geometry) 5036:Foundations of Differential Geometry 4978: 4950: 4938: 4926: 4914: 4902: 4890: 4878: 4786:{\displaystyle (g,h)\mapsto gh^{-1}} 4029:be a Lie group homomorphism and let 3052:{\displaystyle X\in {\mathfrak {g}}} 1506:Lie group–Lie algebra correspondence 1398: 876:{\displaystyle X\in {\mathfrak {g}}} 318:Lie group–Lie algebra correspondence 4541: 4460: 4390: 4074:In particular, when applied to the 3817: 3814: 3787: 3671: 3608: 3577: 3567: 3516: 3102:{\displaystyle \gamma (t)=\exp(tX)} 3044: 1521: 1317: 1069:{\displaystyle \exp(tX)=\gamma (t)} 868: 822: 753: 645: 13: 5006:, vol. 34, Providence, R.I.: 4444:{\displaystyle X_{1},\dots ,X_{n}} 4188: 4185: 4146: 4143: 4066: 4022:{\displaystyle \phi \colon G\to H} 1959:) the torus comes equipped with a 1897: 1874: 1459:{\displaystyle \exp(X)=\gamma (1)} 1179: 923:{\displaystyle \exp(X)=\gamma (1)} 14: 5099: 4808:Derivative of the exponential map 3993:Exponential map and homomorphisms 3842:derivative of the exponential map 3497:The exponential near the identity 1570:{\displaystyle t\mapsto \exp(tX)} 1494:(thought of as a tangent vector). 4867:Baker-Campbell-Hausdorff formula 4571:of the origin to a neighborhood 3825:{\displaystyle {\mathfrak {so}}} 2512: 2444: 2433: 2418: 2385: 2291: 2131:{\displaystyle \pi :T_{0}X\to X} 2052:{\displaystyle \mathbb {C} ^{n}} 1952:{\displaystyle \mathbb {Z} ^{n}} 5004:Graduate Studies in Mathematics 4677:is then a coordinate system on 4468:{\displaystyle {\mathfrak {g}}} 4398:{\displaystyle {\mathfrak {g}}} 4131:, we have the useful identity: 3848:Surjectivity of the exponential 3771: 3679:{\displaystyle {\mathfrak {g}}} 3662:of exponentials of elements of 3616:{\displaystyle {\mathfrak {g}}} 3599:from some neighborhood of 0 in 3385: 2787: 1529:{\displaystyle {\mathfrak {g}}} 1508:also gives the definition: for 1325:{\displaystyle {\mathfrak {g}}} 761:{\displaystyle {\mathfrak {g}}} 708:is the multiplicative group of 653:{\displaystyle {\mathfrak {g}}} 4971: 4944: 4932: 4920: 4908: 4896: 4884: 4872: 4859: 4831:Birkenhake, Christina (2004). 4824: 4764: 4761: 4749: 4742:such that the group operation 4708: 4638: 4505: 4333: 4330: 4327: 4315: 4306: 4297: 4276: 4273: 4261: 4252: 4231: 4219: 4207: 4201: 4198: 4180: 4168: 4162: 4013: 3905: 3897: 3765: 3752: 3740: 3727: 3718: 3705: 3572: 3521: 3403: 3391: 3379: 3373: 3364: 3358: 3346: 3334: 3289: 3282: 3270: 3261: 3233: 3224: 3215: 3206: 3194: 3188: 3176: 3173: 3096: 3087: 3075: 3069: 2968: 2959: 2950: 2731: 2725: 2712:is the identity map, that is, 2692: 2683: 2677: 2629: 2623: 2584: 2578: 2549: 2543: 2531: 2525: 2449: 2439: 2427: 2423: 2413: 2409: 2394: 2390: 2380: 2376: 2364: 2337: 2328: 2325: 2298: 2122: 1991: 1811: 1805: 1790: 1784: 1756: 1747: 1738: 1630: 1622: 1587: 1564: 1555: 1546: 1453: 1447: 1438: 1432: 1157: 1151: 1063: 1057: 1048: 1039: 950: 917: 911: 902: 896: 827: 715: 513:Galilean group representations 508:PoincarĂ© group representations 1: 5008:American Mathematical Society 4727:{\displaystyle \{Ug|g\in G\}} 3019: 2863:forms the Lie algebra of the 2599:Exponential of a Pauli vector 503:Lorentz group representations 470:Theorem of the highest weight 4818: 3650:is connected, every element 2478:inside the purely imaginary 2183:{\displaystyle \mathbb {H} } 1602:{\displaystyle t\mapsto tX.} 998:at the identity is equal to 7: 5060:Encyclopedia of Mathematics 4998:Helgason, Sigurdur (2001), 4963:Kobayashi & Nomizu 1996 4796: 1669:is a Lie group (called the 1655: 1022:It follows easily from the 10: 5104: 4803:List of exponential topics 3869:connected and abelian), or 3623:to a neighborhood of 1 in 2648:via the identification of 2192:quaternions of unit length 1096:may be constructed as the 455:Lie algebra representation 18: 4834:Complex Abelian Varieties 4405:, each choice of a basis 4049:{\displaystyle \phi _{*}} 3859:is connected and compact, 2743:{\displaystyle \exp(v)=v} 2030:is locally isomorphic to 4485:inverse function theorem 1903:{\displaystyle \Lambda } 450:Lie group representation 4979:Hall, Brian C. (2015), 4734:gives a structure of a 4683:closed-subgroup theorem 4357:Logarithmic coordinates 2590:{\displaystyle \sin(R)} 2565:, a 2-sphere of radius 1479:{\displaystyle \gamma } 1089:{\displaystyle \gamma } 475:Borel–Weil–Bott theorem 4917:Exercises 2.9 and 2.10 4865:This follows from the 4787: 4736:real-analytic manifold 4728: 4668: 4611: 4610:{\displaystyle e\in G} 4585: 4565: 4520: 4487:, the exponential map 4469: 4445: 4399: 4375: 4346: 4125: 4092: 4071: 4050: 4023: 3983: 3960: 3912: 3844:for more information. 