Knowledge

K-theory

Source đź“ť

9485: 9268: 9506: 9474: 9543: 9516: 9496: 6702: 4353: 8213: 5162: 6526: 4774: 199:
into an abelian group is a necessary ingredient for defining K-theory since all definitions start by constructing an abelian monoid from a suitable category and turning it into an abelian group through this universal construction. Given an abelian monoid
113:
in algebraic topology, the reason for this functorial mapping is that it is easier to compute some topological properties from the mapped rings than from the original spaces or schemes. Examples of results gleaned from the K-theory approach include the
7931: 3326: 4977: 3689: 108:
that map from topological spaces or schemes, or to be even more general: any object of a homotopy category to associated rings; these rings reflect some aspects of the structure of the original spaces or schemes. As with functors to
6164: 7196: 4244: 6890: 8424: 4659: 7328: 505: 5594: 5692:. This makes it possible to compute the Grothendieck group on weighted projective spaces since they typically have isolated quotient singularities. In particular, if these singularities have isotropy groups 7202:
singularities, giving techniques for computing the Grothendieck group of any singular algebraic curve. This is because reduction gives a generically smooth curve, and all singularities are Cohen-Macaulay.
7049: 4866: 2048: 8053: 5990: 5865: 4693: 6945: 4064:. Since a vector bundle over this space is just a finite dimensional vector space, which is a free object in the category of coherent sheaves, hence projective, the monoid of isomorphism classes is 1650: 1584: 1867: 6363: 2803: 6531: 4463: 5084: 7986: 5282: 375: 2622: 8511: 8275: 6992: 4040: 3606: 3083: 2581: 7767: 5246: 6521: 5690: 3182: 4192: 4871: 2729: 7562: 5775: 8045: 5347: 4402: 3129:
In algebraic geometry, the same construction can be applied to algebraic vector bundles over a smooth scheme. But, there is an alternative construction for any Noetherian scheme
2836: 2157: 1486: 7240: 7608: 6697:{\displaystyle {\begin{aligned}E_{\infty }^{1,-1}\cong E_{2}^{1,-1}&\cong {\text{CH}}^{1}(C)\\E_{\infty }^{0,0}\cong E_{2}^{0,0}&\cong {\text{CH}}^{0}(C)\end{aligned}}} 5023: 1941: 4688: 2996: 2404: 555: 6031: 1691: 1116: 294: 7803: 5059: 2092: 4545: 8468: 7116: 7111: 5369: 4796: 4239: 4217: 4106: 4084: 4062: 1801: 5654: 2436: 854: 235: 1772: 901: 5495: 1066: 6747: 6742: 6419: 6249: 5897: 5453: 5417: 3728: 3457: 3401: 3365: 3119: 2872: 2678: 2535: 813: 599: 7366: 6197: 3040: 1515: 2224: 1142: 404: 5717: 5309: 2930: 2903: 2291: 2259: 2189: 1899: 944: 255: 6298: 5191: 4574: 1421: 1354: 1197: 3621: 1322: 1168: 769: 3254: 1734: 8322: 8299: 7513: 7446: 7426: 7406: 7386: 7089: 7069: 6459: 6439: 6383: 6269: 6217: 6014: 5929: 5618: 5079: 4422: 4141: 3421: 3147: 3020: 2965: 2642: 2373: 2353: 1711: 984: 964: 5456: 2462: 1392: 1022: 8775: 8513:. The theory was developed by R. W. Thomason in 1980s. Specifically, he proved equivariant analogs of fundamental theorems such as the localization theorem. 6705: 4579: 8218:
The Chern character is useful in part because it facilitates the computation of the Chern class of a tensor product. The Chern character is used in the
3769:
of sheaves as generators of the group, subject to a relation that identifies any extension of two sheaves with their sum. The resulting group is called
5504: 9546: 3265: 5455:, which comes from the fact every vector bundle can be equivalently described as a coherent sheaf. This is done using the Grothendieck group of the 5934: 8334: 4348:{\displaystyle K_{0}\left({\text{Spec}}\left({\frac {\mathbb {F} }{(x^{9})}}\times \mathbb {F} \right)\right)=\mathbb {Z} \oplus \mathbb {Z} } 3958:
which is related to the study of pseudo-isotopies. Much modern research on higher K-theory is related to algebraic geometry and the study of
7216:
One useful application of the Grothendieck-group is to define virtual vector bundles. For example, if we have an embedding of smooth spaces
7248: 6303: 5383:
One recent technique for computing the Grothendieck group of spaces with minor singularities comes from evaluating the difference between
8705: 8681: 8557: 5498: 3747: 3612: 115: 8208:{\displaystyle \operatorname {ch} (V)=e^{x_{1}}+\dots +e^{x_{n}}:=\sum _{m=0}^{\infty }{\frac {1}{m!}}(x_{1}^{m}+\dots +x_{n}^{m}).} 6997: 7518:
Another useful application of virtual bundles is with the definition of a virtual tangent bundle of an intersection of spaces: Let
4801: 1949: 7198:
Moreover, the techniques above using the derived category of singularities for isolated singularities can be extended to isolated
2878:, which makes it very accessible. The only required computations for understanding the spectral sequences are computing the group 8219: 5780: 2875: 2624:. We can then apply the Grothendieck completion to get an abelian group from this abelian monoid. This is called the K-theory of 7564:
be projective subvarieties of a smooth projective variety. Then, we can define the virtual tangent bundle of their intersection
9127: 9019: 8992: 8953: 8861: 8612: 6895: 1592: 1526: 5157:{\displaystyle \mathbb {P} ({\mathcal {E}})=\operatorname {Proj} (\operatorname {Sym} ^{\bullet }({\mathcal {E}}^{\vee }))} 1806: 774:
Equivalence classes in this group should be thought of as formal differences of elements in the abelian monoid. This group
5722: 2742: 2687:
and some algebra to get an alternative description of vector bundles over the ring of continuous complex-valued functions
4427: 9180: 4086:
corresponding to the dimension of the vector space. It is an easy exercise to show that the Grothendieck group is then
8776:"ag.algebraic geometry - Is the algebraic Grothendieck group of a weighted projective space finitely generated ?" 7939: 409: 9534: 9529: 9075: 9045: 5251: 302: 5037:
Another important formula for the Grothendieck group is the projective bundle formula: given a rank r vector bundle
9037: 2586: 4769:{\displaystyle \mathbb {P} ^{n}=\mathbb {A} ^{n}\coprod \mathbb {A} ^{n-1}\coprod \cdots \coprod \mathbb {A} ^{0}} 9524: 8477: 8241: 6950: 4012: 3875: 3871: 123: 3465: 3045: 2543: 8231: 7616: 2324:
There are a number of basic definitions of K-theory: two coming from topology and two from algebraic geometry.
5200: 9426: 8302: 6464: 5659: 3155: 158: 4146: 8802:
Pavic, Nebojsa; Shinder, Evgeny (2021). "K-theory and the singularity category of quotient singularities".
2690: 7521: 904: 8537: 7991: 5314: 4369: 2808: 2100: 1429: 7219: 2874:. One of the main techniques for computing the Grothendieck group for topological spaces comes from the 9434: 7926:{\displaystyle \operatorname {ch} (L)=\exp(c_{1}(L)):=\sum _{m=0}^{\infty }{\frac {c_{1}(L)^{m}}{m!}}.} 7567: 4982: 3938: 3902: 4664: 2970: 2378: 510: 6017: 1655: 1071: 260: 5040: 2056: 9233: 4468: 3867: 162: 17: 8432: 7094: 5352: 4779: 4222: 4200: 4089: 4067: 4045: 1784: 9519: 9505: 7199: 5623: 3985: 3879: 3832:, then all extensions of locally free sheaves split, so the group has an alternative definition. 2999: 2409: 818: 150: 90: 4366:
One of the most commonly used computations of the Grothendieck group is with the computation of
1943:
by using the invariance under scaling. For example, we can see from the scaling invariance that
1739: 859: 9454: 9375: 9252: 9240: 9213: 9173: 8664: 5461: 3814: 3743: 2684: 1027: 9449: 6711: 6388: 6222: 5870: 5422: 5386: 4972:{\displaystyle \mathbb {A} ^{n-k_{1}}\cap \mathbb {A} ^{n-k_{2}}=\mathbb {A} ^{n-k_{1}-k_{2}}} 3697: 3426: 3370: 3334: 3088: 2841: 2647: 2474: 777: 563: 9296: 9223: 7336: 6169: 3025: 1904: 1491: 166: 142: 9143: 7051:, we have the sequence of abelian groups above splits, giving the isomorphism. Note that if 4404:
for projective space over a field. This is because the intersection numbers of a projective
3684:{\displaystyle \operatorname {ch} :K_{0}(X)\otimes \mathbb {Q} \to A(X)\otimes \mathbb {Q} } 2194: 1121: 383: 203: 9444: 9396: 9370: 9218: 9002: 8963: 8907: 8892:, Progress in Mathematics, vol. 129, Boston, MA: Birkhäuser Boston, pp. 335–368, 8741: 8547: 7790: 5695: 5287: 3951: 3848: 2908: 2881: 2318: 2264: 2232: 2162: 1872: 917: 240: 94: 70: 58: 8706:"kt.k theory and homology - Grothendieck group for projective space over the dual numbers" 6274: 5167: 4550: 1397: 1330: 1173: 8: 9291: 3789:) when all are coherent sheaves. Either of these two constructions is referred to as the 3731: 1205: 1147: 607: 558: 134: 110: 9495: 9107: 9014:. Cambridge Studies in Advanced Mathematics. Vol. 111. Cambridge University Press. 8745: 6159:{\displaystyle E_{1}^{p,q}=\coprod _{x\in X^{(p)}}K^{-p-q}(k(x))\Rightarrow K_{-p-q}(X)} 5374: 5311:
or Hirzebruch surfaces. In addition, this can be used to compute the Grothendieck group
3187: 1716: 9489: 9459: 9439: 9360: 9350: 9228: 9208: 9089: 8920: 8893: 8829: 8811: 8581: 8542: 8471: 8307: 8284: 8235: 7454: 7431: 7411: 7391: 7371: 7074: 7054: 6444: 6424: 6368: 6300:
the algebraic function field of the subscheme. This spectral sequence has the property
6254: 6202: 6021: 5999: 5914: 5603: 5597: 5064: 4407: 4126: 3959: 3926: 3790: 3778: 3406: 3132: 3121:
is defined by the application of the Grothendieck construction on this abelian monoid.
3005: 2950: 2941: 2627: 2358: 2338: 2314: 2306: 1696: 969: 949: 190: 178: 82: 78: 62: 46: 8637: 2805:. We can define equivalence classes of idempotent matrices and form an abelian monoid 2441: 1359: 989: 9567: 9484: 9477: 9343: 9301: 9166: 9123: 9071: 9041: 9015: 8988: 8949: 8867: 8857: 8757: 8618: 8608: 8552: 8278: 7191:{\displaystyle K_{0}(C)\cong \mathbb {Z} \oplus (\mathbb {C} ^{g}/\mathbb {Z} ^{2g})} 4121: 3930: 3914: 3898: 3890: 3860: 3766: 3759: 2945: 2732: 1587: 1356:. This should give us the hint that we should be thinking of the equivalence classes 911: 66: 54: 9509: 8833: 8753: 4776:
since the Grothendieck group of coherent sheaves on affine spaces are isomorphic to
3042:
of isomorphisms classes of vector bundles is well-defined, giving an abelian monoid
9257: 9203: 9063: 8980: 8885: 8821: 8749: 8522: 4009:
The easiest example of the Grothendieck group is the Grothendieck group of a point
1423:
Another useful observation is the invariance of equivalence classes under scaling:
138: 119: 86: 8660: 2355:
consider the set of isomorphism classes of finite-dimensional vector bundles over
9316: 9311: 8998: 8976: 8959: 8903: 7781: 6885:{\displaystyle 0\to F^{1}(K_{0}(X))\to K_{0}(X)\to K_{0}(X)/F^{1}(K_{0}(X))\to 0} 3947: 3906: 2333: 127: 9499: 3321:{\displaystyle 0\to {\mathcal {E}}'\to {\mathcal {E}}\to {\mathcal {E}}''\to 0.} 9406: 9338: 9115: 8945: 8937: 8577: 8325: 6025: 3974: 3966: 3943: 3844: 3829: 3825: 3755: 3257: 3150: 3124: 170: 50: 9067: 8984: 9561: 9416: 9326: 9306: 9103: 8871: 8761: 8622: 7793:
of a space to (the completion of) its rational cohomology. For a line bundle
7786: 4195: 3981: 3894: 3840: 2935: 174: 9148: 9401: 9321: 9267: 9029: 8825: 5993: 3936:
There followed a period in which there were various partial definitions of
8851: 8602: 3765:. Rather than working directly with the sheaves, he defined a group using 2583:
is an abelian monoid where the unit is given by the trivial vector bundle
2464:. Since isomorphism classes of vector bundles behave well with respect to 9411: 9085: 9055: 8638:"SGA 6 - Formalisme des intersections sur les schema algebriques propres" 3910: 2736: 38: 8419:{\displaystyle K_{i}^{G}(X)=\pi _{i}(B^{+}\operatorname {Coh} ^{G}(X)).} 3913:; this assertion is correct, but was not settled until 20 years later. ( 9355: 9286: 9245: 8898: 8729: 8668: 3883: 3802: 2465: 4547:. This makes it possible to do concrete calculations with elements in 3905:, which states that every finitely generated projective module over a 9380: 9153: 9094: 8586: 8532: 8527: 6028:
of finite type over a field, there is a convergent spectral sequence
4654:{\displaystyle K(\mathbb {P} ^{n})={\frac {\mathbb {Z} }{(T^{n+1})}}} 1781:
An illustrative example to look at is the Grothendieck completion of
1586:
and it has the property that it is left adjoint to the corresponding
7323:{\displaystyle 0\to \Omega _{Y}\to \Omega _{X}|_{Y}\to C_{Y/X}\to 0} 6744:
as the desired explicit direct sum since it gives an exact sequence
2940:
There is an analogous construction by considering vector bundles in
9365: 9333: 9282: 9189: 8816: 3989: 3970: 3836: 3459:
is special because there is also a ring structure: we define it as
146: 31: 5379:
of singular spaces and spaces with isolated quotient singularities
3925:
The other historical origin of algebraic K-theory was the work of
2327: 8732:(1969-01-01). "Lectures on the K-functor in algebraic geometry". 5589:{\displaystyle \cdots \to K^{0}(X)\to K_{0}(X)\to K_{sg}(X)\to 0} 4241:, one for each connected component of its spectrum. For example, 1521: 154: 105: 74: 9122:. Grad. Studies in Math. Vol. 145. American Math Society. 8682:"Grothendieck group for projective space over the dual numbers" 6461:
points, the only nontrivial parts of the spectral sequence are
5248:. This formula allows one to compute the Grothendieck group of 3942:. Finally, two useful and equivalent definitions were given by 196: 7044:{\displaystyle {\text{Ext}}_{\text{Ab}}^{1}(\mathbb {Z} ,G)=0} 4861:{\displaystyle \mathbb {A} ^{n-k_{1}},\mathbb {A} ^{n-k_{2}}} 2043:{\displaystyle (4,6)\sim (3,5)\sim (2,4)\sim (1,3)\sim (0,2)} 8888:(1995), "Enumeration of rational curves via torus actions", 3125:
Grothendieck group of coherent sheaves in algebraic geometry
1170:
and apply the equation from the equivalence relation to get
9158: 5985:{\displaystyle K_{0}(C)=\mathbb {Z} \oplus {\text{Pic}}(C)} 5860:{\displaystyle {\text{lcm}}(|G_{1}|,\ldots ,|G_{k}|)^{n-1}} 910:
To get a better understanding of this group, consider some
7988:
is a direct sum of line bundles, with first Chern classes
7789:
can be used to construct a homomorphism of rings from the
2936:
Grothendieck group of vector bundles in algebraic geometry
2468:, we can write these operations on isomorphism classes by 4111: 7772:
Kontsevich uses this construction in one of his papers.
