Knowledge

Exterior algebra

Source 📝

26937: 1088: 2057: 2439: 1723: 2498: 27201: 55: 43: 12167: 9704:); nevertheless, transversal or not, a product can be defined on this space such that the resulting algebra is isomorphic to the exterior algebra: in the first case the natural choice for the product is just the quotient product (using the available projection), in the second case, this product must be slightly modified as given below (along Arnold setting), but such that the algebra stays isomorphic with the exterior algebra, i.e. the quotient of 6132:; using the bilinearity of the exterior product, this can be expanded to a linear combination of exterior products of those basis vectors. Any exterior product in which the same basis vector appears more than once is zero; any exterior product in which the basis vectors do not appear in the proper order can be reordered, changing the sign whenever two basis vectors change places. In general, the resulting coefficients of the basis 23561: 23552: 23543: 2052:{\displaystyle {\begin{aligned}\mathbf {v} \wedge \mathbf {w} &=(a\mathbf {e} _{1}+b\mathbf {e} _{2})\wedge (c\mathbf {e} _{1}+d\mathbf {e} _{2})\\&=ac\mathbf {e} _{1}\wedge \mathbf {e} _{1}+ad\mathbf {e} _{1}\wedge \mathbf {e} _{2}+bc\mathbf {e} _{2}\wedge \mathbf {e} _{1}+bd\mathbf {e} _{2}\wedge \mathbf {e} _{2}\\&=\left(ad-bc\right)\mathbf {e} _{1}\wedge \mathbf {e} _{2}\end{aligned}}} 19390: 13199: 3034: 11861: 14370: 3493: 25222: 10123: 7878: 6629: 1664: 21012: 1416: 14078: 22474: 20655: 19141: 12162:{\displaystyle t~{\widehat {\otimes }}~s={\frac {1}{(r+p)!}}\sum _{\sigma \in {\mathfrak {S}}_{r+p}}\operatorname {sgn} (\sigma )t^{i_{\sigma (1)}\cdots i_{\sigma (r)}}s^{i_{\sigma (r+1)}\cdots i_{\sigma (r+p)}}{\mathbf {e} }_{i_{1}}\otimes {\mathbf {e} }_{i_{2}}\otimes \cdots \otimes {\mathbf {e} }_{i_{r+p}}.} 2754: 16414:, although this term may sometimes lead to ambiguity). The name orientation form comes from the fact that a choice of preferred top element determines an orientation of the whole exterior algebra, since it is tantamount to fixing an ordered basis of the vector space. Relative to the preferred volume form 10330: 14116: 4613: 23634:
In physics, many quantities are naturally represented by alternating operators. For example, if the motion of a charged particle is described by velocity and acceleration vectors in four-dimensional spacetime, then normalization of the velocity vector requires that the electromagnetic force must be
17363: 3208: 2470:
With the exception of the last property, the exterior product of two vectors satisfies the same properties as the area. In a certain sense, the exterior product generalizes the final property by allowing the area of a parallelogram to be compared to that of any chosen parallelogram in a parallel
24972: 21789: 21499: 26187:
for the article. It introduces the exterior algebra of a module over a commutative ring (although this article specializes primarily to the case when the ring is a field), including a discussion of the universal property, functoriality, duality, and the bialgebra structure. See §III.7 and
19814:
the same tensor symbol as the one being used in the definition of the alternating product. Intuitively, it is perhaps easiest to think it as just another, but different, tensor product: it is still (bi-)linear, as tensor products should be, but it is the product that is appropriate for the
18365: 20143: 19805: 18249: 23615:
as well: the determinant of a linear transformation is the factor by which it scales the oriented volume of any given reference parallelotope. So the determinant of a linear transformation can be defined in terms of what the transformation does to the top exterior power. The action of a
11823: 22603: 22731: 5965: 9959: 7736: 6487: 16954: 10572: 1512: 16545: 16290: 7992: 1249: 20863: 17886: 9438:
are frequently considered in geometry and topology. There are no essential differences between the algebraic properties of the exterior algebra of finite-dimensional vector bundles and those of the exterior algebra of finitely generated projective modules, by the
21970: 21657: 1260: 20852: 18722: 15991: 15600: 14777: 13865: 13900: 12672: 22299: 7131: 2255:
The fact that this coefficient is the signed area is not an accident. In fact, it is relatively easy to see that the exterior product should be related to the signed area if one tries to axiomatize this area as an algebraic construct. In detail, if
20504: 13706:
of multilinear maps, the number of variables of their exterior product is the sum of the numbers of their variables. Depending on the choice of identification of elements of exterior power with multilinear forms, the exterior product is defined as
15280: 19385:{\displaystyle \Delta (x_{1}\wedge \cdots \wedge x_{k})=\sum _{p=0}^{k}\;\sum _{\sigma \in Sh(p,k-p)}\;\operatorname {sgn} (\sigma )(x_{\sigma (1)}\wedge \cdots \wedge x_{\sigma (p)})\otimes (x_{\sigma (p+1)}\wedge \cdots \wedge x_{\sigma (k)}).} 16701: 22304: 20515: 23160: 19130: 3029:{\displaystyle \mathbf {u} \wedge \mathbf {v} =(u_{1}v_{2}-u_{2}v_{1})(\mathbf {e} _{1}\wedge \mathbf {e} _{2})+(u_{3}v_{1}-u_{1}v_{3})(\mathbf {e} _{3}\wedge \mathbf {e} _{1})+(u_{2}v_{3}-u_{3}v_{2})(\mathbf {e} _{2}\wedge \mathbf {e} _{3})} 2154: 24622:
th exterior power of the tangent space. As a consequence, the exterior product of multilinear forms defines a natural exterior product for differential forms. Differential forms play a major role in diverse areas of differential geometry.
2234: 24961: 23591:. For instance, it is well known that the determinant of a square matrix is equal to the volume of the parallelotope whose sides are the columns of the matrix (with a sign to track orientation). This suggests that the determinant can be 4219: 3197: 2743: 2640: 18454: 16121: 14365:{\displaystyle {\omega {\dot {\wedge }}\eta (x_{1},\ldots ,x_{k+m})}=\sum _{\sigma \in \mathrm {Sh} _{k,m}}\operatorname {sgn} (\sigma )\,\omega (x_{\sigma (1)},\ldots ,x_{\sigma (k)})\,\eta (x_{\sigma (k+1)},\ldots ,x_{\sigma (k+m)}),} 18925: 10186: 5198: 7611: 8733: 7676: 17605: 21853: 4469: 17228: 11066: 3488:{\displaystyle \mathbf {u} \wedge \mathbf {v} \wedge \mathbf {w} =(u_{1}v_{2}w_{3}+u_{2}v_{3}w_{1}+u_{3}v_{1}w_{2}-u_{1}v_{3}w_{2}-u_{2}v_{1}w_{3}-u_{3}v_{2}w_{1})(\mathbf {e} _{1}\wedge \mathbf {e} _{2}\wedge \mathbf {e} _{3})} 22119: 16792: 16358: 25217:{\displaystyle \partial (x_{1}\wedge \cdots \wedge x_{p+1})={\frac {1}{p+1}}\sum _{j<\ell }(-1)^{j+\ell +1}\wedge x_{1}\wedge \cdots \wedge {\hat {x}}_{j}\wedge \cdots \wedge {\hat {x}}_{\ell }\wedge \cdots \wedge x_{p+1}.} 21668: 21566: 21394: 13758: 23030: 19867: 18981: 18257: 24547: 20015: 19685: 18169: 6971: 12347: 11686: 13454: 6326: 3920: 22489: 17194: 13116: 9940: 8268: 22618: 19562: 18053: 17717: 23480: 19492: 18508: 18159: 18106: 17770: 10118:{\displaystyle \operatorname {{\mathcal {A}}^{(r)}} (v_{1}\otimes \cdots \otimes v_{r})=\sum _{\sigma \in {\mathfrak {S}}_{r}}\operatorname {sgn} (\sigma )v_{\sigma (1)}\otimes \cdots \otimes v_{\sigma (r)}} 13532: 7873:{\displaystyle {\textstyle \bigwedge }(V)={\textstyle \bigwedge }^{\!0}(V)\oplus {\textstyle \bigwedge }^{\!1}(V)\oplus {\textstyle \bigwedge }^{\!2}(V)\oplus \cdots \oplus {\textstyle \bigwedge }^{\!n}(V)} 6624:{\displaystyle {\textstyle \bigwedge }(V)={\textstyle \bigwedge }^{\!0}(V)\oplus {\textstyle \bigwedge }^{\!1}(V)\oplus {\textstyle \bigwedge }^{\!2}(V)\oplus \cdots \oplus {\textstyle \bigwedge }^{\!n}(V)} 5812: 13344:
is a vector space, as the sum of two such maps, or the product of such a map with a scalar, is again alternating. By the universal property of the exterior power, the space of alternating forms of degree
4952: 4816: 1659:{\displaystyle {\text{Area}}={\Bigl |}\det {\begin{bmatrix}\mathbf {v} &\mathbf {w} \end{bmatrix}}{\Bigr |}={\Biggl |}\det {\begin{bmatrix}a&c\\b&d\end{bmatrix}}{\Biggr |}=\left|ad-bc\right|.} 20340: 20241: 12925: 5676: 16828: 8151: 6854: 5250: 21007:{\displaystyle {\textstyle \bigwedge }^{\!k}(f)={\textstyle \bigwedge }(f)\left|_{{\textstyle \bigwedge }^{\!k}(V)}\right.:{\textstyle \bigwedge }^{\!k}(V)\rightarrow {\textstyle \bigwedge }^{\!k}(W).} 15035: 10479: 8200: 7402: 430: 16444: 16187: 16048: 7893: 1144: 6434: 17810: 14892: 11227: 8910: 11332: 19910:, which follow from the definition of the coalgebra, as opposed to naive manipulations involving the tensor and wedge symbols. This distinction is developed in greater detail in the article on 8101: 1728: 8051: 6760: 6681: 17960: 17459: 15690: 8642: 26639: 24368: 21302: 21261: 21058: 18780: 17651: 17136: 16402: 15382: 9161: 9120: 6244: 6065: 6011: 5489: 5446: 5037: 21864: 10652: 23532: 12423: 1411:{\displaystyle \mathbf {v} ={\begin{bmatrix}a\\b\end{bmatrix}}=a\mathbf {e} _{1}+b\mathbf {e} _{2},\quad \mathbf {w} ={\begin{bmatrix}c\\d\end{bmatrix}}=c\mathbf {e} _{1}+d\mathbf {e} _{2}} 24043: 21582: 15739: 9660: 4884: 4648: 26594: 26551: 5596: 24477: 24118: 23366: 20691: 19607: 19016: 18633: 18551: 14682: 13667: 11485: 10608: 9809:(or higher than the dimension of the vector space), one or the other definition of the product could be used, as the two algebras are isomorphic (see V. I. Arnold or Kobayashi-Nomizu). 9377: 9309: 9196: 9079: 9035: 8987: 8952: 8849: 8724: 8468: 8415: 8332: 5078: 20736: 18650: 14073:{\displaystyle \operatorname {Alt} (\omega )(x_{1},\ldots ,x_{k})={\frac {1}{k!}}\sum _{\sigma \in S_{k}}\operatorname {sgn} (\sigma )\,\omega (x_{\sigma (1)},\ldots ,x_{\sigma (k)}).} 12856: 19677: 15870: 3808: 25956: 25907: 25308: 15515: 14692: 13769: 4275: 15508: 5780: 1016: 22916: 21382: 20728: 13060: 12529: 10983: 682: 23965: 22196: 16794:
and is always a scalar multiple of the identity map. In most applications, the volume form is compatible with the inner product in the sense that it is an exterior product of an
10925: 10796: 15319: 9848: 7015: 20438: 25975:, and projective modules over a commutative ring. This is thus more general than the result quoted above for direct sums, since not every short exact sequence splits in other 24237: 23771: 12489: 2236:) Note that the coefficient in this last expression is precisely the determinant of the matrix . The fact that this may be positive or negative has the intuitive meaning that 15859: 15830: 15455: 14641: 11414: 5520: 1450: 1125: 22469:{\displaystyle u_{1}\wedge \ldots \wedge u_{k-p}\wedge v_{1}\wedge \ldots \wedge v_{p}\mapsto u_{1}\wedge \ldots \wedge u_{k-p}\otimes g(v_{1})\wedge \ldots \wedge g(v_{p}).} 20650:{\displaystyle {\textstyle \bigwedge }(f)\left|_{{\textstyle \bigwedge }^{\!1}(V)}\right.=f:V={\textstyle \bigwedge }^{\!1}(V)\rightarrow W={\textstyle \bigwedge }^{\!1}(W).} 15126: 13151: 11551: 11171: 10757: 10722: 10466: 9733: 9524: 9342: 11254: 10881: 10403: 10377: 7454: 16623: 7007: 3860: 3623: 23892: 22797: 20189: 13328: 12765: 2317:, since rescaling either of the sides rescales the area by the same amount (and reversing the direction of one of the sides reverses the orientation of the parallelogram). 1713: 1689: 1496: 1474: 22188: 19954:
free for use in the definition of the bialgebra. In practice, this presents no particular problem, as long as one avoids the fatal trap of replacing alternating sums of
11284: 10433: 8372: 4718: 3995: 969: 638: 239: 23034: 22152: 19028: 9781: 8578: 3723: 2073: 25334: 24157: 21126: 2159: 531: 23816: 20426: 19994: 19972: 19952: 10155: 8531: 4086: 24886: 22026: 19932: 16434: 14838: 14806: 10831: 7531: 7508: 7324: 7253: 7229: 7192: 7164: 6876: 5367: 5303: 5272: 4746: 4673: 4298: 4024: 3831: 306: 207: 23926: 18811: 17991: 17800: 16724: 13018: 10325:{\displaystyle \operatorname {Alt} ^{(r)}(v_{1}\otimes \cdots \otimes v_{r})={\frac {1}{r!}}\operatorname {{\mathcal {A}}^{(r)}} (v_{1}\otimes \cdots \otimes v_{r})} 9556: 7488: 6462: 4096: 3749: 3102: 25416:
in 1888. Peano's work also remained somewhat obscure until the turn of the century, when the subject was unified by members of the French geometry school (notably
23306: 22000: 19634: 17093: 16605: 15790: 15116: 14941: 14578: 13601: 13182: 7728: 7280: 6791: 6198: 6169: 6128: 6095: 4435: 4404: 4373: 2651: 2548: 23681: 18397: 16054: 11611: 11580: 11489:, but the product could (or should) be chosen in two ways (or only one). Actually, the product could be chosen in many ways, rescaling it on homogeneous spaces as 11448: 11361: 11118: 10954: 10687: 26157:
Includes a treatment of alternating tensors and alternating forms, as well as a detailed discussion of Hodge duality from the perspective adopted in this article.
25253: 22851: 21176: 18864: 15087: 13284: 12519: 5091: 23183: 10178: 7559: 843: 796: 578: 349: 282: 179: 25883: 25863: 25832: 25800: 25637: 25617: 25275: 24876: 24852: 24824: 24802: 24772: 24434: 24400: 24311: 24287: 24263: 24203: 24181: 23388: 23328: 23271: 23249: 23227: 23207: 22936: 22819: 22767: 21328: 21218: 21196: 21148: 21100: 21080: 20394: 20374: 20148:
where the tensor product on the right-hand side is of multilinear linear maps (extended by zero on elements of incompatible homogeneous degree: more precisely,
18855: 18833: 18573: 18387: 17504: 17218: 17064: 17042: 17010: 16818: 16576: 16177: 16155: 15761: 15644: 15624: 15418: 15339: 14963: 14914: 14604: 14551: 14104: 13888: 13621: 13574: 13554: 13476: 13383: 13363: 12988: 12968: 12948: 12445: 11383: 11138: 11089: 10903: 10855: 9868: 9805: 9753: 9702: 9682: 9624: 9600: 9578: 9493: 9473: 9421: 9397: 9274: 9249: 9229: 7616: 7551: 7302: 6709: 6379: 6351: 5804: 5728: 5708: 5401: 5345: 5323: 4992: 4459: 4050: 3961: 3697: 3666: 3643: 1072: 1048: 914: 894: 874: 820: 769: 749: 709: 598: 555: 479: 459: 371: 326: 259: 152: 4608:{\displaystyle x_{\sigma (1)}\wedge x_{\sigma (2)}\wedge \cdots \wedge x_{\sigma (k)}=\operatorname {sgn}(\sigma )x_{1}\wedge x_{2}\wedge \cdots \wedge x_{k},} 4342: 26339: 17514: 17358:{\displaystyle \left\langle v_{1}\wedge \cdots \wedge v_{k},w_{1}\wedge \cdots \wedge w_{k}\right\rangle =\det {\bigl (}\langle v_{i},w_{j}\rangle {\bigr )},} 21797: 25393:
The algebra itself was built from a set of rules, or axioms, capturing the formal aspects of Cayley and Sylvester's theory of multivectors. It was thus a
10991: 25382:. This referred more generally to an algebraic (or axiomatic) theory of extended quantities and was one of the early precursors to the modern notion of a 22031: 16729: 16301: 684:
and more generally any blade flips sign whenever two of its constituent vectors are exchanged, corresponding to a parallelotope of opposite orientation.
21784:{\displaystyle {\textstyle \bigwedge }^{\!k}(V\oplus W)\cong \bigoplus _{p+q=k}{\textstyle \bigwedge }^{\!p}(V)\otimes {\textstyle \bigwedge }^{\!q}(W).} 3548:
and whose magnitude is equal to the area of the parallelogram determined by the two vectors. It can also be interpreted as the vector consisting of the
21494:{\displaystyle 0\to {\textstyle \bigwedge }^{\!1}(U)\wedge {\textstyle \bigwedge }(V)\to {\textstyle \bigwedge }(V)\to {\textstyle \bigwedge }(W)\to 0} 23332:-dimensional simplex is zero, as for the sum of vectors around a triangle or the oriented triangles bounding the tetrahedron in the previous section. 19018:
by (linear) homomorphism. The correct form of this homomorphism is not what one might naively write, but has to be the one carefully defined in the
18360:{\displaystyle \mathbf {x} ^{\flat }\in {\textstyle \bigwedge }^{\!l}\left(V^{*}\right)\simeq {\bigl (}{\textstyle \bigwedge }^{\!l}(V){\bigr )}^{*}} 26247:
Chapter XVI sections 6–10 give a more elementary account of the exterior algebra, including duality, determinants and minors, and alternating forms.
21510: 20138:{\displaystyle (\alpha \wedge \beta )(x_{1}\wedge \cdots \wedge x_{k})=(\alpha \otimes \beta )\left(\Delta (x_{1}\wedge \cdots \wedge x_{k})\right)} 19800:{\displaystyle \Delta :{\textstyle \bigwedge }^{k}(V)\to \bigoplus _{p=0}^{k}{\textstyle \bigwedge }^{p}(V)\otimes {\textstyle \bigwedge }^{k-p}(V)} 18244:{\displaystyle \langle \mathbf {x} \wedge \mathbf {v} ,\mathbf {w} \rangle =\langle \mathbf {v} ,\iota _{\mathbf {x} ^{\flat }}\mathbf {w} \rangle } 13713: 22941: 19820: 18934: 24492: 19640:
in the riffle shuffle: the riffle shuffle merely splits the ordered sequence into two ordered sequences, one on the left, and one on the right.
14485:. As this might look very specific and fine tuned, an equivalent raw version is to sum in the above formula over permutations in left cosets of 11818:{\displaystyle t=t^{i_{1}i_{2}\cdots i_{r}}\,{\mathbf {e} }_{i_{1}}\otimes {\mathbf {e} }_{i_{2}}\otimes \cdots \otimes {\mathbf {e} }_{i_{r}},} 26760: 25387: 6893: 22598:{\displaystyle 0\to U\otimes {\textstyle \bigwedge }^{\!k-1}(W)\to {\textstyle \bigwedge }^{\!k}(V)\to {\textstyle \bigwedge }^{\!k}(W)\to 0} 12188: 4821:
Together with the distributive property of the exterior product, one further generalization is that a necessary and sufficient condition for
13397: 6256: 3868: 24627: 22726:{\displaystyle 0\to {\textstyle \bigwedge }^{k}(U)\to {\textstyle \bigwedge }^{\!k}(V)\to {\textstyle \bigwedge }^{\!k-1}(U)\otimes W\to 0} 20243:
that returns the 0-graded component of its argument. The coproduct and counit, along with the exterior product, define the structure of a
11582:
in the field, as long as the division makes sense (this is such that the redefined product is also associative, i.e. defines an algebra on
6383:
is the number of vectors in the product. The binomial coefficient produces the correct result, even for exceptional cases; in particular,
26461: 17143: 15998:
These three properties are sufficient to characterize the interior product as well as define it in the general infinite-dimensional case.
13674:
Under such identification, the exterior product takes a concrete form: it produces a new anti-symmetric map from two given ones. Suppose
26757:
A compilation of English translations of three notes by Cesare Burali-Forti on the application of exterior algebra to projective geometry
13068: 9876: 8210: 26754: 19497: 18003: 17667: 5960:{\displaystyle \{\,e_{i_{1}}\wedge e_{i_{2}}\wedge \cdots \wedge e_{i_{k}}~{\big |}~~1\leq i_{1}<i_{2}<\cdots <i_{k}\leq n\,\}} 23395: 10610:
is the projection for the exterior (quotient) algebra onto the r-homogeneous alternating tensor subspace. On the other hand, the image
2244:
may be oriented in a counterclockwise or clockwise sense as the vertices of the parallelogram they define. Such an area is called the
25401:, except focused exclusively on the task of formal reasoning in geometrical terms. In particular, this new development allowed for an 19998:, with the understanding that it works in a different space. Immediately below, an example is given: the alternating product for the 19433: 18464: 18115: 18062: 17726: 26766: 13487: 16949:{\displaystyle \star \circ \star :{\textstyle \bigwedge }^{\!k}(V)\to {\textstyle \bigwedge }^{\!k}(V)=(-1)^{k(n-k)+q}\mathrm {id} } 4892: 4756: 3530:
The cross product and triple product in three dimensions each admit both geometric and algebraic interpretations. The cross product
27594: 26795: 10567:{\displaystyle \operatorname {{\mathcal {A}}^{(r)}} \operatorname {{\mathcal {A}}^{(r)}} =r!\operatorname {{\mathcal {A}}^{(r)}} .} 20259: 20201: 16540:{\displaystyle {\textstyle \bigwedge }^{\!k}(V^{*})\to {\textstyle \bigwedge }^{\!n-k}(V):\alpha \mapsto \iota _{\alpha }\sigma .} 16285:{\displaystyle {\textstyle \bigwedge }^{\!k}(V^{*})\otimes {\textstyle \bigwedge }^{\!n}(V)\to {\textstyle \bigwedge }^{\!n-k}(V)} 12867: 7987:{\displaystyle {\textstyle \bigwedge }^{\!k}(V)\wedge {\textstyle \bigwedge }^{\!p}(V)\subset {\textstyle \bigwedge }^{\!k+p}(V).} 5606: 1244:{\displaystyle {\mathbf {e} }_{1}={\begin{bmatrix}1\\0\end{bmatrix}},\quad {\mathbf {e} }_{2}={\begin{bmatrix}0\\1\end{bmatrix}}.} 8109: 6812: 5208: 3584:. The exterior product in three dimensions allows for similar interpretations. In fact, in the presence of a positively oriented 27128: 26667:
Includes an elementary treatment of the axiomatization of determinants as signed areas, volumes, and higher-dimensional volumes.
23229:); if the order of the points is changed, the oriented volume changes by a sign, according to the parity of the permutation. In 14981: 8158: 7332: 3089:
of vectors in three dimensions, the only difference being that the exterior product is not an ordinary vector, but instead is a
376: 77:(signed point), 1 (directed line segment, or vector), 2 (oriented plane element), 3 (oriented volume). The exterior product of 27186: 16007: 27743: 17881:{\displaystyle \langle x\wedge \mathbf {v} ,\mathbf {w} \rangle =\langle \mathbf {v} ,\iota _{x^{\flat }}\mathbf {w} \rangle } 26740: 26704: 26659: 26502: 26398: 25542: 17662:
With respect to the inner product, exterior multiplication and the interior product are mutually adjoint. Specifically, for
11615:). Also note, the interior product definition should be changed accordingly, in order to keep its skew derivation property. 6386: 24574:. Differential forms are mathematical objects that evaluate the length of vectors, areas of parallelograms, and volumes of 23635:
an alternating operator on the velocity. Its six degrees of freedom are identified with the electric and magnetic fields.
14850: 11181: 8857: 26412: 25599:, which in a different context could mean an element of a 4-dimensional vector space. A minority of authors use the term 11289: 26264:
Contains a classical treatment of the exterior algebra as alternating tensors, and applications to differential geometry.
25740:: The orientations shown here are not correct; the diagram simply gives a sense that an orientation is defined for every 8417:
is the "most general" algebra in which these rules hold for the multiplication, in the sense that any unital associative
8056: 21965:{\displaystyle 0=F^{0}\subseteq F^{1}\subseteq \cdots \subseteq F^{k}\subseteq F^{k+1}={\textstyle \bigwedge }^{\!k}(V)} 8732: 8009: 6718: 6639: 27778: 27457: 23902: 17911: 17420: 15651: 8602: 24332: 21266: 21225: 21022: 18732: 17615: 17100: 16366: 15346: 9125: 9084: 6208: 6021: 5975: 5453: 5410: 5001: 27237: 26599: 26366: 26239: 26175: 26149: 26030: 26002: 25765: 21652:{\displaystyle {\textstyle \bigwedge }(V\oplus W)\cong {\textstyle \bigwedge }(V)\otimes {\textstyle \bigwedge }(W).} 13890:
is 0, the alternation Alt of a multilinear map is defined to be the average of the sign-adjusted values over all the
10613: 26322: 25405:
characterization of dimension, a property that had previously only been examined from the coordinate point of view.
23491: 12359: 27659: 27176: 26732: 24646: 23973: 7730:-vector, once again invoking bilinearity. As a consequence, the direct sum decomposition of the preceding section 24734:: it is just the set of all of the points in the exterior algebra. The topology on this space is essentially the 21576:
In particular, the exterior algebra of a direct sum is isomorphic to the tensor product of the exterior algebras:
20847:{\displaystyle {\textstyle \bigwedge }(f)(x_{1}\wedge \cdots \wedge x_{k})=f(x_{1})\wedge \cdots \wedge f(x_{k}).} 20002:
can be given in terms of the coproduct. The construction of the bialgebra here parallels the construction in the
18717:{\displaystyle \Delta :{\textstyle \bigwedge }(V)\to {\textstyle \bigwedge }(V)\otimes {\textstyle \bigwedge }(V)} 15699: 9633: 4824: 4621: 27138: 27074: 17417:. This is then extended bilinearly (or sesquilinearly in the complex case) to a non-degenerate inner product on 15986:{\displaystyle \iota _{\alpha }(a\wedge b)=(\iota _{\alpha }a)\wedge b+(-1)^{\deg a}a\wedge (\iota _{\alpha }b).} 5529: 26564: 26521: 24443: 24048: 23338: 20663: 19579: 18988: 18605: 18523: 15595:{\displaystyle \iota _{\alpha }:{\textstyle \bigwedge }^{\!k}(V)\rightarrow {\textstyle \bigwedge }^{\!k-1}(V).} 14772:{\displaystyle \iota _{\alpha }:{\textstyle \bigwedge }^{\!k}(V)\rightarrow {\textstyle \bigwedge }^{\!k-1}(V).} 14654: 13860:{\displaystyle \omega {\dot {\wedge }}\eta ={\frac {(k+m)!}{k!\,m!}}\operatorname {Alt} (\omega \otimes \eta ),} 13631: 11457: 10580: 9349: 9281: 9168: 9051: 9007: 8959: 8924: 8821: 8696: 8440: 8387: 8304: 5050: 26380:
Calcolo Geometrico secondo l'Ausdehnungslehre di H. Grassmann preceduto dalle Operazioni della Logica Deduttiva
26214: 20006:
article almost exactly, except for the need to correctly track the alternating signs for the exterior algebra.
12800: 17: 12667:{\displaystyle (\iota _{\alpha }t)^{i_{1}\cdots i_{r-1}}=r\sum _{j=0}^{n}\alpha _{j}t^{ji_{1}\cdots i_{r-1}}.} 3757: 27510: 27442: 26684: 26194: 25937: 25888: 22294:{\displaystyle F^{p+1}/F^{p}\cong {\textstyle \bigwedge }^{\!k-p}(U)\otimes {\textstyle \bigwedge }^{\!p}(W)} 19646: 14646: 11677: 4230: 25280: 20009:
In terms of the coproduct, the exterior product on the dual space is just the graded dual of the coproduct:
15462: 7126:{\displaystyle \alpha ^{(i)}=\alpha _{1}^{(i)}\wedge \cdots \wedge \alpha _{k}^{(i)},\quad i=1,2,\ldots ,s.} 5733: 1091:
The area of a parallelogram in terms of the determinant of the matrix of coordinates of two of its vertices.
974: 27886: 27535: 26916: 26788: 25805: 25461: 22856: 21343: 20499:{\displaystyle {\textstyle \bigwedge }(f):{\textstyle \bigwedge }(V)\rightarrow {\textstyle \bigwedge }(W)} 13023: 10959: 643: 23931: 20702: 19609:). The shuffle follows directly from the first axiom of a co-algebra: the relative order of the elements 14110:, an equivalent version of the second expression without any factorials or any constants is well-defined: 10910: 10764: 27891: 27773: 27021: 26871: 26679: 24642: 24159:
represents the plane spanned by the vectors, "weighted" with a number, given by the area of the oriented
15288: 13193: 9815: 15275:{\displaystyle (\iota _{\alpha }w)(u_{1},u_{2},\ldots ,u_{k-1})=w(\alpha ,u_{1},u_{2},\ldots ,u_{k-1}).} 27584: 27404: 26926: 26820: 26716:
introduces the exterior algebra of differential forms adroitly into the calculus sequence for colleges.
24698: 24689: 24210: 23693: 13251: 12990:-vector, is also alternating. In fact, this map is the "most general" alternating operator defined on 12464: 5687: 4651: 1018:
which is equivalent in other characteristics). More generally, the exterior algebra can be defined for
106: 26726: 26674: 16696:{\displaystyle \star :{\textstyle \bigwedge }^{\!k}(V)\rightarrow {\textstyle \bigwedge }^{\!n-k}(V).} 15837: 15802: 15427: 14613: 11390: 9604:, hence, a good choice to represent the quotient. But for nonzero characteristic, the vector space of 8277:
studies additional graded structures on exterior algebras, such as those on the exterior algebra of a
5496: 1426: 1101: 27256: 27166: 26815: 14107: 13121: 11492: 11145: 10731: 10696: 10440: 9707: 9498: 9424: 9316: 936: 27738: 25257:, and so this is a necessary and sufficient condition for an anticommutative nonassociative algebra 11235: 10862: 10384: 10344: 7410: 3572:
is geometrically a (signed) volume. Algebraically, it is the determinant of the matrix with columns
919:
The definition of the exterior algebra can be extended for spaces built from vector spaces, such as
27840: 27758: 27712: 27419: 27158: 27041: 26467: 26287: 23155:{\displaystyle (-1)^{j}A_{j}A_{0}\wedge A_{j}A_{1}\wedge A_{j}A_{2}\wedge \cdots \wedge A_{j}A_{k}} 21856: 19125:{\displaystyle \Delta (v\wedge w)=1\otimes (v\wedge w)+v\otimes w-w\otimes v+(v\wedge w)\otimes 1.} 17656: 6979: 3836: 3599: 2332: 2149:{\displaystyle \mathbf {e} _{2}\wedge \mathbf {e} _{1}=-(\mathbf {e} _{1}\wedge \mathbf {e} _{2}).} 23821: 22780: 20174: 17198:. The pairing between these two spaces also takes the form of an inner product. On decomposable 13294: 12731: 12172:
The components of this tensor are precisely the skew part of the components of the tensor product
2229:{\displaystyle \mathbf {e} _{1}\wedge \mathbf {e} _{1}=\mathbf {e} _{2}\wedge \mathbf {e} _{2}=0.} 1696: 1672: 1479: 1457: 27810: 27497: 27414: 27384: 27204: 27133: 26911: 26781: 24599: 23617: 22157: 11259: 10408: 8345: 4683: 3968: 2414:
affects neither the base nor the height of the parallelogram and consequently preserves its area.
1132: 942: 611: 498: 212: 25390:
also published similar ideas of exterior calculus for which he claimed priority over Grassmann.
24956:{\displaystyle \partial :{\textstyle \bigwedge }^{\!p+1}(L)\to {\textstyle \bigwedge }^{\!p}(L)} 22124: 9760: 8536: 3702: 27768: 27624: 27579: 26968: 26901: 26891: 26408: 25436: 25398: 25319: 24650: 24136: 23774: 23629: 23605:
minors of a matrix can be defined by looking at the exterior products of column vectors chosen
21105: 17019: 13386: 9440: 9042: 6137: 5783: 4214:{\displaystyle 0=(x+y)\wedge (x+y)=x\wedge x+x\wedge y+y\wedge x+y\wedge y=x\wedge y+y\wedge x} 3192:{\displaystyle \mathbf {w} =w_{1}\mathbf {e} _{1}+w_{2}\mathbf {e} _{2}+w_{3}\mathbf {e} _{3},} 2454:
parallelogram). The length of the cross product is to the length of the parallel unit vector (
1096: 924: 510: 26761:
C. Burali-Forti, "Introduction to Differential Geometry, following the method of H. Grassmann"
26692: 25990: 25934:
are projective modules over a commutative ring. Otherwise, it is generally not the case that
23780: 20399: 19979: 19957: 19937: 19643:
Observe that the coproduct preserves the grading of the algebra. Extending to the full space
10131: 9200:. This approach is often used in differential geometry and is described in the next section. 8504: 4059: 2738:{\displaystyle \mathbf {v} =v_{1}\mathbf {e} _{1}+v_{2}\mathbf {e} _{2}+v_{3}\mathbf {e} _{3}} 2635:{\displaystyle \mathbf {u} =u_{1}\mathbf {e} _{1}+u_{2}\mathbf {e} _{2}+u_{3}\mathbf {e} _{3}} 27850: 27805: 27285: 27230: 26983: 26978: 26973: 26906: 26851: 26713: 26510:
Includes applications of the exterior algebra to differential forms, specifically focused on
24677: 24653: 24575: 24567: 23648: 23612: 22005: 19917: 19135:
Expanding this out in detail, one obtains the following expression on decomposable elements:
18449:{\displaystyle \mathbf {x} ^{\flat }(\mathbf {y} )=\langle \mathbf {x} ,\mathbf {y} \rangle } 16419: 16116:{\displaystyle \iota _{\alpha }\circ \iota _{\beta }=-\iota _{\beta }\circ \iota _{\alpha }.} 14823: 14791: 10803: 7516: 7493: 7457: 7309: 7238: 7214: 7177: 7149: 6861: 6479: 5352: 5288: 5257: 4725: 4658: 4283: 4000: 3816: 601: 291: 192: 90: 23911: 18920:{\displaystyle K\simeq {\textstyle \bigwedge }^{\!0}(V)\subseteq {\textstyle \bigwedge }(V)} 18790: 17970: 17779: 16709: 12993: 9535: 7463: 6441: 5193:{\displaystyle x_{1}\wedge x_{2}\wedge \cdots \wedge x_{k},\quad x_{i}\in V,i=1,2,\dots ,k.} 3728: 27825: 27753: 27639: 27505: 27467: 27399: 26993: 26958: 26945: 26836: 26424: 25343: 24693: 24656:. The exterior algebra of differential forms, equipped with the exterior derivative, is a 23688: 23644: 23588: 23279: 21978: 21385: 19612: 17071: 16583: 15768: 15094: 14919: 14556: 13624: 13579: 13160: 11833: 9527: 9252: 8597: 7701: 7606:{\displaystyle {\underset {p}{\underbrace {\alpha \wedge \cdots \wedge \alpha } }}\neq 0\ } 7258: 6769: 6247: 6176: 6147: 6141: 6106: 6073: 4413: 4382: 4351: 1019: 932: 928: 26763:
An English translation of an early book on the geometric applications of exterior algebras
26347: 24555: 24551: 23657: 20432:. Then, by the universal property, there exists a unique homomorphism of graded algebras 11587: 11556: 11424: 11337: 11094: 10930: 10663: 7671:{\displaystyle \ {\underset {p+1}{\underbrace {\alpha \wedge \cdots \wedge \alpha } }}=0.} 6764:), and therefore its dimension is equal to the sum of the binomial coefficients, which is 8: 27702: 27525: 27515: 27364: 27349: 27305: 27171: 27051: 27026: 26876: 26515: 26202: 25533: 25485: 25456: 25359: 25236: 24638: 23906: 23186: 22830: 21155: 17902: 16132: 15066: 14084: 13263: 12498: 9444: 8777: 6686: 3936: 3677: 3646: 3549: 605: 155: 26769:
An English translation of one Grassmann's papers on the applications of exterior algebra
26428: 23165: 19974:
by the wedge symbol, with one exception. One can construct an alternating product from
17600:{\displaystyle e_{i_{1}}\wedge \cdots \wedge e_{i_{k}},\quad i_{1}<\cdots <i_{k},} 10160: 825: 778: 560: 331: 264: 161: 27835: 27692: 27545: 27359: 27295: 26881: 26440: 26387: 26307: 25868: 25848: 25817: 25785: 25622: 25602: 25260: 24861: 24837: 24809: 24787: 24757: 24665: 24661: 24631: 24419: 24385: 24296: 24272: 24248: 24188: 24166: 23373: 23313: 23256: 23234: 23212: 23192: 22921: 22804: 22774: 22752: 21848:{\textstyle 0\to U\mathrel {\overset {f}{\to }} V\mathrel {\overset {g}{\to }} W\to 0,} 21313: 21203: 21181: 21133: 21085: 21065: 20379: 20359: 19810:
The tensor symbol ⊗ used in this section should be understood with some caution: it is
18840: 18818: 18558: 18372: 17489: 17203: 17049: 17027: 16995: 16803: 16561: 16162: 16140: 15746: 15629: 15609: 15403: 15324: 14948: 14899: 14589: 14536: 14089: 13873: 13606: 13559: 13539: 13461: 13368: 13348: 13240: 13154: 12973: 12953: 12933: 12787: 12430: 11368: 11123: 11074: 10888: 10840: 9853: 9790: 9738: 9687: 9667: 9609: 9585: 9563: 9478: 9458: 9406: 9382: 9259: 9234: 9214: 8473: 7536: 7287: 6694: 6364: 6336: 6098: 5789: 5713: 5693: 5386: 5330: 5308: 4977: 4444: 4035: 3946: 3682: 3651: 3628: 1057: 1033: 1027: 899: 879: 859: 853: 805: 754: 734: 694: 688: 583: 540: 464: 444: 356: 311: 244: 137: 26463:
Grassmann algebra – Exploring applications of Extended Vector Algebra with Mathematica
22777:, as to integrate we need a 'differential' object to measure infinitesimal volume. If 4309: 27881: 27830: 27599: 27574: 27389: 27300: 27280: 27079: 27036: 26963: 26856: 26736: 26700: 26655: 26498: 26481: 26394: 26362: 26335: 26235: 26223: 26198: 26171: 26145: 26138: 26133: 26026: 25998: 25761: 25649: 25538: 25490: 25475: 25440: 25429: 25371: 24685: 24613: 24595: 24571: 24482: 23652: 18578: 17995:. This property completely characterizes the inner product on the exterior algebra. 17481: 16795: 15862: 14974: 13390: 11286:
did before, but the product cannot be defined as above. In such a case, isomorphism
11061:{\displaystyle t\wedge s=t~{\widehat {\otimes }}~s=\operatorname {Alt} (t\otimes s).} 9400: 4301: 3585: 2460:) as the size of the exterior product is to the size of the reference parallelogram ( 1087: 285: 25711:, Theorem XVI.6.8). More detail on universal properties in general can be found in 25417: 22114:{\displaystyle u_{1}\wedge \ldots \wedge u_{k+1-p}\wedge v_{1}\wedge \ldots v_{p-1}} 16787:{\displaystyle {\textstyle \bigwedge }^{\!k}(V)\to {\textstyle \bigwedge }^{\!k}(V)} 16353:{\displaystyle \iota _{\alpha \wedge \beta }=\iota _{\beta }\circ \iota _{\alpha }.} 8998:
As a consequence of this construction, the operation of assigning to a vector space
27845: 27520: 27487: 27472: 27354: 27223: 26988: 26841: 26722: 26444: 26432: 26328: 26299: 26253: 26227: 26163: 25976: 25809: 25653: 25466: 25444: 24727: 24591: 24486: 16960: 14528: 13341: 9628:-linear antisymmetric tensors could be not transversal to the ideal (actually, for 9209: 8335: 7232: 1023: 485:. The wedge product was introduced originally as an algebraic construction used in 433: 26484:, with a focus on applications. Also includes a history section and bibliography. 25447:
by placing the axiomatic notion of an algebraic system on a firm logical footing.
24641:
gives the exterior algebra of differential forms on a manifold the structure of a
19934:
clearly corresponds to multiplication in the exterior algebra, leaving the symbol
2252:
of the signed area is the ordinary area, and the sign determines its orientation.
876:
in the exterior algebra is also valid in every associative algebra that contains
27815: 27763: 27707: 27687: 27589: 27477: 27344: 27315: 27143: 26936: 26896: 26886: 25509: 25339: 25228: 24657: 24377: 13338: 12723: 10336: 8752:, it is natural to start with the most general associative algebra that contains 8339: 5042: 4027: 2067: 1051: 23579:, the exterior product provides an abstract algebraic manner for describing the 9346:. It will satisfy the analogous universal property. Many of the properties of 27855: 27820: 27717: 27550: 27540: 27530: 27452: 27424: 27409: 27394: 27310: 27148: 27069: 26804: 26647: 26490: 26375: 25496: 25480: 25470: 25425: 25413: 25355: 24240: 23898: 23584: 23576: 20003: 19911: 18590: 18586: 17393: 13703: 11673: 9427:
and projective. Generalizations to the most common situations can be found in
8759: 7884: 3673: 3524: 3085:). The coefficients above are the same as those in the usual definition of the 2514: 2249: 846: 687:
The full exterior algebra contains objects that are not themselves blades, but
27800: 26065:
J Itard, Biography in Dictionary of Scientific Biography (New York 1970–1990).