3826: 3796: 3680: 3637: 3617: 3586: 3531: 3487: 3466:commute is important. 3460: 3440: 3416: 3309: 3241: 3151: 3127: 3111:one-parameter subgroup 3103: 3053: 3008: 2925: 2857: 2814: 2744: 2702: 2642: 2591: 2559: 2464: 2271: 2184: 2155: 2139: 2132: 2087: 2086:{\displaystyle T_{0}X} 2053: 2024: 2008: 2001: 1961:universal covering map 1953: 1924: 1904: 1881: 1822: 1713: 1645: 1603: 1571: 1530: 1480: 1460: 1346: 1326: 1298: 1274: 1183: 1118: 1090: 1070: 1012: 988: 972:one-parameter subgroup 960: 924: 877: 837: 794: 762: 734: 702: 674: 654: 373:Semisimple Lie algebra 328:Adjoint representation 5055:"Exponential mapping" 4788: 4729: 4669: 4612: 4586: 4566: 4521: 4483:, as follows. By the 4470: 4446: 4400: 4376: 4347: 4126: 4093: 4070: 4051: 4024: 3984: 3961: 3913: 3840:on this failure. See 3827: 3797: 3681: 3638: 3618: 3587: 3532: 3488: 3461: 3441: 3417: 3310: 3242: 3152: 3128: 3104: 3054: 3009: 2926: 2858: 2815: 2745: 2703: 2643: 2592: 2560: 2465: 2272: 2185: 2156: 2133: 2095: 2088: 2054: 2025: 2002: 1965: 1954: 1925: 1905: 1882: 1823: 1714: 1665:centered at 0 in the 1646: 1604: 1572: 1531: 1481: 1461: 1347: 1327: 1299: 1275: 1163: 1119: 1091: 1071: 1013: 989: 961: 925: 878: 853:: The exponential of 838: 795: 763: 735: 710:positive real numbers 703: 675: 655: 442:Representation theory 4746: 4695: 4624: 4595: 4575: 4530: 4491: 4455: 4409: 4385: 4365: 4138: 4102: 4082: 4033: 4001: 3970: 3947: 3875: 3809: 3690: 3666: 3627: 3603: 3549: 3505: 3501:The exponential map 3477: 3450: 3430: 3325: 3252: 3164: 3141: 3117: 3063: 3033: 2941: 2871: 2824: 2763: 2757:split-complex number 2716: 2662: 2614: 2569: 2486: 2287: 2205: 2172: 2145: 2100: 2067: 2034: 2014: 1970: 1934: 1914: 1894: 1848: 1841:More generally, for 1729: 1677: 1613: 1581: 1540: 1516: 1470: 1423: 1336: 1312: 1288: 1142: 1108: 1080: 1030: 1002: 978: 936: 887: 857: 811: 784: 748: 724: 692: 686:exponential function 664: 640: 3157:. It follows that: 3137:at the identity is 2820:the imaginary line 1834:complex exponential 1372:coincides with the 772:(thought of as the 587:Table of Lie groups 428:Compact Lie algebra 4813:Matrix exponential 4793:is real-analytic. 4783: 4724: 4664: 4607: 4581: 4561: 4516: 4465: 4441: 4395: 4371: 4361:Given a Lie group 4342: 4121: 4088: 4072: 4046: 4019: 3982:{\displaystyle -I} 3979: 3959:{\displaystyle -I} 3956: 3908: 3822: 3792: 3676: 3633: 3613: 3582: 3527: 3483: 3471:identity component 3456: 3436: 3412: 3305: 3237: 3147: 3123: 3099: 3049: 3004: 2921: 2853: 2810: 2740: 2698: 2638: 2587: 2555: 2460: 2267: 2180: 2151: 2128: 2083: 2049: 2020: 1997: 1949: 1930:(so isomorphic to 1920: 1900: 1887:for some integral 1877: 1818: 1709: 1641: 1599: 1567: 1526: 1476: 1456: 1417:parallel transport 1342: 1322: 1294: 1270: 1133:matrix exponential 1114: 1086: 1066: 1008: 984: 956: 920: 873: 833: 790: 758: 730: 698: 670: 650: 633:is a map from the 359:Affine Lie algebra 349:Simple Lie algebra 90:Special orthogonal 5017:978-0-8218-2848-9 4844:978-3-662-06307-1 4691:: The open cover 4644: 4584:{\displaystyle U} 4511: 4381:with Lie algebra 4374:{\displaystyle G} 4295: 4250: 4091:{\displaystyle G} 3636:{\displaystyle G} 3486:{\displaystyle G} 3459:{\displaystyle Y} 3439:{\displaystyle X} 3389: 3150:{\displaystyle X} 3126:{\displaystyle G} 2991: 2894: 2454: 2154:{\displaystyle X} 2061:complex manifolds 2023:{\displaystyle X} 1923:{\displaystyle n} 1409:affine connection 1399:Other definitions 1345:{\displaystyle G} 1297:{\displaystyle I} 1252: 1229: 1204: 1117:{\displaystyle X} 1011:{\displaystyle X} 987:{\displaystyle G} 793:{\displaystyle G} 733:{\displaystyle G} 701:{\displaystyle G} 673:{\displaystyle G} 625:In