Knowledge

Scheme (mathematics)

Source 📝

9022: 5452: 3439: 10574:). These sheaves admit algebraic operations that are associative and commutative only up to an equivalence relation. Taking the quotient by this equivalence relation yields the structure sheaf of an ordinary scheme. Not taking the quotient, however, leads to a theory that can remember higher information, in the same way that 509:
most often over the complex numbers. Grothendieck developed a large body of theory for arbitrary schemes extending much of the geometric intuition for varieties. For example, it is common to construct a moduli space first as a scheme, and only later study whether it is a more concrete object such as
310:
developed commutative algebra in the 1920s and 1930s. Their work generalizes algebraic geometry in a purely algebraic direction, generalizing the study of points (maximal ideals in a polynomial ring) to the study of prime ideals in any commutative ring. For example, Krull defined the
10473:
Considered as its functor of points, a scheme is a functor that is a sheaf of sets for the Zariski topology on the category of commutative rings, and that, locally in the Zariski topology, is an affine scheme. This can be generalized in several ways. One is to use the
9446: 2275: 3666: 6800: 1857: 2090: 7696: 3752: 10543:. In that formulation, stacks are (informally speaking) sheaves of categories. From this general notion, Artin defined the narrower class of algebraic stacks (or "Artin stacks"), which can be considered geometric objects. These include 9546: 10488:
as a functor that is a sheaf in the étale topology and that, locally in the étale topology, is an affine scheme. Equivalently, an algebraic space is the quotient of a scheme by an étale equivalence relation. A powerful result, the
7963: 4501: 5145: 8075: 7150: 4010: 1744: 9343: 8942: 7078: 1622: 602:. One can think of a scheme as being covered by "coordinate charts" that are affine schemes. The definition means exactly that schemes are obtained by gluing together affine schemes using the Zariski topology. 10150: 2705: 9052:
It is also fruitful to consider examples of morphisms as examples of schemes since they demonstrate their technical effectiveness for encapsulating many objects of study in algebraic and arithmetic geometry.
3527: 3245: 4333: 1964: 7583: 4097: 2940: 8574: 5225: 3315: 9248:, as a scheme, are its complex points (one for each complex number) together with one generic point (whose closure is the whole scheme). The generic point is the image of a natural morphism Spec( 5266: 3851: 249:. The early 20th century saw analogies between algebraic geometry and number theory, suggesting the question: can algebraic geometry be developed over other fields, such as those with positive 7611: 2127: 8833: 3532: 8501: 6221: 4731: 1342: 7817: 7416: 5067: 3036: 8666: 6672: 4187: 2400: 1773: 8279: 8451: 6454: 134:
of open sets, each endowed with a coordinate ring of regular functions, with specified coordinate changes between the functions over intersecting open sets. Such a structure is called a
9931: 6949: 6373: 4916: 6667: 6128: 5592: 5317: 4143: 2878: 1672: 8752: 3429: 3358: 1400: 2785: 2600: 1995: 5764: 10490: 9691: 8365: 8234: 8188: 7196: 6995: 6291: 4988: 3149: 1527: 5541: 4832: 4801: 4659: 4613: 4560: 4367: 4238: 3933: 2631: 1888: 7620: 7229: 6490: 6039: 2745: 2542: 2310: 1242: 7514: 3882: 3471: 3386: 2505: 361:
For applications to number theory, van der Waerden and Weil formulated algebraic geometry over any field, not necessarily algebraically closed. Weil was the first to define an
9455: 8703: 8308: 7725: 6829: 6519: 3111: 1203: 1174: 7826: 2473: 1923: 1768: 10038: 9548:
Thus, having an actual generic point of a variety yields a geometric relation between a degree-2 morphism of algebraic varieties and the corresponding degree-2 extension of
8986: 404:. This worked awkwardly: there were many different generic points for the same variety. (In the later theory of schemes, each algebraic variety has a single generic point.) 1114: 8596: 6571: 5176: 4938: 3275: 2975: 9985: 10536:. More generally, moduli spaces in algebraic geometry are often best viewed as stacks, thereby keeping track of the automorphism groups of the objects being classified. 9854: 6613: 5950: 2429: 6855: 8108: 3671: 9812: 7331: 6003: 5802: 7293: 5722: 2119: 7988: 6911: 5836: 9779: 8862: 7380: 7258: 6884: 5865: 5621: 5505: 5366: 2814: 8134: 6399: 6247: 6085: 5687: 4529: 4393: 1481: 10213: 10193: 9746: 9711: 8202:
along open subsets. This is the fundamental example that motivates going beyond affine schemes. The key advantage of projective space over affine space is that
7983: 7439: 7351: 7015: 6059: 5970: 5905: 5885: 5661: 5641: 5476: 5446: 5426: 5406: 5386: 5337: 5012: 4852: 4755: 4433: 4413: 4278: 4258: 4207: 4034: 3902: 3056: 2562: 2449: 2330: 1987: 1642: 1420: 1293: 423:
relating number theory and algebraic geometry, further extended the objects of algebraic geometry, for example by generalizing the base rings allowed. The word
4438: 510:
a projective variety. Applying Grothendieck's theory to schemes over the integers and other number fields led to powerful new perspectives in number theory.
5080: 613:
prescheme. The term prescheme has fallen out of use, but can still be found in older books, such as Grothendieck's "Éléments de géométrie algébrique" and
8526:, and gluing together the two open subsets A − 0 by the identity map. This is a simple example of a non-separated scheme. In particular, it is not affine. 354:
is a useful topology on a variety over any algebraically closed field, replacing to some extent the classical topology on a complex variety (based on the
10047: 10570:
or "spectral algebraic geometry", the structure sheaf is replaced by a homotopical analog of a sheaf of commutative rings (for example, a sheaf of
7083: 759:
with certain properties. There are different conventions about exactly which schemes should be called varieties. One standard choice is that a
3938: 1677: 11007: 10681: 75: 11123: 8890: 7020: 1532: 108: 3114: 2639: 8948:
of the positive integers (with the discrete topology). In fact, the prime ideals of this ring are in one-to-one correspondence with the
435:
who suggested to Serre the possibility of using the spectrum of an arbitrary commutative ring as a foundation for algebraic geometry.
3476: 173: 10551:
in topology), for which the stabilizer groups are finite, and algebraic spaces, for which the stabilizer groups are trivial. The
8378: 3154: 4283: 1928: 9549: 9441:{\displaystyle \operatorname {Spec} \mathbf {C} (x)\left({\sqrt {x(x-1)(x-5)}}\right)\to \operatorname {Spec} \mathbf {C} (x).} 7519: 4042: 2887: 634:
which are not necessarily functions, can neverthess be patched together from their restrictions in the same way as functions.
11262: 11224: 11166: 11092: 11053: 9627:
but not zero. To indicate the meaning of this scheme: two regular functions on the affine line have the same restriction to
8532: 8529:
A simple reason to go beyond affine schemes is that an open subset of an affine scheme need not be affine. For example, let
3435:. Closed sets are finite sets, and open sets are their complements, the cofinite sets; any infinite set of points is dense. 451:(SGA), bringing to a conclusion a generation of experimental suggestions and partial developments. Grothendieck defined the 10429:
of a smooth variety over a field. However, coherent sheaves are richer; for example, a vector bundle on a closed subscheme
9004:, this is an example of a non-Noetherian quasi-compact scheme with infinitely many irreducible components. (By contrast, a 5181: 3280: 389: 2270:{\displaystyle {\mathcal {O}}_{X}(U_{f})=R=\{{\tfrac {r}{f^{m}}}\ \ {\text{for}}\ \ r\in R,\ m\in \mathbb {Z} _{\geq 0}\}} 11005:(2001), "A mad day's work: from Grothendieck to Connes and Kontsevich. The evolution of concepts of space and symmetry", 9279:
in one variable. To see why it is useful to have an actual "generic point" in the scheme, consider the following example.