25421: 25412:
was lost to mid-19th-century mathematicians, until being thoroughly vetted by
21561:{\displaystyle 0\to {\textstyle \bigwedge }(U)\to {\textstyle \bigwedge }(V).} 16181:. Then the interior product induces a canonical isomorphism of vector spaces 13753:{\displaystyle \omega \wedge \eta =\operatorname {Alt} (\omega \otimes \eta )} 2438: 27875: 27792: 27697: 27609: 27482: 27181: 27104: 27064: 27031: 27011: 25972: 25505: 25311: 24829: 24735: 24719: 24710:
The exterior algebra over the complex numbers is the archetypal example of a
24681: 24603: 24587: 24160: 23025:{\displaystyle A_{0}A_{1}\wedge A_{0}A_{2}\wedge \cdots \wedge A_{0}A_{k}={}} 19396: 17015: 16555: 14402: 10381:. This extends by linearity and homogeneity to an operation, also denoted by 9435: 8773: 8278: 3669: 3086: 2510: 534: 30:"Wedge product" redirects here. For the operation on topological spaces, see 19862:{\displaystyle {\textstyle \bigwedge }(V)\otimes {\textstyle \bigwedge }(V)} 18976:{\displaystyle {\textstyle \bigwedge }(V)\otimes {\textstyle \bigwedge }(V)} 9455:
For a field of characteristic not 2, the exterior algebra of a vector space
9403:. Where finite dimensionality is used, the properties further require that 4750:, then the following generalization of the alternating property also holds: 27860: 27664: 27649: 27614: 27462: 27447: 27114: 27003: 26953: 26846: 26318: 26018: 25593:
is not equivalent to and should not be confused with similar terms such as
25501: 25383: 24743: 24711: 24542:{\textstyle \mathbf {P} {\bigl (}{\textstyle \bigwedge }^{\!k}(V){\bigr )}} 24405: 22770: 20345: 18582: 2340: 920: 132: 19914:. Here, there is much less of a problem, in that the alternating product 2268:
denotes the signed area of the parallelogram of which the pair of vectors
27748: 27722: 27644: 27333: 27272: 27094: 27059: 27016: 26861: 25409: 23580: 21305: 16406: 16363:
In the geometrical setting, a non-zero element of the top exterior power
14417: 13891: 7197: 6966:{\displaystyle \alpha =\alpha ^{(1)}+\alpha ^{(2)}+\cdots +\alpha ^{(s)}} 5082: 2497: 2245: 1503: 1136: 1128: 728: 723: 712: 102: 18520:
There is a correspondence between the graded dual of the graded algebra
27629: 27123: 26866: 26311: 25354:
The exterior algebra is the main ingredient in the construction of the
24731: 23968: 23595:
in terms of the exterior product of the column vectors. Likewise, the
20429: 14581: 13063: 12342:{\displaystyle (t~{\widehat {\otimes }}~s)^{i_{1}\cdots i_{r+p}}=t^{}.} 8499: 6015:. The reason is the following: given any exterior product of the form 3588:, the exterior product generalizes these notions to higher dimensions. 2276:
form two adjacent sides, then A must satisfy the following properties:
799: 26048:
published a translation of Grassmann's work in English; he translated
24239:
represents the spanned 3-space weighted by the volume of the oriented
17368:
the determinant of the matrix of inner products. In the special case
13449:{\displaystyle {\bigl (}{\textstyle \bigwedge }^{\!k}(V){\bigr )}^{*}} 10726:, and it inherits the structure of a graded vector space from that on 8273:
In addition to studying the graded structure on the exterior algebra,
6321:{\displaystyle \dim {\textstyle \bigwedge }^{\!k}(V)={\binom {n}{k}},} 3915:{\displaystyle \alpha \wedge \beta =\alpha \otimes \beta {\pmod {I}}.} 2156:(The fact that the exterior product is an alternating map also forces 27604: 27555: 26921: 26436: 26389:
Geometric calculus: According to the Ausdehnungslehre of H. Grassmann
24739: 20244: 19019: 18638: 18597: 18596:
The exterior product of multilinear forms defined above is dual to a
721:, while a more general sum of blades of arbitrary degree is called a 98: 31: 26303: 26213:
This book contains applications of exterior algebras to problems in
26074:
Authors have in the past referred to this calculus variously as the
24714:, which plays a fundamental role in physical theories pertaining to 23611:
at a time. These ideas can be extended not just to matrices but to
22773:. This is also the intimate connection between exterior algebra and 17189:{\displaystyle {\bigl (}{\textstyle \bigwedge }^{\!k}V{\bigr )}^{*}} 13288:, the base field. In this case an alternating multilinear function 54: 42: 27634: 27619: 27089: 26767:"Mechanics, according to the principles of the theory of extension" 26511: 25595: 24583: 24579: 21794:
In greater generality, for a short exact sequence of vector spaces
13111:{\displaystyle \phi :{\textstyle \bigwedge }^{\!k}(V)\rightarrow X} 9935:{\displaystyle v_{1}\otimes \cdots \otimes v_{r},\quad v_{i}\in V.} 8263:{\displaystyle \alpha \wedge \beta =(-1)^{kp}\beta \wedge \alpha .} 6879: 6470: 5276: 3090: 502: 486: 25439:, borrowing from the ideas of Peano and Grassmann, introduced his 23560: 23551: 23542: 19557:{\displaystyle v_{\sigma (p+1)}\wedge \dots \wedge v_{\sigma (k)}} 18048:{\displaystyle \mathbf {v} \in {\textstyle \bigwedge }^{\!k-l}(V)} 17712:{\displaystyle \mathbf {v} \in {\textstyle \bigwedge }^{\!k-1}(V)} 13576:-dimensional, the dimension of the space of alternating maps from 60:
Reversed orientation corresponds to negating the exterior product.
27328: 27290: 26773: 26217:. Rank and related concepts are developed in the early chapters. 25995:
Studies in Econometrics, Time Series, and Multivariate Statistics
24715: 23684: 23620:-independent way to talk about the minors of the transformation. 23475:{\displaystyle (u_{1}+u_{2})\wedge v=u_{1}\wedge v+u_{2}\wedge v} 22824: 11175:, with the above given product, there is a canonical isomorphism 9038: 8772:, and then enforce the alternating property by taking a suitable 1454:, written in components. There is a unique parallelogram having 25443:. This then paved the way for the 20th-century developments of 19871:. Any lingering doubt can be shaken by pondering the equalities 19487:{\displaystyle v_{\sigma (1)}\wedge \dots \wedge v_{\sigma (p)}} 18503:{\displaystyle \mathbf {y} \in {\textstyle \bigwedge }^{\!l}(V)} 18154:{\displaystyle \mathbf {x} \in {\textstyle \bigwedge }^{\!l}(V)} 18101:{\displaystyle \mathbf {w} \in {\textstyle \bigwedge }^{\!k}(V)} 17765:{\displaystyle \mathbf {w} \in {\textstyle \bigwedge }^{\!k}(V)} 16404:(which is a one-dimensional vector space) is sometimes called a 8106:
The exterior product is graded anticommutative, meaning that if
4026:
by the above construction. It follows that the product is also
27654: 27246: 27099: 25993:. In Karlin, Samuel; Amemiya, Takeshi; Goodman, Leo A. (eds.). 25845:
This part of the statement also holds in greater generality if
24649:
along smooth mappings between manifolds, and it is therefore a
18985:. This definition of the coproduct is lifted to the full space 13527:{\displaystyle {\textstyle \bigwedge }^{\!k}\left(V^{*}\right)} 13212: 6469:
Any element of the exterior algebra can be written as a sum of
494: 24730:. The exterior algebra itself is then just a one-dimensional 9122:
as certain subspaces, one may alternatively define the spaces
4947:{\displaystyle x_{1}\wedge x_{2}\wedge \cdots \wedge x_{k}=0.} 4811:{\displaystyle x_{1}\wedge x_{2}\wedge \cdots \wedge x_{k}=0.} 3540:
can be interpreted as a vector which is perpendicular to both
26341:
Die Lineale Ausdehnungslehre – Ein neuer Zweig der Mathematik
26193: 24554:, and the image of the embedding can be characterized by the 10658:(not yet an algebra, as product is not yet defined), denoted 7208: 2066:, and the last uses the fact that the exterior product is an 26346:(The Linear Extension Theory – A new Branch of Mathematics) 20335:{\displaystyle S(x)=(-1)^{\binom {{\text{deg}}\,x\,+1}{2}}x} 20236:{\displaystyle \varepsilon :{\textstyle \bigwedge }(V)\to K} 19815:
definition of a bialgebra, that is, for creating the object
16959:
where id is the identity mapping, and the inner product has
15389: 12920:{\displaystyle w:V^{k}\to {\textstyle \bigwedge }^{\!k}(V),} 9311:
just as above, as a suitable quotient of the tensor algebra
5671:{\displaystyle \alpha =e_{1}\wedge e_{2}+e_{3}\wedge e_{4}.} 288:, and the names of the product come from the "wedge" symbol 25760:. W.H. Freeman & Co. pp. 58–60, 83, 100–9, 115–9. 24606:
at the point. Equivalently, a differential form of degree
23308:-dimensional oriented areas of the boundary simplexes of a 20944: 20569: 11387:, but then, the product should be modified as given below ( 9580:-linear antisymmetric tensors is transversal to the ideal 8146:{\displaystyle \alpha \in {\textstyle \bigwedge }^{\!k}(V)} 6849:{\displaystyle \alpha \in {\textstyle \bigwedge }^{\!k}(V)} 5245:{\displaystyle \alpha \in {\textstyle \bigwedge }^{\!k}(V)} 856:
in the sense that every equation that relates elements of
490: 27215: 24688:. Together, these constructions are used to generate the 19430:}}. It is also convenient to take the pure wedge products 15030:{\displaystyle V^{*}\times V^{*}\times \dots \times V^{*}} 9495:
can be canonically identified with the vector subspace of
8472:. In other words, the exterior algebra has the following 8195:{\displaystyle \beta \in {\textstyle \bigwedge }^{\!p}(V)} 7397:{\displaystyle \alpha =\sum _{i,j}a_{ij}e_{i}\wedge e_{j}} 7203:
Rank is particularly important in the study of 2-vectors (
425:{\displaystyle v_{1}\wedge v_{2}\wedge \dots \wedge v_{k}} 26290:(1878), "Applications of Grassmann's Extensive Algebra", 24664:
of the underlying manifold and plays a vital role in the
16043:{\displaystyle \iota _{\alpha }\circ \iota _{\alpha }=0.} 15394:
The interior product satisfies the following properties:
13198: 12356:
may also be described in index notation as follows. Let
7883:
gives the exterior algebra the additional structure of a
24722:. A single element of the exterior algebra is called a 23273:-dimensional simplex is a scalar multiple of any other. 22190:
The corresponding quotients admit a natural isomorphism
117:-dimensional boundary and on which side the interior is. 26452: 22938:-dimensional volume as the exterior product of vectors 2062:
where the first step uses the distributive law for the
26749:
Chapter 10: The Exterior Product and Exterior Algebras
26605: 26602: 26570: 26567: 26553:
in this text is used to mean the space of alternating
26527: 26524: 25942: 25893: 25677:
This definition is a standard one. See, for instance,
25285: 25283: 24931: 24898: 24684:
on the category of vector spaces, the other being the
24510: 24495: 24338: 24133:-vectors have geometric interpretations: the bivector 23343: 22683: 22656: 22630: 22567: 22540: 22507: 22269: 22236: 21940: 21800: 21756: 21729: 21674: 21631: 21612: 21587: 21540: 21521: 21470: 21451: 21432: 21406: 21272: 21231: 21028: 20979: 20952: 20920: 20895: 20869: 20741: 20705: 20668: 20622: 20589: 20545: 20520: 20481: 20462: 20443: 20212: 19844: 19825: 19770: 19744: 19697: 19651: 19649: 19584: 18993: 18958: 18939: 18902: 18876: 18699: 18680: 18661: 18610: 18528: 18478: 18321: 18278: 18129: 18076: 18017: 17740: 17681: 17621: 17426: 17156: 17106: 16873: 16846: 16762: 16735: 16662: 16635: 16484: 16450: 16372: 16254: 16227: 16193: 15660: 15561: 15534: 15352: 14862: 14738: 14711: 14659: 13635: 13493: 13410: 13080: 12892: 11462: 11309: 11201: 9354: 9286: 9173: 9131: 9090: 9056: 9012: 8964: 8929: 8862: 8826: 8701: 8613: 8445: 8392: 8309: 8170: 8121: 8062: 8015: 7953: 7926: 7899: 7848: 7815: 7788: 7761: 7741: 6824: 6724: 6645: 6599: 6566: 6539: 6512: 6492: 6478:. Hence, as a vector space the exterior algebra is a 6429:{\displaystyle {\textstyle \bigwedge }^{\!k}(V)=\{0\}} 6392: 6268: 6214: 5981: 5459: 5416: 5220: 5055: 5007: 1587: 1539: 1351: 1277: 1217: 1170: 1050:
variables is an exterior algebra over the ring of the
25940: 25891: 25871: 25851: 25820: 25788: 25664:, Theorem IX.2.2). For an elementary treatment, see 25625: 25605: 25322: 25263: 25239: 24975: 24889: 24864: 24840: 24812: 24790: 24760: 24680:, the exterior algebra is one of the two fundamental 24446: 24422: 24388: 24335: 24299: 24275: 24251: 24213: 24191: 24169: 24139: 24051: 23976: 23934: 23914: 23824: 23783: 23696: 23660: 23616:
transformation on the lesser exterior powers gives a
23494: 23398: 23376: 23341: 23316: 23282: 23259: 23237: 23215: 23195: 23168: 23037: 22944: 22924: 22859: 22833: 22807: 22783: 22755: 22621: 22492: 22307: 22199: 22160: 22127: 22034: 22008: 21981: 21867: 21671: 21585: 21513: 21397: 21346: 21316: 21269: 21228: 21206: 21184: 21158: 21136: 21108: 21088: 21068: 21025: 20866: 20739: 20666: 20518: 20441: 20402: 20382: 20362: 20262: 20204: 20177: 20018: 19982: 19960: 19940: 19920: 19823: 19688: 19615: 19582: 19500: 19436: 19144: 19031: 18991: 18937: 18867: 18843: 18821: 18793: 18735: 18653: 18608: 18561: 18526: 18467: 18400: 18375: 18260: 18172: 18118: 18065: 18006: 17973: 17914: 17813: 17782: 17729: 17670: 17618: 17517: 17492: 17423: 17231: 17206: 17146: 17103: 17074: 17052: 17030: 16998: 16831: 16806: 16732: 16712: 16626: 16586: 16564: 16447: 16422: 16369: 16304: 16190: 16165: 16143: 16057: 16010: 15873: 15840: 15805: 15771: 15749: 15702: 15654: 15632: 15612: 15518: 15465: 15430: 15406: 15349: 15327: 15291: 15129: 15097: 15069: 14984: 14951: 14922: 14902: 14887:{\displaystyle w\in {\textstyle \bigwedge }^{\!k}(V)} 14853: 14826: 14794: 14695: 14657: 14616: 14592: 14559: 14539: 14119: 14092: 13903: 13876: 13772: 13716: 13634: 13609: 13582: 13562: 13542: 13490: 13464: 13400: 13371: 13351: 13297: 13266: 13163: 13124: 13071: 13026: 12996: 12976: 12956: 12936: 12870: 12803: 12734: 12532: 12501: 12467: 12433: 12362: 12191: 11864: 11689: 11590: 11559: 11495: 11460: 11427: 11393: 11371: 11340: 11292: 11262: 11238: 11222:{\displaystyle A(V)\cong {\textstyle \bigwedge }(V).} 11184: 11148: 11126: 11097: 11077: 10994: 10962: 10933: 10913: 10891: 10865: 10843: 10806: 10767: 10734: 10699: 10666: 10616: 10583: 10482: 10443: 10411: 10387: 10347: 10189: 10163: 10134: 9962: 9879: 9856: 9818: 9793: 9763: 9741: 9710: 9690: 9670: 9636: 9612: 9588: 9566: 9538: 9501: 9481: 9461: 9443:. More general exterior algebras can be defined for 9409: 9385: 9352: 9319: 9284: 9262: 9237: 9217: 9171: 9128: 9087: 9054: 9010: 8962: 8927: 8905:{\displaystyle {\textstyle \bigwedge }(V)=T(V)\,/\,I} 8860: 8824: 8699: 8605: 8539: 8507: 8443: 8390: 8348: 8307: 8213: 8161: 8112: 8059: 8012: 7896: 7739: 7704: 7619: 7562: 7539: 7519: 7496: 7490:
is therefore even, and is twice the rank of the form
7466: 7413: 7335: 7312: 7290: 7261: 7241: 7217: 7180: 7152: 7018: 6982: 6896: 6864: 6815: 6772: 6721: 6697: 6642: 6490: 6444: 6389: 6367: 6339: 6259: 6211: 6179: 6150: 6109: 6076: 6024: 5978: 5815: 5792: 5736: 5716: 5696: 5609: 5532: 5499: 5456: 5413: 5389: 5355: 5333: 5311: 5291: 5260: 5211: 5094: 5053: 5004: 4980: 4895: 4827: 4759: 4728: 4686: 4661: 4624: 4472: 4447: 4416: 4385: 4354: 4312: 4286: 4233: 4099: 4062: 4038: 4003: 3971: 3949: 3871: 3839: 3819: 3760: 3731: 3705: 3685: 3654: 3631: 3602: 3211: 3105: 2757: 2654: 2551: 2162: 2076: 1726: 1699: 1675: 1515: 1482: 1460: 1429: 1263: 1147: 1104: 1060: 1036: 977: 945: 902: 882: 862: 828: 808: 781: 757: 737: 697: 646: 614: 586: 563: 543: 513: 467: 447: 379: 359: 334: 314: 294: 267: 247: 215: 195: 164: 140: 26413:"A Treatise on Universal Algebra, with Applications" 25715:, Chapter VI), and throughout the works of Bourbaki. 25469:, a generalization of exterior algebra to a nonzero 21504:
is an exact sequence of graded vector spaces, as is
16001:
Further properties of the interior product include:
13157:
characterizes the space of alternating operators on
11327:{\displaystyle A(V)\cong {\textstyle \bigwedge }(V)} 8740:
To construct the most general algebra that contains
8334:
is performed by manipulating symbols and imposing a
3519:
is the basis vector for the one-dimensional space ⋀(
2485:). In other words, the exterior product provides a 25755: 25690:A proof of this can be found in more generality in 25557: 25428:) who applied Grassmann's ideas to the calculus of 24828:, then it is possible to define the structure of a 21304:to itself, and is therefore given by a scalar: the 16550:If, in addition to a volume form, the vector space 8281:(a module that already carries its own gradation). 8096:{\displaystyle {\textstyle \bigwedge }^{\!1}(V)=V.} 26721: 26633: 26588: 26545: 26386: 26298:(4), The Johns Hopkins University Press: 350–358, 26137: 25950: 25922:This statement generalizes only to the case where 25901: 25877: 25857: 25826: 25794: 25631: 25611: 25328: 25302: 25269: 25247: 25216: 24955: 24870: 24846: 24818: 24796: 24766: 24541: 24471: 24428: 24394: 24362: 24305: 24281: 24257: 24231: 24197: 24175: 24151: 24112: 24037: 23959: 23920: 23886: 23810: 23765: 23675: 23526: 23474: 23382: 23360: 23322: 23300: 23265: 23243: 23221: 23201: 23177: 23154: 23024: 22930: 22910: 22845: 22813: 22791: 22761: 22744: 22725: 22597: 22468: 22293: 22182: 22146: 22113: 22020: 21994: 21964: 21847: 21783: 21651: 21560: 21493: 21376: 21322: 21296: 21255: 21212: 21190: 21170: 21142: 21120: 21094: 21074: 21052: 21006: 20846: 20722: 20685: 20649: 20498: 20420: 20388: 20368: 20334: 20235: 20183: 20137: 19988: 19966: 19946: 19926: 19861: 19799: 19671: 19628: 19601: 19556: 19486: 19384: 19124: 19010: 18975: 18919: 18849: 18827: 18805: 18774: 18716: 18627: 18567: 18545: 18502: 18448: 18381: 18359: 18243: 18163:, iteration of the above adjoint properties gives 18153: 18100: 18047: 17985: 17954: 17880: 17794: 17764: 17711: 17645: 17599: 17498: 17453: 17357: 17212: 17188: 17130: 17087: 17058: 17036: 17004: 16948: 16812: 16786: 16718: 16695: 16599: 16570: 16539: 16428: 16396: 16352: 16284: 16171: 16149: 16115: 16042: 15985: 15853: 15824: 15784: 15755: 15733: 15684: 15638: 15618: 15594: 15502: 15449: 15412: 15376: 15333: 15313: 15274: 15110: 15081: 15029: 14957: 14935: 14908: 14886: 14832: 14800: 14771: 14676: 14635: 14598: 14572: 14545: 14364: 14098: 14072: 13882: 13859: 13752: 13661: 13615: 13595: 13568: 13548: 13526: 13470: 13448: 13377: 13357: 13322: 13278: 13258:The above discussion specializes to the case when 13176: 13145: 13110: 13054: 13012: 12982: 12962: 12942: 12919: 12850: 12759: 12666: 12513: 12483: 12439: 12417: 12341: 12161: 11817: 11605: 11574: 11545: 11479: 11442: 11408: 11377: 11355: 11326: 11278: 11248: 11221: 11165: 11132: 11112: 11083: 11060: 10977: 10948: 10919: 10897: 10875: 10849: 10825: 10790: 10751: 10716: 10681: 10646: 10602: 10566: 10460: 10427: 10397: 10371: 10324: 10172: 10149: 10117: 9934: 9862: 9842: 9799: 9775: 9747: 9727: 9696: 9676: 9654: 9618: 9594: 9572: 9550: 9518: 9487: 9467: 9415: 9391: 9371: 9336: 9303: 9268: 9243: 9223: 9190: 9155: 9114: 9073: 9029: 8981: 8946: 8904: 8843: 8718: 8636: 8572: 8525: 8462: 8409: 8366: 8326: 8262: 8194: 8145: 8095: 8046:{\displaystyle {\textstyle \bigwedge }^{\!0}(V)=K} 8045: 7986: 7872: 7722: 7670: 7605: 7545: 7525: 7502: 7482: 7448: 7396: 7318: 7296: 7274: 7247: 7223: 7186: 7158: 7125: 7001: 6965: 6870: 6848: 6785: 6755:{\displaystyle {\textstyle \bigwedge }^{\!1}(V)=V} 6754: 6703: 6676:{\displaystyle {\textstyle \bigwedge }^{\!0}(V)=K} 6675: 6623: 6456: 6428: 6373: 6345: 6320: 6238: 6192: 6163: 6122: 6089: 6059: 6005: 5959: 5798: 5774: 5722: 5702: 5670: 5590: 5514: 5483: 5440: 5395: 5361: 5339: 5317: 5297: 5266: 5244: 5192: 5072: 5031: 4986: 4946: 4886:to be a linearly dependent set of vectors is that 4878: 4810: 4740: 4712: 4667: 4642: 4607: 4453: 4429: 4398: 4367: 4336: 4292: 4269: 4213: 4080: 4044: 4018: 3989: 3955: 3914: 3854: 3825: 3802: 3743: 3717: 3691: 3660: 3637: 3617: 3487: 3191: 3028: 2737: 2634: 2228: 2148: 2051: 1707: 1683: 1658: 1490: 1468: 1444: 1410: 1243: 1119: 1066: 1042: 1010: 963: 908: 888: 868: 837: 814: 790: 763: 743: 703: 676: 632: 592: 572: 549: 525: 473: 453: 424: 365: 343: 320: 300: 276: 253: 233: 201: 173: 146: 26612: 26577: 26534: 25660:, Historical Note). For a modern treatment, see 24938: 24905: 24566:The exterior algebra has notable applications in 24517: 24345: 22690: 22663: 22574: 22547: 22514: 22276: 22243: 21947: 21763: 21736: 21681: 21413: 21279: 21238: 21035: 20986: 20959: 20927: 20876: 20629: 20596: 20552: 18883: 18581:) inherits a bialgebra structure, and, indeed, a 18485: 18328: 18285: 18136: 18083: 18024: 17955:{\displaystyle x^{\flat }(y)=\langle x,y\rangle } 17747: 17688: 17628: 17454:{\displaystyle {\textstyle \bigwedge }^{\!k}(V).} 17433: 17163: 17113: 16880: 16853: 16769: 16742: 16669: 16642: 16491: 16457: 16379: 16261: 16234: 16200: 15685:{\displaystyle ={\textstyle \bigwedge }^{\!1}(V)} 15667: 15568: 15541: 15359: 14869: 14745: 14718: 13500: 13417: 13087: 12970:their exterior product, i.e. their corresponding 12899: 11232:When the characteristic of the field is nonzero, 9138: 9097: 8637:{\displaystyle f:{\textstyle \bigwedge }(V)\to A} 8177: 8128: 8069: 8022: 7960: 7933: 7906: 7855: 7822: 7795: 7768: 6831: 6731: 6652: 6606: 6573: 6546: 6519: 6399: 6309: 6296: 6275: 6221: 6205:By counting the basis elements, the dimension of 5988: 5466: 5423: 5227: 5014: 3081:} is the basis for the three-dimensional space ⋀( 2509:, the exterior algebra is closely related to the 1620: 1574: 1564: 1526: 691:of blades; a sum of blades of homogeneous degree 308:and the fact that the product of two elements of 48:Orientation defined by an ordered set of vectors. 27873: 26634:{\textstyle {\textstyle \bigwedge }^{\!k}V^{*}.} 26222: 25756:Wheeler, J.A.; Misner, C.; Thorne, K.S. (1973). 25712: 25708: 25678: 25661: 24363:{\displaystyle {\textstyle \bigwedge }^{\!k}(V)} 21297:{\displaystyle {\textstyle \bigwedge }^{\!n}(V)} 21256:{\displaystyle {\textstyle \bigwedge }^{\!n}(f)} 21053:{\displaystyle {\textstyle \bigwedge }^{\!k}(f)} 18775:{\displaystyle \Delta (v)=1\otimes v+v\otimes 1} 17646:{\displaystyle {\textstyle \bigwedge }^{\!k}(V)} 17306: 17131:{\displaystyle {\textstyle \bigwedge }^{\!k}(V)} 16397:{\displaystyle {\textstyle \bigwedge }^{\!n}(V)} 15377:{\displaystyle {\textstyle \bigwedge }^{\!0}(V)} 13702:are two anti-symmetric maps. As in the case of 13187: 11839:The exterior product of two alternating tensors 9163:first and then combine them to form the algebra 9156:{\displaystyle {\textstyle \bigwedge }^{\!k}(V)} 9115:{\displaystyle {\textstyle \bigwedge }^{\!k}(V)} 6239:{\displaystyle {\textstyle \bigwedge }^{\!k}(V)} 6060:{\displaystyle v_{1}\wedge \cdots \wedge v_{k},} 6006:{\displaystyle {\textstyle \bigwedge }^{\!k}(V)} 5484:{\displaystyle {\textstyle \bigwedge }^{\!k}(V)} 5441:{\displaystyle {\textstyle \bigwedge }^{\!k}(V)} 5032:{\displaystyle {\textstyle \bigwedge }^{\!k}(V)} 1579: 1531: 26693:"7. Exterior algebra and differential calculus" 26672: 21263:is a mapping of a one-dimensional vector space 16609:, then the resulting isomorphism is called the 13870:where, if the characteristic of the base field 10647:{\displaystyle {\mathcal {A}}(\mathrm {T} (V))} 9081:first and then identifying the exterior powers 1502:of this parallelogram is given by the standard 26132: 25958:converts monomorphisms to monomorphisms. See 23527:{\displaystyle v_{1}\wedge \dots \wedge v_{k}} 17388:, the inner product is the square norm of the 12418:{\displaystyle t=t^{i_{0}i_{1}\cdots i_{r-1}}} 9850:be the space of homogeneous tensors of degree 9684:-linear antisymmetric tensors is contained in 9045:of vector spaces to the category of algebras. 5600:, the following 2-vector is not decomposable: 2373:reverses the orientation of the parallelogram. 497:, and their higher-dimensional analogues: The 27231: 26789: 26755:"The Grassmann method in projective geometry" 26480:An introduction to the exterior algebra, and 26355:Extension Theory (translation of Grassmann's 25408:The import of this new theory of vectors and 25370:The exterior algebra was first introduced by 25277:to be a Lie algebra. Moreover, in that case 24582:over curves, surfaces and higher dimensional 24534: 24503: 24038:{\displaystyle J^{i}=F_{,j}^{ij}=F_{;j}^{ij}} 20322: 20294: 19395:where the second summation is taken over all 18346: 18314: 17347: 17311: 17175: 17149: 13652: 13639: 13435: 13403: 12182:, denoted by square brackets on the indices: 9450: 5888: 2448:vector) in relation to the exterior product ( 26699:(2nd ed.), Springer, pp. 275–320, 25909:converts epimorphisms to epimorphisms. See 22769:-dimensional volume and exterior algebra is 18443: 18427: 18238: 18203: 18197: 18173: 17949: 17937: 17875: 17842: 17836: 17814: 17342: 17316: 15734:{\displaystyle \iota _{\alpha }v=\alpha (v)} 15497: 15491: 10366: 10348: 9655:{\displaystyle k\geq \operatorname {char} K} 8995:and satisfies the above universal property. 8956:). It is then straightforward to show that 6423: 6417: 5954: 5816: 5769: 5737: 5585: 5533: 4879:{\displaystyle \{x_{1},x_{2},\dots ,x_{k}\}} 4873: 4828: 4643:{\displaystyle \operatorname {sgn}(\sigma )} 2542:, the exterior product of a pair of vectors 2492: 896:and in which the square of every element of 26589:{\textstyle {\textstyle \bigwedge }^{\!k}V} 26546:{\textstyle {\textstyle \bigwedge }^{\!k}V} 25526: 25524: 10985:defined by (the same as the wedge product) 9870:. This is spanned by decomposable tensors 8746:and whose multiplication is alternating on 5591:{\displaystyle \{e_{1},e_{2},e_{3},e_{4}\}} 5305:can be expressed as an exterior product of 2434:, since the area of the unit square is one. 27238: 27224: 26796: 26782: 26384: 26352: 26125: 26045: 25885:are modules over a commutative ring: That 24602:is an alternating multilinear form on the 24472:{\displaystyle \operatorname {Gr} _{k}(V)} 24113:{\displaystyle F^{ij}=g^{ik}g^{jl}F_{kl}.} 23361:{\displaystyle {\textstyle \bigwedge }(V)} 20686:{\displaystyle {\textstyle \bigwedge }(f)} 19602:{\displaystyle {\textstyle \bigwedge }(V)} 19248: 19207: 19011:{\displaystyle {\textstyle \bigwedge }(V)} 18628:{\displaystyle {\textstyle \bigwedge }(V)} 18546:{\displaystyle {\textstyle \bigwedge }(V)} 14677:{\displaystyle {\textstyle \bigwedge }(V)} 13662:{\displaystyle \textstyle {\binom {n}{k}}} 13478:is finite-dimensional, then the latter is 11480:{\displaystyle {\textstyle \bigwedge }(V)} 10603:{\displaystyle \operatorname {Alt} ^{(r)}} 9372:{\displaystyle {\textstyle \bigwedge }(M)} 9304:{\displaystyle {\textstyle \bigwedge }(M)} 9191:{\displaystyle {\textstyle \bigwedge }(V)} 9074:{\displaystyle {\textstyle \bigwedge }(V)} 9030:{\displaystyle {\textstyle \bigwedge }(V)} 8982:{\displaystyle {\textstyle \bigwedge }(V)} 8947:{\displaystyle {\textstyle \bigwedge }(V)} 8844:{\displaystyle {\textstyle \bigwedge }(V)} 8736:Universal property of the exterior algebra 8719:{\displaystyle {\textstyle \bigwedge }(V)} 8463:{\displaystyle {\textstyle \bigwedge }(V)} 8410:{\displaystyle {\textstyle \bigwedge }(V)} 8327:{\displaystyle {\textstyle \bigwedge }(V)} 5073:{\displaystyle {\textstyle \bigwedge }(V)} 931:is a vector space. Moreover, the field of 26407: 26334: 26282:, Historical note on chapters II and III) 26278: 26252: 26079: 26025:. Cambridge University Press. p. 1. 25962:, Corollary to Proposition 12, §III.7.9). 25657: 25569: 24645:. The exterior derivative commutes with 22799:is an affine space over the vector space 22785: 20309: 20305: 18835:stands for the unit element of the field 17392:-vector, given by the determinant of the 16438:, the isomorphism is given explicitly by 15390:Axiomatic characterization and properties 14290: 14233: 14010: 13823: 12851:{\displaystyle f(v_{1},\ldots ,v_{k})=0.} 11736: 9953:) of a decomposable tensor is defined by 8898: 8892: 7204: 5953: 5819: 3799: 3202:the exterior product of three vectors is 27595:Covariance and contravariance of vectors 26286: 26279: 26271: 26162: 26111: 26091: 25959: 25910: 25725: 25704: 25691: 25577: 25521: 24671: 24561: 23638: 20344:, the exterior algebra is furthermore a 19672:{\textstyle {\textstyle \bigwedge }(V),} 18577:. The exterior algebra (as well as the 15743:is the dual pairing between elements of 14967:, so it is defined by its values on the 13197: 12693: 9428: 8274: 6878:as a linear combination of decomposable 3935:The exterior product is by construction 3803:{\displaystyle \bigwedge (V):=T(V)/I.\,} 2496: 2437: 1086: 935:may be any field (however for fields of 604:defined by the constituent vectors. The 580:and, more generally, the magnitude of a 70:elements in a real exterior algebra for 26690: 25951:{\displaystyle {\textstyle \bigwedge }} 25902:{\displaystyle {\textstyle \bigwedge }} 25648:This axiomatization of areas is due to 25530: 25303:{\textstyle {\textstyle \bigwedge }(L)} 24779: 24630:defines differential forms in terms of 18929:, so that the above really does lie in 18593:for a detailed treatment of the topic. 11653:is given. Then any alternating tensor 9530:. For characteristic 0 (or higher than 4270:{\displaystyle x\wedge y=-(y\wedge x).} 3925: 640:implies a skew-symmetric property that 14: 27874: 27187:Comparison of linear algebra libraries 26646: 26489: 26459: 26317: 26099: 26083: 26017: 25665: 25349: 24481:, can be naturally identified with an 24318: 23253:-dimensional space, the volume of any 20730:are given on decomposable elements by 20191:is the counit, as defined presently). 18515: 15503:{\displaystyle \Lambda ^{-1}(V)=\{0\}} 10956:carries an associative graded product 10835:, the homogeneous subset of the ideal 8796:generated by all elements of the form 7166:is the minimal number of decomposable 5775:{\displaystyle \{e_{1},\dots ,e_{n}\}} 5681: 3930: 3699:generated by all elements of the form 2063: 1077: 1011:{\displaystyle v\wedge w+w\wedge v=0,} 845:and this makes the exterior algebra a 27219: 26777: 26374: 25988: 25639:-vector, which avoids this confusion. 23928:and thus makes it possible to define 22911:{\displaystyle A_{0},A_{1},...,A_{k}} 21377:{\displaystyle 0\to U\to V\to W\to 0} 21017:The components of the transformation 20723:{\textstyle \bigwedge \left(f\right)} 19576:, respectively (the empty product in 18553:and alternating multilinear forms on 15341:is a pure scalar (i.e., belonging to 13055:{\displaystyle f:V^{k}\rightarrow X,} 13020:given any other alternating operator 12353: 11363:not being a supplement of the ideal 10978:{\displaystyle {\widehat {\otimes }}} 9278:, we can define the exterior algebra 8284: 6798: 5491:is decomposable. For example, given 5381:, by others). Although decomposable 1669:Consider now the exterior product of 1082: 677:{\displaystyle v\wedge w=-w\wedge v,} 26641:Spivak discusses this in Addendum 4. 26453:Other references and further reading 26201:; Gardner, R.B.; Goldschmidt, H.L.; 25997:. Academic Press. pp. 455–464. 24966:defined on decomposable elements by 24776:-fold product of exterior algebras. 24752:-dimensional superspace is just the 23960:{\displaystyle J={\star }d{\star }F} 21662:This is a graded isomorphism; i.e., 19414:. By convention, one takes that Sh( 19022:article. In this case, one obtains 17610:constitute an orthonormal basis for 10920:{\displaystyle \operatorname {Alt} } 10791:{\displaystyle {\mathcal {A}}^{(r)}} 8919:as the symbol for multiplication in 8435:must contain a homomorphic image of 7196:. This is similar to the notion of 3591: 284:The exterior algebra is named after 23818:or the equivalent Bianchi identity 23368:generalises addition of vectors in 22749:The natural setting for (oriented) 22028:is spanned by elements of the form 20693:preserves homogeneous degree. The 20254:defined on homogeneous elements by 17905:, the linear functional defined by 15314:{\displaystyle \iota _{\alpha }f=0} 14522: 12425:be an antisymmetric tensor of rank 11933: 10040: 9843:{\displaystyle \mathrm {T} ^{r}(V)} 8429:with alternating multiplication on 7681: 3901: 2365:, since interchanging the roles of 1135:consisting of a pair of orthogonal 600:-blade is the (hyper)volume of the 27:Algebra of exterior/ wedge products 24: 27458:Tensors in curvilinear coordinates 26803: 26168:Elements of mathematics, Algebra I 25374:in 1844 under the blanket term of 25342:associated to this complex is the 25323: 24976: 24890: 24122: 20298: 20092: 19689: 19145: 19032: 18736: 18654: 18408: 18268: 18226: 17920: 17863: 16942: 16939: 15467: 14200: 14197: 13643: 11271: 11268: 11265: 11241: 11150: 10868: 10771: 10736: 10701: 10656:alternating tensor graded subspace 10628: 10619: 10552: 10543: 10521: 10512: 10496: 10487: 10445: 10420: 10417: 10414: 10390: 10275: 10266: 10157:(for nonzero characteristic field 9976: 9967: 9821: 9755:generated by elements of the form 9712: 9503: 9321: 9203: 8731: 7513:In characteristic 0, the 2-vector 6300: 66:Geometric interpretation of grade 25: 27903: 26361:, American Mathematical Society, 26258:Lectures on Differential Geometry 25971:Such a filtration also holds for 25558:Wheeler, Misner & Thorne 1973 24232:{\displaystyle u\wedge v\wedge w} 23766:{\displaystyle F_{ij}=A_{}=A_{},} 23645:Einstein's theories of relativity 23570: 13202:Geometric interpretation for the 13184:and can serve as its definition. 