the theory of 623: 622: 423:Split Lie algebra 386:Cartan subalgebra 248: 247: 139:Simple Lie groups 5095: 5068: 5049: 5028: 4993: 4966: 4960: 4954: 4953:Proposition 3.35 4948: 4942: 4936: 4930: 4924: 4918: 4912: 4906: 4900: 4894: 4888: 4882: 4876: 4870: 4863: 4857: 4856: 4828: 4792: 4790: 4789: 4784: 4782: 4781: 4733: 4731: 4730: 4725: 4711: 4673: 4671: 4670: 4665: 4663: 4662: 4657: 4645: 4637: 4616: 4614: 4613: 4608: 4590: 4588: 4587: 4582: 4570: 4568: 4567: 4562: 4560: 4559: 4554: 4545: 4544: 4525: 4523: 4522: 4517: 4512: 4504: 4474: 4472: 4471: 4466: 4464: 4463: 4450: 4448: 4447: 4442: 4440: 4439: 4421: 4420: 4404: 4402: 4401: 4396: 4394: 4393: 4380: 4378: 4377: 4372: 4351: 4349: 4348: 4343: 4296: 4294: 4283: 4251: 4249: 4238: 4197: 4196: 4191: 4161: 4160: 4149: 4130: 4128: 4127: 4122: 4114: 4113: 4097: 4095: 4094: 4089: 4055: 4053: 4052: 4047: 4045: 4044: 4028: 4026: 4025: 4020: 3988: 3986: 3985: 3980: 3965: 3963: 3962: 3957: 3917: 3915: 3914: 3909: 3904: 3896: 3895: 3831: 3829: 3828: 3823: 3821: 3820: 3801: 3799: 3798: 3793: 3791: 3790: 3781: 3780: 3764: 3763: 3739: 3738: 3717: 3716: 3685: 3683: 3682: 3677: 3675: 3674: 3642: 3640: 3639: 3634: 3622: 3620: 3619: 3614: 3612: 3611: 3591: 3589: 3588: 3583: 3581: 3580: 3571: 3570: 3561: 3560: 3536: 3534: 3533: 3528: 3520: 3519: 3492: 3490: 3489: 3484: 3465: 3463: 3462: 3457: 3445: 3443: 3442: 3437: 3421: 3419: 3418: 3413: 3390: 3387: 3318:More generally: 3314: 3312: 3311: 3306: 3300: 3299: 3246: 3244: 3243: 3238: 3156: 3154: 3153: 3148: 3132: 3130: 3129: 3124: 3108: 3106: 3105: 3100: 3058: 3056: 3055: 3050: 3048: 3047: 3013: 3011: 3010: 3005: 2989: 2930: 2928: 2927: 2922: 2917: 2892: 2862: 2860: 2859: 2854: 2849: 2819: 2817: 2816: 2811: 2797: 2796: 2749: 2747: 2746: 2741: 2707: 2705: 2704: 2699: 2647: 2645: 2644: 2639: 2596: 2594: 2593: 2588: 2564: 2562: 2561: 2556: 2515: 2507: 2506: 2477: 2469: 2467: 2466: 2461: 2455: 2453: 2452: 2447: 2442: 2436: 2431: 2426: 2421: 2416: 2393: 2388: 2383: 2294: 2276: 2274: 2273: 2268: 2260: 2200: 2189: 2187: 2186: 2181: 2179: 2160: 2158: 2157: 2152: 2137: 2135: 2134: 2129: 2118: 2117: 2092: 2090: 2089: 2084: 2079: 2078: 2058: 2056: 2055: 2050: 2048: 2047: 2042: 2029: 2027: 2026: 2021: 2006: 2004: 2003: 1998: 1990: 1989: 1984: 1958: 1956: 1955: 1950: 1948: 1947: 1942: 1929: 1927: 1926: 1921: 1909: 1907: 1906: 1901: 1886: 1884: 1883: 1878: 1873: 1868: 1867: 1862: 1827: 1825: 1824: 1819: 1774: 1773: 1718: 1716: 1715: 1710: 1702: 1650: 1648: 1647: 1642: 1640: 1629: 1608: 1606: 1605: 1600: 1576: 1574: 1573: 1568: 1535: 1533: 1532: 1527: 1525: 1524: 1485: 1483: 1482: 1477: 1465: 1463: 1462: 1457: 1351: 1349: 1348: 1343: 1331: 1329: 1328: 1323: 1321: 1320: 1303: 1301: 1300: 1295: 1279: 1277: 1276: 1271: 1263: 1262: 1253: 1245: 1240: 1239: 1230: 1222: 1205: 1203: 1195: 1194: 1185: 1182: 1177: 1129:matrix Lie group 1123: 1121: 1120: 1115: 1104:associated with 1095: 1093: 1092: 1087: 1075: 1073: 1072: 1067: 1017: 1015: 1014: 1009: 993: 991: 990: 985: 965: 963: 962: 957: 949: 929: 927: 926: 921: 882: 880: 879: 874: 872: 871: 842: 840: 839: 834: 826: 825: 799: 797: 796: 791: 778:identity element 767: 765: 764: 759: 757: 756: 739: 737: 736: 731: 707: 705: 704: 699: 679: 677: 676: 671: 659: 657: 656: 651: 649: 648: 615: 608: 601: 558:Claude Chevalley 415:Complexification 258:Other Lie groups 144: 143: 52:Classical groups 44: 26: 25: 5103: 5102: 5098: 5097: 5096: 5094: 5093: 5092: 5073: 5072: 5071: 5053: 5047: 5018: 4991: 4974: 4969: 4961: 4957: 4949: 4945: 4937: 4933: 4925: 4921: 4913: 4909: 4905:Corollary 11.10 4901: 4897: 4889: 4885: 4877: 4873: 4864: 4860: 4845: 4829: 4825: 4821: 4799: 4774: 4770: 4747: 4744: 4743: 4707: 4696: 4693: 4692: 4658: 4653: 4652: 4636: 4625: 4622: 4621: 4617:. Its inverse: 4596: 4593: 4592: 4576: 4573: 4572: 4555: 4550: 4549: 4540: 4539: 4531: 4528: 4527: 4503: 4492: 4489: 4488: 4459: 4458: 4456: 4453: 4452: 4435: 4431: 4416: 4412: 4410: 4407: 4406: 4389: 4388: 4386: 4383: 4382: 4366: 4363: 4362: 4359: 4287: 4282: 4242: 4237: 4192: 4184: 4183: 4150: 4142: 4141: 4139: 4136: 4135: 4109: 4105: 4103: 4100: 4099: 4083: 