5230: 3661:{\displaystyle {\mathcal {O}}_{Z}(U_{p})=\mathbb {Z} =\{{\tfrac {n}{p^{m}}}\ {\text{for}}\ n\in \mathbb {Z} ,\ m\geq 0\}} 3757: 11193: 7588: 166: 10263:. This again indicates that non-reduced subschemes have geometric meaning, related to derivatives and tangent vectors. 8945: 8757: 6795:{\displaystyle k({\mathfrak {m}})=\mathbb {Z} /{\mathfrak {m}}=\mathbb {F} _{p}/(f(x))\cong \mathbb {F} _{p}(\alpha )} 1852:{\displaystyle V({\mathfrak {p}})=\{{\mathfrak {q}}\in X\ \ {\text{with}}\ \ {\mathfrak {p}}\subset {\mathfrak {q}}\}} 8470: 6133: 4664: 1298: 202:. In many cases, the family of all varieties of a given type can itself be viewed as a variety or scheme, known as a 7730: 7385: 5017: 11084: 9061:
Here are some of the ways in which schemes go beyond older notions of algebraic varieties, and their significance.
8609: 4148: 2980: 2338: 8250: 10962: 10571: 6404: 335: 9092:
is algebraically closed (for example the complex numbers), then one can base algebraic geometry on sets such as
908:. In examples, this definition reconstructs the old notion of the set of solutions of the defining equations of 396:
of an algebraic variety. What is true for the generic point is true for "most" points of the variety. In Weil's
11002: 9859: 7461:
overcomes this obstacle by compactifying affine arithmetic schemes, adding points at infinity corresponding to
6916: 6296: 4857: 2085:{\displaystyle U_{f}=X\smallsetminus V(f)=\{{\mathfrak {p}}\in X\ \ {\text{with}}\ \ f\notin {\mathfrak {p}}\}} 768: 428: 346:
applied commutative algebra as a new foundation for algebraic geometry in the richer setting of projective (or
6621: 6090: 5546: 5271: 4102: 2822: 1647: 11285: 8716: 3391: 3320: 1347: 846: 818:). In the case of affine schemes, this construction gives a one-to-one correspondence between morphisms Spec( 400:(1946), generic points are constructed by taking points in a very large algebraically closed field, called a 2750: 2567: 126:
consisting of closed points which correspond to geometric points, together with non-closed points which are
10334: 10218:
For a more elaborate example, one can describe all the zero-dimensional closed subschemes of degree 2 in a
9934: 9033: 7691:{\displaystyle X_{p}=X\times _{\operatorname {Spec} (\mathbb {Z} )}\operatorname {Spec} (\mathbb {F} _{p})} 5727: 4734: 264: 165:. The coordinate ring of an affine scheme is the ring itself, and the coordinate rings of open subsets are 11247:
The Red Book of Varieties and Schemes: Includes the Michigan Lectures (1974) on Curves and Their Jacobians
9662: 8336: 8205: 8159: 7155: 6954: 6256: 4943: 3120: 1486: 772: 9449: 5510: 4806: 4760: 4618: 4572: 4534: 4341: 4212: 3907: 2605: 1862: 118:
of regular algebraic functions defined on it (or on its subsets), and each subvariety corresponds to the
10838: 7201: 6459: 6008: 4260:
as a kind of "regular function" on the closed points, a very special type among the arbitrary functions
2710: 2514: 2284: 1212: 11074: 10656: 10567: 10562:
Another type of generalization is to enrich the structure sheaf, bringing algebraic geometry closer to
10511: 7476: 3859: 3448: 3363: 2478: 1081: 427:
was first used in the 1956 Chevalley Seminar, in which Chevalley pursued Zariski's ideas. According to
246: 51:= 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any 40: 11344:- the comment section contains some interesting discussion on scheme theory (including the posts from 11326: 9569: 8679: 8284: 7701: 6805: 6495: 3061: 1179: 1150: 11156: 10544: 10462: 10407: 2454: 1893: 1749: 881: 210: 9990: 319:, he proved that this definition satisfies many of the intuitive properties of geometric dimension. 11341: 8955: 8245: 1086: 1065: 250: 10510:
attached to each point, which is viewed as the automorphism group of that point. For example, any
8579: 6528: 5150: 4921: 3258: 2948: 11216: 11078: 9940: 8368: 3747:{\displaystyle U=Z\smallsetminus \{{\mathfrak {m}}_{p_{1}},\ldots ,{\mathfrak {m}}_{p_{\ell }}\}} 1256: 502:) are the affine schemes; a general scheme is then obtained by "gluing together" affine schemes. 10242:) as in the previous paragraph. Subschemes of the latter type are determined by a complex point 9817: 6576: 5913: 2405: 11361: 11110: 10647: 8314: 6834: 70: 32: 10960:
Arapura, Donu (2011), "Frobenius amplitude, ultraproducts, and vanishing on singular spaces",
8080: 7446: 114:
Schemes elaborate the fundamental idea that an algebraic variety is best analyzed through the
10552: 10540: 9784: 8997: 7450: 7298: 5975: 5769: 1529:
is a topological space with the Zariski topology, whose closed points are the maximal ideals
7263: 5692: 2098: 505:
Much of algebraic geometry focuses on projective or quasi-projective varieties over a field
377:
of a curve over any field. (Later, Jacobians were shown to be projective varieties by Weil,
11311: 11299: 11272: 11234: 11203: 11176: 11144: 11102: 11063: 11030: 10995: 10368: 10313: 7454: 6889: 5807: 523: 327: 230: 11280:
Vistoli, Angelo (2005), "Grothendieck topologies, fibered categories and descent theory",
9755: 8838: 7356: 7234: 6860: 5841: 5597: 5481: 5342: 2790: 8: 10621: 10556: 10529: 10497: 10153: 10044:
axis tangent direction (the common tangent of the two curves) and having coordinate ring:
9656: 9541:{\displaystyle \mathbf {C} (x)\subset \mathbf {C} (x)\left({\sqrt {x(x-1)(x-5)}}\right).} 8113: 7462: 6378: 6226: 6064: 5666: 4506: 4372: 1425: 960: 696: 474: 238: 139: 119: 100: 92: 11303: 10626: 7958:{\displaystyle \Delta _{f}=-4a^{3}c+a^{2}b^{2}+18abc-4b^{3}-27c^{2}=0\ {\text{mod}}\ p,} 153:
Formally, a scheme is a ringed space covered by affine schemes. An affine scheme is the
11289: 11042: 10971: 10734: 10461:
has good properties for coherent (and quasi-coherent) sheaves. The resulting theory of
10198: 10163: 10157: 9716: 9696: 9108:), consider polynomial mappings between different sets of this type, and so on. But if 8710: 7968: 7614: 7424: 7336: 7000: 6250: 6044: 5955: 5890: 5870: 5646: 5626: 5461: 5431: 5411: 5391: 5371: 5322: 4997: 4991: 4837: 4740: 4496:{\displaystyle k({\mathfrak {p}}_{0})=\operatorname {Frac} (\mathbb {Z} )=\mathbb {Q} } 4418: 4398: 4263: 4243: 4192: 4019: 3887: 3041: 2547: 2434: 2315: 1972: 1627: 1405: 1278: 527: 452: 382: 154: 80: 24: 5140:{\displaystyle \mathbb {A} _{\mathbb {Z} }^{1}=\{a\ {\text{for}}\ a\in \mathbb {Z} \}} 432: 11258: 11220: 11189: 11162: 11088: 11049: 9553: 9314: 9276: 9005: 8372: 4566: 1058: 416: 195: 143: 123: 79:(EGA); one of its aims was developing the formalism needed to solve deep problems of 36: 11114: 11037: 10611: 10475: 5368:
is a non-constant polynomial with no integer factor and which is irreducible modulo
834:. In this sense, scheme theory completely subsumes the theory of commutative rings. 11250: 11152: 11132: 11016: 10981: 10458: 10296: 10291: 8606:≥ 2. (However, the affine line minus the origin is isomorphic to the affine scheme 6615:
is a kind of fusion of two Galois-symmetric horizonal lines, a curve of degree 2.