12493:is an alternating tensor of rank 12484:{\displaystyle \iota _{\alpha }t} 11618: 8301:. Informally, multiplication in 8295:be a vector space over the field 7172:-vectors in such an expansion of 6858:, then it is possible to express 4957: 3523:). The scalar coefficient is the 2501:Basis Decomposition of a 2-vector 81:vectors can be visualized as any 27200: 27199: 27177:Basic Linear Algebra Subprograms 26935: 26596:is what this article would call 25780:Indeed, the exterior algebra of 25728:, §III.7.5) for generalizations. 24497: 23894:None of this requires a metric. 23559: 23550: 23541: 20396:are a pair of vector spaces and 20351: 18469: 18439: 18431: 18417: 18403: 18263: 18234: 18221: 18207: 18193: 18185: 18177: 18120: 18067: 18008: 17871: 17846: 17832: 17824: 17731: 17672: 17655:, a statement equivalent to the 17097:, and so also an isomorphism of 16985: 16126: 15854:{\displaystyle \iota _{\alpha }} 15825:{\displaystyle \alpha \in V^{*}} 15450:{\displaystyle \alpha \in V^{*}} 14636:{\displaystyle \alpha \in V^{*}} 12132: 12102: 12078: 11794: 11764: 11740: 11409:{\displaystyle {\dot {\wedge }}} 10335:where the sum is taken over the 9785:. Of course, for characteristic 7231:can be identified with half the 6136:-vectors can be computed as the 5515:{\displaystyle \mathbf {R} ^{4}} 5502: 3472: 3457: 3442: 3229: 3221: 3213: 3176: 3151: 3126: 3107: 3013: 2998: 2928: 2913: 2843: 2828: 2767: 2759: 2725: 2700: 2675: 2656: 2622: 2597: 2572: 2553: 2471:plane (here, the one with sides 2210: 2195: 2180: 2165: 2130: 2115: 2094: 2079: 2035: 2020: 1973: 1958: 1937: 1922: 1901: 1886: 1865: 1850: 1819: 1801: 1777: 1759: 1740: 1732: 1701: 1677: 1550: 1543: 1484: 1462: 1445:{\displaystyle \mathbf {R} ^{2}} 1432: 1398: 1380: 1339: 1324: 1306: 1265: 1198: 1151: 1120:{\displaystyle \mathbf {R} ^{2}} 1107: 1026:. In particular, the algebra of 53: 41: 27075:Seven-dimensional cross product 26292:American Journal of Mathematics 26105: 26068: 26059: 26039: 26011: 25982: 25965: 25916: 25839: 25774: 25749: 25731: 24660:whose cohomology is called the 22745:Oriented volume in affine space 22739: 17564: 17508:, then the vectors of the form 17014:a finite-dimensional space, an 16613:, which maps an element to its 13146:{\displaystyle f=\phi \circ w.} 11546:{\displaystyle c(r+p)/c(r)c(p)} 11166:{\displaystyle \mathrm {T} (V)} 10752:{\displaystyle \mathrm {T} (V)} 10717:{\displaystyle \mathrm {T} (V)} 10691:. This is a vector subspace of 10461:{\displaystyle \mathrm {T} (V)} 10339:of permutations on the symbols 9912: 9728:{\displaystyle \mathrm {T} (V)} 9519:{\displaystyle \mathrm {T} (V)} 9337:{\displaystyle \mathrm {T} (M)} 7456:(the matrix of coefficients is 7092: 5140: 3894: 1421:are a pair of given vectors in 1337: 1194: 26697:Functions of Several Variables 26652:Introduction to linear algebra 26215:partial differential equations 25718: 25697: 25684: 25679:Mac Lane & Birkhoff (1999) 25671: 25642: 25583: 25563: 25551: 25508:of the symmetric algebra by a 25297: 25291: 25174: 25146: 25114: 25088: 25067: 25057: 25017: 24979: 24950: 24944: 24926: 24923: 24917: 24804:be a Lie algebra over a field 24586:in a way that generalizes the 24529: 24523: 24466: 24460: 24357: 24351: 23873: 23858: 23845: 23830: 23755: 23743: 23730: 23718: 23425: 23399: 23355: 23349: 23335:The vector space structure on 23295: 23283: 23048: 23038: 22717: 22708: 22702: 22678: 22675: 22669: 22651: 22648: 22642: 22625: 22589: 22586: 22580: 22562: 22559: 22553: 22535: 22532: 22526: 22496: 22460: 22447: 22432: 22419: 22375: 22288: 22282: 22261: 22255: 21959: 21953: 21836: 21825: 21812: 21804: 21775: 21769: 21748: 21742: 21699: 21687: 21643: 21637: 21624: 21618: 21605: 21593: 21571: 21552: 21546: 21536: 21533: 21527: 21517: 21485: 21482: 21476: 21466: 21463: 21457: 21447: 21444: 21438: 21425: 21419: 21401: 21368: 21362: 21356: 21350: 21291: 21285: 21250: 21244: 21047: 21041: 20998: 20992: 20974: 20971: 20965: 20939: 20933: 20907: 20901: 20888: 20882: 20838: 20825: 20810: 20797: 20788: 20756: 20753: 20747: 20680: 20674: 20641: 20635: 20611: 20608: 20602: 20564: 20558: 20532: 20526: 20493: 20487: 20477: 20474: 20468: 20455: 20449: 20412: 20288: 20278: 20272: 20266: 20227: 20224: 20218: 20127: 20095: 20084: 20072: 20066: 20034: 20031: 20019: 19856: 19850: 19837: 19831: 19794: 19788: 19762: 19756: 19718: 19715: 19709: 19663: 19657: 19596: 19590: 19549: 19543: 19521: 19509: 19479: 19473: 19451: 19445: 19376: 19371: 19365: 19343: 19331: 19320: 19314: 19309: 19303: 19281: 19275: 19264: 19261: 19255: 19243: 19225: 19180: 19148: 19113: 19101: 19071: 19059: 19047: 19035: 19005: 18999: 18970: 18964: 18951: 18945: 18914: 18908: 18895: 18889: 18745: 18739: 18711: 18705: 18692: 18686: 18676: 18673: 18667: 18622: 18616: 18540: 18534: 18497: 18491: 18421: 18413: 18340: 18334: 18148: 18142: 18095: 18089: 18042: 18036: 17931: 17925: 17759: 17753: 17706: 17700: 17640: 17634: 17445: 17439: 17125: 17119: 16927: 16915: 16908: 16898: 16892: 16886: 16868: 16865: 16859: 16781: 16775: 16757: 16754: 16748: 16687: 16681: 16657: 16654: 16648: 16518: 16509: 16503: 16479: 16476: 16463: 16391: 16385: 16279: 16273: 16249: 16246: 16240: 16219: 16206: 15977: 15961: 15940: 15930: 15918: 15902: 15896: 15884: 15728: 15722: 15679: 15673: 15586: 15580: 15556: 15553: 15547: 15485: 15479: 15371: 15365: 15266: 15209: 15200: 15149: 15146: 15130: 14881: 14875: 14782:This derivation is called the 14763: 14757: 14733: 14730: 14724: 14671: 14665: 14645:, it is possible to define an 14356: 14351: 14339: 14317: 14305: 14294: 14287: 14282: 14276: 14254: 14248: 14237: 14230: 14224: 14177: 14139: 14064: 14059: 14053: 14031: 14025: 14014: 14007: 14001: 13951: 13919: 13916: 13910: 13851: 13839: 13809: 13797: 13747: 13735: 13429: 13423: 13314: 13102: 13099: 13093: 13043: 12911: 12905: 12887: 12839: 12807: 12751: 12550: 12533: 12331: 12263: 12220: 12192: 12068: 12056: 12040: 12028: 12008: 12002: 11986: 11980: 11964: 11958: 11910: 11898: 11600: 11594: 11569: 11563: 11540: 11534: 11528: 11522: 11511: 11499: 11474: 11468: 11437: 11431: 11350: 11344: 11321: 11315: 11302: 11296: 11249:{\displaystyle {\mathcal {A}}} 11213: 11207: 11194: 11188: 11160: 11154: 11107: 11101: 11052: 11040: 10943: 10937: 10876:{\displaystyle {\mathcal {A}}} 10818: 10812: 10783: 10777: 10746: 10740: 10711: 10705: 10676: 10670: 10641: 10638: 10632: 10624: 10595: 10589: 10555: 10549: 10524: 10518: 10499: 10493: 10455: 10449: 10398:{\displaystyle {\mathcal {A}}} 10372:{\displaystyle \{1,\dots ,r\}} 10319: 10287: 10278: 10272: 10241: 10209: 10201: 10195: 10110: 10104: 10082: 10076: 10065: 10059: 10020: 9988: 9979: 9973: 9837: 9831: 9722: 9716: 9513: 9507: 9366: 9360: 9331: 9325: 9298: 9292: 9185: 9179: 9150: 9144: 9109: 9103: 9068: 9062: 9024: 9018: 8976: 8970: 8941: 8935: 8889: 8883: 8874: 8868: 8838: 8832: 8776:. We thus take the two-sided 8713: 8707: 8628: 8625: 8619: 8561: 8555: 8549: 8543: 8517: 8457: 8451: 8404: 8398: 8321: 8315: 8236: 8226: 8189: 8183: 8140: 8134: 8081: 8075: 8034: 8028: 7978: 7972: 7945: 7939: 7918: 7912: 7867: 7861: 7834: 7828: 7807: 7801: 7780: 7774: 7753: 7747: 7717: 7705: 7449:{\displaystyle a_{ij}=-a_{ji}} 7084: 7078: 7054: 7048: 7030: 7024: 6994: 6988: 6958: 6952: 6933: 6927: 6914: 6908: 6843: 6837: 6743: 6737: 6664: 6658: 6618: 6612: 6585: 6579: 6558: 6552: 6531: 6525: 6504: 6498: 6411: 6405: 6287: 6281: 6233: 6227: 6000: 5994: 5478: 5472: 5435: 5429: 5239: 5233: 5067: 5061: 5026: 5020: 4637: 4631: 4557: 4551: 4537: 4531: 4509: 4503: 4487: 4481: 4331: 4313: 4261: 4249: 4136: 4124: 4118: 4106: 3905: 3895: 3849: 3843: 3785: 3779: 3770: 3764: 3612: 3606: 3482: 3437: 3434: 3236: 3023: 2993: 2990: 2944: 2938: 2908: 2905: 2859: 2853: 2823: 2820: 2774: 2140: 2110: 1829: 1793: 1787: 1751: 13: 1: 27511:Exterior covariant derivative 27443:Tensor (intrinsic definition) 26654:, Wellesley-Cambridge Press, 26207:Exterior differential systems 26120: 25713:Mac Lane & Birkhoff (1999 25709:Mac Lane & Birkhoff (1999 25662:Mac Lane & Birkhoff (1999 24705: 24668:of differentiable manifolds. 24570:, where it is used to define 24207:. Analogously, the 3-vector 22918:, we can define its oriented 13188:Alternating multilinear forms 11678:Einstein summation convention 10435:, on the full tensor algebra 8480:Given any unital associative 7326:can be expressed uniquely as 7002:{\displaystyle \alpha ^{(i)}} 5377:, by some authors; or a  3855:{\displaystyle \bigwedge (V)} 3618:{\displaystyle \bigwedge (V)} 2406:, since adding a multiple of 1131:vector space equipped with a 27536:Raising and lowering indices 26917:Eigenvalues and eigenvectors 26140:Tensor analysis on manifolds 25462:Exterior calculus identities 23887:{\displaystyle F_{}=F_{}=0.} 22792:{\displaystyle \mathbb {A} } 21335: 20184:{\displaystyle \varepsilon } 18637:, giving the structure of a 16295:by the recursive definition 14916:is a multilinear mapping of 13335:alternating multilinear form 13323:{\displaystyle f:V^{k}\to K} 12760:{\displaystyle f:V^{k}\to X} 8685:is the natural inclusion of 4652:signature of the permutation 2335:parallelogram determined by 1708:{\displaystyle \mathbf {w} } 1684:{\displaystyle \mathbf {v} } 1491:{\displaystyle \mathbf {w} } 1469:{\displaystyle \mathbf {v} } 798:The exterior algebra is the 181:which has a product, called 7: 27774:Gluon field strength tensor 27245: 26728:Linear Algebra and Geometry 26680:Encyclopedia of Mathematics 26185:main mathematical reference 25913:, Proposition 3, §III.7.2). 25450: 24832:on the exterior algebra of 24690:irreducible representations 24643:differential graded algebra 22183:{\displaystyle v_{i}\in V.} 17998:Indeed, more generally for 14553:is finite-dimensional. If 13250:. The "circulations" show 13194:Alternating multilinear map 11279:{\displaystyle {\rm {Alt}}} 10428:{\displaystyle {\rm {Alt}}} 8367:{\displaystyle v\wedge v=0} 8003:is the base field, we have 7460:). The rank of the matrix 7211:). The rank of a 2-vector 6144:that describes the vectors 4713:{\displaystyle x_{i}=x_{j}} 3990:{\displaystyle x\wedge x=0} 3552:of the matrix with columns 3096:Bringing in a third vector 2517:. Using the standard basis 964:{\displaystyle v\wedge v=0} 633:{\displaystyle v\wedge v=0} 234:{\displaystyle v\wedge v=0} 10: 27908: 27585:Cartan formalism (physics) 27405:Penrose graphical notation 26691:Wendell, Fleming (2012) , 26385:Kannenberg, Lloyd (1999), 26353:Kannenberg, Lloyd (2000), 25365: 25358:, a fundamental object in 24699:Fundamental representation 24414:-dimensional subspaces of 23627: 23623: 23534:is linear in each factor. 22147:{\displaystyle u_{i}\in U} 17046:defines an isomorphism of 16130: 14526: 13191: 12688: 11553:for an arbitrary sequence 11416:product, Arnold setting). 10761:. Moreover, the kernel of 9776:{\displaystyle x\otimes x} 9451:Alternating tensor algebra 8573:{\displaystyle j(v)j(v)=0} 7686:The exterior product of a 3718:{\displaystyle x\otimes x} 2248:of the parallelogram: the 1498:as two of its sides. The 29: 27791: 27731: 27680: 27673: 27565: 27496: 27433: 27377: 27324: 27271: 27264: 27257:Glossary of tensor theory 27253: 27195: 27157: 27113: 27050: 27002: 26944: 26933: 26829: 26811: 26673:Onishchik, A.L. (2001) , 26324:The Calculus of Extension 26136:; Goldberg, S.I. (1980), 25329:{\displaystyle \partial } 24576:higher-dimensional bodies 24152:{\displaystyle u\wedge v} 23967:or the equivalent tensor 21121:{\displaystyle k\times k} 20247:on the exterior algebra. 11334:still holds, in spite of 11091:has characteristic 0, as 10577:Such that, when defined, 8342:, and using the identity 2493:Cross and triple products 939:two, the above condition 526:{\displaystyle v\wedge w} 85:-dimensional shape (e.g. 27841:Gregorio Ricci-Curbastro 27713:Riemann curvature tensor 27420:Van der Waerden notation 26725:; Remizov, A.O. (2012). 26423:(1504), Cambridge: 385, 25619:-multivector instead of 25515: 23811:{\displaystyle dF=ddA=0} 23689:alternating tensor field 23651:is generally given as a 22827:) collection of ordered 20421:{\displaystyle f:V\to W} 19989:{\displaystyle \otimes } 19967:{\displaystyle \otimes } 19947:{\displaystyle \otimes } 12698:Given two vector spaces 11834:completely antisymmetric 10150:{\displaystyle r!\neq 0} 8526:{\displaystyle j:V\to A} 6355:is the dimension of the 5085:by elements of the form 4081:{\displaystyle x,y\in V} 3560:. The triple product of 2331:, since the area of the 852:The exterior algebra is 27811:Elwin Bruno Christoffel 27744:Angular momentum tensor 27415:Tetrad (index notation) 27385:Abstract index notation 26409:Whitehead, Alfred North 26126:Mathematical references 26096:extended vector algebra 25314:with boundary operator 24600:differentiable manifold 24370:correspond to weighted 22021:{\displaystyle p\geq 1} 21388:of vector spaces, then 21198:is of finite dimension 21062:relative to a basis of 19927:{\displaystyle \wedge } 19422:) equals {id: {1, ..., 16429:{\displaystyle \sigma } 14833:{\displaystyle \alpha } 14801:{\displaystyle \alpha } 11419:Finally, we always get 10826:{\displaystyle I^{(r)}} 9560:), the vector space of 7526:{\displaystyle \alpha } 7503:{\displaystyle \alpha } 7319:{\displaystyle \alpha } 7248:{\displaystyle \alpha } 7224:{\displaystyle \alpha } 7187:{\displaystyle \alpha } 7159:{\displaystyle \alpha } 6871:{\displaystyle \alpha } 6634:(where, by convention, 5450:, not every element of 5362:{\displaystyle \alpha } 5298:{\displaystyle \alpha } 5267:{\displaystyle \alpha } 4741:{\displaystyle i\neq j} 4668:{\displaystyle \sigma } 4293:{\displaystyle \sigma } 4019:{\displaystyle x\in V,} 3826:{\displaystyle \wedge } 822:-th exterior powers of 301:{\displaystyle \wedge } 202:{\displaystyle \wedge } 109:defined by that of its 27625:Levi-Civita connection 26902:Row and column vectors 26635: 26590: 26547: 25991:"On the Wedge Product" 25952: 25903: 25879: 25859: 25828: 25796: 25633: 25613: 25493:, the symmetric analog 25437:Alfred North Whitehead 25399:propositional calculus 25330: 25304: 25271: 25249: 25218: 24957: 24872: 24848: 24820: 24798: 24768: 24550:. This is called the 24543: 24473: 24430: 24404:. In particular, the 24396: 24364: 24307: 24283: 24259: 24233: 24199: 24177: 24153: 24114: 24039: 23961: 23922: 23921:{\displaystyle \star } 23888: 23812: 23775:electromagnetic tensor 23767: 23677: 23630:Electromagnetic tensor 23613:linear transformations 23528: 23476: 23384: 23362: 23324: 23302: 23267: 23245: 23223: 23203: 23179: 23156: 23026: 22932: 22912: 22847: 22815: 22793: 22763: 22727: 22612:is 1-dimensional then 22599: 22483:is 1-dimensional then 22470: 22295: 22184: 22148: 22115: 22022: 21996: 21966: 21849: 21785: 21653: 21562: 21495: 21378: 21324: 21298: 21257: 21214: 21192: 21172: 21144: 21122: 21096: 21076: 21054: 21008: 20848: 20724: 20699:-graded components of 20687: 20651: 20500: 20422: 20390: 20370: 20336: 20237: 20185: 20139: 19990: 19968: 19948: 19928: 19863: 19801: 19741: 19673: 19630: 19603: 19558: 19488: 19386: 19206: 19126: 19012: 18977: 18921: 18851: 18829: 18807: 18806:{\displaystyle v\in V} 18776: 18718: 18629: 18589:. See the article on 18569: 18547: 18504: 18450: 18383: 18361: 18245: 18155: 18102: 18049: 17987: 17986:{\displaystyle y\in V} 17956: 17882: 17796: 17795:{\displaystyle x\in V} 17766: 17713: 17647: 17601: 17500: 17455: 17359: 17214: 17190: 17132: 17089: 17060: 17038: 17006: 16950: 16814: 16788: 16720: 16719:{\displaystyle \star } 16697: 16601: 16572: 16541: 16430: 16398: 16354: 16286: 16173: 16151: 16117: 16044: 15987: 15855: 15826: 15786: 15757: 15735: 15686: 15640: 15620: 15596: 15504: 15451: 15414: 15378: 15335: 15315: 15276: 15112: 15083: 15031: 14959: 14937: 14910: 14888: 14834: 14802: 14773: 14678: 14637: 14600: 14574: 14547: 14366: 14100: 14074: 13884: 13861: 13754: 13663: 13617: 13597: 13570: 13550: 13528: 13472: 13450: 13379: 13359: 13324: 13280: 13255: 13178: 13147: 13112: 13062:there exists a unique 13056: 13014: 13013:{\displaystyle V^{k};} 12984: 12964: 12944: 12921: 12852: 12761: 12668: 12611: 12515: 12485: 12441: 12419: 12343: 12163: 11819: 11607: 11576: 11547: 11481: 11444: 11410: 11379: 11357: 11328: 11280: 11250: 11223: 11167: 11134: 11114: 11085: 11062: 10979: 10950: 10921: 10899: 10877: 10851: 10827: 10792: 10753: 10718: 10683: 10648: 10604: 10568: 10462: 10429: 10399: 10373: 10326: 10174: 10151: 10119: 9936: 9864: 9844: 9801: 9777: 9749: 9729: 9698: 9678: 9664:, the vector space of 9656: 9620: 9596: 9574: 9552: 9551:{\displaystyle \dim V} 9520: 9489: 9469: 9417: 9393: 9373: 9338: 9305: 9270: 9245: 9225: 9192: 9157: 9116: 9075: 9031: 8983: 8948: 8906: 8845: 8737: 8720: 8638: 8574: 8527: 8464: 8411: 8368: 8328: 8264: 8196: 8147: 8097: 8047: 7988: 7874: 7724: 7672: 7607: 7547: 7527: 7504: 7484: 7483:{\displaystyle a_{ij}} 7450: 7398: 7320: 7298: 7276: 7249: 7225: 7188: 7160: 7127: 7003: 6967: 6872: 6850: 6787: 6756: 6705: 6677: 6625: 6458: 6457:{\displaystyle k>n} 6430: 6375: 6347: 6322: 6240: 6194: 6171:in terms of the basis 6165: 6124: 6091: 6061: 6007: 5961: 5800: 5776: 5724: 5704: 5672: 5592: 5516: 5485: 5442: 5397: 5363: 5341: 5319: 5299: 5268: 5246: 5194: 5074: 5033: 4988: 4948: 4880: 4812: 4742: 4714: 4669: 4644: 4609: 4455: 4431: 4400: 4369: 4338: 4294: 4271: 4215: 4082: 4046: 4020: 3991: 3957: 3916: 3856: 3827: 3804: 3745: 3744:{\displaystyle x\in V} 3719: 3693: 3662: 3639: 3619: 3527:of the three vectors. 3489: 3193: 3030: 2739: 2636: 2502: 2467: 2230: 2150: 2053: 1709: 1685: 1660: 1492: 1470: 1446: 1412: 1245: 1121: 1097:Euclidean vector space 1092: 1068: 1044: 1012: 971:must be replaced with 965: 910: 890: 870: 839: 816: 792: 765: 751:-blades is called the 745: 705: 678: 634: 594: 574: 551: 527: 475: 455: 426: 367: 345: 322: 302: 278: 255: 235: 203: 175: 148: 27851:Jan Arnoldus Schouten 27806:Augustin-Louis Cauchy 27286:Differential geometry 26907:Row and column spaces 26852:Scalar multiplication 26714:multivariate calculus 26636: 26591: 26548: 26495:Calculus on manifolds 26460:Browne, J.M. (2007), 26348:alternative reference 26272:Historical references 26076:calculus of extension 26021:(1984). "Chapter 1". 25953: 25904: 25880: 25860: 25829: 25797: 25634: 25614: 25435:A short while later, 25331: 25305: 25272: 25250: 25231:holds if and only if 25219: 24958: 24873: 24849: 24821: 24799: 24769: 24678:representation theory 24672:Representation theory 24654:differential operator 24568:differential geometry 24562:Differential geometry 24544: 24474: 24431: 24397: 24365: 24308: 24284: 24260: 24234: 24200: 24178: 24154: 24115: 24040: 23962: 23923: 23889: 23813: 23768: 23687:or as the equivalent 23678: 23649:electromagnetic field 23639:Electromagnetic field 23529: 23477: 23385: 23363: 23325: 23303: 23301:{\displaystyle (k-1)} 23268: 23246: 23224: 23204: 23180: 23162:(using concatenation 23157: 23027: 22933: 22913: 22848: 22816: 22794: 22764: 22728: 22600: 22471: 22296: 22185: 22149: 22116: 22023: 21997: 21995:{\displaystyle F^{p}} 21967: 21850: 21786: 21654: 21563: 21496: 21379: 21325: 21299: 21258: 21215: 21193: 21173: 21152:. In particular, if 21145: 21123: 21097: 21077: 21055: 21009: 20849: 20725: 20688: 20652: 20501: 20423: 20391: 20371: 20337: 20238: 20186: 20140: 19991: 19969: 19949: 19929: 19864: 19802: 19721: 19674: 19631: 19629:{\displaystyle x_{k}} 19604: 19559: 19489: 19387: 19186: 19127: 19013: 18978: 18922: 18852: 18830: 18808: 18777: 18719: 18645:is a linear function 18630: 18570: 18548: 18505: 18451: 18384: 18362: 18246: 18156: 18103: 18050: 17988: 17957: 17883: 17797: 17767: 17714: 17648: 17602: 17501: 17456: 17360: 17215: 17191: 17133: 17090: 17088:{\displaystyle V^{*}} 17061: 17039: 17007: 16951: 16815: 16789: 16721: 16698: 16602: 16600:{\displaystyle V^{*}} 16573: 16542: 16431: 16399: 16355: 16287: 16174: 16157:has finite dimension 16152: 16118: 16045: 15988: 15856: 15827: 15787: 15785:{\displaystyle V^{*}} 15758: 15736: 15687: 15641: 15621: 15597: 15505: 15459:(where by convention 15452: 15415: 15379: 15336: 15316: 15277: 15113: 15111:{\displaystyle V^{*}} 15084: 15032: 14960: 14938: 14936:{\displaystyle V^{*}} 14911: 14889: 14835: 14803: 14774: 14679: 14638: 14601: 14575: 14573:{\displaystyle V^{*}} 14548: 14367: 14108:finite characteristic 14101: 14075: 13885: 13862: 13755: 13664: 13618: 13598: 13596:{\displaystyle V^{k}} 13571: 13551: 13536:. In particular, if 13529: 13473: 13451: 13380: 13360: 13325: 13281: 13201: 13179: 13177:{\displaystyle V^{k}} 13148: 13113: 13057: 13015: 12985: 12965: 12945: 12922: 12853: 12762: 12706:and a natural number 12694:Alternating operators 12669: 12591: 12516: 12486: 12442: 12420: 12344: 12164: 11820: 11627:has finite dimension 11608: 11577: 11548: 11482: 11445: 11411: 11380: 11358: 11329: 11281: 11251: 11224: 11168: 11135: 11115: 11086: 11063: 10980: 10951: 10922: 10900: 10878: 10852: 10828: 10793: 10754: 10719: 10684: 10649: 10605: 10569: 10463: 10430: 10400: 10374: 10327: 10175: 10152: 10120: 9937: 9865: 9845: 9802: 9778: 9750: 9730: 9699: 9679: 9657: 9621: 9597: 9575: 9553: 9528:antisymmetric tensors 9521: 9490: 9470: 9434:Exterior algebras of 9418: 9394: 9374: 9339: 9306: 9271: 9246: 9226: 9193: 9158: 9117: 9076: 9048:Rather than defining 9032: 9004:its exterior algebra 8984: 8949: 8907: 8846: 8735: 8721: 8639: 8575: 8528: 8465: 8412: 8369: 8329: 8265: 8197: 8148: 8098: 8048: 7989: 7875: 7725: 7723:{\displaystyle (k+p)} 7673: 7608: 7548: 7528: 7505: 7485: 7451: 7399: 7321: 7299: 7277: 7275:{\displaystyle e_{i}} 7255:in a basis. Thus if 7250: 7226: 7189: 7161: 7128: 7009:is decomposable, say 7004: 6968: 6873: 6851: 6788: 6786:{\displaystyle 2^{n}} 6757: 6706: 6678: 6626: 6459: 6431: 6376: 6348: 6323: 6241: 6195: 6193:{\displaystyle e_{i}} 6166: 6164:{\displaystyle v_{j}} 6125: 6123:{\displaystyle e_{i}} 6101:of the basis vectors 6092: 6090:{\displaystyle v_{j}} 6062: 6008: 5962: 5801: 5777: 5725: 5705: 5673: 5593: 5517: 5486: 5443: 5398: 5364: 5342: 5320: 5300: 5269: 5247: 5195: 5075: 5034: 4989: 4949: 4881: 4813: 4743: 4715: 4670: 4645: 4610: 4456: 4432: 4430:{\displaystyle x_{k}} 4401: 4399:{\displaystyle x_{2}} 4370: 4368:{\displaystyle x_{1}} 4339: 4295: 4272: 4216: 4083: 4054:, for supposing that 4047: 4021: 3992: 3958: 3917: 3857: 3828: 3813:The exterior product 3805: 3746: 3720: 3694: 3663: 3640: 3620: 3596:The exterior algebra 3490: 3194: 3031: 2740: 2637: 2500: 2489:formulation of area. 2441: 2309:for any real numbers 2231: 2151: 2054: 1710: 1686: 1661: 1493: 1471: 1447: 1413: 1246: 1122: 1090: 1069: 1045: 1013: 966: 911: 891: 871: 840: 817: 793: 766: 746: 706: 679: 635: 595: 575: 552: 528: 476: 456: 427: 368: 353:The wedge product of 346: 323: 303: 279: 256: 236: 204: 176: 149: 27826:Carl Friedrich Gauss 27759:stress–energy tensor 27754:Cauchy stress tensor 27506:Covariant derivative 27468:Antisymmetric tensor 27400:Multi-index notation 27042:Gram–Schmidt process 26994:Gaussian elimination 26600: 26565: 26522: 25989:James, A.T. (1983). 25938: 25889: 25869: 25849: 25818: 25786: 25623: 25603: 25572:introduced these as 25531:Penrose, R. (2007). 25344:Lie algebra homology 25320: 25281: 25261: 25237: 24973: 24887: 24862: 24838: 24810: 24788: 24780:Lie algebra homology 24758: 24694:general linear group 24493: 24483:algebraic subvariety 24444: 24420: 24386: 24333: 24297: 24273: 24249: 24211: 24189: 24167: 24137: 24049: 23974: 23932: 23912: 23822: 23781: 23694: 23676:{\displaystyle F=dA} 23658: 23492: 23396: 23374: 23339: 23314: 23280: 23257: 23235: 23213: 23193: 23166: 23035: 22942: 22922: 22857: 22831: 22805: 22781: 22753: 22619: 22490: 22305: 22197: 22158: 22125: 22032: 22006: 21979: 21865: 21798: 21669: 21583: 21511: 21395: 21386:short exact sequence 21344: 21314: 21267: 21226: 21204: 21182: 21156: 21134: 21106: 21086: 21066: 21023: 20864: 20737: 20703: 20664: 20516: 20439: 20400: 20380: 20360: 20260: 20202: 20198:is the homomorphism 20175: 20016: 19980: 19958: 19938: 19918: 19821: 19686: 19647: 19613: 19580: 19498: 19434: 19142: 19029: 18989: 18935: 18865: 18841: 18819: 18791: 18733: 18726:, which is given by 18651: 18606: 18585:structure, from the 18559: 18524: 18465: 18398: 18373: 18258: 18170: 18116: 18063: 18004: 17971: 17912: 17811: 17780: 17727: 17668: 17657:Cauchy–Binet formula 17616: 17515: 17490: 17421: 17229: 17204: 17144: 17101: 17072: 17050: 17028: 16996: 16829: 16804: 16730: 16710: 16624: 16584: 16562: 16554:is equipped with an 16445: 16420: 16367: 16302: 16188: 16163: 16141: 16055: 16008: 15871: 15838: 15803: 15769: 15747: 15700: 15652: 15630: 15610: 15516: 15463: 15428: 15404: 15347: 15325: 15289: 15127: 15095: 15067: 14982: 14949: 14920: 14900: 14851: 14824: 14792: 14693: 14655: 14614: 14590: 14584:to the vector space 14557: 14537: 14117: 14090: 13901: 13874: 13770: 13714: 13632: 13625:binomial coefficient 13607: 13580: 13560: 13540: 13488: 13480:naturally isomorphic 13462: 13398: 13389:isomorphic with the 13369: 13349: 13295: 13264: 13243:, here planes), for 13161: 13122: 13069: 13024: 12994: 12974: 12954: 12934: 12930:which associates to 12868: 12801: 12732: 12712:alternating operator 12681:is the dimension of 12530: 12499: 12465: 12431: 12360: 12189: 11862: 11687: 11606:{\displaystyle A(V)} 11588: 11575:{\displaystyle c(r)} 11557: 11493: 11458: 11443:{\displaystyle A(V)} 11425: 11391: 11369: 11356:{\displaystyle A(V)} 11338: 11290: 11260: 11236: 11182: 11146: 11124: 11113:{\displaystyle A(V)} 11095: 11075: 10992: 10960: 10949:{\displaystyle A(V)} 10931: 10911: 10889: 10863: 10859:, or the kernel of 10841: 10804: 10765: 10732: 10697: 10682:{\displaystyle A(V)} 10664: 10614: 10581: 10480: 10441: 10409: 10385: 10345: 10187: 10161: 10132: 9960: 9877: 9854: 9816: 9791: 9761: 9739: 9708: 9688: 9668: 9634: 9610: 9586: 9564: 9536: 9499: 9479: 9459: 9407: 9383: 9350: 9317: 9282: 9260: 9235: 9215: 9169: 9126: 9085: 9052: 9008: 8960: 8925: 8858: 8822: 8697: 8603: 8598:algebra homomorphism 8592:, then there exists 8537: 8505: 8441: 8423:-algebra containing 8388: 8346: 8305: 8211: 8159: 8110: 8057: 8010: 7894: 7737: 7702: 7617: 7560: 7537: 7517: 7494: 7464: 7411: 7333: 7310: 7288: 7259: 7239: 7215: 7178: 7150: 7016: 6980: 6894: 6862: 6813: 6770: 6719: 6695: 6640: 6488: 6442: 6387: 6365: 6337: 6257: 6248:binomial coefficient 6209: 6177: 6148: 6107: 6097:can be written as a 6074: 6022: 5976: 5813: 5790: 5734: 5714: 5694: 5607: 5530: 5497: 5454: 5411: 5387: 5353: 5331: 5309: 5289: 5285:. If, furthermore, 5258: 5209: 5092: 5051: 5002: 4978: 4893: 4825: 4757: 4726: 4684: 4659: 4622: 4470: 4445: 4414: 4383: 4352: 4310: 4284: 4231: 4097: 4060: 4036: 4001: 3969: 3947: 3926:Algebraic properties 3869: 3837: 3817: 3758: 3729: 3703: 3683: 3652: 3629: 3600: 3209: 3103: 2755: 2652: 2549: 2402:for any real number 2160: 2074: 2070:, and in particular 1724: 1697: 1673: 1513: 1480: 1458: 1427: 1261: 1145: 1102: 1095:The two-dimensional 1058: 1034: 975: 943: 900: 880: 860: 826: 806: 779: 755: 735: 695: 644: 612: 606:alternating property 584: 561: 541: 511: 465: 445: 377: 357: 332: 312: 292: 265: 245: 213: 193: 162: 138: 123:In mathematics, the 27887:Multilinear algebra 27703:Nonmetricity tensor 27558:(2nd-order tensors) 27526:Hodge star operator 27516:Exterior derivative 27365:Transport phenomena 27350:Continuum mechanics 27306:Multilinear algebra 27172:Numerical stability 27052:Multilinear algebra 27027:Inner product space 26877:Linear independence 26561:; i.e., for Spivak 26429:1898Natur..58..385G 26170:, Springer-Verlag, 26094:), and recently as 25534:The Road to Reality 25506:quantum deformation 25486:Multilinear algebra 25457:Alternating algebra 25380:Theory of Extension 25360:homological algebra 25350:Homological algebra 25248:{\displaystyle {1}} 24639:exterior derivative 24637:In particular, the 24319:Projective geometry 24034: 24010: 23907:Hodge star operator 23653:differential 2-form 23575:In applications to 23187:displacement vector 22846:{\displaystyle k+1} 21855:there is a natural 21171:{\displaystyle V=W} 18516:Bialgebra structure 18391:-vector defined by 17903:musical isomorphism 16706:The composition of 16611:Hodge star operator 16133:Hodge star operator 15082:{\displaystyle k-1} 14810:, or sometimes the 14471:+ 2) < ... < 13279:{\displaystyle X=K} 13241:coordinate surfaces 12770:such that whenever 12514:{\displaystyle r-1} 11631:, and that a basis 11120:is a supplement of 9951:skew-symmetrization 7235:of coefficients of 7088: 7058: 5682:Basis and dimension 4280:More generally, if 3965:, which means that 3931:Alternating product 3833:of two elements of 2442:The cross product ( 1078:Motivating examples 689:linear combinations 533:is the area of the 156:associative algebra 101:); with magnitude ( 27892:Differential forms 27836:Tullio Levi-Civita 27779:Metric tensor (GR) 27693:Levi-Civita symbol 27546:Tensor contraction 27360:General relativity 27296:Euclidean geometry 26882:Linear combination 26675:"Exterior algebra" 26631: 26609: 26586: 26574: 26543: 26531: 26497:, Addison-Wesley, 26336:Grassmann, Hermann 25977:abelian categories 25948: 25946: 25899: 25897: 25875: 25855: 25824: 25806:enveloping algebra 25792: 25629: 25609: 25430:differential forms 25326: 25300: 25289: 25267: 25245: 25214: 25056: 24953: 24935: 24902: 24868: 24844: 24816: 24794: 24764: 24666:algebraic topology 24662:de Rham cohomology 24632:germs of functions 24628:alternate approach 24594:from calculus. A 24572:differential forms 24539: 24514: 24469: 24426: 24392: 24360: 24342: 24303: 24279: 24255: 24229: 24195: 24173: 24149: 24110: 24035: 24014: 23990: 23957: 23918: 23884: 23808: 23763: 23673: 23524: 23472: 23380: 23358: 23347: 23320: 23298: 23263: 23241: 23219: 23199: 23178:{\displaystyle PQ} 23175: 23152: 23022: 22928: 22908: 22843: 22811: 22789: 22775:differential forms 22759: 22723: 22687: 22660: 22634: 22595: 22571: 22544: 22511: 22479:In particular, if 22466: 22291: 22273: 22240: 22180: 22144: 22111: 22018: 21992: 21962: 21944: 21845: 21781: 21760: 21733: 21726: 21678: 21649: 21635: 21616: 21591: 21558: 21544: 21525: 21491: 21474: 21455: 21436: 21410: 21374: 21320: 21294: 21276: 21253: 21235: 21210: 21188: 21168: 21140: 21118: 21092: 21072: 21050: 21032: 21004: 20983: 20956: 20924: 20899: 20873: 20844: 20745: 20720: 20683: 20672: 20647: 20626: 20593: 20549: 20524: 20496: 20485: 20466: 20447: 20418: 20386: 20366: 20332: 20233: 20216: 20181: 20135: 19986: 19964: 19944: 19924: 19859: 19848: 19829: 19797: 19774: 19748: 19701: 19669: 19655: 19626: 19599: 19588: 19554: 19484: 19382: 19247: 19122: 19008: 18997: 18973: 18962: 18943: 18917: 18906: 18880: 18847: 18825: 18803: 18772: 18714: 18703: 18684: 18665: 18625: 18614: 18565: 18543: 18532: 18500: 18482: 18446: 18379: 18357: 18325: 18282: 18241: 18151: 18133: 18098: 18080: 18045: 18021: 17983: 17952: 17878: 17792: 17762: 17744: 17709: 17685: 17643: 17625: 17597: 17496: 17451: 17430: 17355: 17210: 17186: 17160: 17128: 17110: 17085: 17056: 17034: 17022:inner product) on 17002: 16946: 16877: 16850: 16810: 16784: 16766: 16739: 16716: 16693: 16666: 16639: 16597: 16568: 16537: 16488: 16454: 16426: 16394: 16376: 16350: 16282: 16258: 16231: 16197: 16169: 16147: 16113: 16040: 15983: 15851: 15822: 15782: 15753: 15731: 15682: 15664: 15636: 15616: 15592: 15565: 15538: 15500: 15447: 15410: 15374: 15356: 15331: 15311: 15285:Additionally, let 15272: 15108: 15079: 15027: 14955: 14933: 14906: 14884: 14866: 14830: 14812:insertion operator 14798: 14769: 14742: 14715: 14674: 14663: 14633: 14596: 14570: 14543: 14362: 14217: 14096: 14070: 13994: 13894:of its variables: 13880: 13857: 13750: 13659: 13658: 13613: 13593: 13566: 13546: 13524: 13497: 13468: 13446: 13414: 13375: 13355: 13337:. The set of all 13320: 13276: 13256: 13174: 13155:universal property 13143: 13108: 13084: 13052: 13010: 12980: 12960: 12940: 12917: 12896: 12848: 12788:linearly dependent 12757: 12664: 12511: 12481: 12437: 12415: 12339: 12159: 11951: 11815: 11672:can be written in 11603: 11572: 11543: 11477: 11466: 11440: 11406: 11375: 11353: 11324: 11313: 11276: 11246: 11219: 11205: 11163: 11130: 11110: 11081: 11058: 10975: 10946: 10917: 10895: 10873: 10847: 10823: 10788: 10749: 10714: 10679: 10644: 10600: 10564: 10458: 10425: 10395: 10369: 10322: 10173:{\displaystyle r!