4080: 4079: 4078:of a Lie group 4040: 4036: 4034: 4031: 4030: 4002: 3999: 3998: 3995: 3971: 3968: 3967: 3948: 3945: 3944: 3932: 3900: 3891: 3887: 3876: 3873: 3872: 3850: 3813: 3812: 3810: 3807: 3806: 3786: 3785: 3776: 3772: 3759: 3755: 3734: 3730: 3712: 3708: 3691: 3688: 3687: 3670: 3669: 3667: 3664: 3663: 3628: 3625: 3624: 3607: 3606: 3604: 3601: 3600: 3576: 3575: 3566: 3565: 3556: 3552: 3550: 3547: 3546: 3515: 3514: 3506: 3503: 3502: 3499: 3478: 3475: 3474: 3451: 3448: 3447: 3431: 3428: 3427: 3386: 3326: 3323: 3322: 3292: 3288: 3253: 3250: 3249: 3165: 3162: 3161: 3142: 3139: 3138: 3118: 3115: 3114: 3064: 3061: 3060: 3043: 3042: 3034: 3031: 3030: 3027: 3022: 2942: 2939: 2938: 2913: 2872: 2869: 2868: 2845: 2825: 2822: 2821: 2792: 2788: 2764: 2761: 2760: 2717: 2714: 2713: 2663: 2660: 2659: 2615: 2612: 2611: 2570: 2567: 2566: 2511: 2502: 2498: 2487: 2484: 2483: 2475: 2448: 2443: 2438: 2437: 2432: 2430: 2422: 2417: 2412: 2389: 2384: 2379: 2290: 2288: 2285: 2284: 2256: 2206: 2203: 2202: 2195: 2175: 2173: 2170: 2169: 2146: 2143: 2142: 2113: 2109: 2101: 2098: 2097: 2074: 2070: 2068: 2065: 2064: 2043: 2038: 2037: 2035: 2032: 2031: 2015: 2012: 2011: 1985: 1980: 1979: 1971: 1968: 1967: 1943: 1938: 1937: 1935: 1932: 1931: 1915: 1912: 1911: 1895: 1892: 1891: 1869: 1863: 1858: 1857: 1849: 1846: 1845: 1766: 1762: 1730: 1727: 1726: 1698: 1678: 1675: 1674: 1658: 1636: 1625: 1614: 1611: 1610: 1582: 1579: 1578: 1541: 1538: 1537: 1520: 1519: 1517: 1514: 1513: 1471: 1468: 1467: 1424: 1421: 1420: 1401: 1358: 1337: 1334: 1333: 1316: 1315: 1313: 1310: 1309: 1306:identity matrix 1289: 1286: 1285: 1258: 1254: 1244: 1235: 1231: 1221: 1196: 1190: 1186: 1184: 1178: 1167: 1143: 1140: 1139: 1109: 1106: 1105: 1081: 1078: 1077: 1031: 1028: 1027: 1003: 1000: 999: 979: 976: 975: 945: 937: 934: 933: 888: 885: 884: 867: 866: 858: 855: 854: 821: 820: 812: 809: 808: 802:exponential map 785: 782: 781: 752: 751: 749: 746: 745: 725: 722: 721: 718: 693: 690: 689: 665: 662: 661: 660:of a Lie group 644: 643: 641: 638: 637: 631:exponential map 619: 574: 573: 572: 543:Wilhelm Killing 527: 519: 518: 517: 492: 481: 480: 479: 444: 434: 433: 432: 419: 403: 381:Dynkin diagrams 375: 365: 364: 363: 345: 323:Exponential map 312: 302: 301: 300: 281:Conformal group 260: 250: 249: 241: 233: 225: 217: 209: 190: 180: 170: 160: 141: 131: 130: 129: 110:Special unitary 54: 24: 17: 12: 11: 5: 5101: 5091: 5090: 5085: 5070: 5069: 5051: 5045: 5030: 5016: 4995: 4990:978-3319134666 4989: 4975: 4973: 4970: 4968: 4967: 4955: 4943: 4931: 4919: 4907: 4895: 4893:Corollary 3.47 4883: 4881:Corollary 3.44 4871: 4858: 4843: 4822: 4820: 4817: 4816: 4815: 4810: 4805: 4798: 4795: 4780: 4777: 4773: 4769: 4766: 4763: 4760: 4757: 4754: 4751: 4723: 4720: 4717: 4714: 4710: 4706: 4703: 4700: 4675: 4674: 4661: 4656: 4651: 4648: 4643: 4640: 4635: 4632: 4629: 4606: 4603: 4600: 4580: 4558: 4553: 4548: 4543: 4538: 4535: 4515: 4510: 4507: 4502: 4499: 4496: 4462: 4438: 4434: 4430: 4427: 4424: 4419: 4415: 4392: 4370: 4358: 4355: 4354: 4353: 4341: 4338: 4335: 4332: 4329: 4326: 4323: 4320: 4317: 4314: 4311: 4308: 4305: 4302: 4299: 4293: 4290: 4286: 4281: 4278: 4275: 4272: 4269: 4266: 4263: 4260: 4257: 4254: 4248: 4245: 4241: 4236: 4233: 4230: 4227: 4224: 4221: 4218: 4215: 4212: 4209: 4206: 4203: 4200: 4195: 4190: 4187: 4182: 4179: 4176: 4173: 4170: 4167: 4164: 4159: 4156: 4153: 4148: 4145: 4120: 4117: 4112: 4108: 4087: 4076:adjoint action 4043: 4039: 4018: 4015: 4012: 4009: 4006: 3994: 3991: 3978: 3975: 3955: 3952: 3930: 3920: 3919: 3907: 3903: 3899: 3894: 3890: 3886: 3883: 3880: 3870: 3860: 3849: 3846: 3819: 3816: 3789: 3784: 3779: 3775: 3770: 3767: 3762: 3758: 3754: 3751: 3748: 3745: 3742: 3737: 3733: 3729: 3726: 3723: 3720: 3715: 3711: 3707: 3704: 3701: 3698: 3695: 3673: 3632: 3610: 3597:diffeomorphism 3579: 3574: 3569: 3564: 3559: 3555: 3526: 3523: 3518: 3513: 3510: 3498: 3495: 3482: 3455: 3435: 3424: 3423: 3411: 3408: 3405: 3402: 3399: 3396: 3393: 3384: 3381: 3378: 3375: 3372: 3369: 3366: 3363: 3360: 3357: 3354: 3351: 3348: 3345: 3342: 3339: 3336: 3333: 3330: 3316: 3315: 3303: 3298: 3295: 3291: 3287: 