610: 459: 420: 412: 408: 374: 366: 351: 347: 326:
algebraic varieties. However, many arguments in algebraic geometry work better for
258: 234: 131: 84: 52: 11021: 10755: 322:
Noether and Krull's commutative algebra can be viewed as an algebraic approach to
237:) that algebraic geometry over the real numbers is simplified by working over the 11307: 11268: 11230: 11199: 11172: 11140: 11118: 11098: 11059: 11026: 10991: 10860: 10651: 10643: 10607: 10603: 10599: 10575: 10563: 10507: 10502: 10493:, gives simple conditions for a functor to be represented by an algebraic space. 10484: 9565: 8993: 8508: 8237: 7458: 6521:; since we cannot distinguish between these values (they are symmetric under the 5408:
as two-dimensional, with a "characteristic direction" measured by the coordinate
2943: 1251:
Since the category of schemes has fiber products and also a terminal object Spec(
1011: 854: 692: 473:
with a natural topology (known as the Zariski topology), but augmented it with a
355: 316: 312: 276: 147: 115: 11249:. Lecture Notes in Mathematics. Vol. 1358 (2nd ed.). Springer-Verlag. 11070: 10896: 10661: 10579: 10524: 10426: 10385:-module that is the sheaf associated to a module on each affine open subset of 10279: 10273: 9640: 9557: 8504: 7820: 1644:. The scheme also contains a non-closed point for each non-maximal prime ideal 1006:. (This generalizes the old observation that given some equations over a field 937: 842: 650: 378: 307: 267:
suggests an approach to algebraic geometry over any algebraically closed field
242: 88: 8988:
corresponding to the principal ultrafilter associated to the positive integer
8070:{\displaystyle X=\operatorname {Spec} {\frac {\mathbb {Z} }{(y^{2}-x^{3}-p)}}} 315:
of a commutative ring in terms of prime ideals and, at least when the ring is
198:, it can be useful to consider families of algebraic surfaces over any scheme 11355: 11242: 10986: 10595: 10479: 10283: 10251: 10219: 9649: 9001: 7442: 2312:
which gives the usual ring of rational functions regular on a given open set
614: 393: 343: 331: 272: 162: 127: 104: 10699: 8522:) is the scheme defined by starting with two copies of the affine line over 4415:
is equal to zero in the residue field. The field of "rational functions" on
339: 10927: 10798: 10639: 10634: 10616: 10446: 9561: 6522: 4013: 2881: 695:, with morphisms defined as morphisms of locally ringed spaces. (See also: 369:), by gluing affine varieties along open subsets, on the model of abstract 303: 203: 135: 56: 10819: 7145:{\displaystyle r({\mathfrak {m}})=r(\alpha )\in \mathbb {F} _{p}(\alpha )} 494:), which may be thought of as the coordinate ring of regular functions on 11345: 10583: 10578:
in homological algebra yield higher information about operations such as
10422: 8949: 5178:, the polynomials with integer coefficients. The corresponding scheme is 466: 295: 254: 226: 158: 20: 10807: 9021: 4005:{\displaystyle k({\mathfrak {m}}_{p})=\mathbb {Z} /(p)=\mathbb {F} _{p}} 1739:{\displaystyle {\bar {V}}={\bar {V}}({\mathfrak {p}})\subset {\bar {X}}} 122:
of functions which vanish on the subvariety. Intuitively, a scheme is a
11136: 10884: 10630: 9634: 1989:
has a basis of open subsets given by the complements of hypersurfaces,
222: 209:
For some of the detailed definitions in the theory of schemes, see the
10848: 10539:
Grothendieck originally introduced stacks as a tool for the theory of
9572:
treats the fundamental group and the Galois group on the same footing.
8937:{\textstyle \operatorname {Spec} \left(\prod _{n=1}^{\infty }k\right)} 8876:
is not surjective and hence not an isomorphism. Therefore, the scheme
176:
is that much of algebraic geometry should be developed for a morphism
11294: 10687: 10226:. Such a subscheme consists of either two distinct complex points of 9624: 7073:{\displaystyle r({\mathfrak {m}})=r\ \mathrm {mod} \ {\mathfrak {m}}} 3432: 1617:{\displaystyle {\mathfrak {m}}_{a}=(x_{1}-a_{1},\ldots ,x_{n}-a_{n})} 10716: 10714: 8713:
in complex analysis, though easier to prove. That is, the inclusion
2121:. This set is endowed with its coordinate ring of regular functions 11333: 11254: 10548: 10145:{\displaystyle {\frac {k}{(x^{2},\,y)}}\cong {\frac {k}{(x^{2})}}.} 9645: 2700:{\displaystyle k({\mathfrak {m}}_{a})=R/{\mathfrak {m}}_{a}\cong k} 373:
in topology. He needed this generality for his construction of the
370: 96: 10976: 10421:, which are the sheaves that locally come from finitely generated 194:), rather than for an individual scheme. For example, in studying 10936: 10908: 10767: 10711: 10555:
says that an algebraic stack with finite stabilizer groups has a
1042: 60: 11342:
https://quomodocumque.wordpress.com/2012/09/03/mochizuki-on-abc/
9336:→ A over the generic point of A is exactly the generic point of 1049:-algebras to sets. It is an important observation that a scheme 1010:, one can consider the set of solutions of the equations in any 564:(as a locally ringed space) is an affine scheme. In particular, 8244:; this is an algebro-geometric version of compactness. Indeed, 229:. By the 19th century, it became clear (notably in the work of 9856:. Their scheme-theoretic intersection is defined by the ideal 8944:
is an affine scheme whose underlying topological space is the
11119:"Éléments de géométrie algébrique: I. Le langage des schémas" 9302:−5) over the complex numbers. This is a closed subscheme of A 3522:{\displaystyle U_{p}=Z\smallsetminus \{{\mathfrak {m}}_{p}\}} 221:
The origins of algebraic geometry mostly lie in the study of
103:. Scheme theory also unifies algebraic geometry with much of 10872: 10779: 3445:
The basis open set corresponding to the irreducible element
8672:
is not affine, one computes that every regular function on
3240:{\displaystyle V=\operatorname {Spec} k/(x^{2}-y^{2}(y+1))} 10465:
is perhaps the main technical tool in algebraic geometry.
9120:) is not rich enough. Indeed, one can study the solutions 4328:{\displaystyle f({\mathfrak {m}}_{p})\in \mathbb {F} _{p}} 3038:, a closed subscheme of affine space. For example, taking 1959:{\displaystyle {\mathfrak {p}}\subset {\mathfrak {m}}_{a}} 1859:, including all the closed points of the subvariety, i.e. 1267:
Here and below, all the rings considered are commutative.
11186:
Basic Algebraic Geometry 2: Schemes and Complex Manifolds
10743: 10449:
construction). In this way, coherent sheaves on a scheme
7578:{\displaystyle X=\operatorname {Spec} (\mathbb {Z} /(f))} 5451: 4092:{\displaystyle n({\mathfrak {m}}_{p})=n\ {\text{mod}}\ p} 2935:{\displaystyle {\bar {V}}(f)\subset \mathbb {A} _{k}^{n}} 9144:) in any reasonable sense. For example, the plane curve 3438: 675:-space can in fact be defined over any commutative ring 130:
of irreducible subvarieties. The space is covered by an
3277:
can be considered as the coordinate ring of the scheme
302:, known as affine varieties. Motivated by these ideas, 11331: 8958: 8893: 8569:{\displaystyle X=\mathbb {A} ^{n}\smallsetminus \{0\}} 8281:
is a compact space in the classical topology, whereas
7823:, then the fibers over its discriminant locus, where 3600: 2983: 2431:, also defines a function on the points of the scheme 2193: 443:
The theory took its definitive form in Grothendieck's
261:
used to study complex varieties do not seem to apply.
95:, scheme theory allows a systematic use of methods of 11109: 10201: 10166: 10050: 9993: 9943: 9862: 9820: 9787: 9758: 9719: 9699: 9665: 9458: 9346: 8841: 8760: 8719: 8682: 8612: 8582: 8535: 8473: 8381: 8339: 8287: 8253: 8208: 8162: 8116: 8083: 7991: 7971: 7829: 7733: 7704: 7623: 7591: 7522: 7479: 7427: 7388: 7359: 7339: 7301: 7266: 7237: 7204: 7158: 7086: 7023: 7003: 6957: 6919: 6892: 6863: 6837: 6808: 6675: 6624: 6579: 6531: 6498: 6462: 6407: 6381: 6299: 6259: 6229: 6136: 6093: 6067: 6047: 6011: 5978: 5958: 5916: 5893: 5873: 5844: 5810: 5772: 5730: 5695: 5669: 5649: 5629: 5600: 5549: 5513: 5484: 5464: 5434: 5414: 5394: 5374: 5345: 5325: 5274: 5233: 5220:{\displaystyle Y=\operatorname {Spec} (\mathbb {Z} )} 5184: 5153: 5083: 5020: 5000: 4946: 4924: 4860: 4840: 4809: 4763: 4743: 4667: 4621: 4615:
have no common prime factor, then there are integers
4575: 4562:
corresponding to prime divisors of the denominator.
