Knowledge

Adams operation

Source 📝

351: 227:
of line bundles. In this special case the result of any Adams operation is naturally a vector bundle, not a linear combination of ones in
269: 389: 129: 137: 468: 463: 67:
Adams operations ψ on K theory (algebraic or topological) are characterized by the following properties.
377: 200:-group, in which vector bundles may be formally combined by addition, subtraction and multiplication ( 236: 231:-theory. Treating the line bundle direct factors formally as roots is something rather standard in 381: 371: 161: 417: 252: 33: 29: 446: 399: 8: 240: 169: 434: 232: 168:-th exterior power. From classical algebra it is known that the power sums are certain 45: 37: 385: 209: 98: 72: 442: 426: 395: 219:
Justification of the expected properties comes from the line bundle case, where
201: 105: 457: 213: 49: 40:
or other types of algebraic construction, defined on a pattern introduced by
412: 373:
Explicit Brauer Induction: With Applications to Algebra and Number Theory
224: 79: 56: 41: 17: 438: 150: 86: 430: 346:{\displaystyle \chi _{\psi ^{k}(\rho )}(g)=\chi _{\rho }(g^{k})\ .} 239:). In general a mechanism for reducing to that case comes from the 246: 44:. The basic idea is to implement some fundamental identities in 376:. Cambridge Studies in Advanced Mathematics. Vol. 40. 263:
with character χ. The representation ψ(ρ) has character
52:
or other representing object in more abstract theories.
55:
Adams operations can be defined more generally in any
272: 186:. The idea is to apply the same polynomials to the Λ( 345: 104:, there is an analogy between Adams operators and 93:The fundamental idea is that for a vector bundle 455: 251:The Adams operation has a simple expression in 247:Adams operations in group representation theory 62: 415:(May 1962). "Vector Fields on Spheres". 196:. This calculation can be defined in a 456: 369: 411: 259:be a group and ρ a representation of 363: 204:). The polynomials here are called 13: 14: 480: 24:, denoted ψ for natural numbers 78:ψ(l)= l if l is the class of a 334: 321: 305: 299: 294: 288: 1: 356: 138:elementary symmetric function 36:, or any allied operation in 63:Adams operations in K-theory 7: 10: 485: 378:Cambridge University Press 190:), taking the place of σ 48:theory, at the level of 370:Snaith, V. P. (1994). 347: 164:.) Here Λ denotes the 418:Annals of Mathematics 348: 270: 253:group representation 243:for vector bundles. 237:Leray–Hirsch theorem 170:integral polynomials 149:of the roots α of a 34:topological K-theory 30:cohomology operation 469:Symmetric functions 241:splitting principle 208:(not, however, the 162:Newton's identities 464:Algebraic topology 343: 233:algebraic topology 210:Newton polynomials 206:Newton polynomials 73:ring homomorphisms 46:symmetric function 38:algebraic K-theory 421:. Second Series. 339: 99:topological space 476: 450: 404: 403: 367: 352: 350: 349: 344: 337: 333: 332: 320: 319: 298: 297: 287: 286: 484: 483: 479: 478: 477: 475: 474: 473: 454: 453: 431:10.2307/1970213 408: 407: 392: 368: 364: 359: 328: 324: 315: 311: 282: 278: 277: 273: 271: 268: 267: 249: 195: 185: 179: 145: 106:exterior powers 65: 22:Adams operation 12: 11: 5: 482: 472: 471: 466: 452: 451: 425:(3): 603–632. 406: 405: 390: 361: 360: 358: 355: 354: 353: 342: 336: 331: 327: 323: 318: 314: 310: 307: 304: 301: 296: 293: 290: 285: 281: 276: 248: 245: 202:tensor product 191: 181: 175: 147: 146: 141: 132:Σ α is to the 122: 121: 91: 90: 83: 76: 64: 61: 50:vector bundles 9: 6: 4: 3: 2: 481: 470: 467: 465: 462: 461: 459: 448: 444: 440: 436: 432: 428: 424: 420: 419: 414: 410: 409: 401: 397: 393: 391:0-521-46015-8 387: 383: 379: 375: 374: 366: 362: 340: 329: 325: 316: 312: 308: 302: 291: 283: 279: 274: 266: 265: 264: 262: 258: 255:theory. Let 254: 244: 242: 238: 234: 230: 226: 222: 217: 215: 214:interpolation 211: 207: 203: 199: 194: 189: 184: 178: 174: 171: 167: 163: 159: 155: 152: 144: 139: 135: 131: 127: 126: 125: 119: 115: 111: 110: 109: 107: 103: 100: 96: 88: 84: 81: 77: 74: 70: 69: 68: 60: 58: 53: 51: 47: 43: 39: 35: 31: 27: 23: 19: 422: 416: 372: 365: 260: 256: 250: 228: 220: 218: 205: 197: 192: 187: 182: 176: 172: 165: 157: 153: 148: 142: 133: 123: 117: 113: 101: 94: 92: 66: 54: 25: 21: 15: 413:Adams, J.F. 225:Whitney sum 108:, in which 80:line bundle 57:λ-ring 42:Frank Adams 18:mathematics 458:Categories 447:0112.38102 400:0991.20005 380:. p.  357:References 151:polynomial 116:) is to Λ( 87:functorial 317:ρ 313:χ 292:ρ 280:ψ 275:χ 235:(cf. the 216:theory). 130:power sum 180:in the σ 160:). (Cf. 28:, is a 439:1970213 445:  437:  398:  388:  338:  85:ψ are 71:ψ are 435:JSTOR 223:is a 97:on a 20:, an 386:ISBN 136:-th 128:the 443:Zbl 427:doi 396:Zbl 382:108 212:of 124:as 32:in 16:In 460:: 441:. 433:. 423:75 394:. 384:. 112:ψ( 59:. 449:. 429:: 402:. 341:. 335:) 330:k 326:g 322:( 309:= 306:) 303:g 300:( 295:) 289:( 284:k 261:G 257:G 229:K 221:V 198:K 193:k 188:V 183:k 177:k 173:Q 166:k 158:t 156:( 154:P 143:k 140:σ 134:k 120:) 118:V 114:V 102:X 95:V 89:. 82:. 75:. 26:k

Index

mathematics
cohomology operation
topological K-theory
algebraic K-theory
Frank Adams
symmetric function
vector bundles
λ-ring
ring homomorphisms
line bundle
functorial
topological space
exterior powers
power sum
elementary symmetric function
polynomial
Newton's identities
integral polynomials
tensor product
Newton polynomials
interpolation
Whitney sum
algebraic topology
Leray–Hirsch theorem
splitting principle
group representation
Explicit Brauer Induction: With Applications to Algebra and Number Theory
Cambridge University Press
108
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.