4661:
One technique for determining the Grothendieck group of
6940:{\displaystyle {\text{CH}}^{1}(C)\cong {\text{Pic}}(C)} 3965:
The corresponding constructions involving an auxiliary
1645:{\displaystyle U:\mathbf {AbGrp} \to \mathbf {AbMon} .} 1579:{\displaystyle G:\mathbf {AbMon} \to \mathbf {AbGrp} ,} 5349:
by observing it is a projective bundle over the field
4576:
without having to explicitly know its structure since
4120:
One important property of the Grothendieck group of a
1327:
hence we have an additive inverse for each element in
8480: 8435: 8337: 8310: 8287: 8244: 8056: 7994: 7942: 7806: 7619: 7570: 7524: 7457: 7434: 7414: 7394: 7374: 7339: 7251: 7222: 7119: 7097: 7077: 7057: 7000: 6953: 6898: 6750: 6714: 6529: 6467: 6447: 6427: 6391: 6371: 6306: 6277: 6257: 6225: 6205: 6172: 6034: 6002: 5937: 5917: 5873: 5783: 5725: 5698: 5662: 5626: 5606: 5507: 5464: 5425: 5389: 5355: 5317: 5290: 5254: 5203: 5170: 5087: 5067: 5043: 4985: 4874: 4804: 4782: 4696: 4667: 4582: 4553: 4471: 4430: 4410: 4372: 4247: 4225: 4203: 4149: 4129: 4092: 4070: 4048: 4015: 3754:, meaning "class". Grothendieck needed to work with 3700: 3624: 3468: 3429: 3409: 3373: 3337: 3268: 3190: 3158: 3135: 3091: 3048: 3028: 3008: 2973: 2953: 2911: 2884: 2844: 2811: 2745: 2693: 2650: 2630: 2589: 2546: 2477: 2444: 2412: 2381: 2361: 2341: 2267: 2235: 2197: 2165: 2103: 2059: 1952: 1907: 1875: 1862:{\displaystyle G((\mathbb {N} ,+))=(\mathbb {Z} ,+).} 1809: 1787: 1742: 1719: 1713:
to the underlying abelian monoid of an abelian group
1699: 1658: 1595: 1529: 1494: 1432: 1400: 1362: 1333: 1208: 1176: 1150: 1124: 1074: 1030: 992: 972: 952: 920: 862: 821: 780: 610: 566: 513: 412: 386: 305: 263: 243: 206: 6358:{\displaystyle E_{2}^{p,-p}\cong {\text{CH}}^{p}(X)} 3874:. It played a major role in the second proof of the 2798:{\displaystyle M_{n\times n}(C^{0}(X;\mathbb {C} ))} 4458:{\displaystyle i:X\hookrightarrow \mathbb {P} ^{n}} 8970: 8505: 8462: 8418: 8316: 8293: 8269: 8207: 8039: 7980: 7925: 7761: 7602: 7556: 7507: 7440: 7420: 7400: 7380: 7360: 7322: 7234: 7190: 7105: 7083: 7063: 7043: 6986: 6939: 6884: 6736: 6696: 6515: 6453: 6433: 6413: 6377: 6357: 6292: 6263: 6243: 6211: 6191: 6158: 6008: 5984: 5923: 5902: 5891: 5859: 5769: 5711: 5684: 5648: 5612: 5588: 5489: 5447: 5411: 5363: 5341: 5303: 5276: 5240: 5185: 5156: 5081:, the Grothendieck group of the projective bundle 5073: 5053: 5017: 4971: 4860: 4790: 4768: 4682: 4653: 4568: 4539: 4457: 4416: 4396: 4347: 4233: 4211: 4186: 4135: 4100: 4078: 4056: 4034: 3878:(circa 1962). Furthermore, this approach led to a 3722: 3683: 3600: 3451: 3415: 3395: 3359: 3320: 3248: 3176: 3141: 3113: 3077: 3034: 3014: 2990: 2959: 2924: 2897: 2866: 2830: 2797: 2723: 2672: 2636: 2616: 2575: 2529: 2456: 2430: 2398: 2367: 2347: 2285: 2253: 2218: 2183: 2151: 2086: 2042: 1935: 1893: 1861: 1795: 1766: 1728: 1705: 1685: 1644: 1578: 1509: 1480: 1415: 1386: 1348: 1316: 1191: 1162: 1136: 1110: 1060: 1016: 978: 958: 938: 895: 848: 807: 763: 593: 549: 499: 398: 369: 288: 249: 229: 100:K-theory involves the construction of families of 89:. It can be seen as the study of certain kinds of 9120:The K-book: an introduction to algebraic K-theory 8971:Friedlander, Eric; Grayson, Daniel, eds. (2005). 3828:, the two groups are the same. If it is a smooth 2406:and let the isomorphism class of a vector bundle 145:where it has been conjectured that they classify 9559: 9088:(2006). "K-theory. An elementary introduction". 7981:{\displaystyle V=L_{1}\oplus \dots \oplus L_{n}} 5777:is injective and the cokernel is annihilated by 2066: 500:{\displaystyle a_{1}+'b_{2}+'c=a_{2}+'b_{1}+'c.} 85:. It is also a fundamental tool in the field of 8890:The moduli space of curves (Texel Island, 1994) 8661:http://string.lpthe.jussieu.fr/members.pl?key=7 5501:. It gives a long exact sequence starting with 5277:{\displaystyle \mathbb {P} _{\mathbb {F} }^{n}} 4143:is that it is invariant under reduction, hence 2328:Grothendieck group for compact Hausdorff spaces 1520:The Grothendieck completion can be viewed as a 370:{\displaystyle (a_{1},a_{2})\sim (b_{1},b_{2})} 9036:. Lecture Notes in Mathematics. Vol. 76. 3950:in 1969 and 1972. A variant was also given by 1776: 946:. Here we will denote the identity element of 815:is also associated with a monoid homomorphism 9174: 3694:is an isomorphism of rings. Hence we can use 2838:. Its Grothendieck completion is also called 2617:{\displaystyle \mathbb {R} ^{0}\times X\to X} 1736:there exists a unique abelian group morphism 9062:. Classics in Mathematics. Springer-Verlag. 8849: 8801: 8600: 5028: 2081: 2069: 8506:{\displaystyle \operatorname {Coh} ^{G}(X)} 8270:{\displaystyle \operatorname {Coh} ^{G}(X)} 6987:{\displaystyle CH^{0}(C)\cong \mathbb {Z} } 4035:{\displaystyle {\text{Spec}}(\mathbb {F} )} 3149:. If we look at the isomorphism classes of 9542: 9515: 9181: 9167: 8884: 8047:the Chern character is defined additively 6892:where the left hand term is isomorphic to 3995: 3601:{\displaystyle \cdot =\sum (-1)^{k}\left.} 3078:{\displaystyle ({\text{Vect}}(X),\oplus )} 2576:{\displaystyle ({\text{Vect}}(X),\oplus )} 2305:, the most basic K-theory group (see also 184: 9093: 8944:. Advanced Book Classics (2nd ed.). 8897: 8815: 8607:. Cambridge: Cambridge University Press. 8585: 7762:{\displaystyle ^{vir}=|_{Z}+|_{Z}-|_{Z}.} 7448:we define the virtual conormal bundle as 7172: 7155: 7143: 7099: 7022: 6980: 6947:and the right hand term is isomorphic to 5961: 5600:. Note that vector bundles on a singular 5499:derived noncommutative algebraic geometry 5357: 5326: 5263: 5257: 5089: 4933: 4905: 4877: 4835: 4807: 4784: 4756: 4729: 4714: 4699: 4670: 4611: 4591: 4445: 4381: 4357: 4341: 4333: 4315: 4277: 4227: 4205: 4094: 4072: 4050: 4025: 3929:and others on what later became known as 3677: 3654: 2785: 2714: 2592: 1843: 1820: 1789: 8635: 6385:, essentially giving the computation of 5241:{\displaystyle 1,\xi ,\dots ,\xi ^{n-1}} 9102: 9084: 9054: 8225: 7797:, the Chern character ch is defined by 6516:{\displaystyle E_{1}^{0,q},E_{1}^{1,q}} 6018:Brown-Gersten-Quillen spectral sequence 5685:{\displaystyle X_{sm}\hookrightarrow X} 5284:. This make it possible to compute the 3839:, by applying the same construction to 3177:{\displaystyle \operatorname {Coh} (X)} 2309:). For definitions of higher K-groups K 2229:This shows that we should think of the 14: 9560: 9114: 8936: 8576: 7071:is a smooth projective curve of genus 6219:points, meaning the set of subschemes 4219:-algebra is a direct sum of copies of 4194:. Hence the Grothendieck group of any 4187:{\displaystyle K(X)=K(X_{\text{red}})} 3742:The subject can be said to begin with 9162: 8845: 8843: 8797: 8795: 8728: 8580:(2000). "K-Theory Past and Present". 7242:then there is a short exact sequence 3750:. It takes its name from the German 3746:(1957), who used it to formulate his 2735:. Then, these can be identified with 2724:{\displaystyle C^{0}(X;\mathbb {C} )} 1901:we can find a minimal representative 45:is, roughly speaking, the study of a 9028: 9009: 7557:{\displaystyle Y_{1},Y_{2}\subset X} 5770:{\displaystyle K^{0}(X)\to K_{0}(X)} 3988:strengths and the charges of stable 3917:is another aspect of this analogy.) 8040:{\displaystyle x_{i}=c_{1}(L_{i}),} 7775: 5342:{\displaystyle K(\mathbb {P} ^{n})} 4397:{\displaystyle K(\mathbb {P} ^{n})} 4116:of an Artinian algebra over a field 2876:Atiyah–Hirzebruch spectral sequence 2831:{\displaystyle {\textbf {Idem}}(X)} 2814: 2152:{\displaystyle (a,b)\sim (a-k,b-k)} 1481:{\displaystyle (a,b)\sim (a+k,b+k)} 165:K-theory has been used to classify 24: 8840: 8792: 8303:action of a linear algebraic group 8137: 7875: 7493: 7462: 7272: 7259: 7235:{\displaystyle Y\hookrightarrow X} 7211: 6622: 6539: 5137: 5098: 5046: 4526: 4500: 3578: 3567: 3546: 3491: 3474: 3331:This gives the Grothendieck-group 3303: 3292: 3278: 3234: 3213: 3196: 3022:. Then, as before, the direct sum 2739:matrices in some ring of matrices 1652:That means that, given a morphism 195:The Grothendieck completion of an 25: 9579: 9137: 8669:K-theory and Ramond–Ramond Charge 8558:Grothendieck–Riemann–Roch theorem 7603:{\displaystyle Z=Y_{1}\cap Y_{2}} 5596:where the higher terms come from 5018:{\displaystyle k_{1}+k_{2}\leq n} 4690:comes from its stratification as 3984:, the K-theory classification of 3748:Grothendieck–Riemann–Roch theorem 3613:Grothendieck–Riemann–Roch theorem 116:Grothendieck–Riemann–Roch theorem 9541: 9514: 9504: 9494: 9483: 9473: 9472: 9266: 4683:{\displaystyle \mathbb {P} ^{n}} 4465:and using the push pull formula 4000: 3737: 2991:{\displaystyle {\text{Vect}}(X)} 2399:{\displaystyle {\text{Vect}}(X)} 1635: 1632: 1629: 1626: 1623: 1615: 1612: 1609: 1606: 1603: 1569: 1566: 1563: 1560: 1557: 1549: 1546: 1543: 1540: 1537: 1024:will be the identity element of 550:{\displaystyle G(A)=A^{2}/\sim } 9108:"Vector Bundles & K-Theory" 8913: 8878: 8754:10.1070/rm1969v024n05abeh001357 8220:Hirzebruch–Riemann–Roch theorem 7206: 3920: 3872:extraordinary cohomology theory 3184:we can mod out by the relation 3085:. Then, the Grothendieck group 1686:{\displaystyle \phi :A\to U(B)} 1111:{\displaystyle (0,0)\sim (n,n)} 289:{\displaystyle A^{2}=A\times A} 8921:Robert W. Thomason (1952–1995) 8768: 8722: 8698: 8674: 8653: 8644: 8629: 8594: 8570: 8500: 8494: 8457: 8451: 8410: 8407: 8401: 8375: 8359: 8353: 8264: 8258: 8232:equivariant algebraic K-theory 8199: 8157: 8069: 8063: 8031: 8018: 7900: 7893: 7853: 7850: 7844: 7831: 7819: 7813: 7746: 7741: 7728: 7715: 7710: 7690: 7677: 7672: 7652: 7634: 7620: 7502: 7489: 7483: 7473: 7458: 7408:. If we have a singular space 7314: 7293: 7283: 7268: 7255: 7226: 7185: 7150: 7136: 7130: 7032: 7018: 6973: 6967: 6934: 6928: 6917: 6911: 6876: 6873: 6870: 6864: 6851: 