} 10170: 10147: 10115: 10052: 9949:(or sometimes the 9947:antisymmetrization 9932: 9860: 9840: 9797: 9773: 9745: 9725: 9694: 9674: 9652: 9616: 9592: 9570: 9548: 9516: 9485: 9465: 9441:Serre–Swan theorem 9425:finitely generated 9413: 9389: 9379:also require that 9369: 9358: 9334: 9301: 9290: 9266: 9241: 9221: 9188: 9177: 9153: 9135: 9112: 9094: 9071: 9060: 9027: 9016: 8979: 8968: 8944: 8933: 8902: 8866: 8841: 8830: 8738: 8716: 8705: 8634: 8617: 8570: 8523: 8474:universal property 8460: 8449: 8407: 8396: 8364: 8324: 8313: 8285:Universal property 8260: 8192: 8174: 8143: 8125: 8093: 8066: 8043: 8019: 7984: 7957: 7930: 7903: 7870: 7852: 7819: 7792: 7765: 7745: 7720: 7668: 7660: 7647: 7603: 7592: 7587: 7543: 7523: 7500: 7480: 7446: 7394: 7357: 7316: 7294: 7272: 7245: 7233:rank of the matrix 7221: 7209:Bryant et al. 1991 7184: 7156: 7123: 7068: 7038: 6999: 6963: 6868: 6846: 6828: 6783: 6752: 6728: 6701: 6673: 6649: 6621: 6603: 6570: 6543: 6516: 6496: 6454: 6426: 6396: 6371: 6343: 6318: 6272: 6236: 6218: 6190: 6161: 6120: 6099:linear combination 6087: 6057: 6003: 5985: 5957: 5796: 5772: 5720: 5700: 5668: 5588: 5512: 5481: 5463: 5438: 5420: 5393: 5359: 5337: 5315: 5295: 5264: 5242: 5224: 5190: 5070: 5059: 5029: 5011: 4984: 4944: 4876: 4808: 4738: 4710: 4680:In particular, if 4665: 4640: 4605: 4463:, it follows that 4451: 4427: 4396: 4365: 4334: 4290: 4267: 4211: 4078: 4042: 4016: 3987: 3953: 3912: 3852: 3823: 3800: 3741: 3715: 3689: 3668:is defined as the 3658: 3635: 3625:of a vector space 3615: 3485: 3189: 3026: 2735: 2632: 2503: 2468: 2226: 2146: 2049: 2047: 1705: 1681: 1656: 1612: 1556: 1488: 1466: 1442: 1408: 1366: 1292: 1241: 1232: 1185: 1117: 1093: 1083:Areas in the plane 1064: 1040: 1028:differential forms 1008: 961: 906: 886: 866: 838:{\displaystyle V,} 835: 812: 791:{\displaystyle V.} 788: 761: 741: 701: 674: 630: 590: 573:{\displaystyle w,} 570: 547: 523: 471: 451: 422: 363: 344:{\displaystyle V.} 341: 318: 298: 277:{\displaystyle V.} 274: 251: 231: 199: 174:{\displaystyle V,} 171: 144: 27869: 27868: 27831:Hermann Grassmann 27787: 27786: 27739:Moment of inertia 27600:Differential form 27575:Affine connection 27390:Einstein notation 27373: 27372: 27301:Exterior calculus 27281:Coordinate system 27213: 27212: 27080:Geometric algebra 27037:Kronecker product 26872:Linear projection 26857:Vector projection 26742:978-3-642-30993-9 26723:Shafarevich, I.R. 26712:This textbook in 26706:978-1-4684-9461-7 26661:978-0-9614088-5-5 26504:978-0-8053-9021-6 26482:geometric algebra 26400:978-0-8176-4126-9 26254:Sternberg, Shlomo 26209:, Springer-Verlag 26164:Bourbaki, Nicolas 26088:extensive algebra 26046:Kannenberg (2000) 25878:{\displaystyle W} 25858:{\displaystyle V} 25827:{\displaystyle V} 25795:{\displaystyle V} 25707:, §III.7.1), and 25650:Leopold Kronecker 25632:{\displaystyle k} 25612:{\displaystyle k} 25544:978-0-679-77631-4 25537:. Vintage books. 25491:Symmetric algebra 25476:Geometric algebra 25441:universal algebra 25372:Hermann Grassmann 25270:{\displaystyle L} 25177: 25149: 25041: 25039: 24871:{\displaystyle K} 24847:{\displaystyle L} 24819:{\displaystyle K} 24797:{\displaystyle L} 24767:{\displaystyle n} 24686:symmetric algebra 24614:linear functional 24596:differential form 24592:surface integrals 24578:, so they can be 24556:Plücker relations 24552:Plücker embedding 24429:{\displaystyle V} 24395:{\displaystyle V} 24306:{\displaystyle w} 24282:{\displaystyle v} 24258:{\displaystyle u} 24198:{\displaystyle v} 24176:{\displaystyle u} 24127:The decomposable 23383:{\displaystyle V} 23323:{\displaystyle k} 23266:{\displaystyle n} 23244:{\displaystyle n} 23222:{\displaystyle Q} 23202:{\displaystyle P} 22931:{\displaystyle k} 22814:{\displaystyle V} 22762:{\displaystyle k} 22608:is exact, and if 21831: 21818: 21705: 21323:{\displaystyle f} 21213:{\displaystyle n} 21191:{\displaystyle V} 21143:{\displaystyle f} 21102:is the matrix of 21095:{\displaystyle W} 21075:{\displaystyle V} 20389:{\displaystyle W} 20369:{\displaystyle V} 20320: 20303: 19208: 18850:{\displaystyle K} 18828:{\displaystyle 1} 18579:symmetric algebra 18568:{\displaystyle V} 18382:{\displaystyle l} 17499:{\displaystyle V} 17482:orthonormal basis 17213:{\displaystyle k} 17059:{\displaystyle V} 17037:{\displaystyle V} 17005:{\displaystyle V} 16822:. In this case, 16813:{\displaystyle V} 16796:orthonormal basis 16726:with itself maps 16571:{\displaystyle V} 16172:{\displaystyle n} 16150:{\displaystyle V} 15863:graded derivation 15756:{\displaystyle V} 15639:{\displaystyle V} 15626:is an element of 15619:{\displaystyle v} 15413:{\displaystyle k} 15334:{\displaystyle f} 14975:Cartesian product 14958:{\displaystyle K} 14909:{\displaystyle w} 14599:{\displaystyle V} 14546:{\displaystyle V} 14401:is the subset of 14184: 14133: 14099:{\displaystyle K} 13972: 13970: 13883:{\displaystyle K} 13831: 13785: 13650: 13616:{\displaystyle K} 13569:{\displaystyle n} 13549:{\displaystyle V} 13471:{\displaystyle V} 13391:dual vector space 13378:{\displaystyle V} 13358:{\displaystyle k} 13342:multilinear forms 13239:-form ("mesh" of 12983:{\displaystyle k} 12963:{\displaystyle V} 12943:{\displaystyle k} 12440:{\displaystyle r} 12215: 12210: 12200: 11919: 11917: 11885: 11880: 11870: 11403: 11378:{\displaystyle I} 11133:{\displaystyle I} 11084:{\displaystyle K} 11027: 11022: 11012: 10972: 10898:{\displaystyle I} 10850:{\displaystyle I} 10260: 10026: 9863:{\displaystyle r} 9800:{\displaystyle 0} 9748:{\displaystyle I} 9697:{\displaystyle I} 9677:{\displaystyle K} 9619:{\displaystyle K} 9595:{\displaystyle I} 9573:{\displaystyle k} 9526:that consists of 9488:{\displaystyle K} 9468:{\displaystyle V} 9416:{\displaystyle M} 9401:projective module 9392:{\displaystyle M} 9269:{\displaystyle M} 9244:{\displaystyle R} 9224:{\displaystyle R} 7626: 7624: 7622: 7602: 7566: 7564: 7546:{\displaystyle p} 7342: 7297:{\displaystyle V} 6704:{\displaystyle V} 6374:{\displaystyle k} 6346:{\displaystyle n} 6307: 5898: 5895: 5885: 5799:{\displaystyle V} 5723:{\displaystyle n} 5703:{\displaystyle V} 5396:{\displaystyle k} 5340:{\displaystyle V} 5318:{\displaystyle k} 4987:{\displaystyle V} 4454:{\displaystyle V} 4045:{\displaystyle V} 3956:{\displaystyle V} 3692:{\displaystyle I} 3676:by the two-sided 3661:{\displaystyle K} 3638:{\displaystyle V} 3592:Formal definition 3586:orthonormal basis 2487:basis-independent 1519: 1067:{\displaystyle k} 1043:{\displaystyle k} 909:{\displaystyle V} 889:{\displaystyle V} 869:{\displaystyle V} 815:{\displaystyle k} 773:th exterior power 764:{\displaystyle k} 744:{\displaystyle k} 704:{\displaystyle k} 593:{\displaystyle k} 550:{\displaystyle v} 474:{\displaystyle k} 454:{\displaystyle k} 366:{\displaystyle k} 321:{\displaystyle V} 286:Hermann Grassmann 254:{\displaystyle v} 241:for every vector 189:and denoted with 147:{\displaystyle V} 129:Grassmann algebra 16:(Redirected from 27899: 27846:Bernhard Riemann 27678: 27677: 27521:Exterior product 27488:Two-point tensor 27473:Symmetric tensor 27355:Electromagnetism 27269: 27268: 27240: 27233: 27226: 27217: 27216: 27203: 27202: 27085:Exterior algebra 27022:Hadamard product 26939: 26927:Linear equations 26798: 26791: 26784: 26775: 26774: 26746: 26709: 26687: 26664: 26640: 26638: 26637: 26632: 26627: 26626: 26617: 26616: 26610: 26595: 26593: 26592: 26587: 26582: 26581: 26575: 26552: 26550: 26549: 26544: 26539: 26538: 26532: 26518:. The notation 26516:Stokes's theorem 26507: 26477: 26476: 26475: 26466:, archived from 26447: 26437:10.1038/058385a0 26403: 26392: 26382: 26371: 26357:Ausdehnungslehre 26345: 26331: 26329:Internet Archive 26314: 26283: 26261: 26244: 26210: 26180: 26154: 26143: 26115: 26109: 26103: 26072: 26066: 26063: 26057: 26054:Extension Theory 26050:Ausdehnungslehre 26043: 26037: 26036: 26015: 26009: 26008: 25986: 25980: 25969: 25963: 25957: 25955: 25954: 25949: 25947: 25933: 25927: 25920: 25914: 25908: 25906: 25905: 25900: 25898: 25884: 25882: 25881: 25876: 25864: 25862: 25861: 25856: 25843: 25837: 25835: 25833: 25831: 25830: 25825: 25810:Lie superalgebra 25803: 25801: 25799: 25798: 25793: 25778: 25772: 25771: 25753: 25747: 25745: 25735: 25729: 25722: 25716: 25701: 25695: 25688: 25682: 25675: 25669: 25654:Karl Weierstrass 25646: 25640: 25638: 25636: 25635: 25630: 25618: 25616: 25615: 25610: 25587: 25581: 25570:Grassmann (1844) 25567: 25561: 25555: 25549: 25548: 25528: 25467:Clifford algebra 25445:abstract algebra 25397:, much like the 25376:Ausdehnungslehre 25337: 25335: 25333: 25332: 25327: 25309: 25307: 25306: 25301: 25290: 25276: 25274: 25273: 25268: 25256: 25254: 25252: 25251: 25246: 25244: 25223: 25221: 25220: 25215: 25210: 25209: 25185: 25184: 25179: 25178: 25170: 25157: 25156: 25151: 25150: 25142: 25129: 25128: 25113: 25112: 25100: 25099: 25087: 25086: 25055: 25040: 25038: 25024: 25016: 25015: 24991: 24990: 24962: 24960: 24959: 24954: 24943: 24942: 24936: 24916: 24915: 24903: 24880:-linear mapping 24879: 24877: 24875: 24874: 24869: 24855: 24853: 24851: 24850: 24845: 24827: 24825: 24823: 24822: 24817: 24803: 24801: 24800: 24795: 24775: 24773: 24771: 24770: 24765: 24751: 24728:Grassmann number 24621: 24611: 24598:at a point of a 24549: 24548: 24546: 24545: 24540: 24538: 24537: 24522: 24521: 24515: 24507: 24506: 24500: 24487:projective space 24480: 24478: 24476: 24475: 24470: 24456: 24455: 24437: 24435: 24433: 24432: 24427: 24413: 24403: 24401: 24399: 24398: 24393: 24378:linear subspaces 24375: 24369: 24367: 24366: 24361: 24350: 24349: 24343: 24328: 24314: 24312: 24310: 24309: 24304: 24290: 24288: 24286: 24285: 24280: 24266: 24264: 24262: 24261: 24256: 24238: 24236: 24235: 24230: 24206: 24204: 24202: 24201: 24196: 24182: 24180: 24179: 24174: 24158: 24156: 24155: 24150: 24132: 24119: 24117: 24116: 24111: 24106: 24105: 24093: 24092: 24080: 24079: 24064: 24063: 24044: 24042: 24041: 24036: 24033: 24025: 24009: 24001: 23986: 23985: 23966: 23964: 23963: 23958: 23953: 23945: 23927: 23925: 23924: 23919: 23893: 23891: 23890: 23885: 23877: 23876: 23849: 23848: 23817: 23815: 23814: 23809: 23772: 23770: 23769: 23764: 23759: 23758: 23734: 23733: 23709: 23708: 23682: 23680: 23679: 23674: 23610: 23604: 23563: 23554: 23545: 23533: 23531: 23530: 23525: 23523: 23522: 23504: 23503: 23487: 23482:and similarly a 23481: 23479: 23478: 23473: 23465: 23464: 23446: 23445: 23424: 23423: 23411: 23410: 23391: 23389: 23387: 23386: 23381: 23367: 23365: 23364: 23359: 23348: 23331: 23329: 23327: 23326: 23321: 23307: 23305: 23304: 23299: 23272: 23270: 23269: 23264: 23252: 23250: 23248: 23247: 23242: 23228: 23226: 23225: 23220: 23208: 23206: 23205: 23200: 23184: 23182: 23181: 23176: 23161: 23159: 23158: 23153: 23151: 23150: 23141: 23140: 23122: 23121: 23112: 23111: 23099: 23098: 23089: 23088: 23076: 23075: 23066: 23065: 23056: 23055: 23031: 23029: 23028: 23023: 23021: 23016: 23015: 23006: 23005: 22987: 22986: 22977: 22976: 22964: 22963: 22954: 22953: 22937: 22935: 22934: 22929: 22917: 22915: 22914: 22909: 22907: 22906: 22882: 22881: 22869: 22868: 22852: 22850: 22849: 22844: 22822: 22820: 22818: 22817: 22812: 22798: 22796: 22795: 22790: 22788: 22768: 22766: 22765: 22760: 22732: 22730: 22729: 22724: 22701: 22700: 22688: 22668: 22667: 22661: 22641: 22640: 22635: 22604: 22602: 22601: 22596: 22579: 22578: 22572: 22552: 22551: 22545: 22525: 22524: 22512: 22475: 22473: 22472: 22467: 22459: 22458: 22431: 22430: 22412: 22411: 22387: 22386: 22374: 22373: 22355: 22354: 22342: 22341: 22317: 22316: 22300: 22298: 22297: 22292: 22281: 22280: 22274: 22254: 22253: 22241: 22230: 22229: 22220: 22215: 22214: 22189: 22187: 22186: 22181: 22170: 22169: 22153: 22151: 22150: 22145: 22137: 22136: 22120: 22118: 22117: 22112: 22110: 22109: 22088: 22087: 22075: 22074: 22044: 22043: 22027: 22025: 22024: 22019: 22001: 21999: 21998: 21993: 21991: 21990: 21971: 21969: 21968: 21963: 21952: 21951: 21945: 21934: 21933: 21915: 21914: 21896: 21895: 21883: 21882: 21854: 21852: 21851: 21846: 21832: 21824: 21819: 21811: 21790: 21788: 21787: 21782: 21768: 21767: 21761: 21741: 21740: 21734: 21725: 21686: 21685: 21679: 21658: 21656: 21655: 21650: 21636: 21617: 21592: 21567: 21565: 21564: 21559: 21545: 21526: 21500: 21498: 21497: 21492: 21475: 21456: 21437: 21418: 21417: 21411: 21383: 21381: 21380: 21375: 21331: 21329: 21327: 21326: 21321: 21303: 21301: 21300: 21295: 21284: 21283: 21277: 21262: 21260: 21259: 21254: 21243: 21242: 21236: 21221: 21219: 21217: 21216: 21211: 21197: 21195: 21194: 21189: 21177: 21175: 21174: 21169: 21151: 21149: 21147: 21146: 21141: 21127: 21125: 21124: 21119: 21101: 21099: 21098: 21093: 21081: 21079: 21078: 21073: 21061: 21059: 21057: 21056: 21051: 21040: 21039: 21033: 21013: 21011: 21010: 21005: 20991: 20990: 20984: 20964: 20963: 20957: 20946: 20943: 20942: 20932: 20931: 20925: 20900: 20881: 20880: 20874: 20853: 20851: 20850: 20845: 20837: 20836: 20809: 20808: 20787: 20786: 20768: 20767: 20746: 20729: 20727: 20726: 20721: 20719: 20698: 20692: 20690: 20689: 20684: 20673: 20656: 20654: 20653: 20648: 20634: 20633: 20627: 20601: 20600: 20594: 20571: 20568: 20567: 20557: 20556: 20550: 20525: 20505: 20503: 20502: 20497: 20486: 20467: 20448: 20427: 20425: 20424: 20419: 20395: 20393: 20392: 20387: 20375: 20373: 20372: 20367: 20343: 20341: 20339: 20338: 20333: 20328: 20327: 20326: 20325: 20316: 20304: 20301: 20297: 20242: 20240: 20239: 20234: 20217: 20190: 20188: 20187: 20182: 20170: 20144: 20142: 20141: 20136: 20134: 20130: 20126: 20125: 20107: 20106: 20065: 20064: 20046: 20045: 19997: 19995: 19993: 19992: 19987: 19973: 19971: 19970: 19965: 19953: 19951: 19950: 19945: 19933: 19931: 19930: 19925: 19909: 19890: 19870: 19868: 19866: 19865: 19860: 19849: 19830: 19806: 19804: 19803: 19798: 19787: 19786: 19775: 19755: 19754: 19749: 19740: 19735: 19708: 19707: 19702: 19678: 19676: 19675: 19670: 19656: 19635: 19633: 19632: 19627: 19625: 19624: 19608: 19606: 19605: 19600: 19589: 19563: 19561: 19560: 19555: 19553: 19552: 19525: 19524: 19493: 19491: 19490: 19485: 19483: 19482: 19455: 19454: 19411: 19391: 19389: 19388: 19383: 19375: 19374: 19347: 19346: 19313: 19312: 19285: 19284: 19246: 19205: 19200: 19179: 19178: 19160: 19159: 19131: 19129: 19128: 19123: 19017: 19015: 19014: 19009: 18998: 18984: 18982: 18980: 18979: 18974: 18963: 18944: 18928: 18926: 18924: 18923: 18918: 18907: 18888: 18887: 18881: 18858: 18856: 18854: 18853: 18848: 18834: 18832: 18831: 18826: 18814: 18812: 18810: 18809: 18804: 18781: 18779: 18778: 18773: 18725: 18723: 18721: 18720: 18715: 18704: 18685: 18666: 18636: 18634: 18632: 18631: 18626: 18615: 18576: 18574: 18572: 18571: 18566: 18552: 18550: 18549: 18544: 18533: 18511: 18509: 18507: 18506: 18501: 18490: 18489: 18483: 18472: 18455: 18453: 18452: 18447: 18442: 18434: 18420: 18412: 18411: 18406: 18390: 18388: 18386: 18385: 18380: 18366: 18364: 18363: 18358: 18356: 18355: 18350: 18349: 18333: 18332: 18326: 18318: 18317: 18308: 18304: 18303: 18290: 18289: 18283: 18272: 18271: 18266: 18250: 18248: 18247: 18242: 18237: 18232: 18231: 18230: 18229: 18224: 18210: 18196: 18188: 18180: 18162: 18160: 18158: 18157: 18152: 18141: 18140: 18134: 18123: 18109: 18107: 18105: 18104: 18099: 18088: 18087: 18081: 18070: 18056: 18054: 18052: 18051: 18046: 18035: 18034: 18022: 18011: 17994: 17992: 17990: 17989: 17984: 17961: 17959: 17958: 17953: 17924: 17923: 17900: 17887: 17885: 17884: 17879: 17874: 17869: 17868: 17867: 17866: 17849: 17835: 17827: 17803: 17801: 17799: 17798: 17793: 17773: 17771: 17769: 17768: 17763: 17752: 17751: 17745: 17734: 17720: 17718: 17716: 17715: 17710: 17699: 17698: 17686: 17675: 17654: 17652: 17650: 17649: 17644: 17633: 17632: 17626: 17606: 17604: 17603: 17598: 17593: 17592: 17574: 17573: 17560: 17559: 17558: 17557: 17534: 17533: 17532: 17531: 17507: 17505: 17503: 17502: 17497: 17479: 17460: 17458: 17457: 17452: 17438: 17437: 17431: 17416: 17387: 17364: 17362: 17361: 17356: 17351: 17350: 17341: 17340: 17328: 17327: 17315: 17314: 17302: 17298: 17297: 17296: 17278: 17277: 17265: 17264: 17246: 17245: 17221: 17219: 17217: 17216: 17211: 17197: 17195: 17193: 17192: 17187: 17185: 17184: 17179: 17178: 17168: 17167: 17161: 17153: 17152: 17137: 17135: 17134: 17129: 17118: 17117: 17111: 17096: 17094: 17092: 17091: 17086: 17084: 17083: 17065: 17063: 17062: 17057: 17045: 17043: 17041: 17040: 17035: 17020:pseudo-Euclidean 17013: 17011: 17009: 17008: 17003: 16973: 16961:metric signature 16955: 16953: 16952: 16947: 16945: 16937: 16936: 16885: 16884: 16878: 16858: 16857: 16851: 16821: 16819: 16817: 16816: 16811: 16793: 16791: 16790: 16785: 16774: 16773: 16767: 16747: 16746: 16740: 16725: 16723: 16722: 16717: 16702: 16700: 16699: 16694: 16680: 16679: 16667: 16647: 16646: 16640: 16608: 16606: 16604: 16603: 16598: 16596: 16595: 16577: 16575: 16574: 16569: 16546: 16544: 16543: 16538: 16530: 16529: 16502: 16501: 16489: 16475: 16474: 16462: 16461: 16455: 16437: 16435: 16433: 16432: 16427: 16412:orientation form 16403: 16401: 16400: 16395: 16384: 16383: 16377: 16359: 16357: 16356: 16351: 16346: 16345: 16333: 16332: 16320: 16319: 16291: 16289: 16288: 16283: 16272: 16271: 16259: 16239: 16238: 16232: 16218: 16217: 16205: 16204: 16198: 16180: 16178: 16176: 16175: 16170: 16156: 16154: 16153: 16148: 16122: 16120: 16119: 16114: 16109: 16108: 16096: 16095: 16080: 16079: 16067: 16066: 16049: 16047: 16046: 16041: 16033: 16032: 16020: 16019: 15992: 15990: 15989: 15984: 15973: 15972: 15954: 15953: 15914: 15913: 15883: 15882: 15860: 15858: 15857: 15852: 15850: 15849: 15833: 15831: 15829: 15828: 15823: 15821: 15820: 15793: 15791: 15789: 15788: 15783: 15781: 15780: 15763:and elements of 15762: 15760: 15759: 15754: 15742: 15740: 15738: 15737: 15732: 15712: 15711: 15693: 15691: 15689: 15688: 15683: 15672: 15671: 15665: 15645: 15643: 15642: 15637: 15625: 15623: 15622: 15617: 15601: 15599: 15598: 15593: 15579: 15578: 15566: 15546: 15545: 15539: 15528: 15527: 15509: 15507: 15506: 15501: 15478: 15477: 15458: 15456: 15454: 15453: 15448: 15446: 15445: 15421: 15419: 15417: 15416: 15411: 15385: 15383: 15381: 15380: 15375: 15364: 15363: 15357: 15340: 15338: 15337: 15332: 15320: 15318: 15317: 15312: 15301: 15300: 15281: 15279: 15278: 15273: 15265: 15264: 15240: 15239: 15227: 15226: 15199: 15198: 15174: 15173: 15161: 15160: 15142: 15141: 15119: 15117: 15115: 15114: 15109: 15107: 15106: 15088: 15086: 15085: 15080: 15038: 15036: 15034: 15033: 15028: 15026: 15025: 15007: 15006: 14994: 14993: 14972: 14966: 14964: 14962: 14961: 14956: 14942: 14940: 14939: 14934: 14932: 14931: 14915: 14913: 14912: 14907: 14895: 14893: 14891: 14890: 14885: 14874: 14873: 14867: 14841: 14839: 14837: 14836: 14831: 14809: 14807: 14805: 14804: 14799: 14784:interior product 14778: 14776: 14775: 14770: 14756: 14755: 14743: 14723: 14722: 14716: 14705: 14704: 14685: 14683: 14681: 14680: 14675: 14664: 14644: 14642: 14640: 14639: 14634: 14632: 14631: 14608:, then for each 14607: 14605: 14603: 14602: 14597: 14579: 14577: 14576: 14571: 14569: 14568: 14552: 14550: 14549: 14544: 14529:Interior product 14523:Interior product 14518: 14484: 14453: 14444:(2) < ⋯ < 14434: 14413: 14400: 14371: 14369: 14368: 14363: 14355: 14354: 14321: 14320: 14286: 14285: 14258: 14257: 14216: 14215: 14214: 14203: 14180: 14176: 14175: 14151: 14150: 14135: 14134: 14126: 14105: 14103: 14102: 14097: 14079: 14077: 14076: 14071: 14063: 14062: 14035: 14034: 13993: 13992: 13991: 13971: 13969: 13958: 13950: 13949: 13931: 13930: 13889: 13887: 13886: 13881: 13866: 13864: 13863: 13858: 13832: 13830: 13815: 13795: 13787: 13786: 13778: 13759: 13757: 13756: 13751: 13701: 13687: 13670: 13668: 13666: 13665: 13660: 13657: 13656: 13655: 13642: 13622: 13620: 13619: 13614: 13602: 13600: 13599: 13594: 13592: 13591: 13575: 13573: 13572: 13567: 13555: 13553: 13552: 13547: 13535: 13533: 13531: 13530: 13525: 13523: 13519: 13518: 13505: 13504: 13498: 13481: 13477: 13475: 13474: 13469: 13457: 13455: 13453: 13452: 13447: 13445: 13444: 13439: 13438: 13422: 13421: 13415: 13407: 13406: 13384: 13382: 13381: 13376: 13364: 13362: 13361: 13356: 13329: 13327: 13326: 13321: 13313: 13312: 13287: 13285: 13283: 13282: 13277: 13249: 13238: 13232: 13226: 13220: 13211: 13204:exterior product 13183: 13181: 13180: 13175: 13173: 13172: 13152: 13150: 13149: 13144: 13117: 13115: 13114: 13109: 13092: 13091: 13085: 13061: 13059: 13058: 13053: 13042: 13041: 13019: 13017: 13016: 13011: 13006: 13005: 12989: 12987: 12986: 12981: 12969: 12967: 12966: 12961: 12949: 12947: 12946: 12941: 12926: 12924: 12923: 12918: 12904: 12903: 12897: 12886: 12885: 12857: 12855: 12854: 12849: 12838: 12837: 12819: 12818: 12766: 12764: 12763: 12758: 12750: 12749: 12673: 12671: 12670: 12665: 12660: 12659: 12658: 12657: 12639: 12638: 12621: 12620: 12610: 12605: 12584: 12583: 12582: 12581: 12563: 12562: 12545: 12544: 12522: 12520: 12518: 12517: 12512: 12492: 12490: 12488: 12487: 12482: 12477: 12476: 12458: 12448: 12446: 12444: 12443: 12438: 12424: 12422: 12421: 12416: 12414: 12413: 12412: 12411: 12393: 12392: 12383: 12382: 12354:interior product 12348: 12346: 12345: 12340: 12335: 12334: 12330: 12329: 12311: 12310: 12290: 12289: 12288: 12287: 12275: 12274: 12254: 12253: 12252: 12251: 12233: 12232: 12213: 12212: 12211: 12203: 12198: 12181: 12168: 12166: 12165: 12160: 12155: 12154: 12153: 12152: 12136: 12135: 12119: 12118: 12117: 12116: 12106: 12105: 12095: 12094: 12093: 12092: 12082: 12081: 12074: 12073: 12072: 12071: 12044: 12043: 12014: 12013: 12012: 12011: 11990: 11989: 11950: 11949: 11948: 11937: 11936: 11918: 11916: 11893: 11883: 11882: 11881: 11873: 11868: 11836:in its indices. 11824: 11822: 11821: 11816: 11811: 11810: 11809: 11808: 11798: 11797: 11781: 11780: 11779: 11778: 11768: 11767: 11757: 11756: 11755: 11754: 11744: 11743: 11735: 11734: 11733: 11732: 11720: 11719: 11710: 11709: 11671: 11648: 11614: 11612: 11610: 11609: 11604: 11581: 11579: 11578: 11573: 11552: 11550: 11549: 11544: 11518: 11488: 11486: 11484: 11483: 11478: 11467: 11452:isomorphic with 11451: 11449: 11447: 11446: 11441: 11415: 11413: 11412: 11407: 11405: 11404: 11396: 11386: 11384: 11382: 11381: 11376: 11362: 11360: 11359: 11354: 11333: 11331: 11330: 11325: 11314: 11285: 11283: 11282: 11277: 11275: 11274: 11255: 11253: 11252: 11247: 11245: 11244: 11228: 11226: 11225: 11220: 11206: 11174: 11172: 11170: 11169: 11164: 11153: 11139: 11137: 11136: 11131: 11119: 11117: 11116: 11111: 11090: 11088: 11087: 11082: 11067: 11065: 11064: 11059: 11025: 11024: 11023: 11015: 11010: 10984: 10982: 10981: 10976: 10974: 10973: 10965: 10955: 10953: 10952: 10947: 10926: 10924: 10923: 10918: 10906: 10904: 10902: 10901: 10896: 10882: 10880: 10879: 10874: 10872: 10871: 10858: 10856: 10854: 10853: 10848: 10834: 10832: 10830: 10829: 10824: 10822: 10821: 10797: 10795: 10794: 10789: 10787: 10786: 10775: 10774: 10760: 10758: 10756: 10755: 10750: 10739: 10725: 10723: 10721: 10720: 10715: 10704: 10690: 10688: 10686: 10685: 10680: 10653: 10651: 10650: 10645: 10631: 10623: 10622: 10609: 10607: 10606: 10601: 10599: 10598: 10573: 10571: 10570: 10565: 10560: 10559: 10558: 10547: 10546: 10529: 10528: 10527: 10516: 10515: 10504: 10503: 10502: 10491: 10490: 10469: 10467: 10465: 10464: 10459: 10448: 10434: 10432: 10431: 10426: 10424: 10423: 10404: 10402: 10401: 10396: 10394: 10393: 10380: 10378: 10376: 10375: 10370: 10331: 10329: 10328: 10323: 10318: 10317: 10299: 10298: 10283: 10282: 10281: 10270: 10269: 10261: 10259: 10248: 10240: 10239: 10221: 10220: 10205: 10204: 10179: 10177: 10176: 10171: 10156: 10154: 10153: 10148: 10124: 10122: 10121: 10116: 10114: 10113: 10086: 10085: 10051: 10050: 10049: 10044: 10043: 10019: 10018: 10000: 9999: 9984: 9983: 9982: 9971: 9970: 9941: 9939: 9938: 9933: 9922: 9921: 9908: 9907: 9889: 9888: 9869: 9867: 9866: 9861: 9849: 9847: 9846: 9841: 9830: 9829: 9824: 9808: 9806: 9804: 9803: 9798: 9784: 9782: 9780: 9779: 9774: 9754: 9752: 9751: 9746: 9734: 9732: 9731: 9726: 9715: 9703: 9701: 9700: 9695: 9683: 9681: 9680: 9675: 9663: 9661: 9659: 9658: 9653: 9627: 9625: 9623: 9622: 9617: 9603: 9601: 9599: 9598: 9593: 9579: 9577: 9576: 9571: 9559: 9557: 9555: 9554: 9549: 9525: 9523: 9522: 9517: 9506: 9494: 9492: 9491: 9486: 9474: 9472: 9471: 9466: 9422: 9420: 9419: 9414: 9398: 9396: 9395: 9390: 9378: 9376: 9375: 9370: 9359: 9345: 9343: 9341: 9340: 9335: 9324: 9310: 9308: 9307: 9302: 9291: 9277: 9275: 9273: 9272: 9267: 9250: 9248: 9247: 9242: 9230: 9228: 9227: 9222: 9210:commutative ring 9199: 9197: 9195: 9194: 9189: 9178: 9162: 9160: 9159: 9154: 9143: 9142: 9136: 9121: 9119: 9118: 9113: 9102: 9101: 9095: 9080: 9078: 9077: 9072: 9061: 9036: 9034: 9033: 9028: 9017: 9003: 8994: 8988: 8986: 8985: 8980: 8969: 8955: 8953: 8951: 8950: 8945: 8934: 8918: 8911: 8909: 8908: 8903: 8897: 8867: 8851:as the quotient 8850: 8848: 8847: 8842: 8831: 8817: 8811: 8805: 8795: 8784: 8771: 8757: 8751: 8745: 8727: 8725: 8723: 8722: 8717: 8706: 8690: 8684: 8678: 8672: 8666: 8643: 8641: 8640: 8635: 8618: 8591: 8585: 8579: 8577: 8576: 8571: 8532: 8530: 8529: 8524: 8497: 8491: 8485: 8471: 8469: 8467: 8466: 8461: 8450: 8434: 8428: 8422: 8416: 8414: 8413: 8408: 8397: 8383: 8373: 8371: 8370: 8365: 8336:distributive law 8333: 8331: 8330: 8325: 8314: 8300: 8294: 8269: 8267: 8266: 8261: 8247: 8246: 8203: 8201: 8199: 8198: 8193: 8182: 8181: 8175: 8152: 8150: 8149: 8144: 8133: 8132: 8126: 8102: 8100: 8099: 8094: 8074: 8073: 8067: 8052: 8050: 8049: 8044: 8027: 8026: 8020: 8002: 7993: 7991: 7990: 7985: 7971: 7970: 7958: 7938: 7937: 7931: 7911: 7910: 7904: 7879: 7877: 7876: 7871: 7860: 7859: 7853: 7827: 7826: 7820: 7800: 7799: 7793: 7773: 7772: 7766: 7746: 7729: 7727: 7726: 7721: 7697: 7691: 7682:Graded structure 7677: 7675: 7674: 7669: 7661: 7659: 7648: 7643: 7620: 7612: 7610: 7609: 7604: 7600: 7593: 7588: 7583: 7552: 7550: 7549: 7544: 7532: 7530: 7529: 7524: 7509: 7507: 7506: 7501: 7489: 7487: 7486: 7481: 7479: 7478: 7455: 7453: 7452: 7447: 7445: 7444: 7426: 7425: 7403: 7401: 7400: 7395: 7393: 7392: 7380: 7379: 7370: 7369: 7356: 7325: 7323: 7322: 7317: 7305: 7303: 7301: 7300: 7295: 7281: 7279: 7278: 7273: 7271: 7270: 7254: 7252: 7251: 7246: 7230: 7228: 7227: 7222: 7195: 7193: 7191: 7190: 7185: 7171: 7165: 7163: 7162: 7157: 7145: 7132: 7130: 7129: 7124: 7087: 7076: 7057: 7046: 7034: 7033: 7008: 7006: 7005: 7000: 6998: 6997: 6972: 6970: 6969: 6964: 6962: 6961: 6937: 6936: 6918: 6917: 6884: 6877: 6875: 6874: 6869: 6857: 6855: 6853: 6852: 6847: 6836: 6835: 6829: 6794: 6792: 6790: 6789: 6784: 6782: 6781: 6763: 6761: 6759: 6758: 6753: 6736: 6735: 6729: 6712: 6710: 6708: 6707: 6702: 6684: 6682: 6680: 6679: 6674: 6657: 6656: 6650: 6630: 6628: 6627: 6622: 6611: 6610: 6604: 6578: 6577: 6571: 6551: 6550: 6544: 6524: 6523: 6517: 6497: 6475: 6465: 6463: 6461: 6460: 6455: 6435: 6433: 6432: 6427: 6404: 6403: 6397: 6382: 6380: 6378: 6377: 6372: 6354: 6352: 6350: 6349: 6344: 6327: 6325: 6324: 6319: 6314: 6313: 6312: 6299: 6280: 6279: 6273: 6245: 6243: 6242: 6237: 6226: 6225: 6219: 6201: 6199: 6197: 6196: 6191: 6189: 6188: 6170: 6168: 6167: 6162: 6160: 6159: 6135: 6131: 6129: 6127: 6126: 6121: 6119: 6118: 6096: 6094: 6093: 6088: 6086: 6085: 6066: 6064: 6063: 6058: 6053: 6052: 6034: 6033: 6014: 6012: 6010: 6009: 6004: 5993: 5992: 5986: 5966: 5964: 5963: 5958: 5946: 5945: 5927: 5926: 5914: 5913: 5896: 5893: 5892: 5891: 5883: 5882: 5881: 5880: 5879: 5856: 5855: 5854: 5853: 5836: 5835: 5834: 5833: 5805: 5803: 5802: 5797: 5781: 5779: 5778: 5773: 5768: 5767: 5749: 5748: 5729: 5727: 5726: 5721: 5709: 5707: 5706: 5701: 5677: 5675: 5674: 5669: 5664: 5663: 5651: 5650: 5638: 5637: 5625: 5624: 5599: 5597: 5595: 5594: 5589: 5584: 5583: 5571: 5570: 5558: 5557: 5545: 5544: 5523: 5521: 5519: 5518: 5513: 5511: 5510: 5505: 5490: 5488: 5487: 5482: 5471: 5470: 5464: 5449: 5447: 5445: 5444: 5439: 5428: 5427: 5421: 5404: 5402: 5400: 5399: 5394: 5368: 5366: 5365: 5360: 5348: 5346: 5344: 5343: 5338: 5324: 5322: 5321: 5316: 5304: 5302: 5301: 5296: 5281: 5274:is said to be a 5273: 5271: 5270: 5265: 5253: 5251: 5249: 5248: 5243: 5232: 5231: 5225: 5199: 5197: 5196: 5191: 5150: 5149: 5136: 5135: 5117: 5116: 5104: 5103: 5081: 5079: 5077: 5076: 5071: 5060: 5040: 5038: 5036: 5035: 5030: 5019: 5018: 5012: 4995: 4993: 4991: 4990: 4985: 4967: 4953: 4951: 4950: 4945: 4937: 4936: 4918: 4917: 4905: 4904: 4885: 4883: 4882: 4877: 4872: 4871: 4853: 4852: 4840: 4839: 4817: 4815: 4814: 4809: 4801: 4800: 4782: 4781: 4769: 4768: 4749: 4747: 4745: 4744: 4739: 4719: 4717: 4716: 4711: 4709: 4708: 4696: 4695: 4676: 4674: 4672: 4671: 4666: 4649: 4647: 4646: 4641: 4614: 4612: 4611: 4606: 4601: 4600: 4582: 4581: 4569: 4568: 4541: 4540: 4513: 4512: 4491: 4490: 4462: 4460: 4458: 4457: 4452: 4439:are elements of 4438: 4436: 4434: 4433: 4428: 4426: 4425: 4407: 4405: 4403: 4402: 4397: 4395: 4394: 4376: 4374: 4372: 4371: 4366: 4364: 4363: 4345: 4343: 4341: 4340: 4337:{\displaystyle } 4335: 4304:of the integers 4299: 4297: 4296: 4291: 4276: 4274: 4273: 4268: 4220: 4218: 4217: 4212: 4089: 4087: 4085: 4084: 4079: 4053: 4051: 4049: 4048: 4043: 4025: 4023: 4022: 4017: 3996: 3994: 3993: 3988: 3964: 3962: 3960: 3959: 3954: 3921: 3919: 3918: 3913: 3908: 3861: 3859: 3858: 3853: 3832: 3830: 3829: 3824: 3809: 3807: 3806: 3801: 3792: 3751:. Symbolically, 3750: 3748: 3747: 3742: 3724: 3722: 3721: 3716: 3698: 3696: 3695: 3690: 3670:quotient algebra 3667: 3665: 3664: 3659: 3644: 3642: 3641: 3636: 3624: 3622: 3621: 3616: 3539: 3494: 3492: 3491: 3486: 3481: 3480: 3475: 3466: 3465: 3460: 3451: 3450: 3445: 3433: 3432: 3423: 3422: 3413: 3412: 3400: 3399: 3390: 3389: 3380: 3379: 3367: 3366: 3357: 3356: 3347: 3346: 3334: 3333: 3324: 3323: 3314: 3313: 3301: 3300: 3291: 3290: 3281: 3280: 3268: 3267: 3258: 3257: 3248: 3247: 3232: 3224: 3216: 3198: 3196: 3195: 3190: 3185: 3184: 3179: 3173: 3172: 3160: 3159: 3154: 3148: 3147: 3135: 3134: 3129: 3123: 3122: 3110: 3035: 3033: 3032: 3027: 3022: 3021: 3016: 3007: 3006: 3001: 2989: 2988: 2979: 2978: 2966: 2965: 2956: 2955: 2937: 2936: 2931: 2922: 2921: 2916: 2904: 2903: 2894: 2893: 2881: 2880: 2871: 2870: 2852: 2851: 2846: 2837: 2836: 2831: 2819: 2818: 2809: 2808: 2796: 2795: 2786: 2785: 2770: 2762: 2744: 2742: 2741: 2736: 2734: 2733: 2728: 2722: 2721: 2709: 2708: 2703: 2697: 2696: 2684: 2683: 2678: 2672: 2671: 2659: 2641: 2639: 2638: 2633: 2631: 2630: 2625: 2619: 2618: 2606: 2605: 2600: 2594: 2593: 2581: 2580: 2575: 2569: 2568: 2556: 2541: 2464: 2458: 2452: 2446: 2433: 2401: 2364: 2330: 2308: 2267: 2235: 2233: 2232: 2227: 2219: 2218: 2213: 2204: 2203: 2198: 2189: 2188: 2183: 2174: 2173: 2168: 2155: 2153: 2152: 2147: 2139: 