4537: 4509: 4441: 4421: 4401: 4375: 4344: 4286: 4266: 4246: 4215: 4195: 4151: 4105: 4045: 4022: 3941: 3910: 3890: 3862: 3760: 3674: 3535: 3479: 3451: 3394: 3366: 3323: 3310:{\displaystyle Z=\operatorname {Spec} (\mathbb {Z} )} 3283: 3261: 3157: 3123: 3064: 3044: 2951: 2890: 2825: 2793: 2753: 2713: 2642: 2608: 2570: 2550: 2517: 2481: 2457: 2437: 2408: 2341: 2318: 2287: 2130: 2101: 1998: 1975: 1931: 1896: 1865: 1776: 1752: 1680: 1650: 1630: 1535: 1489: 1428: 1408: 1350: 1301: 1281: 1215: 1182: 1153: 1089: 1674:, whose vanishing defines an irreducible subvariety 1147:-schemes. For example, the product of affine spaces 11183: 10453:include information about all closed subschemes of 9084:) of solutions of the equations in the product set 5268:. The closed points are maximal ideals of the form 5261:{\displaystyle {\mathfrak {p}}\subset \mathbb {Z} } 4435:is the fraction field of the generic residue ring, 1295:be an algebraically closed field. The affine space 257:like the integers, where the tools of topology and 11041: 10207: 10187: 10144: 10032: 9979: 9925: 9848: 9806: 9773: 9740: 9705: 9685: 9540: 9440: 8980: 8936: 8856: 8827: 8746: 8697: 8660: 8590: 8568: 8495: 8445: 8359: 8302: 8273: 8228: 8182: 8128: 8102: 8069: 7977: 7957: 7811: 7719: 7690: 7605: 7577: 7508: 7433: 7410: 7374: 7345: 7325: 7287: 7260:is the vanishing locus of the constant polynomial 7252: 7223: 7190: 7144: 7072: 7009: 6989: 6943: 6905: 6878: 6849: 6823: 6794: 6661: 6607: 6565: 6513: 6484: 6448: 6393: 6367: 6285: 6241: 6215: 6122: 6079: 6053: 6033: 5997: 5964: 5944: 5899: 5879: 5859: 5830: 5796: 5758: 5716: 5681: 5655: 5635: 5615: 5586: 5535: 5499: 5470: 5440: 5420: 5400: 5380: 5360: 5331: 5311: 5260: 5219: 5170: 5139: 5061: 5006: 4982: 4932: 4910: 4846: 4826: 4795: 4749: 4725: 4653: 4607: 4554: 4523: 4495: 4427: 4407: 4387: 4361: 4327: 4272: 4252: 4232: 4201: 4181: 4137: 4091: 4028: 4004: 3927: 3896: 3876: 3846:{\displaystyle {\mathcal {O}}_{Z}(U)=\mathbb {Z} } 3845: 3746: 3660: 3521: 3465: 3423: 3380: 3352: 3309: 3269: 3239: 3143: 3105: 3050: 3030: 2969: 2934: 2872: 2808: 2779: 2739: 2699: 2625: 2594: 2556: 2536: 2499: 2467: 2443: 2423: 2394: 2324: 2304: 2269: 2113: 2084: 1981: 1958: 1917: 1882: 1851: 1762: 1738: 1666: 1636: 1616: 1521: 1475: 1414: 1394: 1336: 1287: 1236: 1197: 1168: 1108: 10278:A central part of scheme theory is the notion of 7698:are then algebraic curves over the finite fields 7606:{\displaystyle \operatorname {Spec} \mathbb {Z} } 392:had often used the somewhat foggy concept of the 11353: 10417:Coherent sheaves include the important class of 9128:) of the given equations in any field extension 8828:{\displaystyle O(\mathbb {A} ^{n})=\mathbb {C} } 8110:. This curve is singular over the prime numbers 5072: 3058:to be the complex or real numbers, the equation 298:correspond to the irreducible algebraic sets in 9008:has only finitely many irreducible components.) 8496:{\displaystyle \mathbb {P} _{\mathbb {Q} }^{2}} 6216:{\displaystyle (5,x^{2}+1)=(5,x-2)\cap (5,x+2)} 4733:. Geometrically, this is a version of the weak 4726:{\displaystyle a_{1}n_{1}+\cdots +a_{r}n_{r}=1} 1337:{\displaystyle {\bar {X}}=\mathbb {A} _{k}^{n}} 11069: 10890: 10825: 10732: 7812:{\displaystyle f(x,y)=y^{2}-x^{3}+ax^{2}+bx+c} 7411:{\displaystyle {\overline {\mathbb {F} }}_{p}} 5062:{\displaystyle U_{i}=Z\smallsetminus V(n_{i})} 3031:{\textstyle V(f)=\operatorname {Spec} (R/(f))} 1746:; the topological closure of the scheme point 282:are in one-to-one correspondence with the set 11008:Bulletin of the American Mathematical Society 9552:. This generalizes to a relation between the 8661:{\displaystyle \mathrm {Spec} \,\mathbb {C} } 4565:This also gives a geometric interpretaton of 4182:{\displaystyle \mathbb {Z} /(0)=\mathbb {Z} } 2395:{\displaystyle r=r(x_{1},\ldots ,x_{n})\in R} 1422:; its coordinate ring is the polynomial ring 142:of rings. The cases of main interest are the 9584:be the closed subscheme of the affine line A 9192:has enough information to determine the set 8563: 8557: 8274:{\displaystyle \mathbb {C} \mathbb {P} ^{n}} 5910:A higher degree "horizontal" subscheme like 5428:, and a "spatial direction" with coordinate 5134: 5106: 3741: 3687: 3655: 3596: 3516: 3499: 3360:, the principal ideals of the prime numbers 2264: 2189: 2079: 2033: 1846: 1796: 9212:. (In particular, the closed subscheme of A 9204:-rational points for every extension field 8446:{\displaystyle \operatorname {Proj} R/(f).} 7353:corresponding to Galois orbits of roots of 7333:contains the points in each characteristic 6449:{\displaystyle {\mathfrak {m}}=(3,x^{2}+1)} 6041:. This behaves differently under different 5663:-coordinate, we have the "horizontal line" 5227:, whose points are all of the prime ideals 39:in several ways, such as taking account of 11151: 10914: 10866: 10854: 10813: 10773: 10496:A further generalization is the idea of a 10406:-module that is the sheaf associated to a 9112:is not algebraically closed, then the set 8320:of positive degree in the polynomial ring 7965:are all singular schemes. For example, if 4209:is determined by its values at the points 686: 157:of a commutative ring; its points are the 11293: 11036: 11020: 10985: 10975: 10902: 10761: 10720: 10705: 10693: 10506:generalize algebraic spaces by having an 10308:, which are sheaves of abelian groups on 10282:, generalizing the notion of (algebraic) 10090: 9926:{\displaystyle (y)+(x^{2}-y)=(x^{2},\,y)} 9916: 9668: 9056: 8952:on the positive integers, with the ideal 8786: 8769: 8734: 8685: 8629: 8627: 8584: 8544: 8482: 8476: 8342: 8290: 8261: 8255: 8211: 8190:can be constructed as a scheme by gluing 8165: 8008: 7707: 7675: 7655: 7599: 7539: 7487: 7393: 7175: 7123: 6974: 6944:{\displaystyle d=\operatorname {deg} (f)} 6811: 6773: 6726: 6696: 6501: 6368:{\displaystyle (2,x^{2}+1)=(2,(x-1)^{2})} 5804:corresponding to the rational coordinate 5478:defines a "vertical line", the subscheme 5245: 5201: 5155: 5130: 5092: 5086: 4926: 4911:{\displaystyle (n_{1},\ldots ,n_{r})=(1)} 4489: 4478: 4315: 4175: 4153: 3992: 3969: 3870: 3788: 3636: 3570: 3459: 3374: 3317:. The Zariski topology has closed points 3300: 3263: 3126: 2917: 2251: 1319: 1218: 1185: 1156: 671:. In the spirit of scheme theory, affine 11213:Algebraic Geometry and Arithmetic Curves 11210: 