6833: 6827: 6814: 6811: 6805: 6792: 6789: 6786: 6780: 6767: 6754: 6731: 6725: 6708:can then be used to determine 6687: 6681: 6610: 6604: 6408: 6402: 6352: 6346: 6287: 6281: 6235: 6184: 6178: 6153: 6147: 6125: 6122: 6119: 6113: 6107: 6081: 6075: 5979: 5973: 5954: 5948: 5911:For a smooth projective curve 5842: 5837: 5822: 5808: 5793: 5789: 5764: 5758: 5745: 5742: 5736: 5676: 5630: 5580: 5577: 5571: 5555: 5552: 5546: 5533: 5530: 5524: 5511: 5484: 5478: 5442: 5436: 5406: 5400: 5336: 5321: 5180: 5174: 5151: 5148: 5131: 5115: 5103: 5093: 5054:{\displaystyle {\mathcal {E}}} 4645: 4626: 4621: 4615: 4601: 4586: 4563: 4557: 4534: 4531: 4511: 4505: 4485: 4482: 4440: 4391: 4376: 4305: 4292: 4287: 4281: 4181: 4168: 4159: 4153: 4029: 4021: 3717: 3711: 3670: 3664: 3658: 3647: 3641: 3587: 3562: 3519: 3509: 3500: 3485: 3479: 3469: 3446: 3440: 3390: 3384: 3354: 3348: 3312: 3297: 3287: 3272: 3243: 3228: 3222: 3207: 3201: 3191: 3171: 3165: 3108: 3102: 3072: 3063: 3057: 3049: 2998:of all isomorphism classes of 2985: 2979: 2861: 2855: 2825: 2819: 2792: 2789: 2775: 2762: 2718: 2704: 2667: 2661: 2608: 2570: 2561: 2555: 2547: 2524: 2507: 2501: 2490: 2484: 2478: 2451: 2445: 2422: 2393: 2387: 2296: 2280: 2268: 2248: 2236: 2210: 2198: 2178: 2166: 2146: 2122: 2116: 2104: 2087:{\displaystyle k:=\min\{a,b\}} 2037: 2025: 2019: 2007: 2001: 1989: 1983: 1971: 1965: 1953: 1930: 1908: 1888: 1876: 1853: 1839: 1833: 1830: 1816: 1813: 1755: 1752: 1746: 1680: 1674: 1668: 1619: 1553: 1475: 1451: 1445: 1433: 1381: 1378: 1366: 1363: 1343: 1337: 1311: 1308: 1296: 1293: 1287: 1284: 1260: 1257: 1251: 1248: 1236: 1233: 1227: 1224: 1212: 1209: 1105: 1093: 1087: 1075: 1052: 1043: 1037: 1031: 1011: 1008: 996: 993: 933: 921: 887: 884: 872: 869: 866: 843: 837: 831: 802: 793: 787: 781: 755: 752: 690: 687: 681: 678: 652: 649: 643: 640: 614: 611: 588: 579: 573: 567: 523: 517: 364: 338: 332: 306: 224: 207: 13: 1: 8930: 7428:embedded into a smooth space 4540:{\displaystyle i^{*}(\cdot )} 4424:can be computed by embedding 3956:algebraic K-theory of spaces, 3870:they made it the basis of an 2261:as positive integers and the 159:generalized complex manifolds 151:Ramond–Ramond field strengths 137:, K-theory and in particular 9188: 9012:Complex Topological K-Theory 8734:Russian Mathematical Surveys 8604:Complex topological K-theory 8463:{\displaystyle K_{0}^{G}(C)} 8279:equivariant coherent sheaves 7106:{\displaystyle \mathbb {C} } 5907:of a smooth projective curve 5620:are given by vector bundles 5364:{\displaystyle \mathbb {F} } 4791:{\displaystyle \mathbb {Z} } 4234:{\displaystyle \mathbb {Z} } 4212:{\displaystyle \mathbb {F} } 4101:{\displaystyle \mathbb {Z} } 4079:{\displaystyle \mathbb {N} } 4057:{\displaystyle \mathbb {F} } 3992:was first proposed in 1997. 1796:{\displaystyle \mathbb {N} } 7: 8538:List of cohomology theories 8516: 8238:associated to the category 5649:{\displaystyle E\to X_{sm}} 3876:Atiyah–Singer index theorem 2431:{\displaystyle \pi :E\to X} 1777:Example for natural numbers 849:{\displaystyle i:A\to G(A)} 124:Atiyah–Singer index theorem 30:For the hip hop group, see 10: 9584: 9435:Banach fixed-point theorem 7779: 7368:is the conormal bundle of 5931:the Grothendieck group is 4798:, and the intersection of 3969:received the general name 2300: 1767:{\displaystyle G(A)\to B.} 905:certain universal property 896:{\displaystyle a\mapsto ,} 188: 29: 9468: 9425: 9389: 9275: 9264: 9196: 9154:K-theory preprint archive 9144:Grothendieck-Riemann-Roch 9068:10.1007/978-3-540-79890-3 9060:K-theory: an introduction 8985:10.1007/978-3-540-27855-9 5490:{\displaystyle D_{sg}(X)} 5061:over a Noetherian scheme 1061:{\displaystyle (G(A),+).} 8563: 6737:{\displaystyle K_{0}(C)} 6414:{\displaystyle K_{0}(C)} 6244:{\displaystyle x:Y\to X} 6016:. This follows from the 5892:{\displaystyle n=\dim X} 5448:{\displaystyle K_{0}(X)} 5412:{\displaystyle K^{0}(X)} 3973:. It is a major tool of 3939:higher K-theory functors 3893:had used the analogy of 3868:Bott periodicity theorem 3723:{\displaystyle K_{0}(X)} 3452:{\displaystyle K_{0}(X)} 3396:{\displaystyle K^{0}(X)} 3360:{\displaystyle K_{0}(X)} 3114:{\displaystyle K^{0}(X)} 3000:algebraic vector bundles 2867:{\displaystyle K^{0}(X)} 2673:{\displaystyle K^{0}(X)} 2540:It should be clear that 2530:{\displaystyle \oplus =} 808:{\displaystyle (G(A),+)} 594:{\displaystyle (G(A),+)} 177:. For more details, see 163:condensed matter physics 8938:Atiyah, Michael Francis 8328:; thus, by definition, 8281:on an algebraic scheme 7361:{\displaystyle C_{Y/X}} 6199:the set of codimension 6192:{\displaystyle X^{(p)}} 3996:Examples and properties 3866:in 1959, and using the 3367:which is isomorphic to 3035:{\displaystyle \oplus } 2301:This section is about K 1936:{\displaystyle (a',b')} 1510:{\displaystyle k\in A.} 557:has the structure of a 185:Grothendieck completion 81:, it is referred to as 9490:Mathematics portal 9390:Metrics and properties 9376:Second-countable space 8856:. Boston: Birkhäuser. 8826:10.2140/akt.2021.6.381 8507: 8464: 8420: 8318: 8295: 8271: 8209: 8141: 8041: 7982: 7927: 7879: 7763: 7604: 7558: 7509: 7442: 7422: 7402: 7382: 7362: 7324: 7236: 7192: 7107: 7085: 7065: 7045: 6988: 6941: 6886: 6738: 6698: 6517: 6455: 6435: 6415: 6379: 6359: 6294: 6265: 6245: 6213: 6193: 6160: 6010: 5986: 5925: 5893: 5861: 5771: 5713: 5686: 5650: 5614: 5590: 5491: 5449: 5413: 5365: 5343: 5305: 5278: 5242: 5187: 5158: 5075: 5055: 5033:of a projective bundle 5019: 4973: 4862: 4792: 4770: 4684: 4655: 4570: 4541: 4459: 4418: 4398: 4349: 4235: 4213: 4188: 4137: 4102: 4080: 4058: 4036: 3954:in order to study the 3744:Alexander Grothendieck 3724: 3685: 3602: 3453: 3417: 3397: 3361: 3322: 3250: 3178: 3143: 3115: 3079: 3036: 3016: 2992: 2961: 2926: 2899: 2868: 2832: 2799: 2725: 2674: 2638: 2618: 2577: 2531: 2458: 2432: 2400: 2369: 2349: 2293:as negative integers. 2287: 2255: 2220: 2219:{\displaystyle (0,d).} 2185: 2153: 2088: 2044: 1937: 1895: 1863: 1797: 1768: 1730: 1707: 1687: 1646: 1580: 1511: 1482: 1417: 1394:as formal differences 1388: 1350: 1318: 1193: 1164: 1138: 1137:{\displaystyle n\in A} 1112: 1062: 1018: 980: 960: 940: 914:of the abelian monoid 897: 850: 809: 765: 595: 551: 501: 400: 399:{\displaystyle c\in A} 371: 290: 251: 231: 230:{\displaystyle (A,+')} 167:topological insulators 8850:Srinivas, V. (1991). 8601:Park, Efton. (2008). 8508: 8465: 8421: 8319: 8296: 8272: 8210: 8121: 8042: 7983: 7928: 7859: 7764: 7605: 7559: 7510: 7443: 7423: 7403: 7383: 7363: 7325: 7237: 7193: 7108: 7086: 7066: 7046: 6989: 6942: 6887: 6739: 6699: 6518: 6456: 6436: 6416: 6380: 6365:for the Chow ring of 6360: 6295: 6266: 6246: 6214: 6194: 6161: 6011: 5987: 5926: 5894: 5862: 5772: 5714: 5712:{\displaystyle G_{i}} 5687: 5651: 5615: 5591: 5492: 5450: 5414: 5366: 5344: 5306: 5304:{\displaystyle K_{0}} 5279: 5243: 5188: 5159: 5076: 5056: 5020: 4974: 4863: 4793: 4771: 4685: 4656: 4571: 4542: 4460: 4419: 4399: 4350: 4236: 4214: 4189: 4138: 4103: 4081: 4059: 4037: 3725: 3686: 3603: 3454: 3423:is smooth. The group 3418: 3398: 3362: 3323: 3251: 3179: 3144: 3116: 3080: 3037: 3017: 2993: 2962: 2927: 2925:{\displaystyle S^{n}} 2900: 2898:{\displaystyle K^{0}} 2869: 2833: 2800: 2726: 2675: 2639: 2619: 2578: 2532: 2459: 2433: 2401: 2370: 2350: 2288: 2286:{\displaystyle (0,b)} 2256: 2254:{\displaystyle (a,0)} 2221: 2186: 2184:{\displaystyle (c,0)} 2159:which is of the form 2154: 2089: 2045: 1938: 1896: 1894:{\displaystyle (a,b)} 1864: 1798: 1769: 1731: 1708: 1693:of an abelian monoid 1688: 1647: 1581: 1512: 1483: 1418: 1389: 1351: 1319: 1194: 1165: 1139: 1113: 1063: 1019: 981: 961: 941: 939:{\displaystyle (A,+)} 898: 851: 810: 766: 596: 552: 502: 401: 372: 291: 252: 250:{\displaystyle \sim } 232: 143:Type II string theory 27:Branch of mathematics 9445:Invariance of domain 9397:Euler characteristic 9371:Bundle (mathematics) 9010:Park, Efton (2008). 8975:. Berlin, New York: 8973:Handbook of K-Theory 8548:Topological K-theory 8478: 8433: 8335: 8308: 8285: 8242: 8226:Equivariant K-theory 8054: 7992: 7940: 7804: 7791:topological K-theory 7617: 7568: 7522: 7455: 7432: 7412: 7392: 7372: 7337: 7249: 7220: 7117: 7095: 7075: 7055: 6998: 6951: 6896: 6748: 6712: 6527: 6465: 6445: 6425: 6421:. Note that because 6389: 6369: 6304: 6293:{\displaystyle k(x)} 6275: 6255: 6223: 6203: 6170: 6032: 6000: 5935: 5915: 5871: 5781: 5723: 5696: 5660: 5656:on the smooth locus 5624: 5604: 5505: 5462: 5457:Singularity category 5423: 5387: 5353: 5315: 5288: 5252: 5201: 5186:{\displaystyle K(X)} 5168: 5085: 5065: 5041: 4983: 4872: 4802: 4780: 4694: 4665: 4580: 4569:{\displaystyle K(X)} 4551: 4469: 4428: 4408: 4370: 4245: 4223: 4201: 4147: 4127: 4090: 4068: 4046: 4013: 3952:Friedhelm Waldhausen 3849:Friedrich Hirzebruch 3779:locally free sheaves 3698: 3622: 3466: 3427: 3407: 3371: 3335: 3266: 3258:short exact sequence 3188: 3156: 3133: 3089: 3046: 3026: 3006: 2971: 2951: 2909: 2882: 2842: 2809: 2743: 2691: 2648: 2628: 2587: 2544: 2475: 2442: 2410: 2379: 2359: 2339: 2319:Topological K-theory 2265: 2233: 2195: 2163: 2101: 2057: 1950: 1905: 1873: 1807: 1785: 1740: 1717: 1697: 1656: 1593: 1527: 1492: 1430: 1416:{\displaystyle a-b.} 1398: 1360: 1349:{\displaystyle G(A)} 1331: 1206: 1192:{\displaystyle n=n.} 1174: 1148: 1122: 1072: 1028: 990: 970: 950: 918: 860: 819: 778: 608: 564: 511: 410: 384: 303: 261: 241: 204: 71:topological K-theory 9455:Tychonoff's theorem 9450:PoincarĂ© conjecture 9204:General (point-set) 8919:Charles A. Weibel, 8746:1969RuMaS..24....1M 8659:by Ruben Minasian ( 8450: 8352: 8198: 8174: 7936:More generally, if 7017: 6706:coniveau filtration 6661: 6637: 6584: 6557: 6512: 6488: 6441:has no codimension 6330: 6055: 5273: 4362:of projective space 3986:Ramond–Ramond field 3767:isomorphism classes 3732:intersection theory 3558: 1317:{\displaystyle +==} 1163:{\displaystyle c=0} 912:equivalence classes 764:{\displaystyle +=.