2138: 2133: 2124: 2123: 2118: 2103: 2102: 2097: 2088: 2087: 2082: 2064:exterior product 2058: 2056: 2055: 2050: 2048: 2044: 2043: 2038: 2029: 2028: 2023: 2017: 2013: 1986: 1982: 1981: 1976: 1967: 1966: 1961: 1946: 1945: 1940: 1931: 1930: 1925: 1910: 1909: 1904: 1895: 1894: 1889: 1874: 1873: 1868: 1859: 1858: 1853: 1835: 1828: 1827: 1822: 1810: 1809: 1804: 1786: 1785: 1780: 1768: 1767: 1762: 1743: 1735: 1716: 1714: 1712: 1711: 1706: 1704: 1690: 1688: 1687: 1682: 1680: 1665: 1663: 1662: 1657: 1652: 1648: 1624: 1623: 1617: 1616: 1578: 1577: 1568: 1567: 1561: 1560: 1553: 1546: 1530: 1529: 1520: 1517: 1497: 1495: 1494: 1489: 1487: 1475: 1473: 1472: 1467: 1465: 1453: 1451: 1449: 1448: 1443: 1441: 1440: 1435: 1417: 1415: 1414: 1409: 1407: 1406: 1401: 1389: 1388: 1383: 1371: 1370: 1342: 1333: 1332: 1327: 1315: 1314: 1309: 1297: 1296: 1268: 1250: 1248: 1247: 1242: 1237: 1236: 1208: 1207: 1202: 1201: 1190: 1189: 1161: 1160: 1155: 1154: 1126: 1124: 1123: 1118: 1116: 1115: 1110: 1073: 1071: 1070: 1065: 1052:smooth functions 1049: 1047: 1046: 1041: 1024:commutative ring 1017: 1015: 1014: 1009: 970: 968: 967: 962: 915: 913: 912: 907: 895: 893: 892: 887: 875: 873: 872: 867: 844: 842: 841: 836: 821: 819: 818: 813: 797: 795: 794: 789: 770: 768: 767: 762: 750: 748: 747: 742: 715: 710: 708: 707: 702: 683: 681: 680: 675: 639: 637: 636: 631: 599: 597: 596: 591: 579: 577: 576: 571: 556: 554: 553: 548: 532: 530: 529: 524: 505: 480: 478: 477: 472: 460: 458: 457: 452: 431: 429: 428: 423: 421: 420: 402: 401: 389: 388: 372: 370: 369: 364: 350: 348: 347: 342: 327: 325: 324: 319: 307: 305: 304: 299: 283: 281: 280: 275: 260: 258: 257: 252: 240: 238: 237: 232: 208: 206: 205: 200: 183:exterior product 180: 178: 177: 172: 153: 151: 150: 145: 125:exterior algebra 116: 76: 57: 45: 21: 27907: 27906: 27902: 27901: 27900: 27898: 27897: 27896: 27872: 27871: 27870: 27865: 27816:Albert Einstein 27783: 27764:Einstein tensor 27727: 27708:Ricci curvature 27688:Kronecker delta 27674:Notable tensors 27669: 27590:Connection form 27567: 27561: 27492: 27478:Tensor operator 27435: 27429: 27369: 27345:Computer vision 27338: 27320: 27316:Tensor calculus 27260: 27249: 27244: 27214: 27209: 27191: 27153: 27109: 27046: 26998: 26940: 26931: 26897:Change of basis 26887:Multilinear map 26825: 26807: 26802: 26772: 26743: 26707: 26662: 26622: 26618: 26611: 26604: 26603: 26601: 26598: 26597: 26576: 26569: 26568: 26566: 26563: 26562: 26533: 26526: 26525: 26523: 26520: 26519: 26505: 26491:Spivak, Michael 26473: 26471: 26455: 26450: 26401: 26376:Peano, Giuseppe 26369: 26304:10.2307/2369379 26274: 26269: 26260:, Prentice Hall 26242: 26234:, AMS Chelsea, 26203:Griffiths, P.A. 26178: 26152: 26128: 26123: 26118: 26110: 26106: 26073: 26069: 26064: 26060: 26044: 26040: 26033: 26016: 26012: 26005: 25987: 25983: 25970: 25966: 25941: 25939: 25936: 25935: 25929: 25923: 25921: 25917: 25892: 25890: 25887: 25886: 25870: 25867: 25866: 25850: 25847: 25846: 25844: 25840: 25819: 25816: 25815: 25813: 25808:of the abelian 25787: 25784: 25783: 25781: 25779: 25775: 25768: 25754: 25750: 25741: 25736: 25732: 25723: 25719: 25702: 25698: 25692:Bourbaki (1989) 25689: 25685: 25676: 25672: 25658:Bourbaki (1989b 25647: 25643: 25624: 25621: 25620: 25604: 25601: 25600: 25588: 25584: 25568: 25564: 25556: 25552: 25545: 25529: 25522: 25518: 25510:symplectic form 25453: 25368: 25352: 25321: 25318: 25317: 25315: 25284: 25282: 25279: 25278: 25262: 25259: 25258: 25240: 25238: 25235: 25234: 25232: 25229:Jacobi identity 25199: 25195: 25180: 25169: 25168: 25167: 25152: 25141: 25140: 25139: 25124: 25120: 25108: 25104: 25095: 25091: 25070: 25066: 25045: 25028: 25023: 25005: 25001: 24986: 24982: 24974: 24971: 24970: 24937: 24930: 24929: 24904: 24897: 24896: 24888: 24885: 24884: 24863: 24860: 24859: 24857: 24839: 24836: 24835: 24833: 24811: 24808: 24807: 24805: 24789: 24786: 24785: 24782: 24759: 24756: 24755: 24753: 24747: 24708: 24674: 24658:cochain complex 24617: 24607: 24564: 24533: 24532: 24516: 24509: 24508: 24502: 24501: 24496: 24494: 24491: 24490: 24489: 24451: 24447: 24445: 24442: 24441: 24439: 24421: 24418: 24417: 24415: 24409: 24387: 24384: 24383: 24381: 24371: 24344: 24337: 24336: 24334: 24331: 24330: 24324: 24321: 24298: 24295: 24294: 24292: 24274: 24271: 24270: 24268: 24250: 24247: 24246: 24244: 24212: 24209: 24208: 24190: 24187: 24186: 24184: 24168: 24165: 24164: 24138: 24135: 24134: 24128: 24125: 24123:Linear geometry 24098: 24094: 24085: 24081: 24072: 24068: 24056: 24052: 24050: 24047: 24046: 24026: 24018: 24002: 23994: 23981: 23977: 23975: 23972: 23971: 23949: 23941: 23933: 23930: 23929: 23913: 23910: 23909: 23857: 23853: 23829: 23825: 23823: 23820: 23819: 23782: 23779: 23778: 23742: 23738: 23717: 23713: 23701: 23697: 23695: 23692: 23691: 23659: 23656: 23655: 23641: 23632: 23626: 23606: 23596: 23573: 23568: 23567: 23566: 23565: 23564: 23556: 23555: 23547: 23546: 23518: 23514: 23499: 23495: 23493: 23490: 23489: 23483: 23460: 23456: 23441: 23437: 23419: 23415: 23406: 23402: 23397: 23394: 23393: 23375: 23372: 23371: 23369: 23342: 23340: 23337: 23336: 23315: 23312: 23311: 23309: 23281: 23278: 23277: 23276:The sum of the 23258: 23255: 23254: 23236: 23233: 23232: 23230: 23214: 23211: 23210: 23194: 23191: 23190: 23167: 23164: 23163: 23146: 23142: 23136: 23132: 23117: 23113: 23107: 23103: 23094: 23090: 23084: 23080: 23071: 23067: 23061: 23057: 23051: 23047: 23036: 23033: 23032: 23020: 23011: 23007: 23001: 22997: 22982: 22978: 22972: 22968: 22959: 22955: 22949: 22945: 22943: 22940: 22939: 22923: 22920: 22919: 22902: 22898: 22877: 22873: 22864: 22860: 22858: 22855: 22854: 22832: 22829: 22828: 22806: 22803: 22802: 22800: 22784: 22782: 22779: 22778: 22754: 22751: 22750: 22747: 22742: 22689: 22682: 22681: 22662: 22655: 22654: 22636: 22629: 22628: 22620: 22617: 22616: 22573: 22566: 22565: 22546: 22539: 22538: 22513: 22506: 22505: 22491: 22488: 22487: 22454: 22450: 22426: 22422: 22401: 22397: 22382: 22378: 22369: 22365: 22350: 22346: 22331: 22327: 22312: 22308: 22306: 22303: 22302: 22275: 22268: 22267: 22242: 22235: 22234: 22225: 22221: 22216: 22204: 22200: 22198: 22195: 22194: 22165: 22161: 22159: 22156: 22155: 22132: 22128: 22126: 22123: 22122: 22099: 22095: 22083: 22079: 22058: 22054: 22039: 22035: 22033: 22030: 22029: 22007: 22004: 22003: 21986: 21982: 21980: 21977: 21976: 21946: 21939: 21938: 21923: 21919: 21910: 21906: 21891: 21887: 21878: 21874: 21866: 21863: 21862: 21823: 21810: 21799: 21796: 21795: 21762: 21755: 21754: 21735: 21728: 21727: 21709: 21680: 21673: 21672: 21670: 21667: 21666: 21630: 21611: 21586: 21584: 21581: 21580: 21574: 21539: 21520: 21512: 21509: 21508: 21469: 21450: 21431: 21412: 21405: 21404: 21396: 21393: 21392: 21345: 21342: 21341: 21338: 21315: 21312: 21311: 21309: 21278: 21271: 21270: 21268: 21265: 21264: 21237: 21230: 21229: 21227: 21224: 21223: 21205: 21202: 21201: 21199: 21183: 21180: 21179: 21157: 21154: 21153: 21135: 21132: 21131: 21129: 21107: 21104: 21103: 21087: 21084: 21083: 21067: 21064: 21063: 21034: 21027: 21026: 21024: 21021: 21020: 21018: 20985: 20978: 20977: 20958: 20951: 20950: 20926: 20919: 20918: 20917: 20914: 20910: 20894: 20875: 20868: 20867: 20865: 20862: 20861: 20832: 20828: 20804: 20800: 20782: 20778: 20763: 20759: 20740: 20738: 20735: 20734: 20709: 20704: 20701: 20700: 20694: 20667: 20665: 20662: 20661: 20660:In particular, 20628: 20621: 20620: 20595: 20588: 20587: 20551: 20544: 20543: 20542: 20539: 20535: 20519: 20517: 20514: 20513: 20480: 20461: 20442: 20440: 20437: 20436: 20401: 20398: 20397: 20381: 20378: 20377: 20361: 20358: 20357: 20354: 20321: 20300: 20299: 20293: 20292: 20291: 20287: 20261: 20258: 20257: 20255: 20211: 20203: 20200: 20199: 20176: 20173: 20172: 20149: 20121: 20117: 20102: 20098: 20091: 20087: 20060: 20056: 20041: 20037: 20017: 20014: 20013: 19981: 19978: 19977: 19975: 19959: 19956: 19955: 19939: 19936: 19935: 19919: 19916: 19915: 19912:tensor algebras 19892: 19872: 19843: 19824: 19822: 19819: 19818: 19816: 19776: 19769: 19768: 19750: 19743: 19742: 19736: 19725: 19703: 19696: 19695: 19687: 19684: 19683: 19650: 19648: 19645: 19644: 19620: 19616: 19614: 19611: 19610: 19583: 19581: 19578: 19577: 19564:to equal 1 for 19539: 19535: 19505: 19501: 19499: 19496: 19495: 19469: 19465: 19441: 19437: 19435: 19432: 19431: 19397: 19361: 19357: 19327: 19323: 19299: 19295: 19271: 19267: 19212: 19201: 19190: 19174: 19170: 19155: 19151: 19143: 19140: 19139: 19030: 19027: 19026: 18992: 18990: 18987: 18986: 18957: 18938: 18936: 18933: 18932: 18930: 18901: 18882: 18875: 18874: 18866: 18863: 18862: 18860: 18859:. Recall that 18842: 18839: 18838: 18836: 18820: 18817: 18816: 18792: 18789: 18788: 18786: 18734: 18731: 18730: 18698: 18679: 18660: 18652: 18649: 18648: 18646: 18609: 18607: 18604: 18603: 18601: 18591:tensor algebras 18560: 18557: 18556: 18554: 18527: 18525: 18522: 18521: 18518: 18484: 18477: 18476: 18468: 18466: 18463: 18462: 18460: 18438: 18430: 18416: 18407: 18402: 18401: 18399: 18396: 18395: 18374: 18371: 18370: 18368: 18351: 18345: 18344: 18343: 18327: 18320: 18319: 18313: 18312: 18299: 18295: 18291: 18284: 18277: 18276: 18267: 18262: 18261: 18259: 18256: 18255: 18233: 18225: 18220: 18219: 18218: 18214: 18206: 18192: 18184: 18176: 18171: 18168: 18167: 18135: 18128: 18127: 18119: 18117: 18114: 18113: 18111: 18082: 18075: 18074: 18066: 18064: 18061: 18060: 18058: 18023: 18016: 18015: 18007: 18005: 18002: 18001: 17999: 17972: 17969: 17968: 17966: 17919: 17915: 17913: 17910: 17909: 17892: 17870: 17862: 17858: 17857: 17853: 17845: 17831: 17823: 17812: 17809: 17808: 17781: 17778: 17777: 17775: 17746: 17739: 17738: 17730: 17728: 17725: 17724: 17722: 17687: 17680: 17679: 17671: 17669: 17666: 17665: 17663: 17627: 17620: 17619: 17617: 17614: 17613: 17611: 17588: 17584: 17569: 17565: 17553: 17549: 17548: 17544: 17527: 17523: 17522: 17518: 17516: 17513: 17512: 17491: 17488: 17487: 17485: 17471: 17469: 17432: 17425: 17424: 17422: 17419: 17418: 17414: 17405: 17396: 17386: 17377: 17369: 17346: 17345: 17336: 17332: 17323: 17319: 17310: 17309: 17292: 17288: 17273: 17269: 17260: 17256: 17241: 17237: 17236: 17232: 17230: 17227: 17226: 17205: 17202: 17201: 17199: 17180: 17174: 17173: 17172: 17162: 17155: 17154: 17148: 17147: 17145: 17142: 17141: 17139: 17112: 17105: 17104: 17102: 17099: 17098: 17079: 17075: 17073: 17070: 17069: 17067: 17051: 17048: 17047: 17029: 17026: 17025: 17023: 16997: 16994: 16993: 16991: 16988: 16963: 16938: 16911: 16907: 16879: 16872: 16871: 16852: 16845: 16844: 16830: 16827: 16826: 16805: 16802: 16801: 16799: 16768: 16761: 16760: 16741: 16734: 16733: 16731: 16728: 16727: 16711: 16708: 16707: 16668: 16661: 16660: 16641: 16634: 16633: 16625: 16622: 16621: 16591: 16587: 16585: 16582: 16581: 16579: 16563: 16560: 16559: 16525: 16521: 16490: 16483: 16482: 16470: 16466: 16456: 16449: 16448: 16446: 16443: 16442: 16421: 16418: 16417: 16415: 16378: 16371: 16370: 16368: 16365: 16364: 16341: 16337: 16328: 16324: 16309: 16305: 16303: 16300: 16299: 16260: 16253: 16252: 16233: 16226: 16225: 16213: 16209: 16199: 16192: 16191: 16189: 16186: 16185: 16164: 16161: 16160: 16158: 16142: 16139: 16138: 16135: 16129: 16104: 16100: 16091: 16087: 16075: 16071: 16062: 16058: 16056: 16053: 16052: 16028: 16024: 16015: 16011: 16009: 16006: 16005: 15968: 15964: 15943: 15939: 15909: 15905: 15878: 15874: 15872: 15869: 15868: 15845: 15841: 15839: 15836: 15835: 15816: 15812: 15804: 15801: 15800: 15798: 15776: 15772: 15770: 15767: 15766: 15764: 15748: 15745: 15744: 15707: 15703: 15701: 15698: 15697: 15695: 15666: 15659: 15658: 15653: 15650: 15649: 15647: 15631: 15628: 15627: 15611: 15608: 15607: 15567: 15560: 15559: 15540: 15533: 15532: 15523: 15519: 15517: 15514: 15513: 15470: 15466: 15464: 15461: 15460: 15441: 15437: 15429: 15426: 15425: 15423: 15405: 15402: 15401: 15399: 15392: 15358: 15351: 15350: 15348: 15345: 15344: 15342: 15326: 15323: 15322: 15296: 15292: 15290: 15287: 15286: 15254: 15250: 15235: 15231: 15222: 15218: 15188: 15184: 15169: 15165: 15156: 15152: 15137: 15133: 15128: 15125: 15124: 15102: 15098: 15096: 15093: 15092: 15090: 15068: 15065: 15064: 15062: 15052: 15045: 15021: 15017: 15002: 14998: 14989: 14985: 14983: 14980: 14979: 14977: 14968: 14950: 14947: 14946: 14944: 14927: 14923: 14921: 14918: 14917: 14901: 14898: 14897: 14868: 14861: 14860: 14852: 14849: 14848: 14846: 14825: 14822: 14821: 14819: 14793: 14790: 14789: 14787: 14744: 14737: 14736: 14717: 14710: 14709: 14700: 14696: 14694: 14691: 14690: 14658: 14656: 14653: 14652: 14650: 14649:on the algebra 14627: 14623: 14615: 14612: 14611: 14609: 14591: 14588: 14587: 14585: 14564: 14560: 14558: 14555: 14554: 14538: 14535: 14534: 14531: 14525: 14516: 14507: 14498: 14486: 14455: 14436: 14424: 14403: 14399: 14386: 14376: 14335: 14331: 14301: 14297: 14272: 14268: 14244: 14240: 14204: 14196: 14195: 14188: 14165: 14161: 14146: 14142: 14125: 14124: 14120: 14118: 14115: 14114: 14091: 14088: 14087: 14049: 14045: 14021: 14017: 13987: 13983: 13976: 13962: 13957: 13945: 13941: 13926: 13922: 13902: 13899: 13898: 13875: 13872: 13871: 13816: 13796: 13794: 13777: 13776: 13771: 13768: 13767: 13715: 13712: 13711: 13704:tensor products 13689: 13675: 13651: 13638: 13637: 13636: 13633: 13630: 13629: 13627: 13608: 13605: 13604: 13587: 13583: 13581: 13578: 13577: 13561: 13558: 13557: 13541: 13538: 13537: 13514: 13510: 13506: 13499: 13492: 13491: 13489: 13486: 13485: 13483: 13479: 13463: 13460: 13459: 13440: 13434: 13433: 13432: 13416: 13409: 13408: 13402: 13401: 13399: 13396: 13395: 13393: 13370: 13367: 13366: 13350: 13347: 13346: 13308: 13304: 13296: 13293: 13292: 13265: 13262: 13261: 13259: 13244: 13234: 13233:) to obtain an 13228: 13222: 13216: 13207: 13196: 13190: 13168: 13164: 13162: 13159: 13158: 13123: 13120: 13119: 13086: 13079: 13078: 13070: 13067: 13066: 13037: 13033: 13025: 13022: 13021: 13001: 12997: 12995: 12992: 12991: 12975: 12972: 12971: 12955: 12952: 12951: 12935: 12932: 12931: 12898: 12891: 12890: 12881: 12877: 12869: 12866: 12865: 12833: 12829: 12814: 12810: 12802: 12799: 12798: 12785: 12776: 12745: 12741: 12733: 12730: 12729: 12724:multilinear map 12696: 12691: 12647: 12643: 12634: 12630: 12626: 12622: 12616: 12612: 12606: 12595: 12571: 12567: 12558: 12554: 12553: 12549: 12540: 12536: 12531: 12528: 12527: 12500: 12497: 12496: 12494: 12472: 12468: 12466: 12463: 12462: 12460: 12450: 12432: 12429: 12428: 12426: 12401: 12397: 12388: 12384: 12378: 12374: 12373: 12369: 12361: 12358: 12357: 12319: 12315: 12300: 12296: 12295: 12291: 12283: 12279: 12270: 12266: 12262: 12258: 12241: 12237: 12228: 12224: 12223: 12219: 12202: 12201: 12190: 12187: 12186: 12173: 12142: 12138: 12137: 12131: 12130: 12129: 12112: 12108: 12107: 12101: 12100: 12099: 12088: 12084: 12083: 12077: 12076: 12075: 12052: 12048: 12024: 12020: 12019: 12015: 11998: 11994: 11976: 11972: 11971: 11967: 11938: 11932: 11931: 11930: 11923: 11897: 11892: 11872: 11871: 11863: 11860: 11859: 11804: 11800: 11799: 11793: 11792: 11791: 11774: 11770: 11769: 11763: 11762: 11761: 11750: 11746: 11745: 11739: 11738: 11737: 11728: 11724: 11715: 11711: 11705: 11701: 11700: 11696: 11688: 11685: 11684: 11654: 11647: 11638: 11632: 11621: 11589: 11586: 11585: 11583: 11558: 11555: 11554: 11514: 11494: 11491: 11490: 11461: 11459: 11456: 11455: 11453: 11426: 11423: 11422: 11420: 11395: 11394: 11392: 11389: 11388: 11370: 11367: 11366: 11364: 11339: 11336: 11335: 11308: 11291: 11288: 11287: 11264: 11263: 11261: 11258: 11257: 11240: 11239: 11237: 11234: 11233: 11200: 11183: 11180: 11179: 11149: 11147: 11144: 11143: 11141: 11125: 11122: 11121: 11096: 11093: 11092: 11076: 11073: 11072: 11014: 11013: 10993: 10990: 10989: 10964: 10963: 10961: 10958: 10957: 10932: 10929: 10928: 10912: 10909: 10908: 10890: 10887: 10886: 10884: 10867: 10866: 10864: 10861: 10860: 10842: 10839: 10838: 10836: 10811: 10807: 10805: 10802: 10801: 10799: 10776: 10770: 10769: 10768: 10766: 10763: 10762: 10735: 10733: 10730: 10729: 10727: 10700: 10698: 10695: 10694: 10692: 10665: 10662: 10661: 10659: 10627: 10618: 10617: 10615: 10612: 10611: 10588: 10584: 10582: 10579: 10578: 10548: 10542: 10541: 10540: 10539: 10517: 10511: 10510: 10509: 10508: 10492: 10486: 10485: 10484: 10483: 10481: 10478: 10477: 10444: 10442: 10439: 10438: 10436: 10413: 10412: 10410: 10407: 10406: 10389: 10388: 10386: 10383: 10382: 10346: 10343: 10342: 10340: 10337:symmetric group 10313: 10309: 10294: 10290: 10271: 10265: 10264: 10263: 10262: 10252: 10247: 10235: 10231: 10216: 10212: 10194: 10190: 10188: 10185: 10184: 10162: 10159: 10158: 10133: 10130: 10129: 10100: 10096: 10072: 10068: 10045: 10039: 10038: 10037: 10030: 10014: 10010: 9995: 9991: 9972: 9966: 9965: 9964: 9963: 9961: 9958: 9957: 9917: 9913: 9903: 9899: 9884: 9880: 9878: 9875: 9874: 9855: 9852: 9851: 9825: 9820: 9819: 9817: 9814: 9813: 9792: 9789: 9788: 9786: 9762: 9759: 9758: 9756: 9740: 9737: 9736: 9711: 9709: 9706: 9705: 9689: 9686: 9685: 9669: 9666: 9665: 9635: 9632: 9631: 9629: 9611: 9608: 9607: 9605: 9587: 9584: 9583: 9581: 9565: 9562: 9561: 9537: 9534: 9533: 9531: 9502: 9500: 9497: 9496: 9480: 9477: 9476: 9460: 9457: 9456: 9453: 9429:Bourbaki (1989) 9408: 9405: 9404: 9384: 9381: 9380: 9353: 9351: 9348: 9347: 9320: 9318: 9315: 9314: 9312: 9285: 9283: 9280: 9279: 9261: 9258: 9257: 9255: 9236: 9233: 9232: 9216: 9213: 9212: 9206: 9204:Generalizations 9172: 9170: 9167: 9166: 9164: 9137: 9130: 9129: 9127: 9124: 9123: 9096: 9089: 9088: 9086: 9083: 9082: 9055: 9053: 9050: 9049: 9011: 9009: 9006: 9005: 8999: 8990: 8963: 8961: 8958: 8957: 8928: 8926: 8923: 8922: 8920: 8916: 8893: 8861: 8859: 8856: 8855: 8825: 8823: 8820: 8819: 8813: 8807: 8797: 8786: 8780: 8762: 8753: 8747: 8741: 8730: 8700: 8698: 8695: 8694: 8692: 8686: 8680: 8674: 8668: 8645: 8612: 8604: 8601: 8600: 8587: 8581: 8538: 8535: 8534: 8506: 8503: 8502: 8493: 8487: 8481: 8444: 8442: 8439: 8438: 8436: 8430: 8424: 8418: 8391: 8389: 8386: 8385: 8375: 8347: 8344: 8343: 8340:associative law 8308: 8306: 8303: 8302: 8296: 8290: 8287: 8275:Bourbaki (1989) 8239: 8235: 8212: 8209: 8208: 8176: 8169: 8168: 8160: 8157: 8156: 8154: 8127: 8120: 8119: 8111: 8108: 8107: 8068: 8061: 8060: 8058: 8055: 8054: 8021: 8014: 8013: 8011: 8008: 8007: 7998: 7959: 7952: 7951: 7932: 7925: 7924: 7905: 7898: 7897: 7895: 7892: 7891: 7854: 7847: 7846: 7821: 7814: 7813: 7794: 7787: 7786: 7767: 7760: 7759: 7740: 7738: 7735: 7734: 7703: 7700: 7699: 7693: 7692:-vector with a 7687: 7684: 7649: 7627: 7625: 7623: 7618: 7615: 7614: 7567: 7565: 7563: 7561: 7558: 7557: 7553:if and only if 7538: 7535: 7534: 7518: 7515: 7514: 7495: 7492: 7491: 7471: 7467: 7465: 7462: 7461: 7437: 7433: 7418: 7414: 7412: 7409: 7408: 7388: 7384: 7375: 7371: 7362: 7358: 7346: 7334: 7331: 7330: 7311: 7308: 7307: 7289: 7286: 7285: 7283: 7282:is a basis for 7266: 7262: 7260: 7257: 7256: 7240: 7237: 7236: 7216: 7213: 7212: 7179: 7176: 7175: 7173: 7167: 7151: 7148: 7147: 7141: 7077: 7072: 7047: 7042: 7023: 7019: 7017: 7014: 7013: 6987: 6983: 6981: 6978: 6977: 6951: 6947: 6926: 6922: 6907: 6903: 6895: 6892: 6891: 6880: 6863: 6860: 6859: 6830: 6823: 6822: 6814: 6811: 6810: 6808: 6805: 6777: 6773: 6771: 6768: 6767: 6765: 6730: 6723: 6722: 6720: 6717: 6716: 6714: 6696: 6693: 6692: 6690: 6651: 6644: 6643: 6641: 6638: 6637: 6635: 6605: 6598: 6597: 6572: 6565: 6564: 6545: 6538: 6537: 6518: 6511: 6510: 6491: 6489: 6486: 6485: 6471: 6443: 6440: 6439: 6437: 6398: 6391: 6390: 6388: 6385: 6384: 6366: 6363: 6362: 6360: 6338: 6335: 6334: 6332: 6308: 6295: 6294: 6293: 6274: 6267: 6266: 6258: 6255: 6254: 6220: 6213: 6212: 6210: 6207: 6206: 6184: 6180: 6178: 6175: 6174: 6172: 6155: 6151: 6149: 6146: 6145: 6133: 6114: 6110: 6108: 6105: 6104: 6102: 6081: 6077: 6075: 6072: 6071: 6048: 6044: 6029: 6025: 6023: 6020: 6019: 5987: 5980: 5979: 5977: 5974: 5973: 5971: 5970:is a basis for 5941: 5937: 5922: 5918: 5909: 5905: 5887: 5886: 5875: 5871: 5870: 5866: 5849: 5845: 5844: 5840: 5829: 5825: 5824: 5820: 5814: 5811: 5810: 5806:, then the set 5791: 5788: 5787: 5763: 5759: 5744: 5740: 5735: 5732: 5731: 5715: 5712: 5711: 5695: 5692: 5691: 5684: 5659: 5655: 5646: 5642: 5633: 5629: 5620: 5616: 5608: 5605: 5604: 5579: 5575: 5566: 5562: 5553: 5549: 5540: 5536: 5531: 5528: 5527: 5525: 5506: 5501: 5500: 5498: 5495: 5494: 5492: 5465: 5458: 5457: 5455: 5452: 5451: 5422: 5415: 5414: 5412: 5409: 5408: 5406: 5388: 5385: 5384: 5382: 5354: 5351: 5350: 5332: 5329: 5328: 5326: 5310: 5307: 5306: 5290: 5287: 5286: 5277: 5259: 5256: 5255: 5226: 5219: 5218: 5210: 5207: 5206: 5204: 5145: 5141: 5131: 5127: 5112: 5108: 5099: 5095: 5093: 5090: 5089: 5054: 5052: 5049: 5048: 5046: 5043:vector subspace 5013: 5006: 5005: 5003: 5000: 4999: 4997: 4979: 4976: 4975: 4973: 4963: 4960: 4932: 4928: 4913: 4909: 4900: 4896: 4894: 4891: 4890: 4867: 4863: 4848: 4844: 4835: 4831: 4826: 4823: 4822: 4796: 4792: 4777: 4773: 4764: 4760: 4758: 4755: 4754: 4727: 4724: 4723: 4721: 4704: 4700: 4691: 4687: 4685: 4682: 4681: 4660: 4657: 4656: 4654: 4623: 4620: 4619: 4596: 4592: 4577: 4573: 4564: 4560: 4527: 4523: 4499: 4495: 4477: 4473: 4471: 4468: 4467: 4446: 4443: 4442: 4440: 4421: 4417: 4415: 4412: 4411: 4409: 4390: 4386: 4384: 4381: 4380: 4378: 4359: 4355: 4353: 4350: 4349: 4347: 4311: 4308: 4307: 4305: 4285: 4282: 4281: 4232: 4229: 4228: 4098: 4095: 4094: 4061: 4058: 4057: 4055: 4037: 4034: 4033: 4031: 4030:on elements of 4028:anticommutative 4002: 3999: 3998: 3970: 3967: 3966: 3948: 3945: 3944: 3942: 3941:on elements of 3933: 3928: 3893: 3870: 3867: 3866: 3838: 3835: 3834: 3818: 3815: 3814: 3788: 3759: 3756: 3755: 3730: 3727: 3726: 3704: 3701: 3700: 3684: 3681: 3680: 3653: 3650: 3649: 3630: 3627: 3626: 3601: 3598: 3597: 3594: 3531: 3518: 3511: 3504: 3476: 3471: 3470: 3461: 3456: 3455: 3446: 3441: 3440: 3428: 3424: 3418: 3414: 3408: 3404: 3395: 3391: 3385: 3381: 3375: 3371: 3362: 3358: 3352: 3348: 3342: 3338: 3329: 3325: 3319: 3315: 3309: 3305: 3296: 3292: 3286: 3282: 3276: 3272: 3263: 3259: 3253: 3249: 3243: 3239: 3228: 3220: 3212: 3210: 3207: 3206: 3180: 3175: 3174: 3168: 3164: 3155: 3150: 3149: 3143: 3139: 3130: 3125: 3124: 3118: 3114: 3106: 3104: 3101: 3100: 3080: 3073: 3066: 3059: 3052: 3045: 3017: 3012: 3011: 3002: 2997: 2996: 2984: 2980: 2974: 2970: 2961: 2957: 2951: 2947: 2932: 2927: 2926: 2917: 2912: 2911: 2899: 2895: 2889: 2885: 2876: 2872: 2866: 2862: 2847: 2842: 2841: 2832: 2827: 2826: 2814: 2810: 2804: 2800: 2791: 2787: 2781: 2777: 2766: 2758: 2756: 2753: 2752: 2729: 2724: 2723: 2717: 2713: 2704: 2699: 2698: 2692: 2688: 2679: 2674: 2673: 2667: 2663: 2655: 2653: 2650: 2649: 2626: 2621: 2620: 2614: 2610: 2601: 2596: 2595: 2589: 2585: 2576: 2571: 2570: 2564: 2560: 2552: 2550: 2547: 2546: 2539: 2532: 2525: 2518: 2505:For vectors in 2495: 2484: 2477: 2462: 2456: 2450: 2444: 2431: 2424: 2417: 2376: 2346: 2320: 2280: 2257: 2214: 2209: 2208: 2199: 2194: 2193: 2184: 2179: 2178: 2169: 2164: 2163: 2161: 2158: 2157: 2134: 2129: 2128: 2119: 2114: 2113: 2098: 2093: 2092: 2083: 2078: 2077: 2075: 2072: 2071: 2068:alternating map 2046: 2045: 2039: 2034: 2033: 2024: 2019: 2018: 1997: 1993: 1984: 1983: 1977: 1972: 1971: 1962: 1957: 1956: 1941: 1936: 1935: 1926: 1921: 1920: 1905: 1900: 1899: 1890: 1885: 1884: 1869: 1864: 1863: 1854: 1849: 1848: 1833: 1832: 1823: 1818: 1817: 1805: 1800: 1799: 1781: 1776: 1775: 1763: 1758: 1757: 1744: 1739: 1731: 1727: 1725: 1722: 1721: 1700: 1698: 1695: 1694: 1692: 1676: 1674: 1671: 1670: 1632: 1628: 1619: 1618: 1611: 1610: 1605: 1599: 1598: 1593: 1583: 1582: 1573: 1572: 1563: 1562: 1555: 1554: 1549: 1547: 1542: 1535: 1534: 1525: 1524: 1516: 1514: 1511: 1510: 1483: 1481: 1478: 1477: 1461: 1459: 1456: 1455: 1436: 1431: 1430: 1428: 1425: 1424: 1422: 1402: 1397: 1396: 1384: 1379: 1378: 1365: 1364: 1358: 1357: 1347: 1346: 1338: 1328: 1323: 1322: 1310: 1305: 1304: 1291: 1290: 1284: 1283: 1273: 1272: 1264: 1262: 1259: 1258: 1231: 1230: 1224: 1223: 1213: 1212: 1203: 1197: 1196: 1195: 1184: 1183: 1177: 1176: 1166: 1165: 1156: 1150: 1149: 1148: 1146: 1143: 1142: 1111: 1106: 1105: 1103: 1100: 1099: 1085: 1080: 1059: 1056: 1055: 1035: 1032: 1031: 976: 973: 972: 944: 941: 940: 901: 898: 897: 881: 878: 877: 861: 858: 857: 827: 824: 823: 807: 804: 803: 780: 777: 776: 756: 753: 752: 736: 733: 732: 713: 696: 693: 692: 645: 642: 641: 613: 610: 609: 585: 582: 581: 562: 559: 558: 542: 539: 538: 512: 509: 508: 503: 466: 463: 462: 446: 443: 442: 416: 412: 397: 393: 384: 380: 378: 375: 374: 358: 355: 354: 333: 330: 329: 313: 310: 309: 293: 290: 289: 266: 263: 262: 246: 243: 242: 214: 211: 210: 194: 191: 190: 163: 160: 159: 139: 136: 135: 121: 120: 119: 118: 110: 71: 63: 62: 61: 58: 50: 49: 46: 35: 28: 23: 22: 15: 12: 11: 5: 27905: 27895: 27894: 27889: 27884: 27867: 27866: 27864: 27863: 27858: 27856:Woldemar Voigt 27853: 27848: 27843: 27838: 27833: 27828: 27823: 27821:Leonhard Euler 27818: 27813: 27808: 27803: 27797: 27795: 27793:Mathematicians 27789: 27788: 27785: 27784: 27782: 27781: 27776: 27771: 27766: 27761: 27756: 27751: 27746: 27741: 27735: 27733: 27729: 27728: 27726: 27725: 27720: 27718:Torsion tensor 27715: 27710: 27705: 27700: 27695: 27690: 27684: 27682: 27675: 27671: 27670: 27668: 27667: 27662: 27657: 27652: 27647: 27642: 27637: 27632: 27627: 27622: 27617: 27612: 27607: 27602: 27597: 27592: 27587: 27582: 27577: 27571: 27569: 27563: 27562: 27560: 27559: 27553: 27551:Tensor product 27548: 27543: 27541:Symmetrization 27538: 27533: 27531:Lie derivative 27528: 27523: 27518: 27513: 27508: 27502: 27500: 27494: 27493: 27491: 27490: 27485: 27480: 27475: 27470: 27465: 27460: 27455: 27453:Tensor density 27450: 27445: 27439: 27437: 27431: 27430: 27428: 27427: 27425:Voigt notation 27422: 27417: 27412: 27410:Ricci calculus 27407: 27402: 27397: 27395:Index notation 27392: 27387: 27381: 27379: 27375: 27374: 27371: 27370: 27368: 27367: 27362: 27357: 27352: 27347: 27341: 27339: 27337: 27336: 27331: 27325: 27322: 27321: 27319: 27318: 27313: 27311:Tensor algebra 27308: 27303: 27298: 27293: 27291:Dyadic algebra 27288: 27283: 27277: 27275: 27266: 27262: 27261: 27254: 27251: 27250: 27243: 27242: 27235: 27228: 27220: 27211: 27210: 27208: 27207: 27196: 27193: 27192: 27190: 27189: 27184: 27179: 27174: 27169: 27167:Floating-point 27163: 27161: 27155: 27154: 27152: 27151: 27149:Tensor product 27146: 27141: 27136: 27134:Function space 27131: 27126: 27120: 27118: 27111: 27110: 27108: 27107: 27102: 27097: 27092: 27087: 27082: 27077: 27072: 27070:Triple product 27067: 27062: 27056: 27054: 27048: 27047: 27045: 27044: 27039: 27034: 27029: 27024: 27019: 27014: 27008: 27006: 27000: 26999: 26997: 26996: 26991: 26986: 26984:Transformation 26981: 26976: 26974:Multiplication 26971: 26966: 26961: 26956: 26950: 26948: 26942: 26941: 26934: 26932: 26930: 26929: 26924: 26919: 26914: 26909: 26904: 26899: 26894: 26889: 26884: 26879: 26874: 26869: 26864: 26859: 26854: 26849: 26844: 26839: 26833: 26831: 26830:Basic concepts 26827: 26826: 26824: 26823: 26818: 26812: 26809: 26808: 26805:Linear algebra 26801: 26800: 26793: 26786: 26778: 26771: 26770: 26764: 26758: 26752: 26751: 26750: 26741: 26719: 26718: 26717: 26705: 26688: 26670: 26669: 26668: 26660: 26644: 26643: 26642: 26630: 26625: 26621: 26615: 26608: 26585: 26580: 26573: 26542: 26537: 26530: 26503: 26487: 26486: 26485: 26456: 26454: 26451: 26449: 26448: 26405: 26399: 26393:, Birkhäuser, 26372: 26367: 26350: 26332: 26315: 26284: 26280:Bourbaki (1989 26275: 26273: 26270: 26268: 26267: 26266: 26265: 26250: 26249: 26248: 26240: 26220: 26219: 26218: 26191: 26190: 26189: 26176: 26160: 26159: 26158: 26150: 26129: 26127: 26124: 26122: 26119: 26117: 26116: 26114:, p. 661. 