10040:, but rather a fat point containing the 9631:if and only if they have the same value 9568:). Indeed, Grothendieck's theory of the 9012: 7449:. This is a major obstacle to analyzing 7447:intersect with the expected multiplicity 6997:corresponds to a function on the scheme 6662:{\displaystyle {\mathfrak {m}}=(p,f(x))} 6123:{\displaystyle x=\pm 2\ {\text{mod}}\ 5} 5587:{\displaystyle {\mathfrak {m}}=(p,f(x))} 5312:{\displaystyle {\mathfrak {m}}=(p,f(x))} 4138:{\displaystyle n({\mathfrak {p}}_{0})=n} 3884:corresponds to a function on the scheme 2873:{\displaystyle f=f(x_{1},\ldots ,x_{n})} 1667:{\displaystyle {\mathfrak {p}}\subset R} 1068:always exists. That is, for any schemes 11279: 11241: 11001: 10959: 10942: 10878: 10785: 10749: 9615:); in particular, the regular function 9332:-coordinate. The fiber of the morphism 9136:, but these sets are not determined by 8747:{\displaystyle f:X\to \mathbb {A} ^{n}} 4369:is the vanishing locus of the function 3424:{\displaystyle {\mathfrak {p}}_{0}=(0)} 3353:{\displaystyle {\mathfrak {m}}_{p}=(p)} 3250: 1395:{\displaystyle a=(a_{1},\ldots ,a_{n})} 1344:is the algebraic variety of all points 667:is the spectrum of the polynomial ring 637:A basic example of an affine scheme is 617:'s "Red Book". The sheaf properties of 161:of the ring, and its closed points are 11354: 11327:Can one explain schemes to biologists? 10920: 10791: 10680:Introduction of the first edition of " 9655:Nilpotent elements arise naturally in 9231:= −1 is a nonempty topological space.) 8996:, and in particular, each point is an 7468: 7445:, so that pairs of curves may fail to 2780:{\displaystyle r({\mathfrak {m}}_{a})} 2595:{\displaystyle R\to R/{\mathfrak {p}}} 1624:, the set of polynomials vanishing at 1116:exists in the category of schemes. If 109:Wiles's proof of Fermat's Last Theorem 10739:, Séminaire Henri Cartan, vol. 8 10437:can be viewed as a coherent sheaf on 8139: 5759:{\displaystyle {\mathfrak {p}}=(x-a)} 605:In the early days, this was called a 577:, which assigns to every open subset 11124:Publications Mathématiques de l'IHÉS 10316:over the sheaf of regular functions 10230:, or else a subscheme isomorphic to 9686:{\displaystyle \mathbb {A} _{k}^{2}} 9016: 8360:{\displaystyle \mathbb {P} _{R}^{n}} 8229:{\displaystyle \mathbb {P} _{R}^{n}} 8183:{\displaystyle \mathbb {P} _{R}^{n}} 7191:{\displaystyle r(x)\in \mathbb {Z} } 6990:{\displaystyle r(x)\in \mathbb {Z} } 6286:{\displaystyle x=1\ {\text{mod}}\ 2} 4983:{\displaystyle \rho _{i}=a_{i}n_{i}} 4940:. Indeed, we may consider the terms 4854:, then they generate the unit ideal 3144:{\displaystyle \mathbb {A} _{k}^{2}} 2819:The vanishing locus of a polynomial 1522:{\displaystyle X=\mathrm {Spec} (R)} 826:) of schemes and ring homomorphisms 438: 146:, in which the coordinate rings are 10267: 9603:. The ring of regular functions on 9068:Given some polynomial equations in 8375:, this subscheme can be written as 7213: 7095: 7065: 7032: 6716: 6684: 6627: 6410: 5733: 5552: 5536:{\displaystyle {\mathfrak {p}}=(p)} 5516: 5277: 5236: 4827:{\displaystyle {\mathfrak {m}}_{p}} 4813: 4796:{\displaystyle n_{1},\ldots ,n_{r}} 4654:{\displaystyle a_{1},\ldots ,a_{r}} 4608:{\displaystyle n_{1},\ldots ,n_{r}} 4555:{\displaystyle {\mathfrak {m}}_{p}} 4541: 4451: 4362:{\displaystyle {\mathfrak {m}}_{p}} 4348: 4296: 4233:{\displaystyle {\mathfrak {m}}_{p}} 4219: 4115: 4055: 3951: 3928:{\displaystyle {\mathfrak {m}}_{p}} 3914: 3723: 3693: 3505: 3398: 3327: 2763: 2680: 2652: 2626:{\displaystyle {\mathfrak {m}}_{a}} 2612: 2587: 2526: 2492: 2460: 2074: 2038: 1945: 1934: 1883:{\displaystyle {\mathfrak {m}}_{a}} 1869: 1841: 1831: 1801: 1785: 1755: 1713: 1653: 1539: 849:, the category of schemes has Spec( 798:on the rings of regular functions, 609:, and a scheme was defined to be a 245:, which has the advantage of being 16:Generalization of algebraic variety 13: 10468: 9448:This in turn is equivalent to the 9100:): define the Zariski topology on 8921: 8868:were affine, it would follow that 8623: 8620: 8617: 8614: 8453:For example, the closed subscheme 7831: 7224:{\displaystyle r({\mathfrak {m}})} 7056: 7053: 7050: 6485:{\displaystyle x=\pm {\sqrt {-1}}} 6456:is a prime ideal corresponding to 6034:{\displaystyle x=\pm {\sqrt {-1}}} 5643:points" of the scheme. Fixing the 5450: 5147:is a variety with coordinate ring 3764: 3539: 3437: 2787:corresponds to the original value 2740:{\displaystyle x_{i}\mapsto a_{i}} 2537:{\displaystyle r({\mathfrak {p}})} 2305:{\displaystyle {\mathcal {O}}_{X}} 2291: 2134: 1506: 1503: 1500: 1497: 1237:{\displaystyle \mathbb {A} ^{m+n}} 751:An algebraic variety over a field 546:admitting a covering by open sets 14: 11373: 11319: 10764:, sections VII.4, VIII.2, VIII.3. 10195:-module, i.e. its dimension as a 9638:at the origin. Allowing such non- 9317:double cover of the affine line A 9148:over the real numbers defined by 8676:extends to a regular function on 7509:{\displaystyle f\in \mathbb {Z} } 3877:{\displaystyle n\in \mathbb {Z} } 3466:{\displaystyle p\in \mathbb {Z} } 3381:{\displaystyle p\in \mathbb {Z} } 2500:{\displaystyle R/{\mathfrak {p}}} 449:Séminaire de géométrie algébrique 398:Foundations of Algebraic Geometry 87:(the last of which was proved by 10682:Éléments de géométrie algébrique 10290:, one starts by considering the 9933:. Since the intersection is not 9477: 9460: 9422: 9354: 9020: 8698:{\displaystyle \mathbb {A} ^{n}} 8303:{\displaystyle \mathbb {C} ^{n}} 7720:{\displaystyle \mathbb {F} _{p}} 6824:{\displaystyle \mathbb {F} _{p}} 6514:{\displaystyle \mathbb {F} _{3}} 4803:have no common vanishing points 3106:{\displaystyle x^{2}=y^{2}(y+1)} 1198:{\displaystyle \mathbb {A} ^{n}} 1169:{\displaystyle \mathbb {A} ^{m}} 1128:, their fiber product over Spec( 755:can be defined as a scheme over 445:Éléments de géométrie algébrique 350:) varieties. In particular, the 76:Éléments de géométrie algébrique 10963:Illinois Journal of Mathematics 10831: 9937:, this is not merely the point 9237:The points of the affine line A 8576:, say over the complex numbers 4994:subordinate to the covering of 4395:, the point where the value of 3388:; as well as the generic point 2707:, with the natural isomorphism 2468:{\displaystyle {\mathfrak {p}}} 1918:{\displaystyle a\in {\bar {V}}} 1763:{\displaystyle {\mathfrak {p}}} 1270: 481:he assigned a commutative ring 477:of rings: to every open subset 388:The algebraic geometers of the 334:. From the 1920s to the 1940s, 330:, essentially because they are 11282:Fundamental Algebraic Geometry 10869:, Exercises I.3.6 and III.4.3. 