} 257:be the relation on 135:high energy physics 9440:De Rham cohomology 9361:Polyhedral complex 9351:Simplicial complex 9149:Max Karoubi's Page 9034:Algebraic K-Theory 8853:Algebraic K-theory 8804:Annals of K-Theory 8543:Algebraic K-theory 8503: 8472:Grothendieck group 8460: 8436: 8416: 8338: 8314: 8291: 8267: 8236:algebraic K-theory 8205: 8184: 8160: 8037: 7978: 7923: 7759: 7600: 7554: 7505: 7438: 7418: 7398: 7378: 7358: 7320: 7232: 7188: 7103: 7081: 7061: 7041: 7001: 6984: 6937: 6882: 6734: 6694: 6692: 6641: 6617: 6561: 6534: 6513: 6492: 6468: 6451: 6431: 6411: 6375: 6355: 6307: 6290: 6261: 6241: 6209: 6189: 6156: 6087: 6035: 6022:algebraic K-theory 6006: 5982: 5921: 5889: 5857: 5767: 5709: 5682: 5646: 5610: 5586: 5487: 5445: 5409: 5361: 5339: 5301: 5274: 5255: 5238: 5183: 5154: 5071: 5051: 5015: 4969: 4858: 4788: 4766: 4680: 4651: 4566: 4537: 4455: 4414: 4394: 4345: 4231: 4209: 4184: 4133: 4098: 4076: 4054: 4032: 3960:motivic cohomology 3927:J. H. C. Whitehead 3903:Serre's conjecture 3899:projective modules 3791:Grothendieck group 3720: 3681: 3598: 3533: 3449: 3413: 3393: 3357: 3318: 3249:{\displaystyle =+} 3246: 3174: 3139: 3111: 3075: 3032: 3012: 2988: 2957: 2942:algebraic geometry 2922: 2895: 2864: 2828: 2795: 2733:projective modules 2721: 2685:Serre–Swan theorem 2670: 2634: 2614: 2573: 2527: 2454: 2428: 2396: 2365: 2345: 2315:Algebraic K-theory 2307:Grothendieck group 2283: 2251: 2216: 2181: 2149: 2084: 2040: 1933: 1891: 1859: 1803:. We can see that 1793: 1764: 1729:{\displaystyle B,} 1726: 1703: 1683: 1642: 1576: 1507: 1478: 1413: 1384: 1346: 1314: 1189: 1160: 1134: 1108: 1058: 1014: 976: 956: 936: 893: 846: 805: 761: 591: 547: 497: 396: 380:if there exists a 367: 286: 247: 227: 191:Grothendieck group 179:K-theory (physics) 83:algebraic K-theory 79:algebraic geometry 63:algebraic topology 9555: 9554: 9344:fundamental group 9129:978-0-8218-9132-2 9021:978-0-521-85634-8 8994:978-3-540-30436-4 8955:978-0-201-09394-0 8886:Kontsevich, Maxim 8863:978-1-4899-6735-0 8614:978-0-511-38869-9 8553:Operator K-theory 8324:, via Quillen's 8317:{\displaystyle G} 8294:{\displaystyle X} 8155: 7918: 7508:{\displaystyle -} 7441:{\displaystyle X} 7421:{\displaystyle Y} 7401:{\displaystyle X} 7381:{\displaystyle Y} 7084:{\displaystyle g} 7064:{\displaystyle C} 7010: 7005: 6926: 6903: 6673: 6596: 6454:{\displaystyle 2} 6434:{\displaystyle C} 6378:{\displaystyle X} 6338: 6264:{\displaystyle p} 6212:{\displaystyle p} 6059: 6009:{\displaystyle C} 5971: 5924:{\displaystyle C} 5787: 5613:{\displaystyle X} 5074:{\displaystyle X} 4649: 4417:{\displaystyle X} 4309: 4266: 4178: 4136:{\displaystyle X} 4122:Noetherian scheme 4019: 3931:Whitehead torsion 3891:Jean-Pierre Serre 3889:Already in 1955, 3861:topological space 3760:algebraic variety 3416:{\displaystyle X} 3142:{\displaystyle X} 3055: 3015:{\displaystyle X} 2977: 2960:{\displaystyle X} 2946:Noetherian scheme 2816: 2637:{\displaystyle X} 2553: 2385: 2368:{\displaystyle X} 2348:{\displaystyle X} 1706:{\displaystyle A} 1588:forgetful functor 1144:since we can set 979:{\displaystyle 0} 959:{\displaystyle A} 153:and also certain 141:have appeared in 87:operator algebras 67:cohomology theory 55:topological space 16:(Redirected from 9575: 9545: 9544: 9518: 9517: 9508: 9498: 9488: 9487: 9476: 9475: 9270: 9183: 9176: 9169: 9160: 9159: 9133: 9111: 9099: 9097: 9081: 9051: 9025: 9006: 8967: 8924: 8917: 8911: 8910: 8901: 8882: 8876: 8875: 8847: 8838: 8837: 8819: 8799: 8790: 8789: 8787: 8786: 8772: 8766: 8765: 8726: 8720: 8719: 8717: 8716: 8702: 8696: 8695: 8693: 8692: 8686:mathoverflow.net 8678: 8672: 8657: 8651: 8648: 8642: 8641: 8633: 8627: 8626: 8598: 8592: 8591: 8589: 8574: 8523:Bott periodicity 8512: 8510: 8509: 8504: 8490: 8489: 8469: 8467: 8466: 8461: 8449: 8444: 8425: 8423: 8422: 8417: 8397: 8396: 8387: 8386: 8374: 8373: 8351: 8346: 8323: 8321: 8320: 8315: 8300: 8298: 8297: 8292: 8276: 8274: 8273: 8268: 8254: 8253: 8214: 8212: 8211: 8206: 8197: 8192: 8173: 8168: 8156: 8154: 8143: 8140: 8135: 8117: 8116: 8115: 8114: 8091: 8090: 8089: 8088: 8046: 8044: 8043: 8038: 8030: 8029: 8017: 8016: 8004: 8003: 7987: 7985: 7984: 7979: 7977: 7976: 7958: 7957: 7932: 7930: 7929: 7924: 7919: 7917: 7909: 7908: 7907: 7892: 7891: 7881: 7878: 7873: 7843: 7842: 7776:Chern characters 7768: 7766: 7765: 7760: 7755: 7754: 7749: 7740: 7739: 7724: 7723: 7718: 7709: 7708: 7707: 7706: 7686: 7685: 7680: 7671: 7670: 7669: 7668: 7648: 7647: 7632: 7631: 7609: 7607: 7606: 7601: 7599: 7598: 7586: 7585: 7563: 7561: 7560: 7555: 7547: 7546: 7534: 7533: 7514: 7512: 7511: 7506: 7501: 7500: 7482: 7481: 7476: 7470: 7469: 7447: 7445: 7444: 7439: 7427: 7425: 7424: 7419: 7407: 7405: 7404: 7399: 7387: 7385: 7384: 7379: 7367: 7365: 7364: 7359: 7357: 7356: 7352: 7329: 7327: 7326: 7321: 7313: 7312: 7308: 7292: 7291: 7286: 7280: 7279: 7267: 7266: 7241: 7239: 7238: 7233: 7197: 7195: 7194: 7189: 7184: 7183: 7175: 7169: 7164: 7163: 7158: 7146: 7129: 7128: 7112: 7110: 7109: 7104: 7102: 7090: 7088: 7087: 7082: 7070: 7068: 7067: 7062: 7050: 7048: 7047: 7042: 7025: 7016: 7011: 7008: 7006: 7003: 6993: 6991: 6990: 6985: 6983: 6966: 6965: 6946: 6944: 6943: 6938: 6927: 6924: 6910: 6909: 6904: 6901: 6891: 6889: 6888: 6883: 6863: 6862: 6850: 6849: 6840: 6826: 6825: 6804: 6803: 6779: 6778: 6766: 6765: 6743: 6741: 6740: 6735: 6724: 6723: 6703: 6701: 6700: 6695: 6693: 6680: 6679: 6674: 6671: 6660: 6649: 6636: 6625: 6603: 6602: 6597: 6594: 6583: 6569: 6556: 6542: 6522: 6520: 6519: 6514: 6511: 6500: 6487: 6476: 6460: 6458: 6457: 6452: 6440: 6438: 6437: 6432: 6420: 6418: 6417: 6412: 6401: 6400: 6384: 6382: 6381: 6376: 6364: 6362: 6361: 6356: 6345: 6344: 6339: 6336: 6329: 6315: 6299: 6297: 6296: 6291: 6270: 6268: 6267: 6262: 6250: 6248: 6247: 6242: 6218: 6216: 6215: 6210: 6198: 6196: 6195: 6190: 6188: 6187: 6165: 6163: 6162: 6157: 6146: 6145: 6106: 6105: 6086: 6085: 6084: 6054: 6043: 6015: 6013: 6012: 6007: 5991: 5989: 5988: 5983: 5972: 5969: 5964: 5947: 5946: 5930: 5928: 5927: 5922: 5898: 5896: 5895: 5890: 5866: 5864: 5863: 5858: 5856: 5855: 5840: 5835: 5834: 5825: 5811: 5806: 5805: 5796: 5788: 5785: 5776: 5774: 5773: 5768: 5757: 5756: 5735: 5734: 5718: 5716: 5715: 5710: 5708: 5707: 5691: 5689: 5688: 5683: 5675: 5674: 5655: 5653: 5652: 5647: 5645: 5644: 5619: 5617: 5616: 5611: 5595: 5593: 5592: 5587: 5570: 5569: 5545: 5544: 5523: 5522: 5496: 5494: 5493: 5488: 5477: 5476: 5454: 5452: 5451: 5446: 5435: 5434: 5418: 5416: 5415: 5410: 5399: 5398: 5370: 5368: 5367: 5362: 5360: 5348: 5346: 5345: 5340: 5335: 5334: 5329: 5310: 5308: 5307: 5302: 5300: 5299: 5283: 5281: 5280: 5275: 5272: 5267: 5266: 5260: 5247: 5245: 5244: 5239: 5237: 5236: 5193:-module of rank 5192: 5190: 5189: 5184: 5163: 5161: 5160: 5155: 5147: 5146: 5141: 5140: 5127: 5126: 5102: 5101: 5092: 5080: 5078: 5077: 5072: 5060: 5058: 5057: 5052: 5050: 5049: 5024: 5022: 5021: 5016: 5008: 5007: 4995: 4994: 4978: 4976: 4975: 4970: 4968: 4967: 4966: 4965: 4953: 4952: 4936: 4927: 4926: 4925: 4924: 4908: 4899: 4898: 4897: 4896: 4880: 4867: 4865: 4864: 4859: 4857: 4856: 4855: 4854: 4838: 4829: 4828: 4827: 4826: 4810: 4797: 4795: 4794: 4789: 4787: 4775: 4773: 4772: 4767: 4765: 4764: 4759: 4744: 4743: 4732: 4723: 4722: 4717: 4708: 4707: 4702: 4689: 4687: 4686: 4681: 4679: 4678: 4673: 4660: 4658: 4657: 4652: 4650: 4648: 4644: 4643: 4624: 4614: 4608: 4600: 4599: 4594: 4575: 4573: 4572: 4567: 4546: 4544: 4543: 4538: 4530: 4529: 4523: 4522: 4504: 4503: 4497: 4496: 4481: 4480: 4464: 4462: 4461: 4456: 4454: 4453: 4448: 4423: 4421: 4420: 4415: 4403: 4401: 4400: 4395: 4390: 4389: 4384: 4354: 4352: 4351: 4346: 4344: 4336: 4328: 4324: 4323: 4319: 4318: 4310: 4308: 4304: 4303: 4290: 4280: 4274: 4267: 4264: 4257: 4256: 4240: 4238: 4237: 4232: 4230: 4218: 4216: 4215: 4210: 4208: 4193: 4191: 4190: 4185: 4180: 4179: 4176: 4142: 4140: 4139: 4134: 4107: 4105: 4104: 4099: 4097: 4085: 4083: 4082: 4077: 4075: 4063: 4061: 4060: 4055: 4053: 4041: 4039: 4038: 4033: 4028: 4020: 4017: 3756:coherent sheaves 3729: 3727: 3726: 3721: 3710: 3709: 3690: 3688: 3687: 3682: 3680: 3657: 3640: 3639: 3607: 3605: 3604: 3599: 3594: 3590: 3586: 3582: 3581: 3571: 3570: 3557: 3556: 3555: 3550: 3549: 3541: 3527: 3526: 3499: 3495: 3494: 3478: 3477: 3458: 3456: 3455: 3450: 3439: 3438: 3422: 3420: 3419: 3414: 3402: 3400: 3399: 3394: 3383: 3382: 3366: 3364: 3363: 3358: 3347: 3346: 3327: 3325: 3324: 3319: 3311: 3307: 3306: 3296: 3295: 3286: 3282: 3281: 3255: 3253: 3252: 3247: 3242: 3238: 3237: 3221: 3217: 3216: 3200: 3199: 3183: 3181: 3180: 3175: 3151:coherent sheaves 3148: 3146: 3145: 3140: 3120: 3118: 3117: 3112: 3101: 3100: 3084: 3082: 3081: 3076: 3056: 3053: 3041: 3039: 3038: 3033: 3021: 3019: 3018: 3013: 2997: 2995: 2994: 2989: 2978: 2975: 2966: 2964: 2963: 2958: 2931: 2929: 2928: 2923: 2921: 2920: 2905:for the spheres 2904: 2902: 2901: 2896: 2894: 2893: 2873: 2871: 2870: 2865: 2854: 2853: 2837: 2835: 2834: 2829: 2818: 2817: 2804: 2802: 2801: 2796: 2788: 2774: 2773: 2761: 2760: 2730: 2728: 2727: 2722: 2717: 2703: 2702: 2679: 2677: 2676: 2671: 2660: 2659: 2643: 2641: 2640: 2635: 2623: 2621: 2620: 2615: 2601: 2600: 2595: 2582: 2580: 2579: 2574: 2554: 2551: 2536: 2534: 2533: 2528: 2523: 2500: 2463: 2461: 2460: 2457:{\displaystyle } 2455: 2437: 2435: 2434: 2429: 2405: 2403: 2402: 2397: 2386: 2383: 2374: 2372: 2371: 2366: 2354: 2352: 2351: 2346: 2332:Given a compact 2292: 2290: 2289: 2284: 2260: 2258: 2257: 2252: 2225: 2223: 2222: 2217: 2190: 2188: 2187: 2182: 2158: 2156: 2155: 2150: 2093: 2091: 2090: 2085: 2049: 2047: 2046: 2041: 1942: 1940: 1939: 1934: 1929: 1918: 1900: 1898: 1897: 1892: 1868: 1866: 1865: 1860: 1846: 1823: 1802: 1800: 1799: 1794: 