3284: 3281: 3278: 3275: 3272: 3269: 3266: 3263: 3260: 3257: 3247: 3235: 3232: 3229: 3226: 3223: 3220: 3217: 3214: 3211: 3208: 3205: 3202: 3199: 3196: 3193: 3190: 3187: 3184: 3181: 3178: 3175: 3172: 3169: 3146: 3135:tangent vector 3122: 3109:is the unique 3098: 3095: 3092: 3089: 3086: 3083: 3080: 3077: 3074: 3071: 3068: 3046: 3041: 3038: 3026: 3023: 3021: 3018: 3017: 3016: 3015: 3014: 3003: 3000: 2997: 2994: 2988: 2985: 2982: 2979: 2976: 2973: 2970: 2967: 2964: 2961: 2958: 2955: 2952: 2949: 2946: 2933: 2932: 2920: 2916: 2912: 2909: 2906: 2903: 2900: 2897: 2891: 2888: 2885: 2882: 2879: 2876: 2865:unit hyperbola 2852: 2848: 2844: 2841: 2838: 2835: 2832: 2829: 2809: 2806: 2803: 2800: 2795: 2791: 2786: 2783: 2780: 2777: 2774: 2771: 2768: 2752: 2751: 2739: 2736: 2733: 2730: 2727: 2724: 2721: 2710: 2709: 2708: 2697: 2694: 2691: 2688: 2685: 2682: 2679: 2676: 2673: 2670: 2667: 2654: 2653: 2637: 2634: 2631: 2628: 2625: 2622: 2619: 2603: 2602: 2586: 2583: 2580: 2577: 2574: 2554: 2551: 2548: 2545: 2542: 2539: 2536: 2533: 2530: 2527: 2524: 2521: 2518: 2514: 2510: 2505: 2501: 2497: 2494: 2491: 2472: 2471: 2470: 2458: 2451: 2446: 2441: 2435: 2429: 2425: 2420: 2415: 2411: 2408: 2405: 2402: 2399: 2396: 2392: 2387: 2382: 2378: 2375: 2372: 2369: 2366: 2363: 2360: 2357: 2354: 2351: 2348: 2345: 2342: 2339: 2336: 2333: 2330: 2327: 2324: 2321: 2318: 2315: 2312: 2309: 2306: 2303: 2300: 2297: 2293: 2279: 2278: 2266: 2263: 2259: 2255: 2252: 2249: 2246: 2243: 2240: 2237: 2234: 2231: 2228: 2225: 2222: 2219: 2216: 2213: 2210: 2178: 2150: 2127: 2124: 2121: 2116: 2112: 2108: 2105: 2082: 2077: 2073: 2046: 2041: 2019: 1996: 1993: 1988: 1983: 1978: 1975: 1964: 1963: 1946: 1941: 1919: 1899: 1876: 1872: 1866: 1861: 1856: 1853: 1838: 1837: 1830: 1829: 1828: 1816: 1813: 1810: 1807: 1804: 1801: 1798: 1795: 1792: 1789: 1786: 1783: 1780: 1777: 1772: 1769: 1765: 1761: 1758: 1755: 1752: 1749: 1746: 1743: 1740: 1737: 1734: 1721: 1720: 1708: 1705: 1701: 1697: 1694: 1691: 1688: 1685: 1682: 1657: 1654: 1653: 1652: 1639: 1635: 1632: 1628: 1624: 1621: 1618: 1598: 1595: 1592: 1589: 1586: 1566: 1563: 1560: 1557: 1554: 1551: 1548: 1545: 1523: 1502: 1495: 1486:is the unique 1475: 1455: 1452: 1449: 1446: 1443: 1440: 1437: 1434: 1431: 1428: 1400: 1397: 1379:For a general 1357: 1354: 1341: 1319: 1293: 1282: 1281: 1269: 1266: 1261: 1257: 1251: 1248: 1243: 1238: 1234: 1228: 1225: 1220: 1217: 1214: 1211: 1208: 1202: 1199: 1193: 1189: 1181: 1176: 1173: 1170: 1166: 1162: 1159: 1156: 1153: 1150: 1147: 1113: 1098:integral curve 1085: 1065: 1062: 1059: 1056: 1053: 1050: 1047: 1044: 1041: 1038: 1035: 1020: 1019: 1007: 996:tangent vector 983: 970:is the unique 968: 967: 966: 955: 952: 948: 944: 941: 919: 916: 913: 910: 907: 904: 901: 898: 895: 892: 870: 865: 862: 844: 843: 832: 829: 824: 819: 816: 789: 755: 729: 717: 714: 697: 669: 647: 621: 620: 618: 617: 610: 603: 595: 592: 591: 590: 589: 584: 576: 575: 571: 570: 565: 563:Harish-Chandra 560: 555: 550: 545: 540: 538:Henri PoincarĂ© 535: 529: 528: 525: 524: 521: 520: 516: 515: 510: 505: 500: 494: 493: 488:Lie groups in 487: 486: 483: 482: 478: 477: 472: 467: 462: 457: 452: 446: 445: 440: 439: 436: 435: 431: 430: 425: 420: 418: 417: 412: 406: 404: 402: 401: 396: 390: 388: 383: 377: 376: 371: 370: 367: 366: 362: 361: 356: 351: 346: 344: 343: 338: 332: 330: 325: 320: 314: 313: 308: 307: 304: 303: 299: 298: 293: 288: 286:Diffeomorphism 283: 278: 273: 268: 262: 261: 256: 255: 252: 251: 246: 245: 244: 243: 239: 235: 231: 227: 223: 219: 215: 211: 207: 200: 199: 195: 194: 193: 192: 186: 182: 176: 172: 166: 162: 156: 149: 148: 142: 137: 136: 133: 132: 128: 127: 117: 107: 97: 87: 77: 70:Special linear 67: 60:General linear 56: 55: 50: 49: 46: 45: 37: 36: 15: 9: 6: 4: 3: 2: 5100: 5089: 5086: 5084: 5081: 5080: 5078: 5066: 5062: 5061: 5056: 5052: 5048: 5046:0-471-15733-3 5042: 5038: 5037: 5031: 5027: 5023: 5019: 5013: 5009: 5005: 5001: 4996: 4992: 4986: 4982: 4977: 4976: 4965:, p. 43. 