26104: 26080:Whitehead 1898 26067: 26058: 26038: 26031: 26023:Supermanifolds 26010: 26003: 25981: 25973:vector bundles 25964: 25960:Bourbaki (1989 25945: 25915: 25911:Bourbaki (1989 25896: 25874: 25854: 25838: 25823: 25791: 25773: 25766: 25748: 25730: 25726:Bourbaki (1989 25717: 25705:Bourbaki (1989 25696: 25683: 25670: 25641: 25628: 25608: 25582: 25576:algebras (cf. 25562: 25550: 25543: 25519: 25517: 25514: 25513: 25512: 25499: 25497:Tensor algebra 25494: 25488: 25483: 25481:Koszul complex 25478: 25473: 25471:quadratic form 25464: 25459: 25452: 25449: 25426:Gaston Darboux 25418:Henri Poincaré 25414:Giuseppe Peano 25367: 25364: 25356:Koszul complex 25351: 25348: 25325: 25299: 25296: 25293: 25288: 25266: 25243: 25225: 25224: 25213: 25208: 25205: 25202: 25198: 25194: 25191: 25188: 25183: 25176: 25173: 25166: 25163: 25160: 25155: 25148: 25145: 25138: 25135: 25132: 25127: 25123: 25119: 25116: 25111: 25107: 25103: 25098: 25094: 25090: 25085: 25082: 25079: 25076: 25073: 25069: 25065: 25062: 25059: 25054: 25051: 25048: 25044: 25037: 25034: 25031: 25027: 25022: 25019: 25014: 25011: 25008: 25004: 25000: 24997: 24994: 24989: 24985: 24981: 24978: 24964: 24963: 24952: 24949: 24946: 24941: 24934: 24928: 24925: 24922: 24919: 24914: 24911: 24908: 24901: 24895: 24892: 24867: 24843: 24815: 24793: 24781: 24778: 24763: 24707: 24704: 24682:Schur functors 24673: 24670: 24588:line integrals 24563: 24560: 24536: 24531: 24528: 24525: 24520: 24513: 24505: 24499: 24468: 24465: 24462: 24459: 24454: 24450: 24425: 24391: 24359: 24356: 24353: 24348: 24341: 24320: 24317: 24302: 24278: 24254: 24241:parallelepiped 24228: 24225: 24222: 24219: 24216: 24194: 24172: 24148: 24145: 24142: 24124: 24121: 24109: 24104: 24101: 24097: 24091: 24088: 24084: 24078: 24075: 24071: 24067: 24062: 24059: 24055: 24032: 24029: 24024: 24021: 24017: 24013: 24008: 24005: 24000: 23997: 23993: 23989: 23984: 23980: 23956: 23952: 23948: 23944: 23940: 23937: 23917: 23899:Lorentz metric 23883: 23880: 23875: 23872: 23869: 23866: 23863: 23860: 23856: 23852: 23847: 23844: 23841: 23838: 23835: 23832: 23828: 23807: 23804: 23801: 23798: 23795: 23792: 23789: 23786: 23762: 23757: 23754: 23751: 23748: 23745: 23741: 23737: 23732: 23729: 23726: 23723: 23720: 23716: 23712: 23707: 23704: 23700: 23672: 23669: 23666: 23663: 23640: 23637: 23628:Main article: 23625: 23622: 23577:linear algebra 23572: 23571:Linear algebra 23569: 23558: 23557: 23549: 23548: 23540: 23539: 23538: 23537: 23536: 23521: 23517: 23513: 23510: 23507: 23502: 23498: 23471: 23468: 23463: 23459: 23455: 23452: 23449: 23444: 23440: 23436: 23433: 23430: 23427: 23422: 23418: 23414: 23409: 23405: 23401: 23379: 23357: 23354: 23351: 23346: 23319: 23297: 23294: 23291: 23288: 23285: 23262: 23240: 23218: 23198: 23174: 23171: 23149: 23145: 23139: 23135: 23131: 23128: 23125: 23120: 23116: 23110: 23106: 23102: 23097: 23093: 23087: 23083: 23079: 23074: 23070: 23064: 23060: 23054: 23050: 23046: 23043: 23040: 23019: 23014: 23010: 23004: 23000: 22996: 22993: 22990: 22985: 22981: 22975: 22971: 22967: 22962: 22958: 22952: 22948: 22927: 22905: 22901: 22897: 22894: 22891: 22888: 22885: 22880: 22876: 22872: 22867: 22863: 22842: 22839: 22836: 22810: 22787: 22758: 22746: 22743: 22741: 22738: 22734: 22733: 22722: 22719: 22716: 22713: 22710: 22707: 22704: 22699: 22696: 22693: 22686: 22680: 22677: 22674: 22671: 22666: 22659: 22653: 22650: 22647: 22644: 22639: 22633: 22627: 22624: 22606: 22605: 22594: 22591: 22588: 22585: 22582: 22577: 22570: 22564: 22561: 22558: 22555: 22550: 22543: 22537: 22534: 22531: 22528: 22523: 22520: 22517: 22510: 22504: 22501: 22498: 22495: 22477: 22476: 22465: 22462: 22457: 22453: 22449: 22446: 22443: 22440: 22437: 22434: 22429: 22425: 22421: 22418: 22415: 22410: 22407: 22404: 22400: 22396: 22393: 22390: 22385: 22381: 22377: 22372: 22368: 22364: 22361: 22358: 22353: 22349: 22345: 22340: 22337: 22334: 22330: 22326: 22323: 22320: 22315: 22311: 22290: 22287: 22284: 22279: 22272: 22266: 22263: 22260: 22257: 22252: 22249: 22246: 22239: 22233: 22228: 22224: 22219: 22213: 22210: 22207: 22203: 22179: 22176: 22173: 22168: 22164: 22143: 22140: 22135: 22131: 22108: 22105: 22102: 22098: 22094: 22091: 22086: 22082: 22078: 22073: 22070: 22067: 22064: 22061: 22057: 22053: 22050: 22047: 22042: 22038: 22017: 22014: 22011: 21989: 21985: 21973: 21972: 21961: 21958: 21955: 21950: 21943: 21937: 21932: 21929: 21926: 21922: 21918: 21913: 21909: 21905: 21902: 21899: 21894: 21890: 21886: 21881: 21877: 21873: 21870: 21844: 21841: 21838: 21835: 21830: 21827: 21822: 21817: 21814: 21809: 21806: 21803: 21792: 21791: 21780: 21777: 21774: 21771: 21766: 21759: 21753: 21750: 21747: 21744: 21739: 21732: 21724: 21721: 21718: 21715: 21712: 21708: 21704: 21701: 21698: 21695: 21692: 21689: 21684: 21677: 21660: 21659: 21648: 21645: 21642: 21639: 21634: 21629: 21626: 21623: 21620: 21615: 21610: 21607: 21604: 21601: 21598: 21595: 21590: 21573: 21570: 21569: 21568: 21557: 21554: 21551: 21548: 21543: 21538: 21535: 21532: 21529: 21524: 21519: 21516: 21502: 21501: 21490: 21487: 21484: 21481: 21478: 21473: 21468: 21465: 21462: 21459: 21454: 21449: 21446: 21443: 21440: 21435: 21430: 21427: 21424: 21421: 21416: 21409: 21403: 21400: 21373: 21370: 21367: 21364: 21361: 21358: 21355: 21352: 21349: 21337: 21334: 21319: 21293: 21290: 21287: 21282: 21275: 21252: 21249: 21246: 21241: 21234: 21209: 21187: 21167: 21164: 21161: 21139: 21117: 21114: 21111: 21091: 21071: 21049: 21046: 21043: 21038: 21031: 21015: 21014: 21003: 21000: 20997: 20994: 20989: 20982: 20976: 20973: 20970: 20967: 20962: 20955: 20949: 20945: 20941: 20938: 20935: 20930: 20923: 20916: 20913: 20909: 20906: 20903: 20898: 20893: 20890: 20887: 20884: 20879: 20872: 20855: 20854: 20843: 20840: 20835: 20831: 20827: 20824: 20821: 20818: 20815: 20812: 20807: 20803: 20799: 20796: 20793: 20790: 20785: 20781: 20777: 20774: 20771: 20766: 20762: 20758: 20755: 20752: 20749: 20744: 20718: 20715: 20712: 20708: 20682: 20679: 20676: 20671: 20658: 20657: 20646: 20643: 20640: 20637: 20632: 20625: 20619: 20616: 20613: 20610: 20607: 20604: 20599: 20592: 20586: 20583: 20580: 20577: 20574: 20570: 20566: 20563: 20560: 20555: 20548: 20541: 20538: 20534: 20531: 20528: 20523: 20507: 20506: 20495: 20492: 20489: 20484: 20479: 20476: 20473: 20470: 20465: 20460: 20457: 20454: 20451: 20446: 20417: 20414: 20411: 20408: 20405: 20385: 20365: 20353: 20350: 20331: 20324: 20319: 20315: 20312: 20308: 20296: 20290: 20286: 20283: 20280: 20277: 20274: 20271: 20268: 20265: 20232: 20229: 20226: 20223: 20220: 20215: 20210: 20207: 20180: 20146: 20145: 20133: 20129: 20124: 20120: 20116: 20113: 20110: 20105: 20101: 20097: 20094: 20090: 20086: 20083: 20080: 20077: 20074: 20071: 20068: 20063: 20059: 20055: 20052: 20049: 20044: 20040: 20036: 20033: 20030: 20027: 20024: 20021: 20004:tensor algebra 19985: 19963: 19943: 19923: 19858: 19855: 19852: 19847: 19842: 19839: 19836: 19833: 19828: 19808: 19807: 19796: 19793: 19790: 19785: 19782: 19779: 19773: 19767: 19764: 19761: 19758: 19753: 19747: 19739: 19734: 19731: 19728: 19724: 19720: 19717: 19714: 19711: 19706: 19700: 19694: 19691: 19668: 19665: 19662: 19659: 19654: 19623: 19619: 19598: 19595: 19592: 19587: 19551: 19548: 19545: 19542: 19538: 19534: 19531: 19528: 19523: 19520: 19517: 19514: 19511: 19508: 19504: 19481: 19478: 19475: 19472: 19468: 19464: 19461: 19458: 19453: 19450: 19447: 19444: 19440: 19393: 19392: 19381: 19378: 19373: 19370: 19367: 19364: 19360: 19356: 19353: 19350: 19345: 19342: 19339: 19336: 19333: 19330: 19326: 19322: 19319: 19316: 19311: 19308: 19305: 19302: 19298: 19294: 19291: 19288: 19283: 19280: 19277: 19274: 19270: 19266: 19263: 19260: 19257: 19254: 19251: 19245: 19242: 19239: 19236: 19233: 19230: 19227: 19224: 19221: 19218: 19215: 19211: 19204: 19199: 19196: 19193: 19189: 19185: 19182: 19177: 19173: 19169: 19166: 19163: 19158: 19154: 19150: 19147: 19133: 19132: 19121: 19118: 19115: 19112: 19109: 19106: 19103: 19100: 19097: 19094: 19091: 19088: 19085: 19082: 19079: 19076: 19073: 19070: 19067: 19064: 19061: 19058: 19055: 19052: 19049: 19046: 19043: 19040: 19037: 19034: 19007: 19004: 19001: 18996: 18972: 18969: 18966: 18961: 18956: 18953: 18950: 18947: 18942: 18916: 18913: 18910: 18905: 18900: 18897: 18894: 18891: 18886: 18879: 18873: 18870: 18846: 18824: 18815:. The symbol 18802: 18799: 18796: 18783: 18782: 18771: 18768: 18765: 18762: 18759: 18756: 18753: 18750: 18747: 18744: 18741: 18738: 18713: 18710: 18707: 18702: 18697: 18694: 18691: 18688: 18683: 18678: 18675: 18672: 18669: 18664: 18659: 18656: 18624: 18621: 18618: 18613: 18587:tensor algebra 18564: 18542: 18539: 18536: 18531: 18517: 18514: 18499: 18496: 18493: 18488: 18481: 18475: 18471: 18457: 18456: 18445: 18441: 18437: 18433: 18429: 18426: 18423: 18419: 18415: 18410: 18405: 18378: 18354: 18348: 18342: 18339: 18336: 18331: 18324: 18316: 18311: 18307: 18302: 18298: 18294: 18288: 18281: 18275: 18270: 18265: 18252: 18251: 18240: 18236: 18228: 18223: 18217: 18213: 18209: 18205: 18202: 18199: 18195: 18191: 18187: 18183: 18179: 18175: 18150: 18147: 18144: 18139: 18132: 18126: 18122: 18097: 18094: 18091: 18086: 18079: 18073: 18069: 18044: 18041: 18038: 18033: 18030: 18027: 18020: 18014: 18010: 17982: 17979: 17976: 17963: 17962: 17951: 17948: 17945: 17942: 17939: 17936: 17933: 17930: 17927: 17922: 17918: 17889: 17888: 17877: 17873: 17865: 17861: 17856: 17852: 17848: 17844: 17841: 17838: 17834: 17830: 17826: 17822: 17819: 17816: 17791: 17788: 17785: 17761: 17758: 17755: 17750: 17743: 17737: 17733: 17708: 17705: 17702: 17697: 17694: 17691: 17684: 17678: 17674: 17642: 17639: 17636: 17631: 17624: 17608: 17607: 17596: 17591: 17587: 17583: 17580: 17577: 17572: 17568: 17563: 17556: 17552: 17547: 17543: 17540: 17537: 17530: 17526: 17521: 17495: 17465: 17450: 17447: 17444: 17441: 17436: 17429: 17410: 17401: 17394:Gramian matrix 17382: 17373: 17366: 17365: 17354: 17349: 17344: 17339: 17335: 17331: 17326: 17322: 17318: 17313: 17308: 17305: 17301: 17295: 17291: 17287: 17284: 17281: 17276: 17272: 17268: 17263: 17259: 17255: 17252: 17249: 17244: 17240: 17235: 17209: 17183: 17177: 17171: 17166: 17159: 17151: 17127: 17124: 17121: 17116: 17109: 17082: 17078: 17055: 17033: 17001: 16987: 16984: 16957: 16956: 16944: 16941: 16935: 16932: 16929: 16926: 16923: 16920: 16917: 16914: 16910: 16906: 16903: 16900: 16897: 16894: 16891: 16888: 16883: 16876: 16870: 16867: 16864: 16861: 16856: 16849: 16843: 16840: 16837: 16834: 16809: 16783: 16780: 16777: 16772: 16765: 16759: 16756: 16753: 16750: 16745: 16738: 16715: 16704: 16703: 16692: 16689: 16686: 16683: 16678: 16675: 16672: 16665: 16659: 16656: 16653: 16650: 16645: 16638: 16632: 16629: 16594: 16590: 16567: 16548: 16547: 16536: 16533: 16528: 16524: 16520: 16517: 16514: 16511: 16508: 16505: 16500: 16497: 16494: 16487: 16481: 16478: 16473: 16469: 16465: 16460: 16453: 16425: 16393: 16390: 16387: 16382: 16375: 16361: 16360: 16349: 16344: 16340: 16336: 16331: 16327: 16323: 16318: 16315: 16312: 16308: 16293: 16292: 16281: 16278: 16275: 16270: 16267: 16264: 16257: 16251: 16248: 16245: 16242: 16237: 16230: 16224: 16221: 16216: 16212: 16208: 16203: 16196: 16168: 16146: 16131:Main article: 16128: 16125: 16124: 16123: 16112: 16107: 16103: 16099: 16094: 16090: 16086: 16083: 16078: 16074: 16070: 16065: 16061: 16050: 16039: 16036: 16031: 16027: 16023: 16018: 16014: 15996: 15995: 15994: 15993: 15982: 15979: 15976: 15971: 15967: 15963: 15960: 15957: 15952: 15949: 15946: 15942: 15938: 15935: 15932: 15929: 15926: 15923: 15920: 15917: 15912: 15908: 15904: 15901: 15898: 15895: 15892: 15889: 15886: 15881: 15877: 15865:of degree −1: 15848: 15844: 15819: 15815: 15811: 15808: 15795: 15779: 15775: 15752: 15730: 15727: 15724: 15721: 15718: 15715: 15710: 15706: 15681: 15678: 15675: 15670: 15663: 15657: 15635: 15615: 15604: 15603: 15602: 15591: 15588: 15585: 15582: 15577: 15574: 15571: 15564: 15558: 15555: 15552: 15549: 15544: 15537: 15531: 15526: 15522: 15499: 15496: 15493: 15490: 15487: 15484: 15481: 15476: 15473: 15469: 15444: 15440: 15436: 15433: 15409: 15391: 15388: 15373: 15370: 15367: 15362: 15355: 15330: 15310: 15307: 15304: 15299: 15295: 15283: 15282: 15271: 15268: 15263: 15260: 15257: 15253: 15249: 15246: 15243: 15238: 15234: 15230: 15225: 15221: 15217: 15214: 15211: 15208: 15205: 15202: 15197: 15194: 15191: 15187: 15183: 15180: 15177: 15172: 15168: 15164: 15159: 15155: 15151: 15148: 15145: 15140: 15136: 15132: 15120:, then define 15105: 15101: 15078: 15075: 15072: 15057: 15050: 15043: 15024: 15020: 15016: 15013: 15010: 15005: 15001: 14997: 14992: 14988: 14954: 14930: 14926: 14905: 14883: 14880: 14877: 14872: 14865: 14859: 14856: 14829: 14797: 14780: 14779: 14768: 14765: 14762: 14759: 14754: 14751: 14748: 14741: 14735: 14732: 14729: 14726: 14721: 14714: 14708: 14703: 14699: 14673: 14670: 14667: 14662: 14647:antiderivation 14630: 14626: 14622: 14619: 14595: 14567: 14563: 14542: 14524: 14521: 14512: 14503: 14490: 14391: 14378: 14373: 14372: 14361: 14358: 14353: 14350: 14347: 14344: 14341: 14338: 14334: 14330: 14327: 14324: 14319: 14316: 14313: 14310: 14307: 14304: 14300: 14296: 14293: 14289: 14284: 14281: 14278: 14275: 14271: 14267: 14264: 14261: 14256: 14253: 14250: 14247: 14243: 14239: 14236: 14232: 14229: 14226: 14223: 14220: 14213: 14210: 14207: 14202: 14199: 14194: 14191: 14187: 14183: 14179: 14174: 14171: 14168: 14164: 14160: 14157: 14154: 14149: 14145: 14141: 14138: 14132: 14129: 14123: 14095: 14081: 14080: 14069: 14066: 14061: 14058: 14055: 14052: 14048: 14044: 14041: 14038: 14033: 14030: 14027: 14024: 14020: 14016: 14013: 14009: 14006: 14003: 14000: 13997: 13990: 13986: 13982: 13979: 13975: 13968: 13965: 13961: 13956: 13953: 13948: 13944: 13940: 13937: 13934: 13929: 13925: 13921: 13918: 13915: 13912: 13909: 13906: 13879: 13868: 13867: 13856: 13853: 13850: 13847: 13844: 13841: 13838: 13835: 13829: 13826: 13822: 13819: 13814: 13811: 13808: 13805: 13802: 13799: 13793: 13790: 13784: 13781: 13775: 13761: 13760: 13749: 13746: 13743: 13740: 13737: 13734: 13731: 13728: 13725: 13722: 13719: 13654: 13649: 13646: 13641: 13612: 13590: 13586: 13565: 13545: 13522: 13517: 13513: 13509: 13503: 13496: 13467: 13443: 13437: 13431: 13428: 13425: 13420: 13413: 13405: 13374: 13354: 13331: 13330: 13319: 13316: 13311: 13307: 13303: 13300: 13275: 13272: 13269: 13189: 13186: 13171: 13167: 13142: 13139: 13136: 13133: 13130: 13127: 13107: 13104: 13101: 13098: 13095: 13090: 13083: 13077: 13074: 13051: 13048: 13045: 13040: 13036: 13032: 13029: 13009: 13004: 13000: 12979: 12959: 12939: 12928: 12927: 12916: 12913: 12910: 12907: 12902: 12895: 12889: 12884: 12880: 12876: 12873: 12859: 12858: 12847: 12844: 12841: 12836: 12832: 12828: 12825: 12822: 12817: 12813: 12809: 12806: 12781: 12774: 12768: 12767: 12756: 12753: 12748: 12744: 12740: 12737: 12695: 12692: 12690: 12687: 12675: 12674: 12663: 12656: 12653: 12650: 12646: 12642: 12637: 12633: 12629: 12625: 12619: 12615: 12609: 12604: 12601: 12598: 12594: 12590: 12587: 12580: 12577: 12574: 12570: 12566: 12561: 12557: 12552: 12548: 12543: 12539: 12535: 12510: 12507: 12504: 12480: 12475: 12471: 12436: 12410: 12407: 12404: 12400: 12396: 12391: 12387: 12381: 12377: 12372: 12368: 12365: 12350: 12349: 12338: 12333: 12328: 12325: 12322: 12318: 12314: 12309: 12306: 12303: 12299: 12294: 12286: 12282: 12278: 12273: 12269: 12265: 12261: 12257: 12250: 12247: 12244: 12240: 12236: 12231: 12227: 12222: 12218: 12209: 12206: 12197: 12194: 12170: 12169: 12158: 12151: 12148: 12145: 12141: 12134: 12128: 12125: 12122: 12115: 12111: 12104: 12098: 12091: 12087: 12080: 12070: 12067: 12064: 12061: 12058: 12055: 12051: 12047: 12042: 12039: 12036: 12033: 12030: 12027: 12023: 12018: 12010: 12007: 12004: 12001: 11997: 11993: 11988: 11985: 11982: 11979: 11975: 11970: 11966: 11963: 11960: 11957: 11954: 11947: 11944: 11941: 11935: 11929: 11926: 11922: 11915: 11912: 11909: 11906: 11903: 11900: 11896: 11891: 11888: 11879: 11876: 11867: 11826: 11825: 11814: 11807: 11803: 11796: 11790: 11787: 11784: 11777: 11773: 11766: 11760: 11753: 11749: 11742: 11731: 11727: 11723: 11718: 11714: 11708: 11704: 11699: 11695: 11692: 11674:index notation 11643: 11636: 11620: 11619:Index notation 11617: 11602: 11599: 11596: 11593: 11571: 11568: 11565: 11562: 11542: 11539: 11536: 11533: 11530: 11527: 11524: 11521: 11517: 11513: 11510: 11507: 11504: 11501: 11498: 11476: 11473: 11470: 11465: 11439: 11436: 11433: 11430: 11402: 11399: 11374: 11352: 11349: 11346: 11343: 11323: 11320: 11317: 11312: 11307: 11304: 11301: 11298: 11295: 11273: 11270: 11267: 11243: 11230: 11229: 11218: 11215: 11212: 11209: 11204: 11199: 11196: 11193: 11190: 11187: 11162: 11159: 11156: 11152: 11129: 11109: 11106: 11103: 11100: 11080: 11069: 11068: 11057: 11054: 11051: 11048: 11045: 11042: 11039: 11036: 11033: 11030: 11021: 11018: 11009: 11006: 11003: 11000: 10997: 10971: 10968: 10945: 10942: 10939: 10936: 10916: 10894: 10870: 10846: 10820: 10817: 10814: 10810: 10785: 10782: 10779: 10773: 10748: 10745: 10742: 10738: 10713: 10710: 10707: 10703: 10678: 10675: 10672: 10669: 10654:is always the 10643: 10640: 10637: 10634: 10630: 10626: 10621: 10597: 10594: 10591: 10587: 10575: 10574: 10563: 10557: 10554: 10551: 10545: 10538: 10535: 10532: 10526: 10523: 10520: 10514: 10507: 10501: 10498: 10495: 10489: 10457: 10454: 10451: 10447: 10422: 10419: 10416: 10392: 10368: 10365: 10362: 10359: 10356: 10353: 10350: 10333: 10332: 10321: 10316: 10312: 10308: 10305: 10302: 10297: 10293: 10289: 10286: 10280: 10277: 10274: 10268: 10258: 10255: 10251: 10246: 10243: 10238: 10234: 10230: 10227: 10224: 10219: 10215: 10211: 10208: 10203: 10200: 10197: 10193: 10169: 10166: 10146: 10143: 10140: 10137: 10126: 10125: 10112: 10109: 10106: 10103: 10099: 10095: 10092: 10089: 10084: 10081: 10078: 10075: 10071: 10067: 10064: 10061: 10058: 10055: 10048: 10042: 10036: 10033: 10029: 10025: 10022: 10017: 10013: 10009: 10006: 10003: 9998: 9994: 9990: 9987: 9981: 9978: 9975: 9969: 9943: 9942: 9931: 9928: 9925: 9920: 9916: 9911: 9906: 9902: 9898: 9895: 9892: 9887: 9883: 9859: 9839: 9836: 9833: 9828: 9823: 9796: 9772: 9769: 9766: 9744: 9724: 9721: 9718: 9714: 9693: 9673: 9651: 9648: 9645: 9642: 9639: 9615: 9591: 9569: 9547: 9544: 9541: 9515: 9512: 9509: 9505: 9484: 9464: 9452: 9449: 9436:vector bundles 9412: 9388: 9368: 9365: 9362: 9357: 9333: 9330: 9327: 9323: 9300: 9297: 9294: 9289: 9265: 9240: 9220: 9205: 9202: 9187: 9184: 9181: 9176: 9152: 9149: 9146: 9141: 9134: 9111: 9108: 9105: 9100: 9093: 9070: 9067: 9064: 9059: 9026: 9023: 9020: 9015: 8978: 8975: 8972: 8967: 8943: 8940: 8937: 8932: 8913: 8912: 8901: 8896: 8891: 8888: 8885: 8882: 8879: 8876: 8873: 8870: 8865: 8840: 8837: 8834: 8829: 8760:tensor algebra 8728:, see above). 8715: 8712: 8709: 8704: 8633: 8630: 8627: 8624: 8621: 8616: 8611: 8608: 8569: 8566: 8563: 8560: 8557: 8554: 8551: 8548: 8545: 8542: 8522: 8519: 8516: 8513: 8510: 8478: 8459: 8456: 8453: 8448: 8406: 8403: 8400: 8395: 8363: 8360: 8357: 8354: 8351: 8323: 8320: 8317: 8312: 8286: 8283: 8271: 8270: 8259: 8256: 8253: 8250: 8245: 8242: 8238: 8234: 8231: 8228: 8225: 8222: 8219: 8216: 8191: 8188: 8185: 8180: 8173: 8167: 8164: 8142: 8139: 8136: 8131: 8124: 8118: 8115: 8104: 8103: 8092: 8089: 8086: 8083: 8080: 8077: 8072: 8065: 8042: 8039: 8036: 8033: 8030: 8025: 8018: 7995: 7994: 7983: 7980: 7977: 7974: 7969: 7966: 7963: 7956: 7950: 7947: 7944: 7941: 7936: 7929: 7923: 7920: 7917: 7914: 7909: 7902: 7885:graded algebra 7881: 7880: 7869: 7866: 7863: 7858: 7851: 7845: 7842: 7839: 7836: 7833: 7830: 7825: 7818: 7812: 7809: 7806: 7803: 7798: 7791: 7785: 7782: 7779: 7776: 7771: 7764: 7758: 7755: 7752: 7749: 7744: 7719: 7716: 7713: 7710: 7707: 7683: 7680: 7679: 7678: 7667: 7664: 7658: 7655: 7652: 7646: 7642: 7639: 7636: 7633: 7630: 7599: 7596: 7591: 7586: 7582: 7579: 7576: 7573: 7570: 7542: 7522: 7499: 7477: 7474: 7470: 7458:skew-symmetric 7443: 7440: 7436: 7432: 7429: 7424: 7421: 7417: 7405: 7404: 7391: 7387: 7383: 7378: 7374: 7368: 7365: 7361: 7355: 7352: 7349: 7345: 7341: 7338: 7315: 7293: 7269: 7265: 7244: 7220: 7205:Sternberg 1964 7183: 7155: 7134: 7133: 7122: 7119: 7116: 7113: 7110: 7107: 7104: 7101: 7098: 7095: 7091: 7086: 7083: 7080: 7075: 7071: 7067: 7064: 7061: 7056: 7053: 7050: 7045: 7041: 7037: 7032: 7029: 7026: 7022: 6996: 6993: 6990: 6986: 6974: 6973: 6960: 6957: 6954: 6950: 6946: 6943: 6940: 6935: 6932: 6929: 6925: 6921: 6916: 6913: 6910: 6906: 6902: 6899: 6867: 6845: 6842: 6839: 6834: 6827: 6821: 6818: 6804: 6797: 6780: 6776: 6751: 6748: 6745: 6742: 6739: 6734: 6727: 6700: 6672: 6669: 6666: 6663: 6660: 6655: 6648: 6632: 6631: 6620: 6617: 6614: 6609: 6602: 6596: 6593: 6590: 6587: 6584: 6581: 6576: 6569: 6563: 6560: 6557: 6554: 6549: 6542: 6536: 6533: 6530: 6527: 6522: 6515: 6509: 6506: 6503: 6500: 6495: 6453: 6450: 6447: 6425: 6422: 6419: 6416: 6413: 6410: 6407: 6402: 6395: 6370: 6342: 6329: 6328: 6317: 6311: 6306: 6303: 6298: 6292: 6289: 6286: 6283: 6278: 6271: 6265: 6262: 6246:is equal to a 6235: 6232: 6229: 6224: 6217: 6187: 6183: 6158: 6154: 6117: 6113: 6084: 6080: 6068: 6067: 6056: 6051: 6047: 6043: 6040: 6037: 6032: 6028: 6002: 5999: 5996: 5991: 5984: 5968: 5967: 5956: 5952: 5949: 5944: 5940: 5936: 5933: 5930: 5925: 5921: 5917: 5912: 5908: 5904: 5901: 5890: 5878: 5874: 5869: 5865: 5862: 5859: 5852: 5848: 5843: 5839: 5832: 5828: 5823: 5818: 5795: 5771: 5766: 5762: 5758: 5755: 5752: 5747: 5743: 5739: 5719: 5699: 5683: 5680: 5679: 5678: 5667: 5662: 5658: 5654: 5649: 5645: 5641: 5636: 5632: 5628: 5623: 5619: 5615: 5612: 5587: 5582: 5578: 5574: 5569: 5565: 5561: 5556: 5552: 5548: 5543: 5539: 5535: 5509: 5504: 5480: 5477: 5474: 5469: 5462: 5437: 5434: 5431: 5426: 5419: 5405:-vectors span 5392: 5369:is said to be 5358: 5336: 5314: 5294: 5263: 5241: 5238: 5235: 5230: 5223: 5217: 5214: 5201: 5200: 5189: 5186: 5183: 5180: 5177: 5174: 5171: 5168: 5165: 5162: 5159: 5156: 5153: 5148: 5144: 5139: 5134: 5130: 5126: 5123: 5120: 5115: 5111: 5107: 5102: 5098: 5069: 5066: 5063: 5058: 5028: 5025: 5022: 5017: 5010: 4983: 4970:exterior power 4959: 4958:Exterior power 4956: 4955: 4954: 4943: 4940: 4935: 4931: 4927: 4924: 4921: 4916: 4912: 4908: 4903: 4899: 4875: 4870: 4866: 4862: 4859: 4856: 4851: 4847: 4843: 4838: 4834: 4830: 4819: 4818: 4807: 4804: 4799: 4795: 4791: 4788: 4785: 4780: 4776: 4772: 4767: 4763: 4737: 4734: 4731: 4707: 4703: 4699: 4694: 4690: 4664: 4639: 4636: 4633: 4630: 4627: 4616: 4615: 4604: 4599: 4595: 4591: 4588: 4585: 4580: 4576: 4572: 4567: 4563: 4559: 4556: 4553: 4550: 4547: 4544: 4539: 4536: 4533: 4530: 4526: 4522: 4519: 4516: 4511: 4508: 4505: 4502: 4498: 4494: 4489: 4486: 4483: 4480: 4476: 4450: 4424: 4420: 4393: 4389: 4362: 4358: 4333: 4330: 4327: 4324: 4321: 4318: 4315: 4289: 4278: 4277: 4266: 4263: 4260: 4257: 4254: 4251: 4248: 4245: 4242: 4239: 4236: 4222: 4221: 4210: 4207: 4204: 4201: 4198: 4195: 4192: 4189: 4186: 4183: 4180: 4177: 4174: 4171: 4168: 4165: 4162: 4159: 4156: 4153: 4150: 4147: 4144: 4141: 4138: 4135: 4132: 4129: 4126: 4123: 4120: 4117: 4114: 4111: 4108: 4105: 4102: 4077: 4074: 4071: 4068: 4065: 4041: 4015: 4012: 4009: 4006: 3986: 3983: 3980: 3977: 3974: 3952: 3932: 3929: 3927: 3924: 3923: 3922: 3911: 3907: 3904: 3900: 3897: 3892: 3889: 3886: 3883: 3880: 3877: 3874: 3862:is defined by 3851: 3848: 3845: 3842: 3822: 3811: 3810: 3798: 3795: 3791: 3787: 3784: 3781: 3778: 3775: 3772: 3769: 3766: 3763: 3740: 3737: 3734: 3714: 3711: 3708: 3688: 3674:tensor algebra 3657: 3634: 3614: 3611: 3608: 3605: 3593: 3590: 3525:triple product 3516: 3509: 3502: 3496: 3495: 3484: 3479: 3474: 3469: 3464: 3459: 3454: 3449: 3444: 3439: 3436: 3431: 3427: 3421: 3417: 3411: 3407: 3403: 3398: 3394: 3388: 3384: 3378: 3374: 3370: 3365: 3361: 3355: 3351: 3345: 3341: 3337: 3332: 3328: 3322: 3318: 3312: 3308: 3304: 3299: 3295: 3289: 3285: 3279: 3275: 3271: 3266: 3262: 3256: 3252: 3246: 3242: 3238: 3235: 3231: 3227: 3223: 3219: 3215: 3200: 3199: 3188: 3183: 3178: 3171: 3167: 3163: 3158: 3153: 3146: 3142: 3138: 3133: 3128: 3121: 3117: 3113: 3109: 3078: 3071: 3064: 3057: 3050: 3043: 3037: 3036: 3025: 3020: 3015: 3010: 3005: 3000: 2995: 2992: 2987: 2983: 2977: 2973: 2969: 2964: 2960: 2954: 2950: 2946: 2943: 2940: 2935: 2930: 2925: 2920: 2915: 2910: 2907: 2902: 2898: 2892: 2888: 2884: 2879: 2875: 2869: 2865: 2861: 2858: 2855: 2850: 2845: 2840: 2835: 2830: 2825: 2822: 2817: 2813: 2807: 2803: 2799: 2794: 2790: 2784: 2780: 2776: 2773: 2769: 2765: 2761: 2746: 2745: 2732: 2727: 2720: 2716: 2712: 2707: 2702: 2695: 2691: 2687: 2682: 2677: 2670: 2666: 2662: 2658: 2643: 2642: 2629: 2624: 2617: 2613: 2609: 2604: 2599: 2592: 2588: 2584: 2579: 2574: 2567: 2563: 2559: 2555: 2537: 2530: 2523: 2515:triple product 2494: 2491: 2482: 2475: 2436: 2435: 2429: 2422: 2415: 2374: 2344: 2318: 2250:absolute value 2225: 2222: 2217: 2212: 2207: 2202: 2197: 2192: 2187: 2182: 2177: 2172: 2167: 2145: 2142: 2137: 2132: 2127: 2122: 2117: 2112: 2109: 2106: 2101: 2096: 2091: 2086: 2081: 2060: 2059: 2042: 2037: 2032: 2027: 2022: 2016: 2012: 2009: 2006: 2003: 2000: 1996: 1992: 1989: 1987: 1985: 1980: 1975: 1970: 1965: 1960: 1955: 1952: 1949: 1944: 1939: 1934: 1929: 1924: 1919: 1916: 1913: 1908: 1903: 1898: 1893: 1888: 1883: 1880: 1877: 1872: 1867: 1862: 1857: 1852: 1847: 1844: 1841: 1838: 1836: 1834: 1831: 1826: 1821: 1816: 1813: 1808: 1803: 1798: 1795: 1792: 1789: 1784: 1779: 1774: 1771: 1766: 1761: 1756: 1753: 1750: 1747: 1745: 1742: 1738: 1734: 1730: 1729: 1703: 1679: 1667: 1666: 1655: 1651: 1647: 1644: 1641: 1638: 1635: 1631: 1627: 1622: 1615: 1609: 1606: 1604: 1601: 1600: 1597: 1594: 1592: 1589: 1588: 1586: 1581: 1576: 1571: 1566: 1559: 1552: 1548: 1545: 1541: 1540: 1538: 1533: 1528: 1523: 1486: 1464: 1439: 1434: 1419: 1418: 1405: 1400: 1395: 1392: 1387: 1382: 1377: 1374: 1369: 1363: 1360: 1359: 1356: 1353: 1352: 1350: 1345: 1341: 1336: 1331: 1326: 1321: 1318: 1313: 1308: 1303: 1300: 1295: 1289: 1286: 1285: 1282: 1279: 1278: 1276: 1271: 1267: 1252: 1251: 1240: 1235: 1229: 1226: 1225: 1222: 1219: 1218: 1216: 1211: 1206: 1200: 1193: 1188: 1182: 1179: 1178: 1175: 1172: 1171: 1169: 1164: 1159: 1153: 1114: 1109: 1084: 1081: 1079: 1076: 1063: 1039: 1007: 1004: 1001: 998: 995: 992: 989: 986: 983: 980: 960: 957: 954: 951: 948: 937:characteristic 905: 885: 865: 847:graded algebra 834: 831: 811: 787: 784: 760: 740: 700: 673: 670: 667: 664: 661: 658: 655: 652: 649: 629: 626: 623: 620: 617: 589: 569: 566: 546: 522: 519: 516: 470: 450: 419: 415: 411: 408: 405: 400: 396: 392: 387: 383: 362: 340: 337: 317: 297: 273: 270: 250: 230: 227: 224: 221: 218: 198: 170: 167: 158:that contains 143: 65: 64: 59: 52: 51: 47: 40: 39: 38: 37: 36: 26: 18:Exterior power 9: 6: 4: 3: 2: 27904: 27893: 27890: 27888: 27885: 27883: 27880: 27879: 27877: 27862: 27859: 27857: 27854: 27852: 27849: 27847: 27844: 27842: 27839: 27837: 27834: 27832: 27829: 27827: 27824: 27822: 27819: 27817: 27814: 27812: 27809: 27807: 27804: 27802: 27799: 27798: 27796: 27794: 27790: 27780: 27777: 27775: 27772: 27770: 27767: 27765: 27762: 27760: 27757: 27755: 27752: 27750: 27747: 27745: 27742: 27740: 27737: 27736: 27734: 27730: 27724: 27721: 27719: 27716: 27714: 27711: 27709: 27706: 27704: 27701: 27699: 27698:Metric tensor 27696: 27694: 27691: 27689: 27686: 27685: 27683: 27679: 27676: 27672: 27666: 27663: 27661: 27658: 27656: 27653: 27651: 27648: 27646: 27643: 27641: 27638: 27636: 27633: 27631: 27628: 27626: 27623: 27621: 27618: 27616: 27613: 27611: 27610:Exterior form 27608: 27606: 27603: 27601: 27598: 27596: 27593: 27591: 27588: 27586: 27583: 27581: 27578: 27576: 27573: 27572: 27570: 27564: 27557: 27554: 27552: 27549: 27547: 27544: 27542: 27539: 27537: 27534: 27532: 27529: 27527: 27524: 27522: 27519: 27517: 27514: 27512: 27509: 27507: 27504: 27503: 27501: 27499: 27495: 27489: 27486: 27484: 27483:Tensor bundle 27481: 27479: 27476: 27474: 27471: 27469: 27466: 27464: 27461: 27459: 27456: 27454: 27451: 27449: 27446: 27444: 27441: 27440: 27438: 27432: 27426: 27423: 27421: 27418: 27416: 27413: 27411: 27408: 27406: 27403: 27401: 27398: 27396: 27393: 27391: 27388: 27386: 27383: 27382: 27380: 27376: 27366: 27363: 27361: 27358: 27356: 27353: 27351: 27348: 27346: 27343: 27342: 27340: 27335: 27332: 27330: 27327: 27326: 27323: 27317: 27314: 27312: 27309: 27307: 27304: 27302: 27299: 27297: 27294: 27292: 27289: 27287: 27284: 27282: 27279: 27278: 27276: 27274: 27270: 27267: 27263: 27259: 27258: 27252: 27248: 27241: 27236: 27234: 27229: 27227: 27222: 27221: 27218: 27206: 27198: 27197: 27194: 27188: 27185: 27183: 27182:Sparse matrix 27180: 27178: 27175: 27173: 27170: 27168: 27165: 27164: 27162: 27160: 27156: 27150: 27147: 27145: 27142: 27140: 27137: 27135: 27132: 27130: 27127: 27125: 27122: 27121: 27119: 27117:constructions 27116: 27112: 27106: 27105:Outermorphism 27103: 27101: 27098: 27096: 27093: 27091: 27088: 27086: 27083: 27081: 27078: 27076: 27073: 27071: 27068: 27066: 27065:Cross product 27063: 27061: 27058: 27057: 27055: 27053: 27049: 27043: 27040: 27038: 27035: 27033: 27032:Outer product 27030: 27028: 27025: 27023: 27020: 27018: 27015: 27013: 27012:Orthogonality 27010: 27009: 27007: 27005: 27001: 26995: 26992: 26990: 26989:Cramer's rule 26987: 26985: 26982: 26980: 26977: 26975: 26972: 26970: 26967: 26965: 26962: 26960: 26959:Decomposition 26957: 26955: 26952: 26951: 26949: 26947: 26943: 26938: 26928: 26925: 26923: 26920: 26918: 26915: 26913: 26910: 26908: 26905: 26903: 26900: 26898: 26895: 26893: 26890: 26888: 26885: 26883: 26880: 26878: 26875: 26873: 26870: 26868: 26865: 26863: 26860: 26858: 26855: 26853: 26850: 26848: 26845: 26843: 26840: 26838: 26835: 26834: 26832: 26828: 26822: 26819: 26817: 26814: 26813: 26810: 26806: 26799: 26794: 26792: 26787: 26785: 26780: 26779: 26776: 26768: 26765: 26762: 26759: 26756: 26753: 26748: 26747: 26744: 26738: 26734: 26730: 26729: 26724: 26720: 26715: 26711: 26710: 26708: 26702: 26698: 26694: 26689: 26686: 26682: 26681: 26676: 26671: 26666: 26665: 26663: 26657: 26653: 26649: 26645: 26628: 26623: 26619: 26613: 26606: 26583: 26578: 26571: 26560: 26556: 26540: 26535: 26528: 26517: 26513: 26509: 26508: 26506: 26500: 26496: 26492: 26488: 26483: 26479: 26478: 26470:on 2009-02-19 26469: 26465: 26464: 26458: 26457: 26446: 26442: 26438: 26434: 26430: 26426: 26422: 26418: 26414: 26410: 26406: 26402: 26396: 26391: 26390: 26381: 26377: 26373: 26370: 26368:0-8218-2031-1 26364: 26360: 26356: 26351: 26349: 26343: 26342: 26337: 26333: 26330: 26326: 26325: 26320: 26316: 26313: 26309: 26305: 26301: 26297: 26293: 26289: 26285: 26281: 26277: 26276: 26263: 26262: 26259: 26255: 26251: 26246: 26245: 26243: 26241:0-8218-1646-2 26237: 26233: 26229: 26225: 26221: 26216: 26212: 26211: 26208: 26204: 26200: 26196: 26192: 26186: 26182: 26181: 26179: 26177:3-540-64243-9 26173: 26169: 26165: 26161: 26156: 26155: 26153: 26151:0-486-64039-6 26147: 26142: 26141: 26135: 26131: 26130: 26113: 26112:Bourbaki 1989 26108: 26101: 26097: 26093: 26092:Clifford 1878 26089: 26085: 26081: 26077: 26071: 26062: 26055: 26051: 26047: 26042: 26034: 26032:0-521-42377-5 26028: 26024: 26020: 26019:DeWitt, Bryce 26014: 26006: 26004:0-12-398750-4 26000: 25996: 25992: 25985: 25978: 25974: 25968: 25961: 25943: 25932: 25926: 25919: 25912: 25894: 25872: 25852: 25842: 25821: 25812:structure on 25811: 25807: 25789: 25777: 25769: 25767:0-7167-0344-0 25763: 25759: 25752: 25744: 25739: 25734: 25727: 25721: 25714: 25710: 25706: 25700: 25693: 25687: 25680: 25674: 25668:, Chapter 5). 