10726: 10674: 10491:Artin representability theorem 10410:on each affine open subset of 10182: 10170: 10133: 10120: 10115: 10109: 10094: 10074: 10069: 10057: 10033:{\displaystyle (x,y)\subset k} 10027: 10015: 10006: 9994: 9974: 9962: 9956: 9944: 9920: 9900: 9894: 9875: 9869: 9863: 9843: 9824: 9768: 9762: 9735: 9723: 9526: 9514: 9511: 9499: 9487: 9481: 9470: 9464: 9432: 9426: 9412: 9403: 9391: 9388: 9376: 9364: 9358: 8981:{\textstyle \prod _{m\neq n}k} 8851: 8845: 8822: 8790: 8779: 8764: 8729: 8655: 8633: 8437: 8431: 8423: 8391: 8326:determines a closed subscheme 8061: 8029: 8024: 8012: 7749: 7737: 7685: 7670: 7659: 7651: 7572: 7569: 7563: 7555: 7543: 7535: 7503: 7491: 7369: 7363: 7320: 7317: 7311: 7305: 7276: 7270: 7247: 7241: 7218: 7208: 7185: 7179: 7168: 7162: 7139: 7133: 7115: 7109: 7100: 7090: 7037: 7027: 6984: 6978: 6967: 6961: 6938: 6932: 6886:; this is a finite field with 6873: 6867: 6789: 6783: 6765: 6762: 6756: 6750: 6742: 6736: 6706: 6700: 6689: 6679: 6656: 6653: 6647: 6635: 6602: 6583: 6573:as two fused points. Overall, 6560: 6535: 6443: 6418: 6362: 6353: 6340: 6331: 6325: 6300: 6210: 6192: 6186: 6168: 6162: 6137: 5939: 5920: 5854: 5848: 5791: 5776: 5753: 5741: 5711: 5699: 5610: 5604: 5581: 5578: 5572: 5560: 5530: 5524: 5494: 5488: 5355: 5349: 5306: 5303: 5297: 5285: 5255: 5249: 5214: 5211: 5205: 5197: 5165: 5159: 5056: 5043: 4905: 4899: 4893: 4861: 4482: 4474: 4462: 4445: 4307: 4290: 4168: 4162: 4126: 4109: 4066: 4049: 3984: 3978: 3962: 3945: 3840: 3792: 3781: 3775: 3590: 3574: 3563: 3550: 3418: 3412: 3347: 3341: 3304: 3296: 3234: 3231: 3219: 3193: 3185: 3173: 3151:, corresponding to the scheme 3100: 3088: 3025: 3022: 3016: 3005: 2993: 2987: 2977:. The corresponding scheme is 2958: 2952: 2909: 2903: 2897: 2867: 2835: 2803: 2797: 2774: 2757: 2724: 2663: 2646: 2574: 2531: 2521: 2415: 2383: 2351: 2183: 2167: 2158: 2145: 2027: 2021: 1909: 1790: 1780: 1730: 1718: 1708: 1702: 1687: 1611: 1553: 1516: 1510: 1470: 1438: 1389: 1357: 1308: 216: 1: 11286:American Mathematical Society 11044:History of Algebraic Geometry 11022:10.1090/S0273-0979-01-00913-2 10952: 10905:, sections VIII.2 and VIII.3. 5073:Affine line over the integers 4569:stating that if the integers 1109:{\displaystyle X\times _{Y}Z} 947:More generally, for a scheme 847:category of commutative rings 513: 11332:The Stacks Project Authors, 11184:Igor R. Shafarevich (2013). 10667: 10566:. In this setting, known as 10559:that is an algebraic space. 10250:together with a line in the 9644:schemes brings the ideas of 9184:− 0.) By contrast, a scheme 8992:. This topological space is 8887:be a field. Then the scheme 8754:induces an isomorphism from 8591:{\displaystyle \mathbb {C} } 7585:has a canonical morphism to 7473:If we consider a polynomial 7397: 7198:is determined by its values 6566:{\displaystyle V(3,x^{2}+1)} 5171:{\displaystyle \mathbb {Z} } 4933:{\displaystyle \mathbb {Z} } 4145:in the generic residue ring 3904:, a function whose value at 3270:{\displaystyle \mathbb {Z} } 2970:{\displaystyle (f)\subset R} 2281:This induces a unique sheaf 2095:for irreducible polynomials 932:) is also called the set of 184:of schemes (called a scheme 35:that enlarges the notion of 7: 10733:Chevalley, C. (1955–1956), 10708:, sections VII.2 and VII.5. 10589: 9980:{\displaystyle (x,y)=(0,0)} 9752:axis, which is the variety 9659:. For example in the plane 9000:. Since affine schemes are 8946:Stone–Čech compactification 5972:-values which are roots of 5838:, which does not intersect 4039:the function is defined by 3433:closure is the whole scheme 2402:, a polynomial function on 1483:. The corresponding scheme 1262: 1076:with morphisms to a scheme 419:, motivated in part by the 10: 11378: 10891:Eisenbud & Harris 1998 10826:Eisenbud & Harris 1998 10657:Moduli of algebraic curves 10568:derived algebraic geometry 10325:. In particular, a module 10271: 9849:{\displaystyle V(x^{2}-y)} 9564:(which classifies certain 8709:≥ 2: this is analogous to 6608:{\displaystyle V(x^{2}+1)} 5945:{\displaystyle V(x^{2}+1)} 4531:has "poles" at the points 3935:lies in the residue field 2475:lies in the quotient ring 2424:{\displaystyle {\bar {X}}} 542:is a locally ringed space 253:, and more generally over 107:, which eventually led to 10463:coherent sheaf cohomology 10408:finitely generated module 10154:intersection multiplicity 9180:) can be identified with 8145:For any commutative ring 8077:then its discriminant is 7382:in the algebraic closure 6850:{\displaystyle x=\alpha } 6492:in an extension field of 4240:only, so we can think of 1124:are schemes over a field 1082:categorical fiber product 596:ring of regular functions 358:of the complex numbers). 265:Hilbert's Nullstellensatz 211:glossary of scheme theory 10929:Stacks Project, Tag 07Y1 10800:Stacks Project, Tag 020D 10518:on an algebraic variety 10393:(on a Noetherian scheme 10329:over a commutative ring 9652:into algebraic geometry. 9599:= 0, sometimes called a 9340:, yielding the morphism 9313:. It can be viewed as a 9076:, one can study the set 8246:complex projective space 8103:{\displaystyle -27p^{2}} 5766:. We also have the line 3431:, the zero ideal, whose 1066:fiber product of schemes 951:over a commutative ring 864:over a commutative ring 794:of schemes determines a 630:) mean that its elements 534:) of a commutative ring 73:in 1960 in his treatise 11217:Oxford University Press 11111:Grothendieck, Alexandre 11080:The Geometry of Schemes 10572:E-infinity ring spectra 10156:of 2 is defined as the 9807:{\displaystyle y=x^{2}} 9713:, with coordinate ring 9570:étale fundamental group 9452:-2 extension of fields 9172:) not empty. (In fact, 9072:variables over a field 8872:is an isomorphism, but 8369:projective hypersurface 7516:then the affine scheme 7326:{\displaystyle V(f(x))} 6802:, a field extension of 5998:{\displaystyle x^{2}+1} 5797:{\displaystyle V(bx-a)} 5388:. Thus, we may picture 5339:is a prime number, and 4918:in the coordinate ring 4735:Hilbert Nullstellensatz 3529:, with