4964: 4959: 4952: 4947: 4940: 4935: 4929:Exercise 3.22 4928: 4923: 4916: 4911: 4904: 4899: 4892: 4887: 4880: 4875: 4868: 4862: 4854: 4850: 4846: 4840: 4836: 4835: 4827: 4823: 4814: 4811: 4809: 4806: 4804: 4801: 4800: 4794: 4778: 4775: 4771: 4767: 4758: 4755: 4752: 4741: 4737: 4718: 4715: 4712: 4704: 4701: 4690: 4686: 4684: 4680: 4659: 4649: 4646: 4641: 4633: 4630: 4627: 4620: 4619: 4618: 4604: 4601: 4598: 4578: 4556: 4546: 4536: 4533: 4513: 4508: 4500: 4497: 4494: 4486: 4482: 4478: 4436: 4432: 4428: 4425: 4422: 4417: 4413: 4368: 4339: 4336: 4324: 4321: 4318: 4312: 4309: 4303: 4300: 4291: 4288: 4284: 4279: 4270: 4267: 4264: 4258: 4255: 4246: 4243: 4239: 4234: 4228: 4225: 4222: 4216: 4213: 4210: 4204: 4193: 4177: 4174: 4171: 4165: 4157: 4154: 4151: 4134: 4133: 4132: 4118: 4115: 4110: 4106: 4085: 4077: 4069: 4065: 4063: 4059: 4041: 4037: 4016: 4010: 4007: 4004: 3990: 3976: 3973: 3953: 3950: 3942: 3938: 3936: 3929: 3923: 3892: 3888: 3884: 3881: 3878: 3871: 3868: 3864: 3861: 3858: 3855: 3854: 3853: 3845: 3843: 3839: 3835: 3803: 3782: 3777: 3773: 3768: 3760: 3756: 3749: 3746: 3743: 3735: 3731: 3724: 3721: 3713: 3709: 3702: 3699: 3696: 3693: 3661: 3657: 3653: 3649: 3644: 3630: 3598: 3593: 3562: 3557: 3553: 3544: 3540: 3524: 3511: 3508: 3494: 3480: 3472: 3467: 3453: 3433: 3409: 3406: 3400: 3397: 3394: 3382: 3376: 3370: 3367: 3361: 3355: 3352: 3349: 3343: 3340: 3337: 3331: 3328: 3321: 3320: 3319: 3301: 3296: 3293: 3285: 3279: 3276: 3273: 3267: 3264: 3258: 3255: 3248: 3230: 3227: 3221: 3218: 3212: 3209: 3203: 3200: 3197: 3191: 3185: 3182: 3179: 3170: 3167: 3160: 3159: 3158: 3144: 3136: 3120: 3112: 3093: 3090: 3084: 3081: 3078: 3072: 3066: 3039: 3036: 3001: 2998: 2995: 2992: 2986: 2983: 2980: 2977: 2974: 2971: 2965: 2962: 2956: 2953: 2947: 2944: 2937: 2936: 2935: 2934: 2910: 2907: 2904: 2901: 2898: 2895: 2889: 2886: 2883: 2880: 2877: 2866: 2842: 2839: 2836: 2833: 2830: 2807: 2804: 2801: 2798: 2793: 2789: 2784: 2781: 2778: 2775: 2772: 2769: 2766: 2758: 2754: 2753: 2737: 2734: 2728: 2722: 2719: 2711: 2695: 2689: 2686: 2680: 2674: 2671: 2668: 2665: 2658: 2657: 2656: 2655: 2651: 2635: 2632: 2626: 2620: 2617: 2609: 2605: 2604: 2600: 2581: 2575: 2572: 2546: 2540: 2537: 2534: 2528: 2522: 2519: 2516: 2508: 2503: 2499: 2495: 2492: 2481: 2473: 2456: 2406: 2403: 2400: 2397: 2373: 2370: 2367: 2361: 2358: 2355: 2352: 2349: 2346: 2343: 2340: 2334: 2331: 2322: 2319: 2316: 2313: 2310: 2307: 2304: 2301: 2295: 2283: 2282: 2281: 2280: 2264: 2253: 2250: 2247: 2244: 2241: 2238: 2235: 2232: 2229: 2226: 2223: 2220: 2217: 2214: 2211: 2198: 2193: 2190:, the set of 2168: 2164: 2163: 2162: 2148: 2138: 2125: 2119: 2114: 2110: 2106: 2103: 2094: 2093:, and the map 2080: 2075: 2071: 2062: 2044: 2017: 2007: 1994: 1986: 1976: 1973: 1962: 1944: 1917: 1890: 1870: 1864: 1854: 1851: 1844: 1843:complex torus 1840: 1839: 1835: 1831: 1814: 1808: 1802: 1799: 1796: 1793: 1787: 1781: 1778: 1775: 1770: 1767: 1763: 1759: 1753: 1750: 1744: 1741: 1735: 1732: 1725: 1724: 1723: 1722: 1706: 1695: 1692: 1689: 1686: 1683: 1672: 1668: 1667:complex plane 1664: 1660: 1659: 1633: 1619: 1616: 1596: 1593: 1590: 1584: 1561: 1558: 1552: 1549: 1543: 1511: 1507: 1503: 1500: 1496: 1493: 1489: 1473: 1450: 1444: 1441: 1435: 1429: 1426: 1418: 1414: 1410: 1406: 1405: 1404: 1396: 1394: 1390: 1386: 1382: 1377: 1375: 1371: 1367: 1363: 1353: 1339: 1307: 1291: 1267: 1264: 1259: 1255: 1249: 1246: 1241: 1236: 1232: 1226: 1223: 1218: 1215: 1212: 1209: 1206: 1200: 1197: 1191: 1187: 1174: 1171: 1168: 1164: 1160: 1154: 1148: 1145: 1138: 1137: 1136: 1134: 1130: 1125: 1111: 1103: 1099: 1083: 1060: 1054: 1051: 1045: 1042: 1036: 1033: 1025: 1005: 997: 981: 973: 969: 953: 942: 939: 932: 931: 914: 908: 905: 899: 893: 890: 863: 860: 852: 849: 848: 847: 830: 817: 814: 807: 806: 805: 803: 787: 779: 775: 774:tangent space 771: 743: 727: 713: 711: 695: 687: 684:The ordinary 682: 667: 636: 632: 628: 616: 611: 609: 604: 602: 597: 596: 594: 593: 588: 585: 583: 580: 579: 578: 577: 569: 566: 564: 561: 559: 556: 554: 551: 549: 546: 544: 541: 539: 536: 534: 531: 530: 523: 522: 514: 511: 509: 506: 504: 501: 499: 496: 495: 491: 485: 484: 476: 473: 471: 468: 466: 463: 461: 458: 456: 453: 451: 448: 447: 443: 438: 437: 429: 426: 424: 421: 416: 413: 411: 408: 407: 405: 400: 397: 395: 