1792: 1773: 1771: 1770: 1765: 1735: 1733: 1732: 1727: 1712: 1710: 1709: 1704: 1692: 1690: 1689: 1684: 1651: 1649: 1648: 1643: 1638: 1618: 1585: 1583: 1582: 1577: 1572: 1552: 1516: 1514: 1513: 1508: 1487: 1485: 1484: 1479: 1422: 1420: 1419: 1414: 1393: 1391: 1390: 1387:{\displaystyle } 1385: 1355: 1353: 1352: 1347: 1323: 1321: 1320: 1315: 1198: 1196: 1195: 1190: 1169: 1167: 1166: 1161: 1143: 1141: 1140: 1135: 1117: 1115: 1114: 1109: 1067: 1065: 1064: 1059: 1023: 1021: 1020: 1017:{\displaystyle } 1015: 985: 983: 982: 977: 965: 963: 962: 957: 945: 943: 942: 937: 902: 900: 899: 894: 855: 853: 852: 847: 814: 812: 811: 806: 770: 768: 767: 762: 751: 750: 741: 733: 732: 720: 719: 710: 702: 701: 677: 676: 664: 663: 639: 638: 626: 625: 600: 598: 597: 592: 556: 554: 553: 548: 543: 538: 537: 506: 504: 503: 498: 490: 482: 481: 472: 464: 463: 448: 440: 439: 430: 422: 421: 405: 403: 402: 397: 376: 374: 373: 368: 363: 362: 350: 349: 331: 330: 318: 317: 295: 293: 292: 287: 273: 272: 256: 254: 253: 248: 236: 234: 233: 228: 223: 139:twisted K-theory 128:Adams operations 120:Bott periodicity 21: 9583: 9582: 9578: 9577: 9576: 9574: 9573: 9572: 9558: 9557: 9556: 9551: 9482: 9464: 9460:Urysohn's lemma 9421: 9385: 9271: 9262: 9234:low-dimensional 9192: 9187: 9140: 9130: 9116:Weibel, Charles 9078: 9048: 9022: 8995: 8977:Springer-Verlag 8956: 8933: 8928: 8927: 8918: 8914: 8883: 8879: 8864: 8848: 8841: 8800: 8793: 8784: 8782: 8774: 8773: 8769: 8727: 8723: 8714: 8712: 8704: 8703: 8699: 8690: 8688: 8680: 8679: 8675: 8658: 8654: 8649: 8645: 8634: 8630: 8615: 8599: 8595: 8578:Atiyah, Michael 8575: 8571: 8566: 8519: 8485: 8481: 8479: 8476: 8475: 8445: 8440: 8434: 8431: 8430: 8429:In particular, 8392: 8388: 8382: 8378: 8369: 8365: 8347: 8342: 8336: 8333: 8332: 8309: 8306: 8305: 8286: 8283: 8282: 8249: 8245: 8243: 8240: 8239: 8228: 8193: 8188: 8169: 8164: 8147: 8142: 8136: 8125: 8110: 8106: 8105: 8101: 8084: 8080: 8079: 8075: 8055: 8052: 8051: 8025: 8021: 8012: 8008: 7999: 7995: 7993: 7990: 7989: 7972: 7968: 7953: 7949: 7941: 7938: 7937: 7910: 7903: 7899: 7887: 7883: 7882: 7880: 7874: 7863: 7838: 7834: 7805: 7802: 7801: 7784: 7782:Chern character 7778: 7750: 7745: 7744: 7735: 7731: 7719: 7714: 7713: 7702: 7698: 7697: 7693: 7681: 7676: 7675: 7664: 7660: 7659: 7655: 7637: 7633: 7627: 7623: 7618: 7615: 7614: 7594: 7590: 7581: 7577: 7569: 7566: 7565: 7542: 7538: 7529: 7525: 7523: 7520: 7519: 7496: 7492: 7477: 7472: 7471: 7465: 7461: 7456: 7453: 7452: 7433: 7430: 7429: 7413: 7410: 7409: 7393: 7390: 7389: 7373: 7370: 7369: 7348: 7344: 7340: 7338: 7335: 7334: 7304: 7300: 7296: 7287: 7282: 7281: 7275: 7271: 7262: 7258: 7250: 7247: 7246: 7221: 7218: 7217: 7214: 7212:Virtual bundles 7209: 7176: 7171: 7170: 7165: 7159: 7154: 7153: 7142: 7124: 7120: 7118: 7115: 7114: 7098: 7096: 7093: 7092: 7076: 7073: 7072: 7056: 7053: 7052: 7021: 7012: 7007: 7002: 6999: 6996: 6995: 6979: 6961: 6957: 6952: 6949: 6948: 6923: 6905: 6900: 6899: 6897: 6894: 6893: 6858: 6854: 6845: 6841: 6836: 6821: 6817: 6799: 6795: 6774: 6770: 6761: 6757: 6749: 6746: 6745: 6719: 6715: 6713: 6710: 6709: 6691: 6690: 6675: 6670: 6669: 6662: 6650: 6645: 6626: 6621: 6614: 6613: 6598: 6593: 6592: 6585: 6570: 6565: 6543: 6538: 6530: 6528: 6525: 6524: 6501: 6496: 6477: 6472: 6466: 6463: 6462: 6446: 6443: 6442: 6426: 6423: 6422: 6396: 6392: 6390: 6387: 6386: 6370: 6367: 6366: 6340: 6335: 6334: 6316: 6311: 6305: 6302: 6301: 6276: 6273: 6272: 6256: 6253: 6252: 6251:of codimension 6224: 6221: 6220: 6204: 6201: 6200: 6177: 6173: 6171: 6168: 6167: 6132: 6128: 6092: 6088: 6074: 6070: 6063: 6044: 6039: 6033: 6030: 6029: 6001: 5998: 5997: 5968: 5960: 5942: 5938: 5936: 5933: 5932: 5916: 5913: 5912: 5909: 5906: 5872: 5869: 5868: 5845: 5841: 5836: 5830: 5826: 5821: 5807: 5801: 5797: 5792: 5784: 5782: 5779: 5778: 5752: 5748: 5730: 5726: 5724: 5721: 5720: 5703: 5699: 5697: 5694: 5693: 5667: 5663: 5661: 5658: 5657: 5637: 5633: 5625: 5622: 5621: 5605: 5602: 5601: 5598:higher K-theory 5562: 5558: 5540: 5536: 5518: 5514: 5506: 5503: 5502: 5469: 5465: 5463: 5460: 5459: 5430: 5426: 5424: 5421: 5420: 5394: 5390: 5388: 5385: 5384: 5381: 5378: 5356: 5354: 5351: 5350: 5330: 5325: 5324: 5316: 5313: 5312: 5295: 5291: 5289: 5286: 5285: 5268: 5262: 5261: 5256: 5253: 5250: 5249: 5226: 5222: 5202: 5199: 5198: 5169: 5166: 5165: 5142: 5136: 5135: 5134: 5122: 5118: 5097: 5096: 5088: 5086: 5083: 5082: 5066: 5063: 5062: 5045: 5044: 5042: 5039: 5038: 5035: 5032: 5003: 4999: 4990: 4986: 4984: 4981: 4980: 4961: 4957: 4948: 4944: 4937: 4932: 4931: 4920: 4916: 4909: 4904: 4903: 4892: 4888: 4881: 4876: 4875: 4873: 4870: 4869: 4868:is generically 4850: 4846: 4839: 4834: 4833: 4822: 4818: 4811: 4806: 4805: 4803: 4800: 4799: 4783: 4781: 4778: 4777: 4760: 4755: 4754: 4733: 4728: 4727: 4718: 4713: 4712: 4703: 4698: 4697: 4695: 4692: 4691: 4674: 4669: 4668: 4666: 4663: 4662: 4633: 4629: 4625: 4610: 4609: 4607: 4595: 4590: 4589: 4581: 4578: 4577: 4552: 4549: 4548: 4525: 4524: 4518: 4514: 4499: 4498: 4492: 4488: 4476: 4472: 4470: 4467: 4466: 4449: 4444: 4443: 4429: 4426: 4425: 4409: 4406: 4405: 4385: 4380: 4379: 4371: 4368: 4367: 4364: 4361: 4340: 4332: 4314: 4299: 4295: 4291: 4276: 4275: 4273: 4272: 4268: 4263: 4262: 4258: 4252: 4248: 4246: 4243: 4242: 4226: 4224: 4221: 4220: 4204: 4202: 4199: 4198: 4175: 4171: 4148: 4145: 4144: 4128: 4125: 4124: 4118: 4115: 4093: 4091: 4088: 4087: 4071: 4069: 4066: 4065: 4049: 4047: 4044: 4043: 4024: 4016: 4014: 4011: 4010: 4007: 4004: 3998: 3948:homotopy theory 3923: 3907:polynomial ring 3740: 3705: 3701: 3699: 3696: 3695: 3676: 3653: 3635: 3631: 3623: 3620: 3619: 3615:, we have that 3577: 3576: 3575: 3566: 3565: 3551: 3545: 3544: 3543: 3542: 3537: 3532: 3528: 3522: 3518: 3490: 3489: 3488: 3473: 3472: 3467: 3464: 3463: 3434: 3430: 3428: 3425: 3424: 3408: 3405: 3404: 3378: 3374: 3372: 3369: 3368: 3342: 3338: 3336: 3333: 3332: 3302: 3301: 3300: 3291: 3290: 3277: 3276: 3275: 3267: 3264: 3263: 3233: 3232: 3231: 3212: 3211: 3210: 3195: 3194: 3189: 3186: 3185: 3157: 3154: 3153: 3134: 3131: 3130: 3127: 3096: 3092: 3090: 3087: 3086: 3052: 3047: 3044: 3043: 3027: 3024: 3023: 3007: 3004: 3003: 2974: 2972: 2969: 2968: 2967:there is a set 2952: 2949: 2948: 2938: 2916: 2912: 2910: 2907: 2906: 2889: 2885: 2883: 2880: 2879: 2849: 2845: 2843: 2840: 2839: 2813: 2812: 2810: 2807: 2806: 2784: 2769: 2765: 2750: 2746: 2744: 2741: 2740: 2713: 2698: 2694: 2692: 2689: 2688: 2683:We can use the 2655: 2651: 2649: 2646: 2645: 2644:and is denoted 2629: 2626: 2625: 2596: 2591: 2590: 2588: 2585: 2584: 2550: 2545: 2542: 2541: 2516: 2493: 2476: 2473: 2472: 2443: 2440: 2439: 2411: 2408: 2407: 2382: 2380: 2377: 2376: 2360: 2357: 2356: 2340: 2337: 2336: 2334:Hausdorff space 2330: 2322: 2312: 2304: 2299: 2266: 2263: 2262: 2234: 2231: 2230: 2196: 2193: 2192: 2164: 2161: 2160: 2102: 2099: 2098: 2058: 2055: 2054: 2053:In general, if 1951: 1948: 1947: 1922: 1911: 1906: 1903: 1902: 1874: 1871: 1870: 1842: 1819: 1808: 1805: 1804: 1788: 1786: 1783: 1782: 1779: 1741: 1738: 1737: 1718: 1715: 1714: 1698: 1695: 1694: 1657: 1654: 1653: 1622: 1602: 1594: 1591: 1590: 1556: 1536: 1528: 1525: 1524: 1493: 1490: 1489: 1431: 1428: 1427: 1399: 1396: 1395: 1361: 1358: 1357: 1332: 1329: 1328: 1207: 1204: 1203: 1175: 1172: 1171: 1149: 1146: 1145: 1123: 1120: 1119: 1073: 1070: 1069: 1029: 1026: 1025: 991: 988: 987: 971: 968: 967: 951: 948: 947: 919: 916: 915: 861: 858: 857: 820: 817: 816: 779: 776: 775: 746: 742: 734: 728: 724: 715: 711: 703: 697: 693: 672: 668: 659: 655: 634: 630: 621: 617: 609: 606: 605: 565: 562: 561: 539: 533: 529: 512: 509: 508: 483: 477: 473: 465: 459: 455: 441: 435: 431: 423: 417: 413: 411: 408: 407: 385: 382: 381: 358: 354: 345: 341: 326: 322: 313: 309: 304: 301: 300: 268: 264: 262: 259: 258: 242: 239: 238: 216: 205: 202: 201: 193: 187: 171:superconductors 35: 28: 23: 22: 15: 12: 11: 5: 9581: 9571: 9570: 9553: 9552: 9550: 9549: 9539: 9538: 9537: 9532: 9527: 9512: 9502: 9492: 9480: 9469: 9466: 9465: 9463: 9462: 9457: 9452: 9447: 9442: 9437: 9431: 9429: 9423: 9422: 9420: 9419: 9414: 9409: 9407:Winding number 9404: 9399: 9393: 9391: 9387: 9386: 9384: 9383: 9378: 9373: 9368: 9363: 9358: 9353: 9348: 9347: 9346: 9341: 9339:homotopy group 9331: 9330: 9329: 9324: 9319: 9314: 9309: 9299: 9294: 9289: 9279: 9277: 9273: 9272: 9265: 9263: 9261: 9260: 9255: 9250: 9249: 9248: 9238: 9237: 9236: 9226: 9221: 9216: 9211: 9206: 9200: 9198: 9194: 9193: 9186: 9185: 9178: 9171: 9163: 9157: 9156: 9151: 9146: 9139: 9138:External links 9136: 9135: 9134: 9128: 9112: 9104:Hatcher, Allen 9100: 9082: 9076: 9052: 9046: 9026: 9020: 9007: 8993: 8968: 8954: 8946:Addison-Wesley 8932: 8929: 8926: 8925: 8912: 8899:hep-th/9405035 8877: 8862: 8839: 8810:(3): 381–424. 8791: 8767: 8721: 8697: 8673: 8652: 8643: 8636:Grothendieck. 