coordinate ring 2942:, corresponding to the 687:The category of schemes 290:-tuples of elements of 10987:10.1215/ijm/1373636688 10648:Linear algebraic group 10545:Deligne–Mumford stacks 10528:, which remembers the 10514:of an algebraic group 10209: 10189: 10146: 10034: 9981: 9927: 9850: 9808: 9775: 9742: 9707: 9687: 9542: 9442: 9057:Motivation for schemes 8982: 8938: 8925: 8858: 8829: 8748: 8699: 8662: 8592: 8570: 8497: 8447: 8361: 8315:homogeneous polynomial 8304: 8275: 8230: 8184: 8130: 8104: 8071: 7985:is a prime number and 7979: 7959: 7813: 7721: 7692: 7607: 7579: 7510: 7435: 7412: 7376: 7347: 7327: 7289: 7288:{\displaystyle r(x)=p} 7254: 7225: 7192: 7146: 7074: 7011: 6991: 6945: 6907: 6880: 6851: 6825: 6796: 6663: 6609: 6567: 6515: 6486: 6450: 6395: 6369: 6287: 6243: 6217: 6124: 6081: 6055: 6035: 5999: 5966: 5946: 5901: 5881: 5861: 5832: 5798: 5760: 5718: 5717:{\displaystyle V(x-a)} 5683: 5657: 5637: 5623:, the "characteristic 5617: 5588: 5537: 5501: 5472: 5455: 5442: 5422: 5402: 5382: 5362: 5333: 5313: 5262: 5221: 5172: 5141: 5063: 5008: 4984: 4934: 4912: 4848: 4828: 4797: 4751: 4727: 4655: 4609: 4556: 4525: 4497: 4429: 4409: 4389: 4363: 4329: 4274: 4254: 4234: 4203: 4183: 4139: 4093: 4030: 4006: 3929: 3898: 3878: 3847: 3748: 3662: 3523: 3467: 3442: 3425: 3382: 3354: 3311: 3271: 3241: 3145: 3107: 3052: 3032: 2971: 2936: 2874: 2810: 2781: 2741: 2701: 2627: 2596: 2564:under the natural map 2558: 2538: 2501: 2469: 2445: 2425: 2396: 2326: 2306: 2279: 2271: 2115: 2114:{\displaystyle f\in R} 2093: 2086: 1983: 1960: 1919: 1884: 1853: 1764: 1740: 1668: 1638: 1618: 1523: 1477: 1416: 1396: 1338: 1289: 1238: 1199: 1170: 1110: 1057:is determined by this 978:means a morphism Spec( 174:relative point of view 71:Alexander Grothendieck 10816:, Proposition II.2.3. 10441:that is zero outside 10210: 10190: 10147: 10035: 9987:defined by the ideal 9982: 9928: 9851: 9809: 9776: 9743: 9708: 9688: 9560:in topology) and the 9543: 9443: 9328:by projecting to the 9013:Examples of morphisms 8998:irreducible component 8983: 8939: 8905: 8859: 8830: 8749: 8700: 8663: 8593: 8571: 8516:line with two origins 8498: 8448: 8362: 8305: 8276: 8231: 8194:+ 1 copies of affine 8185: 8131: 8105: 8072: 7980: 7960: 7814: 7722: 7693: 7608: 7580: 7511: 7451:Diophantine equations 7436: 7413: 7377: 7348: 7328: 7290: 7255: 7226: 7193: 7147: 7075: 7012: 6992: 6946: 6908: 6906:{\displaystyle p^{d}} 6881: 6852: 6826: 6797: 6664: 6618:The residue field at 6610: 6568: 6525:), we should picture 6516: 6487: 6451: 6396: 6370: 6288: 6244: 6218: 6125: 6082: 6056: 6036: 6000: 5967: 5947: 5902: 5882: 5862: 5833: 5831:{\displaystyle x=a/b} 5799: 5761: 5719: 5684: 5658: 5638: 5618: 5589: 5538: 5502: 5473: 5458:A given prime number 5454: 5443: 5423: 5403: 5383: 5363: 5334: 5314: 5263: 5222: 5173: 5142: 5064: 5009: 4990:as forming a kind of 4985: 4935: 4913: 4849: 4829: 4798: 4752: 4728: 4656: 4610: 4557: 4526: 4498: 4430: 4410: 4390: 4364: 4330: 4275: 4255: 4235: 4204: 4184: 4140: 4094: 4031: 4007: 3930: 3899: 3879: 3848: 3749: 3663: 3524: 3468: 3441: 3426: 3383: 3355: 3312: 3272: 3255:The ring of integers 3242: 3146: 3108: 3053: 3033: 2972: 2937: 2875: 2811: 2782: 2742: 2702: 2628: 2597: 2559: 2539: 2502: 2470: 2446: 2426: 2397: 2327: 2307: 2272: 2123: 2116: 2087: 1991: 1984: 1961: 1920: 1885: 1854: 1765: 1741: 1669: 1639: 1619: 1524: 1478: 1417: 1397: 1339: 1290: 1255:), it has all finite 1239: 1200: 1171: 1111: 796:pullback homomorphism 729:of schemes. A scheme 498:. These objects Spec( 336:B. L. van der Waerden 91:). Strongly based on 59:are defined over the 10696:, Chapters IV and V. 10530:stabilizer subgroups 10500:. Crudely speaking, 10425:. An example is the 10369:quasi-coherent sheaf 10199: 10164: 10048: 9991: 9941: 9860: 9818: 9785: 9774:{\displaystyle V(y)} 9756: 9717: 9697: 9663: 9456: 9344: 8956: 8891: 8857:{\displaystyle O(X)} 8839: 8758: 8717: 8680: 8610: 8580: 8533: 8471: 8379: 8337: 8333:in projective space 8285: 8251: 8206: 8160: 8114: 8081: 7989: 7969: 7827: 7731: 7702: 7621: 7589: 7520: 7477: 7425: 7386: 7375:{\displaystyle f(x)} 7357: 7337: 7299: 7264: 7253:{\displaystyle V(p)} 7235: 7202: 7156: 7084: 7021: 7001: 6955: 6917: 6890: 6879:{\displaystyle f(x)} 6861: 6835: 6806: 6673: 6622: 6577: 6529: 6496: 6460: 6405: 6379: 6297: 6257: 6227: 6134: 6091: 6087:, we get two points 6065: 6045: 6009: 5976: 5956: 5914: 5891: 5871: 5860:{\displaystyle V(p)} 5842: 5808: 5770: 5728: 5693: 5667: 5647: 5627: 5616:{\displaystyle f(x)} 5598: 5547: 5511: 5500:{\displaystyle V(p)} 5482: 5462: 5432: 5412: 5392: 5372: 5361:{\displaystyle f(x)} 5343: 5323: 5272: 5231: 5182: 5151: 5081: 5018: 4998: 4944: 4922: 4858: 4838: 4807: 4761: 4741: 4665: 4619: 4573: 4535: 4507: 4439: 4419: 4399: 4373: 4342: 4338:Note that the point 4284: 4264: 4244: 4213: 4193: 4149: 4103: 4043: 4020: 3939: 3908: 3888: 3860: 3758: 3672: 3533: 3477: 3449: 3392: 3364: 3321: 3281: 3259: 3251:Spec of the integers 3155: 3121: 3117:in the affine plane 3062: 3042: 2981: 2949: 2888: 2823: 2809:{\displaystyle r(a)} 2791: 2751: 2711: 2640: 2606: 2568: 2548: 2515: 2479: 2455: 2435: 2406: 2339: 2316: 2285: 2128: 2099: 1996: 1973: 1929: 1894: 1863: 1774: 1750: 1678: 1648: 1628: 1533: 1487: 1426: 1406: 1402:with coordinates in 1348: 1299: 1279: 1213: 1180: 1151: 1132:) may be called the 1087: 955:and any commutative 524:locally ringed space 447:(EGA) and the later 328:projective varieties 247:algebraically closed 231:Jean-Victor Poncelet 11304:2004math.....12512V 11188:. Springer-Verlag. 11161:. Springer-Verlag. 10857:, Example II.4.0.1. 10828:, Proposition VI-2. 