25667: 25663: 25659: 25655: 25651: 25645: 25626: 25606: 25598: 25597: 25592: 25586: 25579: 25578:Clifford 1878 25575: 25571: 25566: 25559: 25554: 25546: 25540: 25536: 25535: 25527: 25525: 25520: 25511: 25507: 25503: 25500: 25498: 25495: 25492: 25489: 25487: 25484: 25482: 25479: 25477: 25474: 25472: 25468: 25465: 25463: 25460: 25458: 25455: 25454: 25448: 25446: 25442: 25438: 25433: 25431: 25427: 25423: 25419: 25415: 25411: 25406: 25404: 25400: 25396: 25391: 25389: 25385: 25381: 25377: 25373: 25363: 25361: 25357: 25347: 25345: 25341: 25313: 25312:chain complex 25294: 25286: 25264: 25241: 25230: 25211: 25206: 25203: 25200: 25196: 25192: 25189: 25186: 25181: 25171: 25164: 25161: 25158: 25153: 25143: 25136: 25133: 25130: 25125: 25121: 25117: 25109: 25105: 25101: 25096: 25092: 25083: 25080: 25077: 25074: 25071: 25063: 25060: 25052: 25049: 25046: 25042: 25035: 25032: 25029: 25025: 25020: 25012: 25009: 25006: 25002: 24998: 24995: 24992: 24987: 24983: 24969: 24968: 24967: 24947: 24939: 24932: 24920: 24912: 24909: 24906: 24899: 24893: 24883: 24882: 24881: 24865: 24856:. This is a 24841: 24831: 24830:chain complex 24813: 24791: 24777: 24761: 24750: 24745: 24744:cylinder sets 24741: 24737: 24736:weak topology 24733: 24729: 24725: 24721: 24720:supersymmetry 24717: 24713: 24703: 24701: 24700: 24695: 24691: 24687: 24683: 24679: 24669: 24667: 24663: 24659: 24655: 24652: 24648: 24644: 24640: 24635: 24633: 24629: 24624: 24620: 24615: 24610: 24605: 24604:tangent space 24601: 24597: 24593: 24589: 24585: 24581: 24577: 24573: 24569: 24559: 24557: 24553: 24526: 24518: 24511: 24488: 24484: 24463: 24457: 24452: 24448: 24423: 24412: 24407: 24389: 24379: 24376:-dimensional 24374: 24354: 24346: 24339: 24327: 24323:Decomposable 24316: 24300: 24276: 24252: 24242: 24226: 24223: 24220: 24217: 24214: 24192: 24170: 24162: 24161:parallelogram 24146: 24143: 24140: 24131: 24120: 24107: 24102: 24099: 24095: 24089: 24086: 24082: 24076: 24073: 24069: 24065: 24060: 24057: 24053: 24030: 24027: 24022: 24019: 24015: 24011: 24006: 24003: 23998: 23995: 23991: 23987: 23982: 23978: 23970: 23954: 23950: 23946: 23942: 23938: 23935: 23915: 23908: 23905:provides the 23904: 23900: 23895: 23881: 23878: 23870: 23867: 23864: 23861: 23854: 23850: 23842: 23839: 23836: 23833: 23826: 23805: 23802: 23799: 23796: 23793: 23790: 23787: 23784: 23776: 23760: 23752: 23749: 23746: 23739: 23735: 23727: 23724: 23721: 23714: 23710: 23705: 23702: 23698: 23690: 23686: 23670: 23667: 23664: 23661: 23654: 23650: 23646: 23636: 23631: 23621: 23619: 23614: 23609: 23603: 23599: 23594: 23590: 23586: 23582: 23578: 23562: 23553: 23544: 23535: 23519: 23515: 23511: 23508: 23505: 23500: 23496: 23486: 23469: 23466: 23461: 23457: 23453: 23450: 23447: 23442: 23438: 23434: 23431: 23428: 23420: 23416: 23412: 23407: 23403: 23377: 23352: 23344: 23333: 23317: 23292: 23289: 23286: 23274: 23260: 23238: 23216: 23196: 23188: 23172: 23169: 23147: 23143: 23137: 23133: 23129: 23126: 23123: 23118: 23114: 23108: 23104: 23100: 23095: 23091: 23085: 23081: 23077: 23072: 23068: 23062: 23058: 23052: 23044: 23041: 23017: 23012: 23008: 23002: 22998: 22994: 22991: 22988: 22983: 22979: 22973: 22969: 22965: 22960: 22956: 22950: 22946: 22925: 22903: 22899: 22895: 22892: 22889: 22886: 22883: 22878: 22874: 22870: 22865: 22861: 22840: 22837: 22834: 22826: 22808: 22776: 22772: 22756: 22737: 22720: 22714: 22711: 22705: 22697: 22694: 22691: 22684: 22672: 22664: 22657: 22645: 22637: 22631: 22622: 22615: 22614: 22613: 22611: 22592: 22583: 22575: 22568: 22556: 22548: 22541: 22529: 22521: 22518: 22515: 22508: 22502: 22499: 22493: 22486: 22485: 22484: 22482: 22463: 22455: 22451: 22444: 22441: 22438: 22435: 22427: 22423: 22416: 22413: 22408: 22405: 22402: 22398: 22394: 22391: 22388: 22383: 22379: 22370: 22366: 22362: 22359: 22356: 22351: 22347: 22343: 22338: 22335: 22332: 22328: 22324: 22321: 22318: 22313: 22309: 22285: 22277: 22270: 22264: 22258: 22250: 22247: 22244: 22237: 22231: 22226: 22222: 22217: 22211: 22208: 22205: 22201: 22193: 22192: 22191: 22177: 22174: 22171: 22166: 22162: 22141: 22138: 22133: 22129: 22106: 22103: 22100: 22096: 22092: 22089: 22084: 22080: 22076: 22071: 22068: 22065: 22062: 22059: 22055: 22051: 22048: 22045: 22040: 22036: 22015: 22012: 22009: 21987: 21983: 21956: 21948: 21941: 21935: 21930: 21927: 21924: 21920: 21916: 21911: 21907: 21903: 21900: 21897: 21892: 21888: 21884: 21879: 21875: 21871: 21868: 21861: 21860: 21859: 21858: 21842: 21839: 21833: 21828: 21820: 21815: 21807: 21801: 21778: 21772: 21764: 21757: 21751: 21745: 21737: 21730: 21722: 21719: 21716: 21713: 21710: 21706: 21702: 21696: 21693: 21690: 21682: 21675: 21665: 21664: 21663: 21646: 21640: 21632: 21627: 21621: 21613: 21608: 21602: 21599: 21596: 21588: 21579: 21578: 21577: 21555: 21549: 21541: 21530: 21522: 21514: 21507: 21506: 21505: 21488: 21479: 21471: 21460: 21452: 21441: 21433: 21428: 21422: 21414: 21407: 21398: 21391: 21390: 21389: 21387: 21371: 21365: 21359: 21353: 21347: 21333: 21317: 21307: 21288: 21280: 21273: 21247: 21239: 21232: 21207: 21185: 21165: 21162: 21159: 21137: 21115: 21112: 21109: 21089: 21069: 21044: 21036: 21029: 21001: 20995: 20987: 20980: 20968: 20960: 20953: 20947: 20936: 20928: 20921: 20915: 20911: 20904: 20896: 20891: 20885: 20877: 20870: 20860: 20859: 20858: 20841: 20833: 20829: 20822: 20819: 20816: 20813: 20805: 20801: 20794: 20791: 20783: 20779: 20775: 20772: 20769: 20764: 20760: 20750: 20742: 20733: 20732: 20731: 20716: 20713: 20710: 20706: 20697: 20677: 20669: 20644: 20638: 20630: 20623: 20617: 20614: 20605: 20597: 20590: 20584: 20581: 20578: 20575: 20572: 20561: 20553: 20546: 20540: 20536: 20529: 20521: 20512: 20511: 20510: 20490: 20482: 20471: 20463: 20458: 20452: 20444: 20435: 20434: 20433: 20431: 20415: 20409: 20406: 20403: 20383: 20363: 20356:Suppose that 20352:Functoriality 20349: 20347: 20329: 20317: 20313: 20310: 20306: 20284: 20281: 20275: 20269: 20263: 20253: 20248: 20246: 20230: 20221: 20213: 20208: 20205: 20197: 20192: 20178: 20168: 20164: 20160: 20156: 20152: 20131: 20122: 20118: 20114: 20111: 20108: 20103: 20099: 20088: 20081: 20078: 20075: 20069: 20061: 20057: 20053: 20050: 20047: 20042: 20038: 20028: 20025: 20022: 20012: 20011: 20010: 20007: 20005: 20001: 19983: 19961: 19941: 19921: 19913: 19908: 19904: 19900: 19896: 19888: 19884: 19880: 19876: 19853: 19845: 19840: 19834: 19826: 19813: 19791: 19783: 19780: 19777: 19771: 19765: 19759: 19751: 19745: 19737: 19732: 19729: 19726: 19722: 19712: 19704: 19698: 19692: 19682: 19681: 19680: 19666: 19660: 19652: 19641: 19639: 19621: 19617: 19593: 19585: 19575: 19571: 19567: 19546: 19540: 19536: 19532: 19529: 19526: 19518: 19515: 19512: 19506: 19502: 19476: 19470: 19466: 19462: 19459: 19456: 19448: 19442: 19438: 19429: 19426:} → {1, ..., 19425: 19421: 19417: 19413: 19409: 19405: 19401: 19379: 19368: 19362: 19358: 19354: 19351: 19348: 19340: 19337: 19334: 19328: 19324: 19317: 19306: 19300: 19296: 19292: 19289: 19286: 19278: 19272: 19268: 19258: 19252: 19249: 19240: 19237: 19234: 19231: 19228: 19222: 19219: 19216: 19213: 19209: 19202: 19197: 19194: 19191: 19187: 19183: 19175: 19171: 19167: 19164: 19161: 19156: 19152: 19138: 19137: 19136: 19119: 19116: 19110: 19107: 19104: 19098: 19095: 19092: 19089: 19086: 19083: 19080: 19077: 19074: 19068: 19065: 19062: 19056: 19053: 19050: 19044: 19041: 19038: 19025: 19024: 19023: 19021: 19002: 18994: 18967: 18959: 18954: 18948: 18940: 18911: 18903: 18898: 18892: 18884: 18877: 18871: 18868: 18844: 18822: 18800: 18797: 18794: 18769: 18766: 18763: 18760: 18757: 18754: 18751: 18748: 18742: 18729: 18728: 18727: 18708: 18700: 18695: 18689: 18681: 18670: 18662: 18657: 18644: 18640: 18619: 18611: 18599: 18594: 18592: 18588: 18584: 18580: 18562: 18537: 18529: 18513: 18494: 18486: 18479: 18473: 18435: 18424: 18394: 18393: 18392: 18376: 18352: 18337: 18329: 18322: 18309: 18305: 18300: 18296: 18292: 18286: 18279: 18273: 18215: 18211: 18200: 18189: 18181: 18166: 18165: 18164: 18145: 18137: 18130: 18124: 18092: 18084: 18077: 18071: 18039: 18031: 18028: 18025: 18018: 18012: 17996: 17980: 17977: 17974: 17946: 17943: 17940: 17934: 17928: 17916: 17908: 17907: 17906: 17904: 17899: 17895: 17859: 17854: 17850: 17839: 17828: 17820: 17817: 17807: 17806: 17805: 17789: 17786: 17783: 17756: 17748: 17741: 17735: 17703: 17695: 17692: 17689: 17682: 17676: 17660: 17658: 17637: 17629: 17622: 17594: 17589: 17585: 17581: 17578: 17575: 17570: 17566: 17561: 17554: 17550: 17545: 17541: 17538: 17535: 17528: 17524: 17519: 17511: 17510: 17509: 17493: 17483: 17478: 17475:= 1, 2, ..., 17474: 17468: 17464: 17448: 17442: 17434: 17427: 17413: 17409: 17404: 17400: 17395: 17391: 17385: 17381: 17376: 17372: 17352: 17337: 17333: 17329: 17324: 17320: 17303: 17299: 17293: 17289: 17285: 17282: 17279: 17274: 17270: 17266: 17261: 17257: 17253: 17250: 17247: 17242: 17238: 17233: 17225: 17224: 17223: 17207: 17181: 17169: 17164: 17157: 17122: 17114: 17107: 17080: 17076: 17053: 17031: 17021: 17017: 17016:inner product 16999: 16986:Inner product 16983: 16981: 16977: 16971: 16967: 16962: 16933: 16930: 16924: 16921: 16918: 16912: 16904: 16901: 16895: 16889: 16881: 16874: 16862: 16854: 16847: 16841: 16838: 16835: 16832: 16825: 16824: 16823: 16807: 16797: 16778: 16770: 16763: 16751: 16743: 16736: 16713: 16690: 16684: 16676: 16673: 16670: 16663: 16651: 16643: 16636: 16630: 16627: 16620: 16619: 16618: 16616: 16612: 16592: 16588: 16565: 16557: 16556:inner product 16553: 16534: 16531: 16526: 16522: 16515: 16512: 16506: 16498: 16495: 16492: 16485: 16471: 16467: 16458: 16451: 16441: 16440: 16439: 16423: 16413: 16409: 16408: 16388: 16380: 16373: 16347: 16342: 16338: 16334: 16329: 16325: 16321: 16316: 16313: 16310: 16306: 16298: 16297: 16296: 16276: 16268: 16265: 16262: 16255: 16243: 16235: 16228: 16222: 16214: 16210: 16201: 16194: 16184: 16183: 16182: 16166: 16144: 16137:Suppose that 16134: 16127:Hodge duality 16110: 16105: 16101: 16097: 16092: 16088: 16084: 16081: 16076: 16072: 16068: 16063: 16059: 16051: 16037: 16034: 16029: 16025: 16021: 16016: 16012: 16004: 16003: 16002: 15999: 15980: 15974: 15969: 15965: 15958: 15955: 15950: 15947: 15944: 15936: 15933: 15927: 15924: 15921: 15915: 15910: 15906: 15899: 15893: 15890: 15887: 15879: 15875: 15867: 15866: 15864: 15846: 15842: 15817: 15813: 15809: 15806: 15796: 15777: 15773: 15750: 15725: 15719: 15716: 15713: 15708: 15704: 15676: 15668: 15661: 15655: 15633: 15613: 15605: 15589: 15583: 15575: 15572: 15569: 15562: 15550: 15542: 15535: 15529: 15524: 15520: 15512: 15511: 15494: 15488: 15482: 15474: 15471: 15442: 15438: 15434: 15431: 15407: 15397: 15396: 15395: 15387: 15368: 15360: 15353: 15328: 15308: 15305: 15302: 15297: 15293: 15269: 15261: 15258: 15255: 15251: 15247: 15244: 15241: 15236: 15232: 15228: 15223: 15219: 15215: 15212: 15206: 15203: 15195: 15192: 15189: 15185: 15181: 15178: 15175: 15170: 15166: 15162: 15157: 15153: 15143: 15138: 15134: 15123: 15122: 15121: 15103: 15099: 15076: 15073: 15070: 15060: 15056: 15049: 15042: 15022: 15018: 15014: 15011: 15008: 15003: 14999: 14995: 14990: 14986: 14976: 14971: 14952: 14928: 14924: 14903: 14878: 14870: 14863: 14857: 14854: 14845:Suppose that 14843: 14827: 14817: 14813: 14795: 14785: 14766: 14760: 14752: 14749: 14746: 14739: 14727: 14719: 14712: 14706: 14701: 14697: 14689: 14688: 14687: 14668: 14660: 14648: 14628: 14624: 14620: 14617: 14593: 14583: 14565: 14561: 14540: 14533:Suppose that 14530: 14520: 14515: 14511: 14506: 14502: 14497: 14493: 14489: 14482: 14478: 14474: 14470: 14466: 14462: 14458: 14451: 14447: 14443: 14439: 14432: 14428: 14422: 14419: 14415: 14411: 14407: 14398: 14394: 14390: 14385: 14381: 14359: 14348: 14345: 14342: 14336: 14332: 14328: 14325: 14322: 14314: 14311: 14308: 14302: 14298: 14291: 14279: 14273: 14269: 14265: 14262: 14259: 14251: 14245: 14241: 14234: 14227: 14221: 14218: 14211: 14208: 14205: 14192: 14189: 14185: 14181: 14172: 14169: 14166: 14162: 14158: 14155: 14152: 14147: 14143: 14136: 14130: 14127: 14121: 14113: 14112: 14111: 14109: 14093: 14086: 14067: 14056: 14050: 14046: 14042: 14039: 14036: 14028: 14022: 14018: 14011: 14004: 13998: 13995: 13988: 13984: 13980: 13977: 13973: 13966: 13963: 13959: 13954: 13946: 13942: 13938: 13935: 13932: 13927: 13923: 13913: 13907: 13904: 13897: 13896: 13895: 13893: 13877: 13854: 13848: 13845: 13842: 13836: 13833: 13827: 13824: 13820: 13817: 13812: 13806: 13803: 13800: 13791: 13788: 13782: 13779: 13773: 13766: 13765: 13764: 13744: 13741: 13738: 13732: 13729: 13726: 13723: 13720: 13717: 13710: 13709: 13708: 13705: 13700: 13696: 13692: 13686: 13682: 13678: 13672: 13647: 13644: 13626: 13610: 13588: 13584: 13563: 13543: 13520: 13515: 13511: 13507: 13501: 13494: 13465: 13441: 13426: 13418: 13411: 13392: 13388: 13372: 13352: 13343: 13340: 13336: 13333:is called an 13317: 13309: 13305: 13301: 13298: 13291: 13290: 13289: 13273: 13270: 13267: 13253: 13247: 13242: 13237: 13231: 13225: 13219: 13214: 13210: 13205: 13200: 13195: 13185: 13169: 13165: 13156: 13140: 13137: 13134: 13131: 13128: 13125: 13105: 13096: 13088: 13081: 13075: 13072: 13065: 13049: 13046: 13038: 13034: 13030: 13027: 13007: 13002: 12998: 12977: 12957: 12950:vectors from 12937: 12914: 12908: 12900: 12893: 12882: 12878: 12874: 12871: 12864: 12863: 12862: 12845: 12842: 12834: 12830: 12826: 12823: 12820: 12815: 12811: 12804: 12797: 12796: 12795: 12793: 12789: 12784: 12780: 12773: 12754: 12746: 12742: 12738: 12735: 12728: 12727: 12726: 12725: 12721: 12717: 12713: 12709: 12705: 12701: 12686: 12684: 12680: 12661: 12654: 12651: 12648: 12644: 12640: 12635: 12631: 12627: 12623: 12617: 12613: 12607: 12602: 12599: 12596: 12592: 12588: 12585: 12578: 12575: 12572: 12568: 12564: 12559: 12555: 12546: 12541: 12537: 12526: 12525: 12524: 12508: 12505: 12502: 12478: 12473: 12469: 12457: 12453: 12449:. Then, for 12434: 12408: 12405: 12402: 12398: 12394: 12389: 12385: 12379: 12375: 12370: 12366: 12363: 12355: 12336: 12326: 12323: 12320: 12316: 12312: 12307: 12304: 12301: 12297: 12292: 12284: 12280: 12276: 12271: 12267: 12259: 12255: 12248: 12245: 12242: 12238: 12234: 12229: 12225: 12216: 12207: 12204: 12195: 12185: 12184: 12183: 12180: 12176: 12156: 12149: 12146: 12143: 12139: 12126: 12123: 12120: 12113: 12109: 12096: 12089: 12085: 12065: 12062: 12059: 12053: 12049: 12045: 12037: 12034: 12031: 12025: 12021: 12016: 12005: 11999: 11995: 11991: 11983: 11977: 11973: 11968: 11961: 11955: 11952: 11945: 11942: 11939: 11927: 11924: 11920: 11913: 11907: 11904: 11901: 11894: 11889: 11886: 11877: 11874: 11865: 11858: 11857: 11856: 11854: 11850: 11846: 11842: 11837: 11835: 11831: 11812: 11805: 11801: 11788: 11785: 11782: 11775: 11771: 11758: 11751: 11747: 11729: 11725: 11721: 11716: 11712: 11706: 11702: 11697: 11693: 11690: 11683: 11682: 11681: 11679: 11675: 11669: 11665: 11661: 11657: 11652: 11646: 11642: 11635: 11630: 11626: 11623:Suppose that 11616: 11597: 11591: 11566: 11560: 11537: 11531: 11525: 11519: 11515: 11508: 11505: 11502: 11496: 11471: 11463: 11434: 11428: 11417: 11400: 11397: 11372: 11347: 11341: 11318: 11310: 11305: 11299: 11293: 11256:will do what 11216: 11210: 11202: 11197: 11191: 11185: 11178: 11177: 11176: 11157: 11127: 11104: 11098: 11078: 11055: 11049: 11046: 11043: 11037: 11034: 11031: 11028: 11019: 11016: 11007: 11004: 11001: 10998: 10995: 10988: 10987: 10986: 10969: 10966: 10940: 10934: 10914: 10892: 10844: 10815: 10808: 10798:is precisely 10780: 10743: 10708: 10673: 10667: 10657: 10635: 10592: 10585: 10561: 10536: 10533: 10530: 10505: 10476: 10475: 10474: 10471: 10452: 10363: 10360: 10357: 10354: 10351: 10338: 10314: 10310: 10306: 10303: 10300: 10295: 10291: 10284: 10256: 10253: 10249: 10244: 10236: 10232: 10228: 10225: 10222: 10217: 10213: 10206: 10198: 10191: 10183: 10182: 10181: 10180:might be 0): 10167: 10164: 10144: 10141: 10138: 10135: 10107: 10101: 10097: 10093: 10090: 10087: 10079: 10073: 10069: 10062: 10056: 10053: 10046: 10034: 10031: 10027: 10023: 10015: 10011: 10007: 10004: 10001: 9996: 9992: 9985: 9956: 9955: 9954: 9952: 9948: 9929: 9926: 9923: 9918: 9914: 9909: 9904: 9900: 9896: 9893: 9890: 9885: 9881: 9873: 9872: 9871: 9857: 9834: 9826: 9810: 9794: 9770: 9767: 9764: 9742: 9735:by the ideal 9719: 9691: 9671: 9649: 9646: 9643: 9640: 9637: 9613: 9589: 9567: 9545: 9542: 9539: 9529: 9510: 9482: 9462: 9448: 9446: 9442: 9437: 9432: 9430: 9426: 9410: 9402: 9386: 9363: 9355: 9328: 9295: 9287: 9263: 9254: 9238: 9218: 9211: 9201: 9182: 9174: 9147: 9139: 9132: 9106: 9098: 9091: 9065: 9057: 9046: 9044: 9040: 9021: 9013: 9002: 8996: 8993: 8973: 8965: 8938: 8930: 8899: 8894: 8886: 8880: 8877: 8871: 8863: 8854: 8853: 8852: 8835: 8827: 8818:, and define 8816: 8810: 8804: 8800: 8793: 8789: 8783: 8779: 8775: 8769: 8765: 8761: 8756: 8750: 8744: 8734: 8729: 8710: 8702: 8689: 8683: 8677: 8671: 8664: 8660: 8656: 8652: 8648: 8631: 8622: 8614: 8609: 8606: 8599: 8595: 8594:precisely one 8590: 8584: 8567: 8564: 8558: 8552: 8546: 8540: 8520: 8514: 8511: 8508: 8501: 8496: 8490: 8484: 8477: 8475: 8454: 8446: 8433: 8427: 8421: 8401: 8393: 8384:. Formally, 8382: 8378: 8361: 8358: 8355: 8352: 8349: 8341: 8337: 8318: 8310: 8299: 8293: 8282: 8280: 8279:graded module 8276: 8257: 8254: 8251: 8248: 8243: 8240: 8232: 8229: 8223: 8220: 8217: 8214: 8207: 8206: 8205: 8186: 8178: 8171: 8165: 8162: 8137: 8129: 8122: 8116: 8113: 8090: 8087: 8084: 8078: 8070: 8063: 8040: 8037: 8031: 8023: 8016: 8006: 8005: 8004: 8001: 7997:Moreover, if 7981: 7975: 7967: 7964: 7961: 7954: 7948: 7942: 7934: 7927: 7921: 7915: 7907: 7900: 7890: 7889: 7888: 7886: 7864: 7856: 7849: 7843: 7840: 7837: 7831: 7823: 7816: 7810: 7804: 7796: 7789: 7783: 7777: 7769: 7762: 7756: 7750: 7742: 7733: 7732: 7731: 7714: 7711: 7708: 7698:-vector is a 7696: 7690: 7665: 7662: 7656: 7653: 7650: 7644: 7640: 7637: 7634: 7631: 7628: 7597: 7594: 7589: 7584: 7580: 7577: 7574: 7571: 7568: 7556: 7555: 7554: 7540: 7520: 7511: 7497: 7475: 7472: 7468: 7459: 7441: 7438: 7434: 7430: 7427: 7422: 7419: 7415: 7389: 7385: 7381: 7376: 7372: 7366: 7363: 7359: 7353: 7350: 7347: 7343: 7339: 7336: 7329: 7328: 7327: 7313: 7291: 7267: 7263: 7242: 7234: 7218: 7210: 7206: 7201: 7199: 7181: 7170: 7153: 7144: 7139: 7120: 7117: 7114: 7111: 7108: 7105: 7102: 7099: 7096: 7093: 7089: 7081: 7073: 7069: 7065: 7062: 7059: 7051: 7043: 7039: 7035: 7027: 7020: 7012: 7011: 7010: 6991: 6984: 6955: 6948: 6944: 6941: 6938: 6930: 6923: 6919: 6911: 6904: 6900: 6897: 6890: 6889: 6888: 6886: 6883: 6865: 6840: 6832: 6825: 6819: 6816: 6802: 6796: 6778: 6774: 6749: 6746: 6740: 6732: 6725: 6698: 6688: 6670: 6667: 6661: 6653: 6646: 6615: 6607: 6600: 6594: 6591: 6588: 6582: 6574: 6567: 6561: 6555: 6547: 6540: 6534: 6528: 6520: 6513: 6507: 6501: 6493: 6484: 6483: 6482: 6481: 6477: 6474: 6467: 6451: 6448: 6445: 6420: 6414: 6408: 6400: 6393: 6368: 6358: 6340: 6315: 6304: 6301: 6290: 6284: 6276: 6269: 6263: 6260: 6253: 6252: 6251: 6249: 6230: 6222: 6215: 6203: 6185: 6181: 6156: 6152: 6143: 6139: 6115: 6111: 6100: 6082: 6078: 6070:every vector 6054: 6049: 6045: 6041: 6038: 6035: 6030: 6026: 6018: 6017: 6016: 5997: 5989: 5982: 5950: 5947: 5942: 5938: 5934: 5931: 5928: 5923: 5919: 5915: 5910: 5906: 5902: 5899: 5876: 5872: 5867: 5863: 5860: 5857: 5850: 5846: 5841: 5837: 5830: 5826: 5821: 5809: 5808: 5807: 5793: 5785: 5764: 5760: 5756: 5753: 5750: 5745: 5741: 5717: 5697: 5689: 5665: 5660: 5656: 5652: 5647: 5643: 5639: 5634: 5630: 5626: 5621: 5617: 5613: 5610: 5603: 5602: 5601: 5580: 5576: 5572: 5567: 5563: 5559: 5554: 5550: 5546: 5541: 5537: 5524:with a basis 5507: 5475: 5467: 5460: 5432: 5424: 5417: 5390: 5380: 5376: 5372: 5356: 5334: 5312: 5292: 5284: 5283: 5280: 5261: 5236: 5228: 5221: 5215: 5212: 5187: 5184: 5181: 5178: 5175: 5172: 5169: 5166: 5163: 5160: 5157: 5154: 5151: 5146: 5142: 5137: 5132: 5128: 5124: 5121: 5118: 5113: 5109: 5105: 5100: 5096: 5088: 5087: 5086: 5084: 5064: 5056: 5044: 5023: 5015: 5008: 4981: 4971: 4966: 4941: 4938: 4933: 4929: 4925: 4922: 4919: 4914: 4910: 4906: 4901: 4897: 4889: 4888: 4887: 4868: 4864: 4860: 4857: 4854: 4849: 4845: 4841: 4836: 4832: 4805: 4802: 4797: 4793: 4789: 4786: 4783: 4778: 4774: 4770: 4765: 4761: 4753: 4752: 4751: 4735: 4732: 4729: 4705: 4701: 4697: 4692: 4688: 4678: 4662: 4653: 4634: 4628: 4625: 4602: 4597: 4593: 4589: 4586: 4583: 4578: 4574: 4570: 4565: 4561: 4554: 4548: 4545: 4542: 4534: 4528: 4524: 4520: 4517: 4514: 4506: 4500: 4496: 4492: 4484: 4478: 4474: 4466: 4465: 4464: 4448: 4422: 4418: 4391: 4387: 4360: 4356: 4328: 4325: 4322: 4319: 4316: 4303: 4287: 4264: 4258: 4255: 4252: 4246: 4243: 4240: 4237: 4234: 4227: 4226: 4225: 4208: 4205: 4202: 4199: 4196: 4193: 4190: 4187: 4184: 4181: 4178: 4175: 4172: 4169: 4166: 4163: 4160: 4157: 4154: 4151: 4148: 4145: 4142: 4139: 4133: 4130: 4127: 4121: 4115: 4112: 4109: 4103: 4100: 4093: 4092: 4091: 4075: 4072: 4069: 4066: 4063: 4039: 4029: 4013: 4010: 4007: 4004: 3984: 3981: 3978: 3975: 3972: 3950: 3940: 3939: 3909: 3902: 3898: 3890: 3887: 3884: 3881: 3878: 3875: 3872: 3865: 3864: 3863: 3846: 3840: 3820: 3796: 3793: 3789: 3782: 3776: 3773: 3767: 3761: 3754: 3753: 3752: 3738: 3735: 3732: 3712: 3709: 3706: 3686: 3679: 3675: 3671: 3655: 3648: 3632: 3609: 3603: 3589: 3587: 3583: 3579: 3575: 3571: 3567: 3563: 3559: 3555: 3551: 3547: 3543: 3538: 3534: 3528: 3526: 3522: 3515: 3508: 3501: 3477: 3467: 3462: 3452: 3447: 3429: 3425: 3419: 3415: 3409: 3405: 3401: 3396: 3392: 3386: 3382: 3376: 3372: 3368: 3363: 3359: 3353: 3349: 3343: 3339: 3335: 3330: 3326: 3320: 3316: 3310: 3306: 3302: 3297: 3293: 3287: 3283: 3277: 3273: 3269: 3264: 3260: 3254: 3250: 3244: 3240: 3233: 3225: 3217: 3205: 3204: 3203: 3186: 3181: 3169: 3165: 3161: 3156: 3144: 3140: 3136: 3131: 3119: 3115: 3111: 3099: 3098: 3097: 3094: 3092: 3088: 3087:cross product 3084: 3077: 3070: 3063: 3056: 3049: 3042: 3018: 3008: 3003: 2985: 2981: 2975: 2971: 2967: 2962: 2958: 2952: 2948: 2941: 2933: 2923: 2918: 2900: 2896: 2890: 2886: 2882: 2877: 2873: 2867: 2863: 2856: 2848: 2838: 2833: 2815: 2811: 2805: 2801: 2797: 2792: 2788: 2782: 2778: 2771: 2763: 2751: 2750: 2749: 2730: 2718: 2714: 2710: 2705: 2693: 2689: 2685: 2680: 2668: 2664: 2660: 2648: 2647: 2646: 2627: 2615: 2611: 2607: 2602: 2590: 2586: 2582: 2577: 2565: 2561: 2557: 2545: 2544: 2543: 2536: 2529: 2522: 2516: 2512: 2511:cross product 2508: 2499: 2490: 2488: 2481: 2474: 2465: 2459: 2453: 2447: 2440: 2428: 2421: 2416: 2413: 2409: 2405: 2399: 2395: 2391: 2387: 2384: 2380: 2375: 2372: 2368: 2362: 2358: 2354: 2350: 2345: 2342: 2338: 2334: 2328: 2324: 2319: 2316: 2312: 2306: 2302: 2298: 2294: 2291: 2287: 2284: 2279: 2278: 2277: 2275: 2271: 2265: 2261: 2253: 2251: 2247: 2243: 2239: 2223: 2220: 2215: 2205: 2200: 2190: 2185: 2175: 2170: 2143: 2135: 2125: 2120: 2107: 2104: 2099: 2089: 2084: 2069: 2065: 2040: 2030: 2025: 2014: 2010: 2007: 2004: 2001: 1998: 1994: 1990: 1988: 1978: 1968: 1963: 1953: 1950: 1947: 1942: 1932: 1927: 1917: 1914: 1911: 1906: 1896: 1891: 1881: 1878: 1875: 1870: 1860: 1855: 1845: 1842: 1839: 1837: 1824: 1814: 1811: 1806: 1796: 1790: 1782: 1772: 1769: 1764: 1754: 1748: 1746: 1736: 1720: 1719: 1718: 1653: 1649: 1645: 1642: 1639: 1636: 1633: 1629: 1625: 1613: 1607: 1602: 1595: 1590: 1584: 1569: 1557: 1536: 1521: 1509: 1508: 1507: 1505: 1501: 1437: 1403: 1393: 1390: 1385: 1375: 1372: 1367: 1361: 1354: 1348: 1343: 1334: 1329: 1319: 1316: 1311: 1301: 1298: 1293: 1287: 1280: 1274: 1269: 1257: 1256: 1255: 1254:Suppose that 1238: 1233: 1227: 1220: 1214: 1209: 1204: 1191: 1186: 1180: 1173: 1167: 1162: 1157: 1141: 1140: 1139: 1138: 1134: 1130: 1112: 1098: 1089: 1075: 1061: 1053: 1037: 1029: 1025: 1021: 1005: 1002: 999: 996: 993: 990: 987: 984: 981: 978: 958: 955: 952: 949: 946: 938: 934: 930: 926: 922: 921:vector fields 917: 903: 883: 863: 855: 850: 848: 832: 829: 809: 801: 785: 782: 774: 758: 738: 730: 726: 725: 720: 719: 698: 690: 685: 671: 668: 665: 662: 659: 656: 653: 650: 647: 627: 624: 621: 618: 615: 607: 603: 602:parallelotope 587: 567: 564: 544: 536: 535:parallelogram 520: 517: 514: 507: 500: 496: 492: 488: 484: 468: 448: 441: 437: 436: 417: 413: 409: 406: 403: 398: 394: 390: 385: 381: 360: 351: 338: 335: 328:is "outside" 315: 295: 287: 271: 268: 248: 228: 225: 222: 219: 216: 196: 188: 187:wedge product 184: 168: 165: 157: 141: 134: 130: 126: 114: 108: 104: 100: 96: 92: 91:parallelotope 88: 84: 80: 74: 69: 56: 44: 33: 19: 27861:Hermann Weyl 27665:Vector space 27650:Pseudotensor 27615:Fiber bundle 27568:abstractions 27463:Mixed tensor 27448:Tensor field 27255: 27115:Vector space 27084: 26847:Vector space 26727: 26696: 26678: 26651: 26558: 26554: 26494: 26472:, retrieved 26468:the original 26462: 26420: 26416: 26388: 26379: 26358: 26354: 26340: 26323: 26319:Forder, H.G. 26295: 26291: 26288:Clifford, W. 26257: 26231: 26228:Birkhoff, G. 26224:Mac Lane, S. 26206: 26195:Bryant, R.L. 26184: 26183:This is the 26167: 26139: 26107: 26095: 26087: 26075: 26070: 26061: 26053: 26049: 26041: 26022: 26013: 25994: 25984: 25967: 25930: 25924: 25918: 25841: 25776: 25757: 25751: 25742: 25737: 25733: 25720: 25699: 25686: 25673: 25666:Strang (1993 25644: 25594: 25590: 25585: 25573: 25565: 25560:, p. 83 25553: 25532: 25502:Weyl algebra 25434: 25410:multivectors 25407: 25402: 25394: 25392: 25388:Saint-Venant 25384:vector space 25379: 25375: 25369: 25353: 25226: 24965: 24783: 24748: 24723: 24712:superalgebra 24709: 24697: 24675: 24636: 24625: 24618: 24608: 24565: 24410: 24406:Grassmannian 24372: 24329:-vectors in 24325: 24322: 24129: 24126: 23896: 23642: 23633: 23607: 23601: 23597: 23592: 23574: 23484: 23334: 23275: 23185:to mean the 22771:affine space 22748: 22740:Applications 22735: 22609: 22607: 22480: 22478: 21974: 21793: 21661: 21575: 21503: 21339: 21016: 20856: 20695: 20659: 20508: 20355: 20346:Hopf algebra 20251: 20249: 20195: 20193: 20166: 20162: 20158: 20154: 20150: 20147: 20008: 19999: 19906: 19902: 19898: 19897:⊗ 1) ∧ (1 ⊗ 19894: 19886: 19882: 19878: 19874: 19811: 19809: 19642: 19637: 19573: 19569: 19565: 19427: 19423: 19419: 19418:0) and Sh(0, 19415: 19407: 19403: 19399: 19394: 19134: 18785:on elements 18784: 18642: 18595: 18583:Hopf algebra 18519: 18458: 18367:is the dual 18253: 17997: 17964: 17897: 17893: 17890: 17661: 17609: 17476: 17472: 17466: 17462: 17411: 17407: 17402: 17398: 17389: 17383: 17379: 17374: 17370: 17367: 16989: 16979: 16975: 16969: 16965: 16958: 16705: 16614: 16610: 16558:identifying 16551: 16549: 16411: 16405: 16362: 16294: 16136: 16000: 15997: 15393: 15284: 15089:elements of 15058: 15054: 15047: 15040: 14969: 14844: 14815: 14811: 14783: 14781: 14580:denotes the 14532: 14513: 14509: 14504: 14500: 14495: 14491: 14487: 14480: 14476: 14472: 14468: 14464: 14460: 14456: 14449: 14445: 14441: 14437: 14430: 14426: 14425:{1, 2, ..., 14420: 14418:permutations 14409: 14405: 14396: 14392: 14388: 14383: 14379: 14374: 14082: 13892:permutations 13869: 13762: 13698: 13694: 13690: 13684: 13680: 13676: 13673: 13334: 13332: 13257: 13245: 13235: 13229: 13223: 13217: 13208: 13203: 12929: 12860: 12791: 12782: 12778: 12771: 12769: 12719: 12715: 12711: 12707: 12703: 12699: 12697: 12682: 12678: 12676: 12455: 12451: 12351: 12178: 12174: 12171: 11855:is given by 11852: 11848: 11844: 11840: 11838: 11829: 11827: 11667: 11663: 11659: 11655: 11650: 11644: 11640: 11633: 11628: 11624: 11622: 11418: 11231: 11070: 10927:is defined, 10655: 10576: 10472: 10334: 10127: 9950: 9946: 9944: 9811: 9454: 9447:of modules. 9433: 9207: 9047: 9000: 8997: 8991: 8914: 8814: 8808: 8802: 8798: 8791: 8787: 8781: 8767: 8763: 8754: 8748: 8742: 8739: 8687: 8681: 8675: 8669: 8662: 8658: 8654: 8650: 8646: 8593: 8588: 8582: 8494: 8488: 8482: 8479: 8431: 8425: 8419: 8380: 8376: 8297: 8291: 8288: 8272: 8105: 7999: 7996: 7882: 7694: 7688: 7685: 7512: 7406: 7202: 7168: 7142: 7137: 7135: 6975: 6881: 6806: 6800: 6633: 6472: 6468: 6356: 6330: 6204: 6069: 5969: 5685: 5378: 5374: 5371:decomposable 5370: 5325:elements of 5278: 5275: 5202: 4969: 4964: 4961: 4820: 4679: 4617: 4279: 4223: 3937: 3934: 3812: 3595: 3581: 3577: 3573: 3569: 3565: 3561: 3557: 3553: 3545: 3541: 3536: 3532: 3529: 3520: 3513: 3506: 3499: 3497: 3201: 3095: 3082: 3075: 3068: 3061: 3054: 3047: 3040: 3038: 2747: 2644: 2534: 2527: 2520: 2506: 2504: 2486: 2479: 2472: 2469: 2461: 2455: 2449: 2443: 2426: 2419: 2411: 2407: 2403: 2397: 2393: 2389: 2385: 2382: 2378: 2370: 2366: 2360: 2356: 2352: 2348: 2341:line segment 2336: 2326: 2322: 2314: 2310: 2304: 2300: 2296: 2292: 2289: 2285: 2282: 2273: 2269: 2263: 2259: 2254: 2241: 2237: 2061: 1668: 1499: 1420: 1253: 1137:unit vectors 1094: 918: 851: 772: 722: 717: 711:is called a 686: 482: 439: 434: 432:is called a 352: 209:, such that 186: 182: 133:vector space 128: 124: 122: 112: 94: 86: 82: 78: 72: 67: 27801:Élie Cartan 27749:Spin tensor 27723:Weyl tensor 27681:Mathematics 27645:Multivector 27436:definitions 27334:Engineering 27273:Mathematics 27095:Multivector 27060:Determinant 27017:Dot product 26862:Linear span 26512:integration 26344:(in German) 26199:Chern, S.S. 26100:Browne 2007 26084:Forder 1941 25758:Gravitation 25422:Élie Cartan 24724:supernumber 24243:with edges 24163:with sides 23903:orientation 23897:Adding the 23581:determinant 23189:from point 21572:Direct sums 21306:determinant 18600:defined on 16978:pluses and 16407:volume form 14816:contraction 14423:of the set 14375:where here 13339:alternating 13252:orientation 12790:vectors in 12523:, given by 7207:, §III.6) ( 7198:tensor rank 6976:where each 6689:underlying 4302:permutation 3938:alternating 2246:signed area 1504:determinant 1074:variables. 729:linear span 724:multivector 537:defined by 107:orientation 103:hypervolume 27876:Categories 27630:Linear map 27498:Operations 27129:Direct sum 26964:Invertible 26867:Linear map 26648:Strang, G. 26557:-forms on 26474:2007-05-09 26134:Bishop, R. 26121:References 24742:being the 24732:superspace 24706:Superspace 24580:integrated 24438:, denoted 23969:divergence 23392:: we have 22736:is exact. 21857:filtration 21128:minors of 20509:such that 20430:linear map 20000:dual space 18254:where now 17480:, form an 17222:-vectors, 16615:Hodge dual 14582:dual space 14527:See also: 14463:+ 1) < 14435:such that 13192:See also: 13064:linear map 10473:Note that 10128:and, when 8644:such that 8580:for every 8533:such that 8500:linear map 7887:, that is 6799:Rank of a 6480:direct sum 4996:, denoted 3725:such that 2451:light blue 2343:) is zero. 2333:degenerate 800:direct sum 27769:EM tensor 27605:Dimension 27556:Transpose 27159:Numerical 26922:Transpose 26685:EMS Press 26624:∗ 26607:⋀ 26572:⋀ 26529:⋀ 26144:, Dover, 25944:⋀ 25895:⋀ 25589:The term 25403:axiomatic 25324:∂ 25287:⋀ 25193:∧ 25190:⋯ 25187:∧ 25182:ℓ 25175:^ 25165:∧ 25162:⋯ 25159:∧ 25147:^ 25137:∧ 25134:⋯ 25131:∧ 25118:∧ 25110:ℓ 25078:ℓ 25061:− 25053:ℓ 25043:∑ 24999:∧ 24996:⋯ 24993:∧ 24977:∂ 24933:⋀ 24927:→ 24900:⋀ 24891:∂ 24740:open sets 24584:manifolds 24512:⋀ 24458:⁡ 24340:⋀ 24224:∧ 24218:∧ 24144:∧ 23951:⋆ 23943:⋆ 23916:⋆ 23512:∧ 23509:⋯ 23506:∧ 23467:∧ 23448:∧ 23429:∧ 23345:⋀ 23290:− 23130:∧ 23127:⋯ 23124:∧ 23101:∧ 23078:∧ 23042:− 22995:∧ 22992:⋯ 22989:∧ 22966:∧ 22823:, and a ( 22718:→ 22712:⊗ 22695:− 22685:⋀ 22679:→ 22658:⋀ 22652:→ 22632:⋀ 22626:→ 22590:→ 22569:⋀ 22563:→ 22542:⋀ 22536:→ 22519:− 22509:⋀ 22503:⊗ 22497:→ 22442:∧ 22439:… 22436:∧ 22414:⊗ 22406:− 22395:∧ 22392:… 22389:∧ 22376:↦ 22363:∧ 22360:… 22357:∧ 22344:∧ 22336:− 22325:∧ 22322:… 22319:∧ 22301:given by 22271:⋀ 22265:⊗ 22248:− 22238:⋀ 22232:≅ 22172:∈ 22139:∈ 22104:− 22093:… 22090:∧ 22077:∧ 22069:− 22052:∧ 22049:… 22046:∧ 22013:≥ 21942:⋀ 21917:⊆ 21904:⊆ 21901:⋯ 21898:⊆ 21885:⊆ 21837:→ 21826:→ 21813:→ 21805:→ 21758:⋀ 21752:⊗ 21731:⋀ 21707:⨁ 21703:≅ 21694:⊕ 21676:⋀ 21633:⋀ 21628:⊗ 21614:⋀ 21609:≅ 21600:⊕ 21589:⋀ 21542:⋀ 21537:→ 21523:⋀ 21518:→ 21486:→ 21472:⋀ 21467:→ 21453:⋀ 21448:→ 21434:⋀ 21429:∧ 21408:⋀ 21402:→ 21369:→ 21363:→ 21357:→ 21351:→ 21336:Exactness 21274:⋀ 21233:⋀ 21113:× 21030:⋀ 20981:⋀ 20975:→ 20954:⋀ 20922:⋀ 20897:⋀ 20871:⋀ 20820:∧ 20817:⋯ 20814:∧ 20776:∧ 20773:⋯ 20770:∧ 20743:⋀ 20707:⋀ 20670:⋀ 20624:⋀ 20612:→ 20591:⋀ 20547:⋀ 20522:⋀ 20483:⋀ 20478:→ 20464:⋀ 20445:⋀ 20413:→ 20282:− 20245:bialgebra 20228:→ 20214:⋀ 20206:ε 20179:ε 20115:∧ 20112:⋯ 20109:∧ 20093:Δ 20082:β 20079:⊗ 20076:α 20054:∧ 20051:⋯ 20048:∧ 20029:β 20026:∧ 20023:α 19984:⊗ 19962:⊗ 19942:⊗ 19922:∧ 19881:) = 1 ⊗ ( 19877:) ∧ (1 ⊗ 19846:⋀ 19841:⊗ 19827:⋀ 19781:− 19772:⋀ 19766:⊗ 19746:⋀ 19723:⨁ 19719:→ 19699:⋀ 19690:Δ 19653:⋀ 19638:preserved 19586:⋀ 19541:σ 19533:∧ 19530:⋯ 19527:∧ 19507:σ 19471:σ 19463:∧ 19460:⋯ 19457:∧ 19443:σ 19412:-shuffles 19363:σ 19355:∧ 19352:⋯ 19349:∧ 19329:σ 19318:⊗ 19301:σ 19293:∧ 19290:⋯ 19287:∧ 19273:σ 19259:σ 19253:⁡ 19238:− 19217:∈ 19214:σ 19210:∑ 19188:∑ 19168:∧ 19165:⋯ 19162:∧ 19146:Δ 19117:⊗ 19108:∧ 19093:⊗ 19087:− 19081:⊗ 19066:∧ 19057:⊗ 19042:∧ 19033:Δ 19020:coalgebra 18995:⋀ 18960:⋀ 18955:⊗ 18941:⋀ 18904:⋀ 18899:⊆ 18878:⋀ 18872:≃ 18798:∈ 18767:⊗ 18755:⊗ 18737:Δ 18701:⋀ 18696:⊗ 18682:⋀ 18677:→ 18663:⋀ 18655:Δ 18643:coproduct 18639:coalgebra 18612:⋀ 18598:coproduct 18530:⋀ 18480:⋀ 18474:∈ 18444:⟩ 18428:⟨ 18409:♭ 18353:∗ 18323:⋀ 18310:≃ 18301:∗ 18280:⋀ 18274:∈ 18269:♭ 18239:⟩ 18227:♭ 18216:ι 18204:⟨ 18198:⟩ 18182:∧ 18174:⟨ 18131:⋀ 18125:∈ 18078:⋀ 18072:∈ 18029:− 18019:⋀ 18013:∈ 17978:∈ 17950:⟩ 17938:⟨ 17921:♭ 17876:⟩ 17864:♭ 17855:ι 17843:⟨ 17837:⟩ 17821:∧ 17815:⟨ 17787:∈ 17742:⋀ 17736:∈ 17693:− 17683:⋀ 17677:∈ 17623:⋀ 17579:⋯ 17542:∧ 17539:⋯ 17536:∧ 17428:⋀ 17415:⟩) 17397:(⟨ 17343:⟩ 17317:⟨ 17286:∧ 17283:⋯ 17280:∧ 17254:∧ 17251:⋯ 17248:∧ 17182:∗ 17158:⋀ 17108:⋀ 17081:∗ 16982:minuses. 16922:− 16902:− 16875:⋀ 16869:→ 16848:⋀ 16839:⋆ 16836:∘ 16833:⋆ 16764:⋀ 16758:→ 16737:⋀ 16714:⋆ 16674:− 16664:⋀ 16658:→ 16637:⋀ 16628:⋆ 16593:∗ 16532:σ 16527:α 16523:ι 16519:↦ 16516:α 16496:− 16486:⋀ 16480:→ 16472:∗ 16452:⋀ 16424:σ 16374:⋀ 16343:α 16339:ι 16335:∘ 16330:β 16326:ι 16317:β 16314:∧ 16311:α 16307:ι 16266:− 16256:⋀ 16250:→ 16229:⋀ 16223:⊗ 16215:∗ 16195:⋀ 16106:α 16102:ι 16098:∘ 16093:β 16089:ι 16085:− 16077:β 16073:ι 16069:∘ 16064:α 16060:ι 16030:α 16026:ι 16022:∘ 16017:α 16013:ι 15970:α 15966:ι 15959:∧ 15948:⁡ 15934:− 15922:∧ 15911:α 15907:ι 15891:∧ 15880:α 15876:ι 15847:α 15843:ι 15818:∗ 15810:∈ 15807:α 15797:For each 15778:∗ 15720:α 15709:α 15705:ι 15662:⋀ 15573:− 15563:⋀ 15557:→ 15536:⋀ 15525:α 15521:ι 15472:− 15468:Λ 15443:∗ 15435:∈ 15432:α 15422:and each 15398:For each 15354:⋀ 15321:whenever 15298:α 15294:ι 15259:− 15245:… 15213:α 15193:− 15179:… 15139:α 15135:ι 15104:∗ 15074:− 15023:∗ 15015:× 15012:⋯ 15009:× 15004:∗ 14996:× 14991:∗ 14929:∗ 14864:⋀ 14858:∈ 14828:α 14796:α 14750:− 14740:⋀ 14734:→ 14713:⋀ 14702:α 14698:ι 14661:⋀ 14629:∗ 14621:∈ 14618:α 14566:∗ 14440:(1) < 14337:σ 14326:… 14303:σ 14292:η 14274:σ 14263:… 14246:σ 14235:ω 14228:σ 14222:⁡ 14193:∈ 14190:σ 14186:∑ 14156:… 14137:η 14131:˙ 14128:∧ 14122:ω 14083:When the 14051:σ 14040:… 14023:σ 14012:ω 14005:σ 13999:⁡ 13981:∈ 13978:σ 13974:∑ 13936:… 13914:ω 13908:⁡ 13849:η 13846:⊗ 13843:ω 13837:⁡ 13789:η 13783:˙ 13780:∧ 13774:ω 13745:η 13742:⊗ 13739:ω 13733:⁡ 13724:η 13721:∧ 13718:ω 13516:∗ 13495:⋀ 13442:∗ 13412:⋀ 13387:naturally 13315:→ 13248:= 1, 2, 3 13135:∘ 13132:ϕ 13103:→ 13082:⋀ 13073:ϕ 13044:→ 12894:⋀ 12888:→ 12824:… 12752:→ 12652:− 12641:⋯ 12614:α 12593:∑ 12576:− 12565:⋯ 12542:α 12538:ι 12506:− 12474:α 12470:ι 12406:− 12395:⋯ 12313:⋯ 12277:⋯ 12235:⋯ 12208:^ 12205:⊗ 12127:⊗ 12124:⋯ 12121:⊗ 12097:⊗ 12054:σ 12046:⋯ 12026:σ 12000:σ 11992:⋯ 11978:σ 11962:σ 11956:⁡ 11928:∈ 11925:σ 11921:∑ 11878:^ 11875:⊗ 11847:of ranks 11789:⊗ 11786:⋯ 11783:⊗ 11759:⊗ 11722:⋯ 11676:with the 11464:⋀ 11401:˙ 11398:∧ 11311:⋀ 11306:≅ 11203:⋀ 11198:≅ 11071:Assuming 11047:⊗ 11038:⁡ 11020:^ 11017:⊗ 10999:∧ 10970:^ 10967:⊗ 10506:⁡ 10358:… 10307:⊗ 10304:⋯ 10301:⊗ 10285:⁡ 10229:⊗ 10226:⋯ 10223:⊗ 10207:⁡ 10142:≠ 10102:σ 10094:⊗ 10091:⋯ 10088:⊗ 10074:σ 10063:σ 10057:⁡ 10035:∈ 10032:σ 10028:∑ 10008:⊗ 10005:⋯ 10002:⊗ 9986:⁡ 9924:∈ 9897:⊗ 9894:⋯ 9891:⊗ 9768:⊗ 9647:⁡ 9641:≥ 9543:⁡ 9356:⋀ 9288:⋀ 9175:⋀ 9133:⋀ 9092:⋀ 9058:⋀ 9041:from the 9014:⋀ 8989:contains 8966:⋀ 8931:⋀ 8915:(and use 8864:⋀ 8828:⋀ 8703:⋀ 8629:→ 8615:⋀ 8518:→ 8486:-algebra 8447:⋀ 8394:⋀ 8353:∧ 8311:⋀ 8255:α 8252:∧ 8249:β 8230:− 8221:β 8218:∧ 8215:α 8172:⋀ 8166:∈ 8163:β 8123:⋀ 8117:∈ 8114:α 8064:⋀ 8017:⋀ 7955:⋀ 7949:⊂ 7928:⋀ 7922:∧ 7901:⋀ 7850:⋀ 7844:⊕ 7841:⋯ 7838:⊕ 7817:⋀ 7811:⊕ 7790:⋀ 7784:⊕ 7763:⋀ 7743:⋀ 7645:⏟ 7641:α 7638:∧ 7635:⋯ 7632:∧ 7629:α 7595:≠ 7585:⏟ 7581:α 7578:∧ 7575:⋯ 7572:∧ 7569:α 7533:has rank 7521:α 7498:α 7431:− 7382:∧ 7344:∑ 7337:α 7314:α 7243:α 7219:α 7182:α 7154:α 7112:… 7070:α 7066:∧ 7063:⋯ 7060:∧ 7040:α 7021:α 6985:α 6949:α 6942:⋯ 6924:α 6905:α 6898:α 6866:α 6826:⋀ 6820:∈ 6817:α 6726:⋀ 6647:⋀ 6601:⋀ 6595:⊕ 6592:⋯ 6589:⊕ 6568:⋀ 6562:⊕ 6541:⋀ 6535:⊕ 6514:⋀ 6494:⋀ 6394:⋀ 6270:⋀ 6264:⁡ 6216:⋀ 6042:∧ 6039:⋯ 6036:∧ 5983:⋀ 5948:≤ 5932:⋯ 5903:≤ 5864:∧ 5861:⋯ 5858:∧ 5838:∧ 5754:… 5688:dimension 5653:∧ 5627:∧ 5611:α 5461:⋀ 5418:⋀ 5373:(or  5357:α 5293:α 5262:α 5222:⋀ 5216:∈ 5213:α 5179:… 5152:∈ 5125:∧ 5122:⋯ 5119:∧ 5106:∧ 5057:⋀ 5041:, is the 5009:⋀ 4926:∧ 4923:⋯ 4920:∧ 4907:∧ 4858:… 4790:∧ 4787:⋯ 4784:∧ 4771:∧ 4733:≠ 4720:for some 4663:σ 4635:σ 4629:⁡ 4590:∧ 4587:⋯ 4584:∧ 4571:∧ 4555:σ 4549:⁡ 4529:σ 4521:∧ 4518:⋯ 4515:∧ 4501:σ 4493:∧ 4479:σ 4323:… 4288:σ 4256:∧ 4247:− 4238:∧ 4206:∧ 4194:∧ 4182:∧ 4170:∧ 4158:∧ 4146:∧ 4122:∧ 4073:∈ 4008:∈ 3976:∧ 3891:β 3888:⊗ 3885:α 3879:β 3876:∧ 3873:α 3841:⋀ 3821:∧ 3762:⋀ 3736:∈ 3710:⊗ 3604:⋀ 3468:∧ 3453:∧ 3402:− 3369:− 3336:− 3226:∧ 3218:∧ 3009:∧ 2968:− 2924:∧ 2883:− 2839:∧ 2798:− 2764:∧ 2463:light red 2339:(i.e., a 2206:∧ 2176:∧ 2126:∧ 2108:− 2090:∧ 2031:∧ 2005:− 1969:∧ 1933:∧ 1897:∧ 1861:∧ 1791:∧ 1737:∧ 1640:− 1506:formula: 994:∧ 982:∧ 950:∧ 925:functions 916:is zero. 854:universal 666:∧ 660:− 651:∧ 619:∧ 518:∧ 499:magnitude 489:to study 410:∧ 407:⋯ 404:∧ 391:∧ 296:∧ 220:∧ 197:∧ 99:ellipsoid 32:Wedge sum 27882:Algebras 27635:Manifold 27620:Geodesic 27378:Notation 27205:Category 27144:Subspace 27139:Quotient 27090:Bivector 27004:Bilinear 26946:Matrices 26821:Glossary 26733:Springer 26650:(1993), 26493:(1965), 26411:(1898), 26378:(1888), 26338:(1844), 26321:(1941), 26256:(1964), 26230:(1999), 26205:(1991), 26188:§III.11. 