8628: 8613: 8593: 8568: 8567: 8565: 8562: 8561: 8560: 8555: 8550: 8545: 8540: 8535: 8530: 8525: 8518: 8515: 8502: 8499: 8496: 8493: 8488: 8484: 8459: 8456: 8453: 8448: 8443: 8439: 8427: 8426: 8415: 8412: 8409: 8406: 8403: 8400: 8395: 8391: 8385: 8381: 8377: 8372: 8368: 8364: 8361: 8358: 8355: 8350: 8345: 8341: 8326:Q-construction 8313: 8290: 8266: 8263: 8260: 8257: 8252: 8248: 8227: 8224: 8216: 8215: 8204: 8201: 8196: 8191: 8187: 8183: 8180: 8177: 8172: 8167: 8163: 8159: 8153: 8150: 8146: 8139: 8134: 8131: 8128: 8124: 8120: 8113: 8109: 8104: 8100: 8097: 8094: 8087: 8083: 8078: 8074: 8071: 8068: 8065: 8062: 8059: 8036: 8033: 8028: 8024: 8020: 8015: 8011: 8007: 8002: 7998: 7975: 7971: 7967: 7964: 7961: 7956: 7952: 7948: 7945: 7934: 7933: 7922: 7916: 7913: 7906: 7902: 7898: 7895: 7890: 7886: 7877: 7872: 7869: 7866: 7862: 7858: 7855: 7852: 7849: 7846: 7841: 7837: 7833: 7830: 7827: 7824: 7821: 7818: 7815: 7812: 7809: 7780:Main article: 7777: 7774: 7770: 7769: 7758: 7753: 7748: 7743: 7738: 7734: 7730: 7727: 7722: 7717: 7712: 7705: 7701: 7696: 7692: 7689: 7684: 7679: 7674: 7667: 7663: 7658: 7654: 7651: 7646: 7643: 7640: 7636: 7630: 7626: 7622: 7597: 7593: 7589: 7584: 7580: 7576: 7573: 7553: 7550: 7545: 7541: 7537: 7532: 7528: 7516: 7515: 7504: 7499: 7495: 7491: 7488: 7485: 7480: 7475: 7468: 7464: 7460: 7437: 7417: 7397: 7377: 7355: 7351: 7347: 7343: 7331: 7330: 7319: 7316: 7311: 7307: 7303: 7299: 7295: 7290: 7285: 7278: 7274: 7270: 7265: 7261: 7257: 7254: 7231: 7228: 7225: 7213: 7210: 7208: 7205: 7200:Cohen-Macaulay 7187: 7182: 7179: 7174: 7168: 7162: 7157: 7152: 7149: 7145: 7141: 7138: 7135: 7132: 7127: 7123: 7101: 7080: 7060: 7040: 7037: 7034: 7031: 7028: 7024: 7020: 7015: 6982: 6978: 6975: 6972: 6969: 6964: 6960: 6956: 6936: 6933: 6930: 6922: 6919: 6916: 6913: 6908: 6881: 6878: 6875: 6872: 6869: 6866: 6861: 6857: 6853: 6848: 6844: 6839: 6835: 6832: 6829: 6824: 6820: 6816: 6813: 6810: 6807: 6802: 6798: 6794: 6791: 6788: 6785: 6782: 6777: 6773: 6769: 6764: 6760: 6756: 6753: 6733: 6730: 6727: 6722: 6718: 6689: 6686: 6683: 6678: 6668: 6665: 6663: 6659: 6656: 6653: 6648: 6644: 6640: 6635: 6632: 6629: 6624: 6620: 6616: 6615: 6612: 6609: 6606: 6601: 6591: 6588: 6586: 6582: 6579: 6576: 6573: 6568: 6564: 6560: 6555: 6552: 6549: 6546: 6541: 6537: 6533: 6532: 6510: 6507: 6504: 6499: 6495: 6491: 6486: 6483: 6480: 6475: 6471: 6450: 6430: 6410: 6407: 6404: 6399: 6395: 6374: 6354: 6351: 6348: 6343: 6333: 6328: 6325: 6322: 6319: 6314: 6310: 6289: 6286: 6283: 6280: 6260: 6240: 6237: 6234: 6231: 6228: 6208: 6186: 6183: 6180: 6176: 6155: 6152: 6149: 6144: 6141: 6138: 6135: 6131: 6127: 6124: 6121: 6118: 6115: 6112: 6109: 6104: 6101: 6098: 6095: 6091: 6083: 6080: 6077: 6073: 6069: 6066: 6062: 6058: 6053: 6050: 6047: 6042: 6038: 6026:regular scheme 6005: 5981: 5978: 5975: 5967: 5963: 5959: 5956: 5953: 5950: 5945: 5941: 5920: 5908: 5904: 5901: 5888: 5885: 5882: 5879: 5876: 5854: 5851: 5848: 5844: 5839: 5833: 5829: 5824: 5820: 5817: 5814: 5810: 5804: 5800: 5795: 5791: 5766: 5763: 5760: 5755: 5751: 5747: 5744: 5741: 5738: 5733: 5729: 5706: 5702: 5681: 5678: 5673: 5670: 5666: 5643: 5640: 5636: 5632: 5629: 5609: 5585: 5582: 5579: 5576: 5573: 5568: 5565: 5561: 5557: 5554: 5551: 5548: 5543: 5539: 5535: 5532: 5529: 5526: 5521: 5517: 5513: 5510: 5486: 5483: 5480: 5475: 5472: 5468: 5444: 5441: 5438: 5433: 5429: 5408: 5405: 5402: 5397: 5393: 5380: 5376: 5373: 5359: 5338: 5333: 5328: 5323: 5320: 5298: 5294: 5271: 5265: 5259: 5235: 5232: 5229: 5225: 5221: 5218: 5215: 5212: 5209: 5206: 5182: 5179: 5176: 5173: 5153: 5150: 5145: 5139: 5133: 5130: 5125: 5121: 5117: 5114: 5111: 5108: 5105: 5100: 5095: 5091: 5070: 5048: 5034: 5030: 5027: 5014: 5011: 5006: 5002: 4998: 4993: 4989: 4964: 4960: 4956: 4951: 4947: 4943: 4940: 4935: 4930: 4923: 4919: 4915: 4912: 4907: 4902: 4895: 4891: 4887: 4884: 4879: 4853: 4849: 4845: 4842: 4837: 4832: 4825: 4821: 4817: 4814: 4809: 4786: 4763: 4758: 4753: 4750: 4747: 4742: 4739: 4736: 4731: 4726: 4721: 4716: 4711: 4706: 4701: 4677: 4672: 4647: 4642: 4639: 4636: 4632: 4628: 4623: 4620: 4617: 4613: 4606: 4603: 4598: 4593: 4588: 4585: 4565: 4562: 4559: 4556: 4536: 4533: 4528: 4521: 4517: 4513: 4510: 4507: 4502: 4495: 4491: 4487: 4484: 4479: 4475: 4452: 4447: 4442: 4439: 4436: 4433: 4413: 4393: 4388: 4383: 4378: 4375: 4363: 4359: 4356: 4343: 4339: 4335: 4331: 4327: 4322: 4317: 4313: 4307: 4302: 4298: 4294: 4289: 4286: 4283: 4279: 4271: 4261: 4255: 4251: 4229: 4207: 4183: 4174: 4170: 4167: 4164: 4161: 4158: 4155: 4152: 4132: 4117: 4113: 4110: 4096: 4074: 4052: 4031: 4027: 4023: 4006: 4002: 3999: 3997: 3994: 3975:surgery theory 3967:quadratic form 3944:Daniel Quillen 3922: 3919: 3915:Swan's theorem 3895:vector bundles 3880:noncommutative 3845:Michael Atiyah 3841:vector bundles 3830:affine variety 3826:smooth variety 3739: 3736: 3719: 3716: 3713: 3708: 3704: 3692: 3691: 3679: 3675: 3672: 3669: 3666: 3663: 3660: 3656: 3652: 3649: 3646: 3643: 3638: 3634: 3630: 3627: 3609: 3608: 3597: 3593: 3589: 3585: 3580: 3574: 3569: 3564: 3561: 3554: 3548: 3540: 3536: 3531: 3525: 3521: 3517: 3514: 3511: 3508: 3505: 3502: 3498: 3493: 3487: 3484: 3481: 3476: 3471: 3448: 3445: 3442: 3437: 3433: 3412: 3392: 3389: 3386: 3381: 3377: 3356: 3353: 3350: 3345: 3341: 3329: 3328: 3317: 3314: 3310: 3305: 3299: 3294: 3289: 3285: 3280: 3274: 3271: 3256:if there is a 3245: 3241: 3236: 3230: 3227: 3224: 3220: 3215: 3209: 3206: 3203: 3198: 3193: 3173: 3170: 3167: 3164: 3161: 3138: 3126: 3123: 3110: 3107: 3104: 3099: 3095: 3074: 3071: 3068: 3065: 3062: 3059: 3051: 3031: 3011: 2987: 2984: 2981: 2956: 2937: 2934: 2919: 2915: 2892: 2888: 2863: 2860: 2857: 2852: 2848: 2827: 2824: 2821: 2794: 2791: 2787: 2783: 2780: 2777: 2772: 2768: 2764: 2759: 2756: 2753: 2749: 2720: 2716: 2712: 2709: 2706: 2701: 2697: 2669: 2666: 2663: 2658: 2654: 2633: 2613: 2610: 2607: 2604: 2599: 2594: 2572: 2569: 2566: 2563: 2560: 2557: 2549: 2538: 2537: 2526: 2522: 2519: 2515: 2512: 2509: 2506: 2503: 2499: 2496: 2492: 2489: 2486: 2483: 2480: 2453: 2450: 2447: 2427: 2424: 2421: 2418: 2415: 2395: 2392: 2389: 2364: 2344: 2329: 2326: 2310: 2302: 2298: 2295: 2282: 2279: 2276: 2273: 2270: 2250: 2247: 2244: 2241: 2238: 2227: 2226: 2215: 2212: 2209: 2206: 2203: 2200: 2180: 2177: 2174: 2171: 2168: 2148: 2145: 2142: 2139: 2136: 2133: 2130: 2127: 2124: 2121: 2118: 2115: 2112: 2109: 2106: 2083: 2080: 2077: 2074: 2071: 2068: 2065: 2062: 2051: 2050: 2039: 2036: 2033: 2030: 2027: 2024: 2021: 2018: 2015: 2012: 2009: 2006: 2003: 2000: 1997: 1994: 1991: 1988: 1985: 1982: 1979: 1976: 1973: 1970: 1967: 1964: 1961: 1958: 1955: 1932: 1928: 1925: 1921: 1917: 1914: 1910: 1890: 1887: 1884: 1881: 1878: 1858: 1855: 1852: 1849: 1845: 1841: 1838: 1835: 1832: 1829: 1826: 1822: 1818: 1815: 1812: 1791: 1778: 1775: 1763: 1760: 1757: 1754: 1751: 1748: 1745: 1725: 1722: 1702: 1682: 1679: 1676: 1673: 1670: 1667: 1664: 1661: 1641: 1637: 1634: 1631: 1628: 1625: 1621: 1617: 1614: 1611: 1608: 1605: 1601: 1598: 1575: 1571: 1568: 1565: 1562: 1559: 1555: 1551: 1548: 1545: 1542: 1539: 1535: 1532: 1518: 1517: 1506: 1503: 1500: 1497: 1477: 1474: 1471: 1468: 1465: 1462: 1459: 1456: 1453: 1450: 1447: 1444: 1441: 1438: 1435: 1412: 1409: 1406: 1403: 1383: 1380: 1377: 1374: 1371: 1368: 1365: 1345: 1342: 1339: 1336: 1325: 1324: 1313: 1310: 1307: 1304: 1301: 1298: 1295: 1292: 1289: 1286: 1283: 1280: 1277: 1274: 1271: 1268: 1265: 1262: 1259: 1256: 1253: 1250: 1247: 1244: 1241: 1238: 1235: 1232: 1229: 1226: 1223: 1220: 1217: 1214: 1211: 1188: 1185: 1182: 1179: 1159: 1156: 1153: 1133: 1130: 1127: 1107: 1104: 1101: 1098: 1095: 1092: 1089: 1086: 1083: 1080: 1077: 1057: 1054: 1051: 1048: 1045: 1042: 1039: 1036: 1033: 1013: 1010: 1007: 1004: 1001: 998: 995: 975: 955: 935: 932: 929: 926: 923: 892: 889: 886: 883: 880: 877: 874: 871: 868: 865: 845: 842: 839: 836: 833: 830: 827: 824: 804: 801: 798: 795: 792: 789: 786: 783: 772: 771: 760: 757: 754: 749: 745: 740: 737: 731: 727: 723: 718: 714: 709: 706: 700: 696: 692: 689: 686: 683: 680: 675: 671: 667: 662: 658: 654: 651: 648: 645: 642: 637: 633: 629: 624: 620: 616: 613: 590: 587: 584: 581: 578: 575: 572: 569: 546: 542: 536: 532: 528: 525: 522: 519: 516: 507:Then, the set 496: 493: 489: 486: 480: 476: 471: 468: 462: 458: 454: 451: 447: 444: 438: 434: 429: 426: 420: 416: 395: 392: 389: 378: 377: 366: 361: 357: 353: 348: 344: 340: 337: 334: 329: 325: 321: 316: 312: 308: 285: 282: 279: 276: 271: 267: 246: 226: 222: 219: 215: 212: 209: 197:abelian monoid 189:Main article: 186: 183: 175:Fermi surfaces 51:vector bundles 26: 9: 6: 4: 3: 2: 9580: 9569: 9566: 9565: 9563: 9548: 9540: 9536: 9533: 9531: 9528: 9526: 9523: 9522: 9521: 9513: 9511: 9507: 9503: 9501: 9497: 9493: 9491: 9486: 9481: 9479: 9471: 9470: 9467: 9461: 9458: 9456: 9453: 9451: 9448: 9446: 9443: 9441: 9438: 9436: 9433: 9432: 9430: 9428: 9424: 9418: 9417:Orientability 9415: 9413: 9410: 9408: 9405: 9403: 9400: 9398: 9395: 9394: 9392: 9388: 9382: 9379: 9377: 9374: 9372: 9369: 9367: 9364: 9362: 9359: 9357: 9354: 9352: 9349: 9345: 9342: 9340: 9337: 9336: 9335: 9332: 9328: 9325: 9323: 9320: 9318: 9315: 9313: 9310: 9308: 9305: 9304: 9303: 9300: 9298: 9295: 9293: 9290: 9288: 9284: 9281: 9280: 9278: 9274: 9269: 9259: 9256: 9254: 9253:Set-theoretic 9251: 9247: 9244: 9243: 9242: 9239: 9235: 9232: 9231: 9230: 9227: 9225: 9222: 9220: 9217: 9215: 9214:Combinatorial 9212: 9210: 9207: 9205: 9202: 9201: 9199: 9195: 9191: 9184: 9179: 9177: 9172: 9170: 9165: 9164: 9161: 9155: 9152: 9150: 9147: 9145: 9142: 9141: 9131: 9125: 9121: 9117: 9113: 9109: 9105: 9101: 9096: 9091: 9087: 9083: 9079: 9077:0-387-08090-2 9073: 9069: 9065: 9061: 9057: 9053: 9049: 9047:3-540-04245-8 9043: 9039: 9035: 9031: 9027: 9023: 9017: 9013: 9008: 9004: 9000: 8996: 8990: 8986: 8982: 8978: 8974: 8969: 8965: 8961: 8957: 8951: 8947: 8943: 8939: 8935: 8934: 8922: 8916: 8909: 8905: 8900: 8895: 8891: 8887: 8881: 8873: 8869: 8865: 8859: 8855: 8854: 8846: 8844: 8835: 8831: 8827: 8823: 8818: 8813: 8809: 8805: 8798: 8796: 8781: 8777: 8771: 8763: 8759: 8755: 8751: 8747: 8743: 8739: 8735: 8731: 8730:Manin, Yuri I 8725: 8711: 8707: 8701: 8687: 8683: 8677: 8670: 8666: 8665:Gregory Moore 8662: 8656: 8650:Karoubi, 2006 8647: 8639: 8632: 8624: 8620: 8616: 8610: 8606: 8605: 8597: 8588: 8583: 8579: 8573: 8569: 8559: 8556: 8554: 8551: 8549: 8546: 8544: 8541: 8539: 8536: 8534: 8531: 8529: 8526: 8524: 8521: 8520: 8514: 8497: 8491: 8486: 8482: 8473: 8454: 8446: 8441: 8437: 8413: 8404: 8398: 8393: 8389: 8383: 8379: 8370: 8366: 8362: 8356: 8348: 8343: 8339: 8331: 8330: 8329: 8327: 8311: 8304: 8288: 8280: 8261: 8255: 8250: 8246: 8237: 8233: 8223: 8221: 8202: 8194: 8189: 8185: 8181: 8178: 8175: 8170: 8165: 8161: 8151: 8148: 8144: 8132: 8129: 8126: 8122: 8118: 8111: 8107: 8102: 8098: 8095: 8092: 