392: 391: 389: 387: 384: 382: 379: 378: 374: 369: 368: 360: 357: 355: 352: 350: 347: 342: 339: 337: 334: 333: 331: 329: 326: 324: 321: 319: 316: 315: 311: 306: 305: 297: 294: 292: 289: 287: 284: 282: 279: 277: 274: 272: 269: 267: 264: 263: 259: 254: 253: 242: 236: 234: 228: 226: 220: 218: 212: 210: 204: 203: 202: 201: 197: 196: 191: 189: 183: 181: 179: 173: 171: 169: 163: 161: 159: 153: 152: 151: 150: 146: 145: 140: 135: 134: 125: 121: 118: 115: 111: 108: 105: 101: 98: 95: 91: 88: 85: 81: 78: 75: 71: 68: 65: 61: 58: 57: 53: 48: 47: 43: 39: 38: 35: 31: 28: 27: 22: 5083:Lie algebras 5058: 5035: 4999: 4980: 4958: 4946: 4941:Theorem 3.28 4934: 4922: 4910: 4898: 4886: 4874: 4861: 4833: 4826: 4739: 4688: 4687: 4678: 4676: 4480: 4476: 4360: 4073: 3996: 3940: 3934: 3927: 3924: 3921: 3866: 3862: 3856: 3851: 3804: 3659: 3655: 3651: 3647: 3645: 3594: 3543:differential 3500: 3468: 3425: 3317: 3028: 2649: 2607: 2196: 2140: 2096: 2009: 1966: 1671:circle group 1509: 1498: 1491: 1415:, such that 1412: 1402: 1392: 1388: 1384: 1380: 1378: 1369: 1365: 1361: 1359: 1283: 1126: 1102:vector field 1021: 883:is given by 850: 845: 801: 719: 683: 630: 624: 568:Armand Borel 553:Hermann Weyl 354:Loop algebra 336:Killing form 322: 310:Lie algebras 187: 177: 167: 157: 123: 113: 103: 93: 83: 73: 63: 34:Lie algebras 4972:Works cited 2480:quaternions 2167:quaternions 1663:unit circle 770:Lie algebra 716:Definitions 635:Lie algebra 548:Élie Cartan 394:Root system 198:Exceptional 5088:Lie groups 5077:Categories 4058:derivative 3539:smooth map 3059:, the map 3020:Properties 1076:. The map 1024:chain rule 851:Definition 627:Lie groups 533:Sophus Lie 526:Scientists 399:Weyl group 120:Symplectic 80:Orthogonal 30:Lie groups 5065:EMS Press 4951:Hall 2015 4939:Hall 2015 4927:Hall 2015 4915:Hall 2015 4903:Hall 2015 4891:Hall 2015 4879:Hall 2015 4853:851380558 4819:Citations 4776:− 4765:↦ 4716:∈ 4650:⊂ 4642:∼ 4639:→ 4602:∈ 4547:≃ 4537:⊂ 4509:∼ 4506:→ 4426:… 4340:⋯ 4178:⁡ 4155:⁡ 4111:∗ 4042:∗ 4038:ϕ 4014:→ 4008:: 4005:ϕ 3974:− 3951:− 3838:cut locus 3783:∈ 3750:⁡ 3744:⋯ 3725:⁡ 3703:⁡ 3573:→ 3563:: 3558:∗ 3545:at zero, 3522:→ 3512:: 3371:⁡ 3356:⁡ 3332:⁡ 3294:− 3280:⁡ 3265:− 3259:⁡ 3222:⁡ 3204:⁡ 3171:⁡ 3085:⁡ 3067:γ 3040:∈ 2996:⁡ 2987:ȷ 2978:⁡ 2963:ȷ 2957:⁡ 2951:↦ 2945:ȷ 2911:∈ 2899:⁡ 2890:ȷ 2881:⁡ 2843:∈ 2831:ȷ 2790:ȷ 2782:ȷ 2723:⁡ 2693:→ 2675:⁡ 2621:⁡ 2576:⁡ 2541:⁡ 2523:⁡ 2509:⊂ 2496:∈ 2407:⁡ 2374:⁡ 2335:⁡ 2329:↦ 2254:∈ 2123:→ 2104:π 1992:→ 1974:π 1898:Λ 1875:Λ 1803:⁡ 1782:⁡ 1745:⁡ 1739:↦ 1696:∈ 1620:⁡ 1588:↦ 1553:⁡ 1547:↦ 1474:γ 1445:γ 1430:⁡ 1268:⋯ 1180:∞ 1165:∑ 1149:⁡ 1084:γ 1055:γ 1037:⁡ 951:→ 943:: 940:γ 909:γ 894:⁡ 864:∈ 828:→ 818:: 804:is a map 742:Lie group 410:Real form 296:Euclidean 147:Classical 4797:See also 4098:, since 4062:commutes 3388:if  3029:For all 1910:of rank 1656:Examples 1488:geodesic 582:Glossary 276:PoincarĂ© 5067:, 2001 5026:1834454 4056:be its 3832:(3) to 3660:product 2755:In the 2165:In the 1889:lattice 1609:(note: 1304:is the 800:). The 776:to the 768:be its 490:physics 271:Lorentz 100:Unitary 5043:  5024:  5014:  4987:  4851:  4841:  4689:Remark 3541:. Its 3133:whose 2990:  2893:  2867:group 2759:plane 1466:where 1284:where 994:whose 930:where 629:, the 266:Circle 3834:SO(3) 3658:is a 3537:is a 2597:(cf. 1026:that 740:be a 341:Index 5041:ISBN 5012:ISBN 4985:ISBN 4849:OCLC 4839:ISBN 4479:for 3997:Let 3446:and 2993:sinh 2975:cosh 2896:sinh 2878:cosh 2606:Let 1661:The 1504:The 744:and 720:Let 291:Loop 32:and 4738:to 4628:log 4591:of 4495:exp 4451:of 4175:exp 4152:exp 3989:.) 3747:exp 3722:exp 3700:exp 3654:of 3554:exp 3509:exp 3473:of 3368:exp 3353:exp 3329:exp 3277:exp 3256:exp 3219:exp 3201:exp 3168:exp 3113:of 3082:exp 2954:exp 2720:exp 2672:Lie 2666:exp 2618:Lie 2573:sin 2538:cos 2482:to 2404:sin 2371:cos 2332:exp 2199:(2) 2059:as 1800:sin 1779:cos 1742:exp 1617:Lie 1550:exp 1512:in 1427:exp 1411:on 1385:not 1366:and 1360:If 1332:of 1146:exp 1034:exp 974:of 891:exp 815:exp 780:of 122:Sp( 112:SU( 92:SO( 72:SL( 62:GL( 5079:: 5063:, 5057:, 5022:MR 5020:, 5010:, 5002:, 4847:. 4119:ad 4107:Ad 4064:: 3928:SL 3802:. 3643:. 3493:. 