26166:(1989), 25596:4-vector 25591:k-vector 25574:extended 25451:See also 25395:calculus 25340:homology 24716:fermions 24647:pullback 23777:. Then 23583:and the 20252:antipode 20250:With an 20171:, where 19679:one has 19568:= 0 and 18459:for all 17965:for all 17300:⟩ 17234:⟨ 15694:), then 14896:. Then 14414:shuffles 13693: : 13679: : 12861:The map 10907:. When 9208:Given a 9043:category 8774:quotient 8667:for all 8492:and any 7146:-vector 6885:-vectors 6476:-vectors 3997:for all 3091:bivector 487:geometry 373:vectors 27732:Physics 27566:Related 27329:Physics 27247:Tensors 26816:Outline 26445:3985954 26425:Bibcode 26312:2369379 26232:Algebra 25834:⁠ 25814:⁠ 25804:is the 25802:⁠ 25782:⁠ 25366:History 25338:. The 25336:⁠ 25316:⁠ 25255:⁠ 25233:⁠ 24878:⁠ 24858:⁠ 24854:⁠ 24834:⁠ 24826:⁠ 24806:⁠ 24774:⁠ 24754:⁠ 24692:of the 24651:natural 24616:on the 24485:of the 24479:⁠ 24440:⁠ 24436:⁠ 24416:⁠ 24402:⁠ 24382:⁠ 24313:⁠ 24293:⁠ 24289:⁠ 24269:⁠ 24265:⁠ 24245:⁠ 24205:⁠ 24185:⁠ 23901:and an 23685:4-space 23624:Physics 23593:defined 23488:-blade 23390:⁠ 23370:⁠ 23330:⁠ 23310:⁠ 23251:⁠ 23231:⁠ 22853:points 22825:simplex 22821:⁠ 22801:⁠ 21330:⁠ 21310:⁠ 21222:, then 21220:⁠ 21200:⁠ 21150:⁠ 21130:⁠ 21060:⁠ 21019:⁠ 20342:⁠ 20256:⁠ 19996:⁠ 19976:⁠ 19869:⁠ 19817:⁠ 18983:⁠ 18931:⁠ 18927:⁠ 18861:⁠ 18857:⁠ 18837:⁠ 18813:⁠ 18787:⁠ 18724:⁠ 18647:⁠ 18641:. The 18635:⁠ 18602:⁠ 18575:⁠ 18555:⁠ 18510:⁠ 18461:⁠ 18389:⁠ 18369:⁠ 18161:⁠ 18112:⁠ 18108:⁠ 18059:⁠ 18055:⁠ 18000:⁠ 17993:⁠ 17967:⁠ 17901:is the 17802:⁠ 17776:⁠ 17772:⁠ 17723:⁠ 17719:⁠ 17664:⁠ 17653:⁠ 17612:⁠ 17506:⁠ 17486:⁠ 17220:⁠ 17200:⁠ 17196:⁠ 17140:⁠ 17095:⁠ 17068:⁠ 17044:⁠ 17024:⁠ 17012:⁠ 16992:⁠ 16820:⁠ 16800:⁠ 16607:⁠ 16580:⁠ 16436:⁠ 16416:⁠ 16179:⁠ 16159:⁠ 15832:⁠ 15799:⁠ 15792:⁠ 15765:⁠ 15741:⁠ 15696:⁠ 15692:⁠ 15648:⁠ 15457:⁠ 15424:⁠ 15420:⁠ 15400:⁠ 15384:⁠ 15343:⁠ 15118:⁠ 15091:⁠ 15053:, ..., 15037:⁠ 14978:⁠ 14965:⁠ 14945:⁠ 14894:⁠ 14847:⁠ 14840:⁠ 14820:⁠ 14808:⁠ 14788:⁠ 14684:⁠ 14651:⁠ 14643:⁠ 14610:⁠ 14606:⁠ 14586:⁠ 13669:⁠ 13628:⁠ 13623:is the 13534:⁠ 13484:⁠ 13456:⁠ 13394:⁠ 13286:⁠ 13260:⁠ 13213:1-forms 12794:, then 12777:, ..., 12689:Duality 12521:⁠ 12495:⁠ 12491:⁠ 12461:⁠ 12447:⁠ 12427:⁠ 11639:, ..., 11613:⁠ 11584:⁠ 11487:⁠ 11454:⁠ 11450:⁠ 11421:⁠ 11385:⁠ 11365:⁠ 11173:⁠ 11142:⁠ 10905:⁠ 10885:⁠ 10857:⁠ 10837:⁠ 10833:⁠ 10800:⁠ 10759:⁠ 10728:⁠ 10724:⁠ 10693:⁠ 10689:⁠ 10660:⁠ 10468:⁠ 10437:⁠ 10379:⁠ 10341:⁠ 9807:⁠ 9787:⁠ 9783:⁠ 9757:⁠ 9662:⁠ 9630:⁠ 9626:⁠ 9606:⁠ 9602:⁠ 9582:⁠ 9558:⁠ 9532:⁠ 9445:sheaves 9344:⁠ 9313:⁠ 9276:⁠ 9256:⁠ 9231:and an 9198:⁠ 9165:⁠ 9039:functor 8954:⁠ 8921:⁠ 8726:⁠ 8693:⁠ 8596:unital 8470:⁠ 8437:⁠ 8204:, then 8202:⁠ 8155:⁠ 7306:, then 7304:⁠ 7284:⁠ 7194:⁠ 7174:⁠ 7140:of the 6856:⁠ 6809:⁠ 6803:-vector 6793:⁠ 6766:⁠ 6762:⁠ 6715:⁠ 6711:⁠ 6691:⁠ 6683:⁠ 6636:⁠ 6464:⁠ 6438:⁠ 6381:⁠ 6361:⁠ 6357:vectors 6353:⁠ 6333:⁠ 6200:⁠ 6173:⁠ 6140:of the 6130:⁠ 6103:⁠ 6013:⁠ 5972:⁠ 5686:If the 5598:⁠ 5526:⁠ 5522:⁠ 5493:⁠ 5448:⁠ 5407:⁠ 5403:⁠ 5383:⁠ 5349:, then 5347:⁠ 5327:⁠ 5282:-vector 5254:, then 5252:⁠ 5205:⁠ 5083:spanned 5080:⁠ 5047:⁠ 5039:⁠ 4998:⁠ 4994:⁠ 4974:⁠ 4748:⁠ 4722:⁠ 4675:⁠ 4655:⁠ 4650:is the 4461:⁠ 4441:⁠ 4437:⁠ 4410:⁠ 4408:, ..., 4406:⁠ 4379:⁠ 4375:⁠ 4348:⁠ 4344:⁠ 4306:⁠ 4088:⁠ 4056:⁠ 4052:⁠ 4032:⁠ 3963:⁠ 3943:⁠ 3672:of the 3645:over a 3039:where { 2355:) = −A( 1715:⁠ 1693:⁠ 1452:⁠ 1423:⁠ 1022:over a 1020:modules 933:scalars 802:of the 731:of the 495:volumes 105:), and 27660:Vector 27655:Spinor 27640:Matrix 27434:Tensor 27100:Tensor 26912:Kernel 26842:Vector 26837:Scalar 26739:  26703:  26658:  26501:  26443:  26417:Nature 26397:  26365:  26310:  26238:  26174:  26148:  26086:), or 26029:  26001:  25764:  25746:-form. 25656:; see 25541:  25424:, and 24746:. An 24738:, the 24291:, and 24045:where 23647:, the 23589:matrix 23585:minors 21975:where 20196:counit 18110:, and 17891:where 17774:, and 17018:(or a 15039:. If 14973:-fold 14454:, and 13763:or as 13458:. If 12677:where 12214:  12199:  11884:  11869:  11828:where 11026:  11011:  9253:module 8758:, the 8679:(here 7621:  7601:  7407:where 6713:, and 6685:, the 6359:, and 6331:where 6142:matrix 6138:minors 5897:  5894:  5884:  5375:simple 4618:where 4346:, and 4224:hence 3580:, and 3568:, and 3550:minors 3498:where 2392:) = A( 929:domain 927:whose 727:. The 718:vector 506:-blade 440:degree 154:is an 27580:Basis 27265:Scope 26969:Minor 26954:Block 26892:Basis 26441:S2CID 26308:JSTOR 25516:Notes 25378:, or 25310:is a 24696:(see 24612:is a 23618:basis 23587:of a 21384:is a 20428:is a 20169:) ∘ Δ 19873:(1 ⊗ 17138:with 17066:with 16578:with 15861:is a 14814:, or 14786:with 14085:field 13153:This 13118:with 12722:is a 12714:from 12710:, an 9475:over 9399:be a 9037:is a 8778:ideal 8338:, an 6687:field 5784:basis 5782:is a 5379:blade 4300:is a 3678:ideal 3647:field 2432:) = 1 2329:) = 0 1133:basis 1127:is a 608:that 501:of a 491:areas 483:blade 435:blade 131:of a 27124:Dual 26979:Rank 26737:ISBN 26701:ISBN 26656:ISBN 26514:and 26499:ISBN 26395:ISBN 26363:ISBN 26236:ISBN 26172:ISBN 26146:ISBN 26027:ISBN 25999:ISBN 25928:and 25865:and 25762:ISBN 25738:Note 25724:See 25703:See 25652:and 25539:ISBN 25504:, a 25227:The 25050:< 24784:Let 24718:and 24590:and 24183:and 23773:the 22154:and 22121:for 22002:for 21178:and 21082:and 20857:Let 20376:and 20194:The 19901:) = 19891:and 19494:and 17582:< 17576:< 16990:For 16410:(or 15063:are 14106:has 13688:and 12786:are 12702:and 12352:The 11851:and 11843:and 11662:) ⊂ 11658:∈ A( 10405:and 9945:The 9812:Let 9644:char 8806:for 8653:) = 8374:for 8289:Let 8153:and 8053:and 7613:and 7138:rank 7136:The 6449:> 6436:for 5935:< 5929:< 5916:< 5786:for 5730:and 4962:The 3556:and 3544:and 2645:and 2513:and 2478:and 2445:blue 2369:and 2313:and 2295:) = 2272:and 2240:and 1691:and 1518:Area 1500:area 1476:and 1129:real 923:and 557:and 115:− 1) 26433:doi 26300:doi 26052:as 25386:. 24726:or 24702:). 24676:In 24626:An 24408:of 24380:of 23683:in 23643:In 23209:to 21340:If 21308:of 20302:deg 20161:∘ ( 19812:not 19636:is 19250:sgn 17484:of 17461:If 17307:det 16798:of 15945:deg 15606:If 15510:), 15386:). 14943:to 14818:by 14499:/ ( 14219:sgn 13996:sgn 13905:Alt 13834:Alt 13730:Alt 13603:to 13556:is 13482:to 13385:is 13365:on 13206:of 12718:to 11953:sgn 11832:is 11680:as 11649:of 11140:in 11035:Alt 10915:Alt 10883:is 10586:Alt 10192:Alt 10054:sgn 9540:dim 9423:be 8812:in 8785:in 8691:in 8673:in 8586:in 6807:If 6261:dim 5710:is 5690:of 5203:If 5045:of 4972:of 4968:th 4626:sgn 4546:sgn 3899:mod 2748:is 2457:red 2410:to 1580:det 1532:det 1054:in 1030:in 775:of 461:or 438:of 261:in 185:or 127:or 75:= 0 27878:: 26735:. 26731:. 26695:, 26683:, 26677:, 26439:, 26431:, 26421:58 26419:, 26415:, 26383:; 26327:, 26306:, 26294:, 26226:; 26197:; 26102:). 26082:; 25580:). 25523:^ 25432:. 25420:, 25362:. 25346:. 24634:. 24558:. 24449:Gr 24315:. 24267:, 23882:0. 23600:× 21332:. 20348:. 20165:⊗ 20157:= 20153:∧ 19905:⊗ 19885:∧ 19572:= 19416:k, 19402:, 19120:1. 18512:. 18057:, 17896:∈ 17804:, 17721:, 17659:. 17470:, 17406:, 17378:= 16974:— 16968:, 16617:: 16038:0. 15834:, 15061:−1 15046:, 14842:. 14686:, 14519:. 14508:× 14479:+ 14429:+ 14416:: 14408:, 14387:⊂ 14377:Sh 13697:→ 13683:→ 13671:. 13227:, 13221:, 12846:0. 12685:. 12459:, 12454:∈ 12177:⊗ 10470:. 9431:. 8801:⊗ 8665:)) 8476:: 8379:∈ 7666:0. 7510:. 7200:. 6887:: 6795:. 6466:. 6250:: 6202:. 4942:0. 4806:0. 4677:. 4377:, 4090:, 3774::= 3576:, 3564:, 3535:× 3512:∧ 3505:∧ 3093:. 3074:∧ 3067:, 3060:∧ 3053:, 3046:∧ 2533:, 2526:, 2466:). 2425:, 2418:A( 2396:, 2388:, 2381:+ 2377:A( 2359:, 2351:, 2347:A( 2325:, 2321:A( 2303:, 2299:A( 2297:rs 2288:, 2281:A( 2262:, 2258:A( 2224:0. 1717:: 849:. 493:, 93:, 27239:e 27232:t 27225:v 26797:e 26790:t 26783:v 26745:. 26629:. 26620:V 26614:k 26584:V 26579:k 26559:V 26555:k 26541:V 26536:k 26435:: 26427:: 26404:. 26359:) 26302:: 26296:1 26098:( 26090:( 26078:( 26056:. 26035:. 26007:. 25979:. 25931:W 25925:V 25873:W 25853:V 25836:. 25822:V 25790:V 25770:. 25743:k 25694:. 25681:. 25627:k 25607:k 25547:. 25298:) 25295:L 25292:( 25265:L 25242:1 25212:. 25207:1 25204:+ 25201:p 25197:x 25172:x 25154:j 25144:x 25126:1 25122:x 25115:] 25106:x 25102:, 25097:j 25093:x 25089:[ 25084:1 25081:+ 25075:+ 25072:j 25068:) 25064:1 25058:( 25047:j 25036:1 25033:+ 25030:p 25026:1 25021:= 25018:) 25013:1 25010:+ 25007:p 25003:x 24988:1 24984:x 24980:( 24951:) 24948:L 24945:( 24940:p 24924:) 24921:L 24918:( 24913:1 24910:+ 24907:p 24894:: 24866:K 24842:L 24814:K 24792:L 24762:n 24749:n 24619:k 24609:k 24535:) 24530:) 24527:V 24524:( 24519:k 24504:( 24498:P 24467:) 24464:V 24461:( 24453:k 24424:V 24411:k 24390:V 24373:k 24358:) 24355:V 24352:( 24347:k 24326:k 24301:w 24277:v 24253:u 24227:w 24221:v 24215:u 24193:v 24171:u 24147:v 24141:u 24130:k 24108:. 24103:l 24100:k 24096:F 24090:l 24087:j 24083:g 24077:k 24074:i 24070:g 24066:= 24061:j 24058:i 24054:F 24031:j 24028:i 24023:j 24020:; 24016:F 24012:= 24007:j 24004:i 23999:j 23996:, 23992:F 23988:= 23983:i 23979:J 23955:F 23947:d 23939:= 23936:J 23879:= 23874:] 23871:k 23868:; 23865:j 23862:i 23859:[ 23855:F 23851:= 23846:] 23843:k 23840:, 23837:j 23834:i 23831:[ 23827:F 23806:0 23803:= 23800:A 23797:d 23794:d 23791:= 23788:F 23785:d 23761:, 23756:] 23753:j 23750:; 23747:i 23744:[ 23740:A 23736:= 23731:] 23728:j 23725:, 23722:i 23719:[ 23715:A 23711:= 23706:j 23703:i 23699:F 23671:A 23668:d 23665:= 23662:F 23608:k 23602:k 23598:k 23520:k 23516:v 23501:1 23497:v 23485:k 23470:v 23462:2 23458:u 23454:+ 23451:v 23443:1 23439:u 23435:= 23432:v 23426:) 23421:2 23417:u 23413:+ 23408:1 23404:u 23400:( 23378:V 23356:) 23353:V 23350:( 23318:k 23296:) 23293:1 23287:k 23284:( 23261:n 23239:n 23217:Q 23197:P 23173:Q 23170:P 23148:k 23144:A 23138:j 23134:A 23119:2 23115:A 23109:j 23105:A 23096:1 23092:A 23086:j 23082:A 23073:0 23069:A 23063:j 23059:A 23053:j 23049:) 23045:1 23039:( 23018:= 23013:k 23009:A 23003:0 22999:A 22984:2 22980:A 22974:0 22970:A 22961:1 22957:A 22951:0 22947:A 22926:k 22904:k 22900:A 22896:, 22893:. 22890:. 22887:. 22884:, 22879:1 22875:A 22871:, 22866:0 22862:A 22841:1 22838:+ 22835:k 22809:V 22786:A 22757:k 22721:0 22715:W 22709:) 22706:U 22703:( 22698:1 22692:k 22676:) 22673:V 22670:( 22665:k 22649:) 22646:U 22643:( 22638:k 22623:0 22610:W 22593:0 22587:) 22584:W 22581:( 22576:k 22560:) 22557:V 22554:( 22549:k 22533:) 22530:W 22527:( 22522:1 22516:k 22500:U 22494:0 22481:U 22464:. 22461:) 22456:p 22452:v 22448:( 22445:g 22433:) 22428:1 22424:v 22420:( 22417:g 22409:p 22403:k 22399:u 22384:1 22380:u 22371:p 22367:v 22352:1 22348:v 22339:p 22333:k 22329:u 22314:1 22310:u 22289:) 22286:W 22283:( 22278:p 22262:) 22259:U 22256:( 22251:p 22245:k 22227:p 22223:F 22218:/ 22212:1 22209:+ 22206:p 22202:F 22178:. 22175:V 22167:i 22163:v 22142:U 22134:i 22130:u 22107:1 22101:p 22097:v 22085:1 22081:v 22072:p 22066:1 22063:+ 22060:k 22056:u 22041:1 22037:u 22016:1 22010:p 21988:p 21984:F 21960:) 21957:V 21954:( 21949:k 21936:= 21931:1 21928:+ 21925:k 21921:F 21912:k 21908:F 21893:1 21889:F 21880:0 21876:F 21872:= 21869:0 21843:, 21840:0 21834:W 21829:g 21821:V 21816:f 21808:U 21802:0 21779:. 21776:) 21773:W 21770:( 21765:q 21749:) 21746:V 21743:( 21738:p 21723:k 21720:= 21717:q 21714:+ 21711:p 21700:) 21697:W 21691:V 21688:( 21683:k 21647:. 21644:) 21641:W 21638:( 21625:) 21622:V 21619:( 21606:) 21603:W 21597:V 21594:( 21556:. 21553:) 21550:V 21547:( 21534:) 21531:U 21528:( 21515:0 21489:0 21483:) 21480:W 21477:( 21464:) 21461:V 21458:( 21445:) 21442:V 21439:( 21426:) 21423:U 21420:( 21415:1 21399:0 21372:0 21366:W 21360:V 21354:U 21348:0 21318:f 21292:) 21289:V 21286:( 21281:n 21251:) 21248:f 21245:( 21240:n 21208:n 21186:V 21166:W 21163:= 21160:V 21138:f 21116:k 21110:k 21090:W 21070:V 21048:) 21045:f 21042:( 21037:k 21002:. 20999:) 20996:W 20993:( 20988:k 20972:) 20969:V 20966:( 20961:k 20948:: 20940:) 20937:V 20934:( 20929:k 20912:| 20908:) 20905:f 20902:( 20892:= 20889:) 20886:f 20883:( 20878:k 20842:. 20839:) 20834:k 20830:x 20826:( 20823:f 20811:) 20806:1 20802:x 20798:( 20795:f 20792:= 20789:) 20784:k 20780:x 20765:1 20761:x 20757:( 20754:) 20751:f 20748:( 20717:) 20714:f 20711:( 20696:k 20681:) 20678:f 20675:( 20645:. 20642:) 20639:W 20636:( 20631:1 20618:= 20615:W 20609:) 20606:V 20603:( 20598:1 20585:= 20582:V 20579:: 20576:f 20573:= 20565:) 20562:V 20559:( 20554:1 20537:| 20533:) 20530:f 20527:( 20494:) 20491:W 20488:( 20475:) 20472:V 20469:( 20459:: 20456:) 20453:f 20450:( 20416:W 20410:V 20407:: 20404:f 20384:W 20364:V 20330:x 20323:) 20318:2 20314:1 20311:+ 20307:x 20295:( 20289:) 20285:1 20279:( 20276:= 20273:) 20270:x 20267:( 20264:S 20231:K 20225:) 20222:V 20219:( 20209:: 20167:β 20163:α 20159:ε 20155:β 20151:α 20132:) 20128:) 20123:k 20119:x 20104:1 20100:x 20096:( 20089:( 20085:) 20073:( 20070:= 20067:) 20062:k 20058:x 20043:1 20039:x 20035:( 20032:) 20020:( 19907:w 19903:v 19899:w 19895:v 19893:( 19889:) 19887:w 19883:v 19879:w 19875:v 19857:) 19854:V 19851:( 19838:) 19835:V 19832:( 19795:) 19792:V 19789:( 19784:p 19778:k 19763:) 19760:V 19757:( 19752:p 19738:k 19733:0 19730:= 19727:p 19716:) 19713:V 19710:( 19705:k 19693:: 19667:, 19664:) 19661:V 19658:( 19622:k 19618:x 19597:) 19594:V 19591:( 19574:k 19570:p 19566:p 19550:) 19547:k 19544:( 19537:v 19522:) 19519:1 19516:+ 19513:p 19510:( 19503:v 19480:) 19477:p 19474:( 19467:v 19452:) 19449:1 19446:( 19439:v 19428:k 19424:k 19420:k 19410:) 19408:p 19406:− 19404:k 19400:p 19398:( 19380:. 19377:) 19372:) 19369:k 19366:( 19359:x 19344:) 19341:1 19338:+ 19335:p 19332:( 19325:x 19321:( 19315:) 19310:) 19307:p 19304:( 19297:x 19282:) 19279:1 19276:( 19269:x 19265:( 19262:) 19256:( 19244:) 19241:p 19235:k 19232:, 19229:p 19226:( 19223:h 19220:S 19203:k 19198:0 19195:= 19192:p 19184:= 19181:) 19176:k 19172:x 19157:1 19153:x 19149:( 19114:) 19111:w 19105:v 19102:( 19099:+ 19096:v 19090:w 19084:w 19078:v 19075:+ 19072:) 19069:w 19063:v 19060:( 19054:1 19051:= 19048:) 19045:w 19039:v 19036:( 19006:) 19003:V 19000:( 18971:) 18968:V 18965:( 18952:) 18949:V 18946:( 18915:) 18912:V 18909:( 18896:) 18893:V 18890:( 18885:0 18869:K 18845:K 18823:1 18801:V 18795:v 18770:1 18764:v 18761:+ 18758:v 18752:1 18749:= 18746:) 18743:v 18740:( 18712:) 18709:V 18706:( 18693:) 18690:V 18687:( 18674:) 18671:V 18668:( 18658:: 18623:) 18620:V 18617:( 18563:V 18541:) 18538:V 18535:( 18498:) 18495:V 18492:( 18487:l 18470:y 18440:y 18436:, 18432:x 18425:= 18422:) 18418:y 18414:( 18404:x 18377:l 18347:) 18341:) 18338:V 18335:( 18330:l 18315:( 18306:) 18297:V 18293:( 18287:l 18264:x 18235:w 18222:x 18212:, 18208:v 18201:= 18194:w 18190:, 18186:v 18178:x 18149:) 18146:V 18143:( 18138:l 18121:x 18096:) 18093:V 18090:( 18085:k 18068:w 18043:) 18040:V 18037:( 18032:l 18026:k 18009:v 17981:V 17975:y 17947:y 17944:, 17941:x 17935:= 17932:) 17929:y 17926:( 17917:x 17898:V 17894:x 17872:w 17860:x 17851:, 17847:v 17840:= 17833:w 17829:, 17825:v 17818:x 17790:V 17784:x 17760:) 17757:V 17754:( 17749:k 17732:w 17707:) 17704:V 17701:( 17696:1 17690:k 17673:v 17641:) 17638:V 17635:( 17630:k 17595:, 17590:k 17586:i 17571:1 17567:i 17562:, 17555:k 17551:i 17546:e 17529:1 17525:i 17520:e 17494:V 17477:n 17473:i 17467:i 17463:e 17449:. 17446:) 17443:V 17440:( 17435:k 17412:j 17408:v 17403:i 17399:v 17390:k 17384:i 17380:w 17375:i 17371:v 17353:, 17348:) 17338:j 17334:w 17330:, 17325:i 17321:v 17312:( 17304:= 17294:k 17290:w 17275:1 17271:w 17267:, 17262:k 17258:v 17243:1 17239:v 17208:k 17176:) 17170:V 17165:k 17150:( 17126:) 17123:V 17120:( 17115:k 17077:V 17054:V 17032:V 17000:V 16980:q 16976:p 16972:) 16970:q 16966:p 16964:( 16943:d 16940:i 16934:q 16931:+ 16928:) 16925:k 16919:n 16916:( 16913:k 16909:) 16905:1 16899:( 16896:= 16893:) 16890:V 16887:( 16882:k 16866:) 16863:V 16860:( 16855:k 16842:: 16808:V 16782:) 16779:V 16776:( 16771:k 16755:) 16752:V 16749:( 16744:k 16691:. 16688:) 16685:V 16682:( 16677:k 16671:n 16655:) 16652:V 16649:( 16644:k 16631:: 16589:V 16566:V 16552:V 16535:. 16513:: 16510:) 16507:V 16504:( 16499:k 16493:n 16477:) 16468:V 16464:( 16459:k 16392:) 16389:V 16386:( 16381:n 16348:. 16322:= 16280:) 16277:V 16274:( 16269:k 16263:n 16247:) 16244:V 16241:( 16236:n 16220:) 16211:V 16207:( 16202:k 16167:n 16145:V 16111:. 16082:= 16035:= 15981:. 15978:) 15975:b 15962:( 15956:a 15951:a 15941:) 15937:1 15931:( 15928:+ 15925:b 15919:) 15916:a 15903:( 15900:= 15897:) 15894:b 15888:a 15885:( 15814:V 15794:. 15774:V 15751:V 15729:) 15726:v 15723:( 15717:= 15714:v 15680:) 15677:V 15674:( 15669:1 15656:= 15646:( 15634:V 15614:v 15590:. 15587:) 15584:V 15581:( 15576:1 15570:k 15554:) 15551:V 15548:( 15543:k 15530:: 15498:} 15495:0 15492:{ 15489:= 15486:) 15483:V 15480:( 15475:1 15439:V 15408:k 15372:) 15369:V 15366:( 15361:0 15329:f 15309:0 15306:= 15303:f 15270:. 15267:) 15262:1 15256:k 15252:u 15248:, 15242:, 15237:2 15233:u 15229:, 15224:1 15220:u 15216:, 15210:( 15207:w 15204:= 15201:) 15196:1 15190:k 15186:u 15182:, 15176:, 15171:2 15167:u 15163:, 15158:1 15154:u 15150:( 15147:) 15144:w 15131:( 15100:V 15077:1 15071:k 15059:k 15055:u 15051:2 15048:u 15044:1 15041:u 15019:V 15000:V 14987:V 14970:k 14953:K 14925:V 14904:w 14882:) 14879:V 14876:( 14871:k 14855:w 14767:. 14764:) 14761:V 14758:( 14753:1 14747:k 14731:) 14728:V 14725:( 14720:k 14707:: 14672:) 14669:V 14666:( 14625:V 14594:V 14562:V 14541:V 14517:) 14514:m 14510:S 14505:k 14501:S 14496:m 14494:+ 14492:k 14488:S 14483:) 14481:m 14477:k 14475:( 14473:σ 14469:k 14467:( 14465:σ 14461:k 14459:( 14457:σ 14452:) 14450:k 14448:( 14446:σ 14442:σ 14438:σ 14433:} 14431:m 14427:k 14421:σ 14412:) 14410:m 14406:k 14404:( 14397:m 14395:+ 14393:k 14389:S 14384:m 14382:, 14380:k 14360:, 14357:) 14352:) 14349:m 14346:+ 14343:k 14340:( 14333:x 14329:, 14323:, 14318:) 14315:1 14312:+ 14309:k 14306:( 14299:x 14295:( 14288:) 14283:) 14280:k 14277:( 14270:x 14266:, 14260:, 14255:) 14252:1 14249:( 14242:x 14238:( 14231:) 14225:( 14212:m 14209:, 14206:k 14201:h 14198:S 14182:= 14178:) 14173:m 14170:+ 14167:k 14163:x 14159:, 14153:, 14148:1 14144:x 14140:( 14094:K 14068:. 14065:) 14060:) 14057:k 14054:( 14047:x 14043:, 14037:, 14032:) 14029:1 14026:( 14019:x 14015:( 14008:) 14002:( 13989:k 13985:S 13967:! 13964:k 13960:1 13955:= 13952:) 13947:k 13943:x 13939:, 13933:, 13928:1 13924:x 13920:( 13917:) 13911:( 13878:K 13855:, 13852:) 13840:( 13828:! 13825:m 13821:! 13818:k 13813:! 13810:) 13807:m 13804:+ 13801:k 13798:( 13792:= 13748:) 13736:( 13727:= 13699:K 13695:V 13691:η 13685:K 13681:V 13677:ω 13653:) 13648:k 13645:n 13640:( 13611:K 13589:k 13585:V 13564:n 13544:V 13521:) 13512:V 13508:( 13502:k 13466:V 13436:) 13430:) 13427:V 13424:( 13419:k 13404:( 13373:V 13353:k 13318:K 13310:k 13306:V 13302:: 13299:f 13274:K 13271:= 13268:X 13254:. 13246:n 13236:n 13230:ω 13224:η 13218:ε 13215:( 13209:n 13170:k 13166:V 13141:. 13138:w 13129:= 13126:f 13106:X 13100:) 13097:V 13094:( 13089:k 13076:: 13050:, 13047:X 13039:k 13035:V 13031:: 13028:f 13008:; 13003:k 12999:V 12978:k 12958:V 12938:k 12915:, 12912:) 12909:V 12906:( 12901:k 12883:k 12879:V 12875:: 12872:w 12843:= 12840:) 12835:k 12831:v 12827:, 12821:, 12816:1 12812:v 12808:( 12805:f 12792:V 12783:k 12779:v 12775:1 12772:v 12755:X 12747:k 12743:V 12739:: 12736:f 12720:X 12716:V 12708:k 12704:X 12700:V 12683:V 12679:n 12662:. 12655:1 12649:r 12645:i 12636:1 12632:i 12628:j 12624:t 12618:j 12608:n 12603:0 12600:= 12597:j 12589:r 12586:= 12579:1 12573:r 12569:i 12560:1 12556:i 12551:) 12547:t 12534:( 12509:1 12503:r 12479:t 12456:V 12452:α 12435:r 12409:1 12403:r 12399:i 12390:1 12386:i 12380:0 12376:i 12371:t 12367:= 12364:t 12337:. 12332:] 12327:p 12324:+ 12321:r 12317:i 12308:1 12305:+ 12302:r 12298:i 12293:s 12285:r 12281:i 12272:1 12268:i 12264:[ 12260:t 12256:= 12249:p 12246:+ 12243:r 12239:i 12230:1 12226:i 12221:) 12217:s 12196:t 12193:( 12179:t 12175:s 12157:. 12150:p 12147:+ 12144:r 12140:i 12133:e 12114:2 12110:i 12103:e 12090:1 12086:i 12079:e 12069:) 12066:p 12063:+ 12060:r 12057:( 12050:i 12041:) 12038:1 12035:+ 12032:r 12029:( 12022:i 12017:s 12009:) 12006:r 12003:( 11996:i 11987:) 11984:1 11981:( 11974:i 11969:t 11965:) 11959:( 11946:p 11943:+ 11940:r 11934:S 11914:! 11911:) 11908:p 11905:+ 11902:r 11899:( 11895:1 11890:= 11887:s 11866:t 11853:p 11849:r 11845:s 11841:t 11830:t 11813:, 11806:r 11802:i 11795:e 11776:2 11772:i 11765:e 11752:1 11748:i 11741:e 11730:r 11726:i 11717:2 11713:i 11707:1 11703:i 11698:t 11694:= 11691:t 11670:) 11668:V 11666:( 11664:T 11660:V 11656:t 11651:V 11645:n 11641:e 11637:1 11634:e 11629:n 11625:V 11601:) 11598:V 11595:( 11592:A 11570:) 11567:r 11564:( 11561:c 11541:) 11538:p 11535:( 11532:c 11529:) 11526:r 11523:( 11520:c 11516:/ 11512:) 11509:p 11506:+ 11503:r 11500:( 11497:c 11475:) 11472:V 11469:( 11438:) 11435:V 11432:( 11429:A 11373:I 11351:) 11348:V 11345:( 11342:A 11322:) 11319:V 11316:( 11303:) 11300:V 11297:( 11294:A 11272:t 11269:l 11266:A 11242:A 11217:. 11214:) 11211:V 11208:( 11195:) 11192:V 11189:( 11186:A 11161:) 11158:V 11155:( 11151:T 11128:I 11108:) 11105:V 11102:( 11099:A 11079:K 11056:. 11053:) 11050:s 11044:t 11041:( 11032:= 11029:s 11008:t 11005:= 11002:s 10996:t 10944:) 10941:V 10938:( 10935:A 10893:I 10869:A 10845:I 10819:) 10816:r 10813:( 10809:I 10784:) 10781:r 10778:( 10772:A 10747:) 10744:V 10741:( 10737:T 10712:) 10709:V 10706:( 10702:T 10677:) 10674:V 10671:( 10668:A 10642:) 10639:) 10636:V 10633:( 10629:T 10625:( 10620:A 10596:) 10593:r 10590:( 10562:. 10556:) 10553:r 10550:( 10544:A 10537:! 10534:r 10531:= 10525:) 10522:r 10519:( 10513:A 10500:) 10497:r 10494:( 10488:A 10456:) 10453:V 10450:( 10446:T 10421:t 10418:l 10415:A 10391:A 10367:} 10364:r 10361:, 10355:, 10352:1 10349:{ 10320:) 10315:r 10311:v 10296:1 10292:v 10288:( 10279:) 10276:r 10273:( 10267:A 10257:! 10254:r 10250:1 10245:= 10242:) 10237:r 10233:v 10218:1 10214:v 10210:( 10202:) 10199:r 10196:( 10168:! 10165:r 10145:0 10139:! 10136:r 10111:) 10108:r 10105:( 10098:v 10083:) 10080:1 10077:( 10070:v 10066:) 10060:( 10047:r 10041:S 10024:= 10021:) 10016:r 10012:v 9997:1 9993:v 9989:( 9980:) 9977:r 9974:( 9968:A 9930:. 9927:V 9919:i 9915:v 9910:, 9905:r 9901:v 9886:1 9882:v 9858:r 9838:) 9835:V 9832:( 9827:r 9822:T 9795:0 9771:x 9765:x 9743:I 9723:) 9720:V 9717:( 9713:T 9692:I 9672:K 9650:K 9638:k 9614:K 9590:I 9568:k 9546:V 9514:) 9511:V 9508:( 9504:T 9483:K 9463:V 9411:M 9387:M 9367:) 9364:M 9361:( 9332:) 9329:M 9326:( 9322:T 9299:) 9296:M 9293:( 9264:M 9251:- 9239:R 9219:R 9186:) 9183:V 9180:( 9151:) 9148:V 9145:( 9140:k 9110:) 9107:V 9104:( 9099:k 9069:) 9066:V 9063:( 9025:) 9022:V 9019:( 9001:V 8992:V 8977:) 8974:V 8971:( 8942:) 8939:V 8936:( 8917:∧ 8900:I 8895:/ 8890:) 8887:V 8884:( 8881:T 8878:= 8875:) 8872:V 8869:( 8839:) 8836:V 8833:( 8815:V 8809:v 8803:v 8799:v 8794:) 8792:V 8790:( 8788:T 8782:I 8770:) 8768:V 8766:( 8764:T 8755:V 8749:V 8743:V 8714:) 8711:V 8708:( 8688:V 8682:i 8676:V 8670:v 8663:v 8661:( 8659:i 8657:( 8655:f 8651:v 8649:( 8647:j 8632:A 8626:) 8623:V 8620:( 8610:: 8607:f 8589:V 8583:v 8568:0 8565:= 8562:) 8559:v 8556:( 8553:j 8550:) 8547:v 8544:( 8541:j 8521:A 8515:V 8512:: 8509:j 8498:- 8495:K 8489:A 8483:K 8458:) 8455:V 8452:( 8432:V 8426:V 8420:K 8405:) 8402:V 8399:( 8381:V 8377:v 8362:0 8359:= 8356:v 8350:v 8322:) 8319:V 8316:( 8298:K 8292:V 8258:. 8244:p 8241:k 8237:) 8233:1 8227:( 8224:= 8190:) 8187:V 8184:( 8179:p 8141:) 8138:V 8135:( 8130:k 8091:. 8088:V 8085:= 8082:) 8079:V 8076:( 8071:1 8041:K 8038:= 8035:) 8032:V 8029:( 8024:0 8000:K 7982:. 7979:) 7976:V 7973:( 7968:p 7965:+ 7962:k 7946:) 7943:V 7940:( 7935:p 7919:) 7916:V 7913:( 7908:k 7868:) 7865:V 7862:( 7857:n 7835:) 7832:V 7829:( 7824:2 7808:) 7805:V 7802:( 7797:1 7781:) 7778:V 7775:( 7770:0 7757:= 7754:) 7751:V 7748:( 7718:) 7715:p 7712:+ 7709:k 7706:( 7695:p 7689:k 7663:= 7657:1 7654:+ 7651:p 7598:0 7590:p 7541:p 7476:j 7473:i 7469:a 7442:i 7439:j 7435:a 7428:= 7423:j 7420:i 7416:a 7390:j 7386:e 7377:i 7373:e 7367:j 7364:i 7360:a 7354:j 7351:, 7348:i 7340:= 7292:V 7268:i 7264:e 7169:k 7143:k 7121:. 7118:s 7115:, 7109:, 7106:2 7103:, 7100:1 7097:= 7094:i 7090:, 7085:) 7082:i 7079:( 7074:k 7055:) 7052:i 7049:( 7044:1 7036:= 7031:) 7028:i 7025:( 6995:) 6992:i 6989:( 6959:) 6956:s 6953:( 6945:+ 6939:+ 6934:) 6931:2 6928:( 6920:+ 6915:) 6912:1 6909:( 6901:= 6882:k 6844:) 6841:V 6838:( 6833:k 6801:k 6779:n 6775:2 6750:V 6747:= 6744:) 6741:V 6738:( 6733:1 6699:V 6671:K 6668:= 6665:) 6662:V 6659:( 6654:0 6619:) 6616:V 6613:( 6608:n 6586:) 6583:V 6580:( 6575:2 6559:) 6556:V 6553:( 6548:1 6532:) 6529:V 6526:( 6521:0 6508:= 6505:) 6502:V 6499:( 6473:k 6452:n 6446:k 6424:} 6421:0 6418:{ 6415:= 6412:) 6409:V 6406:( 6401:k 6369:k 6341:n 6316:, 6310:) 6305:k 6302:n 6297:( 6291:= 6288:) 6285:V 6282:( 6277:k 6234:) 6231:V 6228:( 6223:k 6186:i 6182:e 6157:j 6153:v 6134:k 6116:i 6112:e 6083:j 6079:v 6055:, 6050:k 6046:v 6031:1 6027:v 6001:) 5998:V 5995:( 5990:k 5955:} 5951:n 5943:k 5939:i 5924:2 5920:i 5911:1 5907:i 5900:1 5889:| 5877:k 5873:i 5868:e 5851:2 5847:i 5842:e 5831:1 5827:i 5822:e 5817:{ 5794:V 5770:} 5765:n 5761:e 5757:, 5751:, 5746:1 5742:e 5738:{ 5718:n 5698:V 5666:. 5661:4 5657:e 5648:3 5644:e 5640:+ 5635:2 5631:e 5622:1 5618:e 5614:= 5586:} 5581:4 5577:e 5573:, 5568:3 5564:e 5560:, 5555:2 5551:e 5547:, 5542:1 5538:e 5534:{ 5508:4 5503:R 5479:) 5476:V 5473:( 5468:k 5436:) 5433:V 5430:( 5425:k 5391:k 5335:V 5313:k 5279:k 5240:) 5237:V 5234:( 5229:k 5188:. 5185:k 5182:, 5176:, 5173:2 5170:, 5167:1 5164:= 5161:i 5158:, 5155:V 5147:i 5143:x 5138:, 5133:k 5129:x 5114:2 5110:x 5101:1 5097:x 5068:) 5065:V 5062:( 5027:) 5024:V 5021:( 5016:k 4982:V 4965:k 4939:= 4934:k 4930:x 4915:2 4911:x 4902:1 4898:x 4874:} 4869:k 4865:x 4861:, 4855:, 4850:2 4846:x 4842:, 4837:1 4833:x 4829:{ 4803:= 4798:k 4794:x 4779:2 4775:x 4766:1 4762:x 4736:j 4730:i 4706:j 4702:x 4698:= 4693:i 4689:x 4638:) 4632:( 4603:, 4598:k 4594:x 4579:2 4575:x 4566:1 4562:x 4558:) 4552:( 4543:= 4538:) 4535:k 4532:( 4525:x 4510:) 4507:2 4504:( 4497:x 4488:) 4485:1 4482:( 4475:x 4449:V 4423:k 4419:x 4392:2 4388:x 4361:1 4357:x 4332:] 4329:k 4326:, 4320:, 4317:1 4314:[ 4265:. 4262:) 4259:x 4253:y 4250:( 4244:= 4241:y 4235:x 4209:x 4203:y 4200:+ 4197:y 4191:x 4188:= 4185:y 4179:y 4176:+ 4173:x 4167:y 4164:+ 4161:y 4155:x 4152:+ 4149:x 4143:x 4140:= 4137:) 4134:y 4131:+ 4128:x 4125:( 4119:) 4116:y 4113:+ 4110:x 4107:( 4104:= 4101:0 4076:V 4070:y 4067:, 4064:x 4040:V 4014:, 4011:V 4005:x 3985:0 3982:= 3979:x 3973:x 3951:V 3910:. 3906:) 3903:I 3896:( 3882:= 3850:) 3847:V 3844:( 3797:. 3794:I 3790:/ 3786:) 3783:V 3780:( 3777:T 3771:) 3768:V 3765:( 3739:V 3733:x 3713:x 3707:x 3687:I 3656:K 3633:V 3613:) 3610:V 3607:( 3582:w 3578:v 3574:u 3570:w 3566:v 3562:u 3558:v 3554:u 3546:v 3542:u 3537:v 3533:u 3521:R 3517:3 3514:e 3510:2 3507:e 3503:1 3500:e 3483:) 3478:3 3473:e 3463:2 3458:e 3448:1 3443:e 3438:( 3435:) 3430:1 3426:w 3420:2 3416:v 3410:3 3406:u 3397:3 3393:w 3387:1 3383:v 3377:2 3373:u 3364:2 3360:w 3354:3 3350:v 3344:1 3340:u 3331:2 3327:w 3321:1 3317:v 3311:3 3307:u 3303:+ 3298:1 3294:w 3288:3 3284:v 3278:2 3274:u 3270:+ 3265:3 3261:w 3255:2 3251:v 3245:1 3241:u 3237:( 3234:= 3230:w 3222:v 3214:u 3187:, 3182:3 3177:e 3170:3 3166:w 3162:+ 3157:2 3152:e 3145:2 3141:w 3137:+ 3132:1 3127:e 3120:1 3116:w 3112:= 3108:w 3083:R 3079:3 3076:e 3072:2 3069:e 3065:1 3062:e 3058:3 3055:e 3051:2 3048:e 3044:1 3041:e 3024:) 3019:3 3014:e 3004:2 2999:e 2994:( 2991:) 2986:2 2982:v 2976:3 2972:u 2963:3 2959:v 2953:2 2949:u 2945:( 2942:+ 2939:) 2934:1 2929:e 2919:3 2914:e 2909:( 2906:) 2901:3 2897:v 2891:1 2887:u 2878:1 2874:v 2868:3 2864:u 2860:( 2857:+ 2854:) 2849:2 2844:e 2834:1 2829:e 2824:( 2821:) 2816:1 2812:v 2806:2 2802:u 2793:2 2789:v 2783:1 2779:u 2775:( 2772:= 2768:v 2760:u 2731:3 2726:e 2719:3 2715:v 2711:+ 2706:2 2701:e 2694:2 2690:v 2686:+ 2681:1 2676:e 2669:1 2665:v 2661:= 2657:v 2628:3 2623:e 2616:3 2612:u 2608:+ 2603:2 2598:e 2591:2 2587:u 2583:+ 2578:1 2573:e 2566:1 2562:u 2558:= 2554:u 2540:} 2538:3 2535:e 2531:2 2528:e 2524:1 2521:e 2519:{ 2507:R 2483:2 2480:e 2476:1 2473:e 2430:2 2427:e 2423:1 2420:e 2412:v 2408:w 2404:r 2400:) 2398:w 2394:v 2390:w 2386:w 2383:r 2379:v 2371:w 2367:v 2363:) 2361:w 2357:v 2353:v 2349:w 2337:v 2327:v 2323:v 2315:s 2311:r 2307:) 2305:w 2301:v 2293:w 2290:s 2286:v 2283:r 2274:w 2270:v 2266:) 2264:w 2260:v 2242:w 2238:v 2221:= 2216:2 2211:e 2201:2 2196:e 2191:= 2186:1 2181:e 2171:1 2166:e 2144:. 2141:) 2136:2 2131:e 2121:1 2116:e 2111:( 2105:= 2100:1 2095:e 2085:2 2080:e 2041:2 2036:e 2026:1 2021:e 2015:) 2011:c 2008:b 2002:d 1999:a 1995:( 1991:= 1979:2 1974:e 1964:2 1959:e 1954:d 1951:b 1948:+ 1943:1 1938:e 1928:2 1923:e 1918:c 1915:b 1912:+ 1907:2 1902:e 1892:1 1887:e 1882:d 1879:a 1876:+ 1871:1 1866:e 1856:1 1851:e 1846:c 1843:a 1840:= 1830:) 1825:2 1820:e 1815:d 1812:+ 1807:1 1802:e 1797:c 1794:( 1788:) 1783:2 1778:e 1773:b 1770:+ 1765:1 1760:e 1755:a 1752:( 1749:= 1741:w 1733:v 1702:w 1678:v 1654:. 1650:| 1646:c 1643:b 1637:d 1634:a 1630:| 1626:= 1621:| 1614:] 1608:d 1603:b 1596:c 1591:a 1585:[ 1575:| 1570:= 1565:| 1558:] 1551:w 1544:v 1537:[ 1527:| 1522:= 1485:w 1463:v 1438:2 1433:R 1404:2 1399:e 1394:d 1391:+ 1386:1 1381:e 1376:c 1373:= 1368:] 1362:d 1355:c 1349:[ 1344:= 1340:w 1335:, 1330:2 1325:e 1320:b 1317:+ 1312:1 1307:e 1302:a 1299:= 1294:] 1288:b 1281:a 1275:[ 1270:= 1266:v 1239:. 1234:] 1228:1 1221:0 1215:[ 1210:= 1205:2 1199:e 1192:, 1187:] 1181:0 1174:1 1168:[ 1163:= 1158:1 1152:e 1113:2 1108:R 1062:k 1038:k 1006:, 1003:0 1000:= 997:v 991:w 988:+ 985:w 979:v 959:0 956:= 953:v 947:v 904:V 884:V 864:V 833:, 830:V 810:k 786:. 783:V 771:- 759:k 739:k 716:- 714:k 699:k 672:, 669:v 663:w 657:= 654:w 648:v 628:0 625:= 622:v 616:v 588:k 568:, 565:w 545:v 521:w 515:v 504:2 481:- 469:k 449:k 418:k 414:v 399:2 395:v 386:1 382:v 361:k 339:. 336:V 316:V 272:. 269:V 249:v 229:0 226:= 223:v 217:v 169:, 166:V 142:V 113:n 111:( 97:- 95:n 89:- 87:n 83:n 79:n 73:n 68:n 34:. 20:)

Index

Exterior power
Wedge sum


parallelotope
ellipsoid
hypervolume
orientation
vector space
associative algebra
Hermann Grassmann
blade
geometry
areas
volumes
magnitude
2-blade
parallelogram
parallelotope
alternating property
linear combinations
k-vector
multivector
linear span
direct sum
graded algebra
universal
vector fields
functions
domain

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.