8085: 8081: 8076: 8072: 8066: 8060: 8057: 8050: 8049: 8048: 8034: 8026: 8022: 8013: 8009: 8005: 8000: 7996: 7973: 7969: 7965: 7962: 7959: 7954: 7950: 7946: 7943: 7920: 7914: 7911: 7904: 7896: 7888: 7884: 7870: 7867: 7864: 7860: 7856: 7847: 7839: 7835: 7828: 7825: 7822: 7816: 7810: 7807: 7800: 7799: 7798: 7796: 7792: 7788: 7787:Chern classes 7783: 7773: 7756: 7751: 7736: 7732: 7725: 7720: 7703: 7699: 7694: 7687: 7682: 7665: 7661: 7656: 7649: 7644: 7641: 7638: 7628: 7624: 7613: 7612: 7611: 7595: 7591: 7587: 7582: 7578: 7574: 7571: 7551: 7548: 7543: 7539: 7535: 7530: 7526: 7497: 7486: 7478: 7466: 7451: 7450: 7449: 7435: 7415: 7395: 7375: 7353: 7349: 7345: 7341: 7317: 7309: 7305: 7301: 7297: 7288: 7276: 7263: 7252: 7245: 7244: 7243: 7229: 7223: 7204: 7201: 7180: 7177: 7166: 7160: 7147: 7139: 7133: 7125: 7121: 7078: 7058: 7038: 7035: 7029: 7026: 7013: 6976: 6970: 6962: 6958: 6954: 6931: 6920: 6914: 6906: 6879: 6867: 6859: 6855: 6846: 6842: 6837: 6830: 6822: 6818: 6808: 6800: 6796: 6783: 6775: 6771: 6762: 6758: 6751: 6728: 6720: 6716: 6707: 6684: 6676: 6666: 6664: 6657: 6654: 6651: 6646: 6642: 6638: 6633: 6630: 6627: 6618: 6607: 6599: 6589: 6587: 6580: 6577: 6574: 6571: 6566: 6562: 6558: 6553: 6550: 6547: 6544: 6535: 6508: 6505: 6502: 6497: 6493: 6489: 6484: 6481: 6478: 6473: 6469: 6448: 6428: 6405: 6397: 6393: 6372: 6349: 6341: 6331: 6326: 6323: 6320: 6317: 6312: 6308: 6284: 6278: 6258: 6238: 6232: 6229: 6226: 6206: 6181: 6174: 6150: 6142: 6139: 6136: 6133: 6129: 6116: 6110: 6102: 6099: 6096: 6093: 6089: 6078: 6071: 6067: 6064: 6060: 6056: 6051: 6048: 6045: 6040: 6036: 6027: 6023: 6019: 6003: 5995: 5976: 5965: 5957: 5951: 5943: 5939: 5918: 5900: 5886: 5883: 5880: 5877: 5874: 5852: 5849: 5846: 5831: 5827: 5818: 5815: 5812: 5802: 5798: 5761: 5753: 5749: 5739: 5731: 5727: 5719:then the map 5704: 5700: 5679: 5671: 5668: 5664: 5641: 5638: 5634: 5627: 5607: 5599: 5583: 5574: 5566: 5563: 5559: 5549: 5541: 5537: 5527: 5519: 5515: 5508: 5500: 5481: 5473: 5470: 5466: 5458: 5439: 5431: 5427: 5403: 5395: 5391: 5372: 5331: 5318: 5296: 5292: 5269: 5233: 5230: 5227: 5223: 5219: 5216: 5213: 5210: 5207: 5204: 5196: 5177: 5171: 5143: 5128: 5123: 5119: 5112: 5109: 5106: 5068: 5026: 5012: 5009: 5004: 5000: 4996: 4991: 4987: 4962: 4958: 4954: 4949: 4945: 4941: 4938: 4928: 4921: 4917: 4913: 4910: 4900: 4893: 4889: 4885: 4882: 4851: 4847: 4843: 4840: 4830: 4823: 4819: 4815: 4812: 4761: 4751: 4748: 4745: 4740: 4737: 4734: 4724: 4719: 4709: 4704: 4675: 4640: 4637: 4634: 4630: 4618: 4604: 4596: 4583: 4560: 4554: 4519: 4515: 4508: 4493: 4489: 4477: 4473: 4450: 4437: 4434: 4431: 4411: 4386: 4373: 4355: 4337: 4329: 4325: 4320: 4311: 4300: 4296: 4284: 4269: 4259: 4253: 4249: 4197: 4172: 4165: 4162: 4156: 4150: 4130: 4123: 4109: 3993: 3991: 3987: 3983: 3982:string theory 3978: 3976: 3972: 3968: 3963: 3961: 3957: 3953: 3949: 3945: 3941: 3940: 3934: 3932: 3928: 3918: 3916: 3912: 3908: 3904: 3901:to formulate 3900: 3896: 3892: 3887: 3885: 3882:K-theory for 3881: 3877: 3873: 3869: 3865: 3862: 3858: 3854: 3850: 3846: 3842: 3838: 3833: 3831: 3827: 3823: 3818: 3816: 3812: 3808: 3805:behavior and 3804: 3803:cohomological 3800: 3796: 3792: 3788: 3784: 3781:are used, or 3780: 3776: 3772: 3768: 3764: 3761: 3757: 3753: 3749: 3745: 3738:Early history 3735: 3733: 3714: 3706: 3702: 3673: 3667: 3661: 3650: 3644: 3636: 3632: 3628: 3625: 3618: 3617: 3616: 3614: 3595: 3591: 3583: 3572: 3559: 3552: 3538: 3534: 3529: 3523: 3515: 3512: 3506: 3503: 3496: 3482: 3462: 3461: 3460: 3443: 3435: 3431: 3410: 3387: 3379: 3375: 3351: 3343: 3339: 3315: 3308: 3283: 3269: 3262: 3261: 3260: 3259: 3239: 3225: 3218: 3204: 3168: 3162: 3159: 3152: 3136: 3122: 3105: 3097: 3093: 3069: 3066: 3060: 3029: 3009: 3001: 2982: 2954: 2947: 2943: 2933: 2917: 2913: 2890: 2886: 2877: 2858: 2850: 2846: 2822: 2781: 2778: 2770: 2766: 2757: 2754: 2751: 2747: 2738: 2734: 2710: 2707: 2699: 2695: 2686: 2681: 2664: 2656: 2652: 2631: 2611: 2605: 2602: 2597: 2567: 2564: 2558: 2520: 2517: 2513: 2510: 2504: 2497: 2494: 2487: 2481: 2471: 2470: 2469: 2467: 2448: 2425: 2419: 2416: 2413: 2390: 2362: 2342: 2335: 2325: 2320: 2316: 2308: 2294: 2277: 2274: 2271: 2245: 2242: 2239: 2213: 2207: 2204: 2201: 2175: 2172: 2169: 2143: 2140: 2137: 2134: 2131: 2128: 2125: 2119: 2113: 2110: 2107: 2097: 2096: 2095: 2078: 2075: 2072: 2063: 2060: 2034: 2031: 2028: 2022: 2016: 2013: 2010: 2004: 1998: 1995: 1992: 1986: 1980: 1977: 1974: 1968: 1962: 1959: 1956: 1946: 1945: 1944: 1926: 1923: 1919: 1915: 1912: 1885: 1882: 1879: 1869:For any pair 1856: 1850: 1847: 1836: 1827: 1824: 1810: 1774: 1761: 1758: 1749: 1743: 1723: 1720: 1700: 1677: 1671: 1665: 1662: 1659: 1639: 1599: 1596: 1589: 1573: 1533: 1530: 1523: 1504: 1501: 1498: 1495: 1472: 1469: 1466: 1463: 1460: 1457: 1454: 1448: 1442: 1439: 1436: 1426: 1425: 1424: 1410: 1407: 1404: 1401: 1375: 1372: 1369: 1340: 1334: 1305: 1302: 1299: 1290: 1281: 1278: 1275: 1272: 1269: 1266: 1263: 1254: 1245: 1242: 1239: 1230: 1221: 1218: 1215: 1202: 1201: 1200: 1199:This implies 1186: 1183: 1180: 1177: 1157: 1154: 1151: 1131: 1128: 1125: 1102: 1099: 1096: 1090: 1084: 1081: 1078: 1055: 1049: 1046: 1040: 1034: 1005: 1002: 999: 973: 953: 930: 927: 924: 913: 908: 906: 890: 881: 878: 875: 863: 840: 834: 828: 825: 822: 799: 796: 790: 784: 758: 747: 743: 738: 735: 729: 725: 721: 716: 712: 707: 704: 698: 694: 684: 673: 669: 665: 660: 656: 646: 635: 631: 627: 622: 618: 604: 603: 602: 585: 582: 576: 570: 560: 544: 540: 534: 530: 526: 520: 514: 494: 491: 487: 484: 478: 474: 469: 466: 460: 456: 452: 449: 445: 442: 436: 432: 427: 424: 418: 414: 393: 390: 387: 359: 355: 351: 346: 342: 335: 327: 323: 319: 314: 310: 299: 298: 297: 283: 280: 277: 274: 269: 265: 244: 220: 217: 213: 210: 198: 192: 182: 180: 176: 172: 168: 164: 160: 156: 152: 148: 144: 140: 136: 131: 129: 125: 121: 117: 112: 107: 103: 98: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 49:generated by 48: 44: 40: 33: 19: 9547:Publications 9412:Chern number 9402:Betti number 9285: / 9276:Key concepts 9224:Differential 9119: 9095:math/0602082 9086:Karoubi, Max 9059: 9056:Karoubi, Max 9033: 9011: 8972: 8941: 8915: 8889: 8880: 8852: 8807: 8803: 8783:. Retrieved 8780:MathOverflow 8779: 8770: 8737: 8733: 8724: 8713:. Retrieved 8710:MathOverflow 8709: 8700: 8689:. Retrieved 8685: 8676: 8655: 8646: 8631: 8603: 8596: 8587:math/0012213 8572: 8428: 8229: 8217: 7935: 7794: 7785: 7771: 7517: 7332: 7215: 7207:Applications 5994:Picard group 5910: 5382: 5194: 5036: 4365: 4119: 4042:for a field 4008: 3979: 3964: 3955: 3937: 3935: 3924: 3921:Developments 3888: 3863: 3856: 3852: 3834: 3821: 3819: 3810: 3806: 3798: 3794: 3786: 3782: 3777:) when only 3774: 3770: 3762: 3751: 3741: 3693: 3610: 3330: 3128: 2939: 2682: 2539: 2331: 2323: 2228: 2052: 1780: 1519: 1326: 909: 903:which has a 773: 379: 194: 132: 101: 99: 42: 36: 9510:Wikiversity 9427:Key results 9030:Swan, R. G. 8740:(5): 1–89. 5197:with basis 3884:C*-algebras 3815:homological 2466:direct sums 2438:be denoted 2297:Definitions 296:defined by 173:and stable 39:mathematics 9356:CW complex 9297:Continuity 9287:Closed set 9246:cohomology 8931:References 8817:1809.10919 8785:2020-10-20 8715:2020-10-20 8691:2017-04-16 5164:is a free 4005:of a field 3817:behavior. 3611:Using the 2737:idempotent 2375:, denoted 406:such that 126:, and the 91:invariants 65:, it is a 9535:geometric 9530:algebraic 9381:Cobordism 9317:Hausdorff 9312:connected 9229:Geometric 9219:Continuum 9209:Algebraic 8872:624583210 8762:0036-0279 8623:227161674 8533:KR-theory 8528:KK-theory 8492:⁡ 8399:⁡ 8367:π 8256:⁡ 8179:⋯ 8138:∞ 8123:∑ 8096:⋯ 8061:⁡ 7966:⊕ 7963:⋯ 7960:⊕ 7876:∞ 7861:∑ 7829:⁡ 7811:⁡ 7726:− 7588:∩ 7549:⊂ 7494:Ω 7487:− 7463:Ω 7315:→ 7294:→ 7273:Ω 7269:→ 7260:Ω 7256:→ 7227:↪ 7148:⊕ 7140:≅ 6977:≅ 6921:≅ 6877:→ 6815:→ 6793:→ 6755:→ 6667:≅ 6639:≅ 6623:∞ 6590:≅ 6578:− 6559:≅ 6551:− 6540:∞ 6332:≅ 6324:− 6236:→ 6140:− 6134:− 6126:⇒ 6100:− 6094:− 6068:∈ 6061:∐ 5966:⊕ 5884:⁡ 5850:− 5816:… 5746:→ 5677:↪ 5631:→ 5581:→ 5556:→ 5534:→ 5512:→ 5509:⋯ 5231:− 5224:ξ 5217:… 5211:ξ 5144:∨ 5129:⁡ 5124:∙ 5113:⁡ 5010:≤ 4955:− 4942:− 4914:− 4901:∩ 4886:− 4844:− 4816:− 4752:∐ 4749:⋯ 4746:∐ 4738:− 4725:∐ 4520:∗ 4509:⋅ 4494:∗ 4478:∗ 4441:↪ 4338:⊕ 4312:× 3674:⊗ 3659:→ 3651:⊗ 3560:⁡ 3513:− 3507:∑ 3483:⋅ 3313:→ 3298:→ 3288:→ 3273:→ 3163:⁡ 3070:⊕ 3030:⊕ 2755:× 2609:→ 2603:× 2568:⊕ 2514:⊕ 2488:⊕ 2423:→ 2414:π 2141:− 2129:− 2120:∼ 2023:∼ 2005:∼ 1987:∼ 1969:∼ 1756:→ 1669:→ 1660:ϕ 1620:→ 1554:→ 1499:∈ 1449:∼ 1405:− 1129:∈ 1091:∼ 867:↦ 856:given by 832:→ 545:∼ 391:∈ 336:∼ 281:× 245:∼ 93:of large 69:known as 9568:K-theory 9562:Category 9500:Wikibook 9478:Category 9366:Manifold 9334:Homotopy 9292:Interior 9283:Open set 9241:Homology 9190:Topology 9118:(2013). 9106:(2003). 9058:(1978). 9038:Springer 9032:(1968). 8942:K-theory 8940:(1989). 8834:85502709 8517:See also 6994:. Since 6523:, hence 6024:. For a 4196:Artinian 3990:D-branes 3971:L-theory 3859:) for a 3851:defined 3837:topology 3584:′ 3497:′ 3309:″ 3284:′ 3240:″ 3219:′ 2944:. For a 2521:′ 2498:′ 1927:′ 1916:′ 1488:for any 1118:for any 986:so that 739:′ 708:′ 488:′ 470:′ 446:′ 428:′ 221:′ 147:D-branes 106:functors 95:matrices 43:K-theory 32:K Theory 18:K theory 9525:general 9327:uniform 9307:compact 9258:Digital 9003:2182598 8964:1043170 8908:1363062 8742:Bibcode 8663:), and 8470:is the 7113:, then 1522:functor 1068:First, 601:where: 155:spinors 75:algebra 53:over a 9520:Topics 9322:metric 9197:Fields 9126:  9074:  9044:  9018:  9001:  8991:  8962:  8952:  8906:  8870:  8860:  8832:  8760:  8621:  8611:  8234:is an 7333:where 6271:, and 3946:using 3813:) has 3801:) has 3758:on an 3752:Klasse 2313:, see 122:, the 111:groups 59:scheme 9302:Space 9090:arXiv 8894:arXiv 8830:S2CID 8812:arXiv 8582:arXiv 8564:Notes 8301:with 7091:over 5497:from 3897:with 3824:is a 2094:then 559:group 161:. In 73:. In 61:. In 9124:ISBN 9072:ISBN 9042:ISBN 9016:ISBN 8989:ISBN 8950:ISBN 8868:OCLC 8858:ISBN 8758:ISSN 8619:OCLC 8609:ISBN 8230:The 6704:The 6166:for 5992:for 5867:for 5419:and 5110:Proj 4979:for 4265:Spec 4018:Spec 3911:free 3847:and 3730:for 3054:Vect 2976:Vect 2815:Idem 2552:Vect 2384:Vect 2317:and 237:let 77:and 47:ring 9064:doi 8981:doi 8822:doi 8750:doi 8667:in 8483:Coh 8474:of 8390:Coh 8277:of 8247:Coh 7826:exp 7610:as 7388:in 7004:Ext 6925:Pic 6020:of 5996:of 5970:Pic 5881:dim 5786:lcm 5120:Sym 4177:red 3980:In 3909:is 3835:In 3820:If 3535:Tor 3403:if 3160:Coh 3002:on 2731:as 2191:or 2067:min 966:by 157:on 133:In 57:or 37:In 9564:: 9070:. 