2520:Re 2296::= 2197:SU 2161:. 1651:.) 1536:, 1395:. 1376:. 1352:. 102:U( 82:O( 5050:. 5029:. 4994:. 4869:. 4855:. 4779:1 4772:h 4768:g 4762:) 4759:h 4756:, 4753:g 4750:( 4740:G 4722:} 4719:G 4713:g 4709:| 4705:g 4702:U 4699:{ 4679:U 4660:n 4655:R 4647:N 4634:U 4631:: 4605:G 4599:e 4579:U 4557:n 4552:R 4542:g 4534:N 4514:U 4501:N 4498:: 4481:G 4477:e 4461:g 4437:n 4433:X 4429:, 4423:, 4418:1 4414:X 4391:g 4369:G 4352:. 4337:+ 4334:] 4331:] 4328:] 4325:Y 4322:, 4319:X 4316:[ 4313:, 4310:X 4307:[ 4304:, 4301:X 4298:[ 4292:! 4289:3 4285:1 4280:+ 4277:] 4274:] 4271:Y 4268:, 4265:X 4262:[ 4259:, 4256:X 4253:[ 4247:! 4244:2 4240:1 4235:+ 4232:] 4229:Y 4226:, 4223:X 4220:[ 4217:+ 4214:Y 4211:= 4208:) 4205:Y 4202:( 4199:) 4194:X 4189:d 4186:a 4181:( 4172:= 4169:) 4166:Y 4163:( 4158:X 4147:d 4144:A 4116:= 4086:G 4017:H 4011:G 3977:I 3954:I 3941:C 3937:) 3935:R 3933:( 3931:2 3918:. 3906:) 3902:C 3898:( 3893:n 3889:L 3885:G 3882:= 3879:G 3867:G 3863:G 3857:G 3818:o 3815:s 3788:g 3778:j 3774:X 3769:, 3766:) 3761:n 3757:X 3753:( 3741:) 3736:2 3732:X 3728:( 3719:) 3714:1 3710:X 3706:( 3697:= 3694:g 3686:: 3672:g 3656:G 3652:g 3648:G 3631:G 3609:g 3578:g 3568:g 3525:G 3517:g 3481:G 3454:Y 3434:X 3422:. 3410:0 3407:= 3404:] 3401:Y 3398:, 3395:X 3392:[ 3383:, 3380:) 3377:Y 3374:( 3365:) 3362:X 3359:( 3350:= 3347:) 3344:Y 3341:+ 3338:X 3335:( 3302:. 3297:1 3290:) 3286:X 3283:( 3274:= 3271:) 3268:X 3262:( 3234:) 3231:X 3228:s 3225:( 3216:) 3213:X 3210:t 3207:( 3198:= 3195:) 3192:X 3189:) 3186:s 3183:+ 3180:t 3177:( 3174:( 3145:X 3121:G 3097:) 3094:X 3091:t 3088:( 3079:= 3076:) 3073:t 3070:( 3045:g 3037:X 3002:. 2999:t 2984:+ 2981:t 2972:= 2969:) 2966:t 2960:( 2948:t 2919:} 2915:R 2908:t 2905:: 2902:t 2887:+ 2884:t 2875:{ 2851:} 2847:R 2840:t 2837:: 2834:t 2828:{ 2808:, 2805:1 2802:+ 2799:= 2794:2 2785:, 2779:y 2776:+ 2773:x 2770:= 2767:z 2750:. 2738:v 2735:= 2732:) 2729:v 2726:( 2696:V 2690:V 2687:= 2684:) 2681:V 2678:( 2669:: 2650:V 2636:V 2633:= 2630:) 2627:V 2624:( 2608:V 2585:) 2582:R 2579:( 2553:} 2550:) 2547:R 2544:( 2535:= 2532:) 2529:s 2526:( 2517:: 2513:H 2504:3 2500:S 2493:s 2490:{ 2476:R 2457:. 2450:| 2445:w 2440:| 2434:w 2428:) 2424:| 2419:w 2414:| 2410:( 2401:+ 2398:1 2395:) 2391:| 2386:w 2381:| 2377:( 2368:= 2365:) 2362:v 2359:k 2356:+ 2353:u 2350:j 2347:+ 2344:t 2341:i 2338:( 2326:) 2323:v 2320:k 2317:+ 2314:u 2311:j 2308:+ 2305:t 2302:i 2299:( 2292:w 2265:. 2262:} 2258:R 2251:v 2248:, 2245:u 2242:, 2239:t 2236:: 2233:v 2230:k 2227:+ 2224:u 2221:j 2218:+ 2215:t 2212:i 2209:{ 2177:H 2149:X 2126:X 2120:X 2115:0 2111:T 2107:: 2081:X 2076:0 2072:T 2045:n 2040:C 2018:X 1995:X 1987:n 1982:C 1977:: 1945:n 1940:Z 1918:n 1871:/ 1865:n 1860:C 1855:= 1852:X 1836:. 1815:, 1812:) 1809:t 1806:( 1797:i 1794:+ 1791:) 1788:t 1785:( 1776:= 1771:t 1768:i 1764:e 1760:= 1757:) 1754:t 1751:i 1748:( 1736:t 1733:i 1707:. 1704:} 1700:R 1693:t 1690:: 1687:t 1684:i 1681:{ 1638:R 1634:= 1631:) 1627:R 1623:( 1597:. 1594:X 1591:t 1585:t 1565:) 1562:X 1559:t 1556:( 1544:t 1522:g 1510:X 1499:G 1492:X 1454:) 1451:1 1448:( 1442:= 1439:) 1436:X 1433:( 1413:G 1393:G 1389:G 1381:G 1370:G 1362:G 1340:G 1318:g 1292:I 1280:, 1265:+ 1260:3 1256:X 1250:6 1247:1 1242:+ 1237:2 1233:X 1227:2 1224:1 1219:+ 1216:X 1213:+ 1210:I 1207:= 1201:! 1198:k 1192:k 1188:X 1175:0 1172:= 1169:k 1161:= 1158:) 1155:X 1152:( 1112:X 1064:) 1061:t 1058:( 1052:= 1049:) 1046:X 1043:t 1040:( 1018:. 1006:X 982:G 954:G 947:R 918:) 915:1 912:( 906:= 903:) 900:X 897:( 869:g 861:X 831:G 823:g 788:G 754:g 728:G 696:G 668:G 646:g 614:e 607:t 600:v 240:8 238:E 232:7 230:E 224:6 222:E 216:4 214:F 208:2 206:G 188:n 185:D 178:n 175:C 168:n 165:B 158:n 155:A 126:) 124:n 116:) 114:n 106:) 104:n 96:) 94:n 86:) 84:n 76:) 74:n 66:) 64:n 23:.

Index

Exponential map (Riemannian geometry)
Lie groups
Lie algebras

Classical groups
General linear
Special linear
Orthogonal
Special orthogonal
Unitary
Special unitary
Symplectic
Simple Lie groups
An
Bn
Cn
Dn
G2
F4
E6
E7
E8
Other Lie groups
Circle
Lorentz
Poincaré
Conformal group
Diffeomorphism
Loop
Euclidean

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