9040:. 8999:MR 8997:. 8987:. 8979:. 8960:MR 8958:. 8948:. 8904:MR 8902:, 8866:. 8842:^ 8828:. 8820:. 8806:. 8794:^ 8778:. 8756:. 8748:. 8738:24 8736:. 8708:. 8684:. 8617:. 8222:. 8119::= 8058:ch 7857::= 7808:ch 7009:Ab 6902:CH 6672:CH 6595:CH 6337:CH 5899:. 5371:. 5025:. 4108:. 3977:. 3962:. 3933:. 3886:. 3843:, 3793:; 3734:. 3626:ch 3316:0. 2932:. 2680:. 2064::= 907:. 181:. 169:, 149:, 130:. 118:, 97:. 41:, 9182:e 9175:t 9168:v 9132:. 9110:. 9098:. 9092:: 9080:. 9066:: 9050:. 9024:. 9005:. 8983:: 8966:. 8923:. 8896:: 8874:. 8836:. 8824:: 8814:: 8808:6 8788:. 8764:. 8752:: 8744:: 8718:. 8694:. 8671:. 8640:. 8625:. 8590:. 8584:: 8501:) 8498:X 8495:( 8487:G 8458:) 8455:C 8452:( 8447:G 8442:0 8438:K 8414:. 8411:) 8408:) 8405:X 8402:( 8394:G 8384:+ 8380:B 8376:( 8371:i 8363:= 8360:) 8357:X 8354:( 8349:G 8344:i 8340:K 8312:G 8289:X 8265:) 8262:X 8259:( 8251:G 8203:. 8200:) 8195:m 8190:n 8186:x 8182:+ 8176:+ 8171:m 8166:1 8162:x 8158:( 8152:! 8149:m 8145:1 8133:0 8130:= 8127:m 8112:n 8108:x 8103:e 8099:+ 8093:+ 8086:1 8082:x 8077:e 8073:= 8070:) 8067:V 8064:( 8035:, 8032:) 8027:i 8023:L 8019:( 8014:1 8010:c 8006:= 8001:i 7997:x 7974:n 7970:L 7955:1 7951:L 7947:= 7944:V 7921:. 7915:! 7912:m 7905:m 7901:) 7897:L 7894:( 7889:1 7885:c 7871:0 7868:= 7865:m 7854:) 7851:) 7848:L 7845:( 7840:1 7836:c 7832:( 7823:= 7820:) 7817:L 7814:( 7795:L 7757:. 7752:Z 7747:| 7742:] 7737:X 7733:T 7729:[ 7721:Z 7716:| 7711:] 7704:2 7700:Y 7695:T 7691:[ 7688:+ 7683:Z 7678:| 7673:] 7666:1 7662:Y 7657:T 7653:[ 7650:= 7645:r 7642:i 7639:v 7635:] 7629:Z 7625:T 7621:[ 7596:2 7592:Y 7583:1 7579:Y 7575:= 7572:Z 7552:X 7544:2 7540:Y 7536:, 7531:1 7527:Y 7503:] 7498:Y 7490:[ 7484:] 7479:Y 7474:| 7467:X 7459:[ 7436:X 7416:Y 7396:X 7376:Y 7354:X 7350:/ 7346:Y 7342:C 7318:0 7310:X 7306:/ 7302:Y 7298:C 7289:Y 7284:| 7277:X 7264:Y 7253:0 7230:X 7224:Y 7186:) 7181:g 7178:2 7173:Z 7167:/ 7161:g 7156:C 7151:( 7144:Z 7137:) 7134:C 7131:( 7126:0 7122:K 7100:C 7079:g 7059:C 7039:0 7036:= 7033:) 7030:G 7027:, 7023:Z 7019:( 7014:1 6981:Z 6974:) 6971:C 6968:( 6963:0 6959:H 6955:C 6935:) 6932:C 6929:( 6918:) 6915:C 6912:( 6907:1 6880:0 6874:) 6871:) 6868:X 6865:( 6860:0 6856:K 6852:( 6847:1 6843:F 6838:/ 6834:) 6831:X 6828:( 6823:0 6819:K 6812:) 6809:X 6806:( 6801:0 6797:K 6790:) 6787:) 6784:X 6781:( 6776:0 6772:K 6768:( 6763:1 6759:F 6752:0 6732:) 6729:C 6726:( 6721:0 6717:K 6688:) 6685:C 6682:( 6677:0 6658:0 6655:, 6652:0 6647:2 6643:E 6634:0 6631:, 6628:0 6619:E 6611:) 6608:C 6605:( 6600:1 6581:1 6575:, 6572:1 6567:2 6563:E 6554:1 6548:, 6545:1 6536:E 6509:q 6506:, 6503:1 6498:1 6494:E 6490:, 6485:q 6482:, 6479:0 6474:1 6470:E 6449:2 6429:C 6409:) 6406:C 6403:( 6398:0 6394:K 6373:X 6353:) 6350:X 6347:( 6342:p 6327:p 6321:, 6318:p 6313:2 6309:E 6288:) 6285:x 6282:( 6279:k 6259:p 6239:X 6233:Y 6230:: 6227:x 6207:p 6185:) 6182:p 6179:( 6175:X 6154:) 6151:X 6148:( 6143:q 6137:p 6130:K 6123:) 6120:) 6117:x 6114:( 6111:k 6108:( 6103:q 6097:p 6090:K 6082:) 6079:p 6076:( 6072:X 6065:x 6057:= 6052:q 6049:, 6046:p 6041:1 6037:E 6004:C 5980:) 5977:C 5974:( 5962:Z 5958:= 5955:) 5952:C 5949:( 5944:0 5940:K 5919:C 5905:0 5903:K 5887:X 5878:= 5875:n 5853:1 5847:n 5843:) 5838:| 5832:k 5828:G 5823:| 5819:, 5813:, 5809:| 5803:1 5799:G 5794:| 5790:( 5765:) 5762:X 5759:( 5754:0 5750:K 5743:) 5740:X 5737:( 5732:0 5728:K 5705:i 5701:G 5680:X 5672:m 5669:s 5665:X 5642:m 5639:s 5635:X 5628:E 5608:X 5584:0 5578:) 5575:X 5572:( 5567:g 5564:s 5560:K 5553:) 5550:X 5547:( 5542:0 5538:K 5531:) 5528:X 5525:( 5520:0 5516:K 5485:) 5482:X 5479:( 5474:g 5471:s 5467:D 5443:) 5440:X 5437:( 5432:0 5428:K 5407:) 5404:X 5401:( 5396:0 5392:K 5377:0 5375:K 5358:F 5337:) 5332:n 5327:P 5322:( 5319:K 5297:0 5293:K 5270:n 5264:F 5258:P 5234:1 5228:n 5220:, 5214:, 5208:, 5205:1 5195:r 5181:) 5178:X 5175:( 5172:K 5152:) 5149:) 5138:E 5132:( 5116:( 5107:= 5104:) 5099:E 5094:( 5090:P 5069:X 5047:E 5031:0 5029:K 5013:n 5005:2 5001:k 4997:+ 4992:1 4988:k 4963:2 4959:k 4950:1 4946:k 4939:n 4934:A 4929:= 4922:2 4918:k 4911:n 4906:A 4894:1 4890:k 4883:n 4878:A 4852:2 4848:k 4841:n 4836:A 4831:, 4824:1 4820:k 4813:n 4808:A 4785:Z 4762:0 4757:A 4741:1 4735:n 4730:A 4720:n 4715:A 4710:= 4705:n 4700:P 4676:n 4671:P 4646:) 4641:1 4638:+ 4635:n 4631:T 4627:( 4622:] 4619:T 4616:[ 4612:Z 4605:= 4602:) 4597:n 4592:P 4587:( 4584:K 4564:) 4561:X 4558:( 4555:K 4535:) 4532:] 4527:F 4516:i 4512:[ 4506:] 4501:E 4490:i 4486:[ 4483:( 4474:i 4451:n 4446:P 4438:X 4435:: 4432:i 4412:X 4392:) 4387:n 4382:P 4377:( 4374:K 4360:0 4358:K 4342:Z 4334:Z 4330:= 4326:) 4321:) 4316:F 4306:) 4301:9 4297:x 4293:( 4288:] 4285:x 4282:[ 4278:F 4270:( 4260:( 4254:0 4250:K 4228:Z 4206:F 4182:) 4173:X 4169:( 4166:K 4163:= 4160:) 4157:X 4154:( 4151:K 4131:X 4114:0 4112:K 4095:Z 4073:N 4051:F 4030:) 4026:F 4022:( 4003:0 4001:K 3864:X 3857:X 3855:( 3853:K 3822:X 3811:X 3809:( 3807:G 3799:X 3797:( 3795:K 3787:X 3785:( 3783:G 3775:X 3773:( 3771:K 3763:X 3718:) 3715:X 3712:( 3707:0 3703:K 3678:Q 3671:) 3668:X 3665:( 3662:A 3655:Q 3648:) 3645:X 3642:( 3637:0 3633:K 3629:: 3596:. 3592:] 3588:) 3579:E 3573:, 3568:E 3563:( 3553:X 3547:O 3539:k 3530:[ 3524:k 3520:) 3516:1 3510:( 3504:= 3501:] 3492:E 3486:[ 3480:] 3475:E 3470:[ 3447:) 3444:X 3441:( 3436:0 3432:K 3411:X 3391:) 3388:X 3385:( 3380:0 3376:K 3355:) 3352:X 3349:( 3344:0 3340:K 3304:E 3293:E 3279:E 3270:0 3244:] 3235:E 3229:[ 3226:+ 3223:] 3214:E 3208:[ 3205:= 3202:] 3197:E 3192:[ 3172:) 3169:X 3166:( 3137:X 3109:) 3106:X 3103:( 3098:0 3094:K 3073:) 3067:, 3064:) 3061:X 3058:( 3050:( 3010:X 2986:) 2983:X 2980:( 2955:X 2918:n 2914:S 2891:0 2887:K 2862:) 2859:X 2856:( 2851:0 2847:K 2826:) 2823:X 2820:( 2793:) 2790:) 2786:C 2782:; 2779:X 2776:( 2771:0 2767:C 2763:( 2758:n 2752:n 2748:M 2719:) 2715:C 2711:; 2708:X 2705:( 2700:0 2696:C 2668:) 2665:X 2662:( 2657:0 2653:K 2632:X 2612:X 2606:X 2598:0 2593:R 2571:) 2565:, 2562:) 2559:X 2556:( 2548:( 2525:] 2518:E 2511:E 2508:[ 2505:= 2502:] 2495:E 2491:[ 2485:] 2482:E 2479:[ 2452:] 2449:E 2446:[ 2426:X 2420:E 2417:: 2394:) 2391:X 2388:( 2363:X 2343:X 2321:. 2311:i 2303:0 2281:) 2278:b 2275:, 2272:0 2269:( 2249:) 2246:0 2243:, 2240:a 2237:( 2214:. 2211:) 2208:d 2205:, 2202:0 2199:( 2179:) 2176:0 2173:, 2170:c 2167:( 2147:) 2144:k 2138:b 2135:, 2132:k 2126:a 2123:( 2117:) 2114:b 2111:, 2108:a 2105:( 2082:} 2079:b 2076:, 2073:a 2070:{ 2061:k 2038:) 2035:2 2032:, 2029:0 2026:( 2020:) 2017:3 2014:, 2011:1 2008:( 2002:) 1999:4 1996:, 1993:2 1990:( 1984:) 1981:5 1978:, 1975:3 1972:( 1966:) 1963:6 1960:, 1957:4 1954:( 1931:) 1924:b 1920:, 1913:a 1909:( 1889:) 1886:b 1883:, 1880:a 1877:( 1857:. 1854:) 1851:+ 1848:, 1844:Z 1840:( 1837:= 1834:) 1831:) 1828:+ 1825:, 1821:N 1817:( 1814:( 1811:G 1790:N 1762:. 1759:B 1753:) 1750:A 1747:( 1744:G 1724:, 1721:B 1701:A 1681:) 1678:B 1675:( 1672:U 1666:A 1663:: 1640:. 1636:n 1633:o 1630:M 1627:b 1624:A 1616:p 1613:r 1610:G 1607:b 1604:A 1600:: 1597:U 1574:, 1570:p 1567:r 1564:G 1561:b 1558:A 1550:n 1547:o 1544:M 1541:b 1538:A 1534:: 1531:G 1505:. 1502:A 1496:k 1476:) 1473:k 1470:+ 1467:b 1464:, 1461:k 1458:+ 1455:a 1452:( 1446:) 1443:b 1440:, 1437:a 1434:( 1411:. 1408:b 1402:a 1382:] 1379:) 1376:b 1373:, 1370:a 1367:( 1364:[ 1344:) 1341:A 1338:( 1335:G 1312:] 1309:) 1306:0 1303:, 1300:0 1297:( 1294:[ 1291:= 1288:] 1285:) 1282:b 1279:+ 1276:a 1273:, 1270:b 1267:+ 1264:a 1261:( 1258:[ 1255:= 1252:] 1249:) 1246:a 1243:, 1240:b 1237:( 1234:[ 1231:+ 1228:] 1225:) 1222:b 1219:, 1216:a 1213:( 1210:[ 1187:. 1184:n 1181:= 1178:n 1158:0 1155:= 1152:c 1132:A 1126:n 1106:) 1103:n 1100:, 1097:n 1094:( 1088:) 1085:0 1082:, 1079:0 1076:( 1056:. 1053:) 1050:+ 1047:, 1044:) 1041:A 1038:( 1035:G 1032:( 1012:] 1009:) 1006:0 1003:, 1000:0 997:( 994:[ 974:0 954:A 934:) 931:+ 928:, 925:A 922:( 891:, 888:] 885:) 882:0 879:, 876:a 873:( 870:[ 864:a 844:) 841:A 838:( 835:G 829:A 826:: 823:i 803:) 800:+ 797:, 794:) 791:A 788:( 785:G 782:( 759:. 756:] 753:) 748:2 744:b 736:+ 730:2 726:a 722:, 717:1 713:b 705:+ 699:1 695:a 691:( 688:[ 685:= 682:] 679:) 674:2 670:b 666:, 661:1 657:b 653:( 650:[ 647:+ 644:] 641:) 636:2 632:a 628:, 623:1 619:a 615:( 612:[ 589:) 586:+ 583:, 580:) 577:A 574:( 571:G 568:( 541:/ 535:2 531:A 527:= 524:) 521:A 518:( 515:G 495:. 492:c 485:+ 479:1 475:b 467:+ 461:2 457:a 453:= 450:c 443:+ 437:2 433:b 425:+ 419:1 415:a 394:A 388:c 365:) 360:2 356:b 352:, 347:1 343:b 339:( 333:) 328:2 324:a 320:, 315:1 311:a 307:( 284:A 278:A 275:= 270:2 266:A 225:) 218:+ 214:, 211:A 208:( 104:- 102:K 34:. 20:)

Index

K theory
K Theory
mathematics
ring
vector bundles
topological space
scheme
algebraic topology
cohomology theory
topological K-theory
algebra
algebraic geometry
algebraic K-theory
operator algebras
invariants
matrices
functors
groups
Grothendieck–Riemann–Roch theorem
Bott periodicity
Atiyah–Singer index theorem
Adams operations
high energy physics
twisted K-theory
Type II string theory
D-branes
Ramond–Ramond field strengths
spinors
generalized complex manifolds
condensed matter physics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