10622:Birational geometry 10557:coarse moduli space 9781:, and the parabola 9682: 9657:intersection theory 9286:be the plane curve 8492: 8356: 8225: 8179: 8149:and natural number 8129:{\displaystyle 3,p} 7469:Arithmetic surfaces 6394:{\displaystyle p=3} 6242:{\displaystyle p=2} 6080:{\displaystyle p=5} 5724:of the prime ideal 5682:{\displaystyle x=a} 5507:of the prime ideal 5102: 4757:: if the functions 4524:{\displaystyle a/b} 4388:{\displaystyle n=p} 4016:of integers modulo 3839: 3812: 3668:. For the open set 3140: 2931: 1476:{\displaystyle R=k} 1333: 1143:in the category of 736:a commutative ring 721:) means a morphism 697:morphism of schemes 581:a commutative ring 568:comes with a sheaf 225:equations over the 101:homological algebra 93:commutative algebra 11335:The Stacks Project 11288:, pp. 1–104, 11284:, Providence, RI: 11158:Algebraic Geometry 11137:10.1007/bf02684778 10532:for the action of 10205: 10185: 10142: 10030: 9977: 9923: 9846: 9804: 9771: 9738: 9703: 9683: 9666: 9578:Nilpotent elements 9556:(which classifies 9538: 9438: 9277:rational functions 9275:) is the field of 9032:. You can help by 8978: 8974: 8934: 8854: 8825: 8744: 8695: 8658: 8602:is not affine for 8588: 8566: 8493: 8474: 8443: 8371:. In terms of the 8357: 8340: 8300: 8271: 8226: 8209: 8180: 8163: 8140:Non-affine schemes 8126: 8100: 8067: 7975: 7955: 7809: 7717: 7688: 7615:arithmetic surface 7603: 7575: 7506: 7431: 7408: 7372: 7343: 7323: 7285: 7250: 7231:at closed points; 7221: 7188: 7142: 7070: 7007: 6987: 6941: 6903: 6876: 6847: 6821: 6792: 6659: 6605: 6563: 6511: 6482: 6446: 6391: 6365: 6283: 6239: 6213: 6120: 6077: 6051: 6031: 5995: 5962: 5942: 5897: 5877: 5857: 5828: 5794: 5756: 5714: 5679: 5653: 5633: 5613: 5584: 5533: 5497: 5468: 5456: 5438: 5418: 5398: 5378: 5358: 5329: 5309: 5258: 5217: 5168: 5137: 5084: 5059: 5004: 4992:partition of unity 4980: 4930: 4908: 4844: 4824: 4793: 4747: 4723: 4651: 4605: 4552: 4521: 4493: 4425: 4405: 4385: 4359: 4325: 4270: 4250: 4230: 4199: 4179: 4135: 4089: 4026: 4002: 3925: 3894: 3874: 3843: 3822: 3795: 3744: 3658: 3616: 3519: 3463: 3443: 3421: 3378: 3350: 3307: 3267: 3237: 3141: 3124: 3103: 3048: 3028: 2967: 2932: 2915: 2870: 2806: 2777: 2737: 2697: 2623: 2602:. A maximal ideal 2592: 2554: 2534: 2497: 2465: 2441: 2421: 2392: 2335:Each ring element 2322: 2302: 2267: 2209: 2111: 2082: 1979: 1956: 1925:, or equivalently 1915: 1880: 1849: 1760: 1736: 1664: 1634: 1614: 1519: 1473: 1412: 1392: 1334: 1317: 1285: 1234: 1195: 1166: 1106: 769:integral separated 656:. By definition, A 526:isomorphic to the 196:algebraic surfaces 167:rings of fractions 144:Noetherian schemes 81:algebraic geometry 69:was introduced by 25:algebraic geometry 11264:978-3-540-63293-1 11226:978-0-19-850284-5 11211:Qing Liu (2002). 11168:978-0-387-90244-9 11153:Hartshorne, Robin 11094:978-0-387-98637-1 11055:978-0-534-03723-9 10945:, Definition 4.6. 10839:"Elliptic curves" 10553:Keel–Mori theorem 10208:{\displaystyle k} 10188:{\displaystyle k} 10137: 10098: 9741:{\displaystyle k} 9706:{\displaystyle k} 9554:fundamental group 9529: 9406: 9066:Field extensions. 9050: 9049: 9006:Noetherian scheme 8959: 8373:Proj construction 8065: 7978:{\displaystyle p} 7948: 7944: 7940: 7613:and is called an 7434:{\displaystyle Y} 7400: 7346:{\displaystyle p} 7062: 7048: 7010:{\displaystyle Y} 6831:adjoining a root 6480: 6279: 6275: 6271: 6116: 6112: 6108: 6061:-coordinates. At 6054:{\displaystyle p} 6029: 5965:{\displaystyle x} 5900:{\displaystyle b} 5880:{\displaystyle p} 5656:{\displaystyle x} 5636:{\displaystyle p} 5471:{\displaystyle p} 5441:{\displaystyle x} 5421:{\displaystyle p} 5401:{\displaystyle Y} 5381:{\displaystyle p} 5332:{\displaystyle p} 5122: 5118: 5114: 5077:The affine space 5014:by the open sets 5007:{\displaystyle Z} 4847:{\displaystyle Z} 4750:{\displaystyle Z} 4428:{\displaystyle Z} 4408:{\displaystyle p} 4273:{\displaystyle f} 4253:{\displaystyle n} 4202:{\displaystyle n} 4085: 4081: 4077: 4029:{\displaystyle p} 3897:{\displaystyle Z} 3645: 3628: 3624: 3620: 3615: 3115:nodal cubic curve 3051:{\displaystyle k} 2900: 2557:{\displaystyle r} 2444:{\displaystyle X} 2418: 2325:{\displaystyle U} 2242: 2227: 2224: 2220: 2216: 2213: 2208: 2065: 2062: 2058: 2054: 2051: 1982:{\displaystyle X} 1912: 1828: 1825: 1821: 1817: 1814: 1770:is the subscheme 1733: 1705: 1690: 1637:{\displaystyle a} 1415:{\displaystyle k} 1311: 1288:{\displaystyle k} 1059:functor of points 1045:from commutative 1029:, the assignment 998:) for the set of 900:) for the set of 740:means a morphism 555:, such that each 439:Origin of schemes 417:Jean-Pierre Serre 365:(not embedded in 124:topological space 37:algebraic variety 11369: 11338: 11314: 11297: 11276: 11238: 11207: 11180: 11148: 11106: 11066: 11047: 11033: 11024: 10998: 10989: 10979: 10970:(4): 1367–1384, 10946: 10940: 10934: 10932: 10924: 10918: 10912: 10906: 10900: 10894: 10893:, Example II-10. 10888: 10882: 10876: 10870: 10864: 10858: 10852: 10846: 10845: 10843: 10835: 10829: 10823: 10817: 10811: 10805: 10803: 10795: 10789: 10783: 10777: 10771: 10765: 10759: 10753: 10747: 10741: 10740: 10730: 10724: 10723:, section VII.4. 10718: 10709: 10703: 10697: 10691: 10685: 10678: 10627:Étale cohomology 10576:derived functors 10503:algebraic stacks 10459:sheaf cohomology 10357: 10356: 10355: 10350: 10292:abelian category 10280:coherent sheaves 10268:Coherent sheaves 10222:complex variety 10214: 10212: 10211: 10206: 10194: 10192: 10191: 10186: 10151: 10149: 10148: 10143: 10138: 10136: 10132: 10131: 10118: 10104: 10099: 10097: 10086: 10085: 10072: 10052: 10039: 10037: 10036: 10031: 9986: 9984: 9983: 9978: 9932: 9930: 9929: 9924: 9912: 9911: 9887: 9886: 9855: 9853: 9852: 9847: 9836: 9835: 9813: 9811: 9810: 9805: 9803: 9802: 9780: 9778: 9777: 9772: 9747: 9745: 9744: 9739: 9712: 9710: 9709: 9704: 9692: 9690: 9689: 9684: 9681: 9676: 9671: 9594: 9593: 9566:field extensions 9547: 9545: 9544: 9539: 9534: 9530: 9495: 9480: 9463: 9447: 9445: 9444: 9439: 9425: 9411: 9407: 9372: 9357: 9327: 9326: 9312: 9311: 9266: 9265: 9247: 9246: 9222: 9221: 9045: 9042: 9024: 9017: 8994:zero-dimensional 8987: 8985: 8984: 8979: 8973: 8943: 8941: 8940: 8935: 8933: 8929: 8924: 8919: 8863: 8861: 8860: 8855: 8834: 8832: 8831: 8826: 8821: 8820: 8802: 8801: 8789: 8778: 8777: 8772: 8753: 8751: 8750: 8745: 8743: 8742: 8737: 8704: 8702: 8701: 8696: 8694: 8693: 8688: 8667: 8665: 8664: 8659: 8654: 8653: 8632: 8626: 8597: 8595: 8594: 8589: 8587: 8575: 8573: 8572: 8567: 8553: 8552: 8547: 8509:rational numbers 8502: 8500: 8499: 8494: 8491: 8486: 8485: 8479: 8466: 8452: 8450: 8449: 8444: 8430: 8422: 8421: 8403: 8402: 8366: 8364: 8363: 8358: 8355: 8350: 8345: 8332: 8325: 8309: 8307: 8306: 8301: 8299: 8298: 8293: 8280: 8278: 8277: 8272: 8270: 8269: 8264: 8258: 8235: 8233: 8232: 8227: 8224: 8219: 8214: 8189: 8187: 8186: 8181: 8178: 8173: 8168: 8155:projective space 8135: 8133: 8132: 8127: 8109: 8107: 8106: 8101: 8099: 8098: 8076: 8074: 8073: 8068: 8066: 8064: 8054: 8053: 8041: 8040: 8027: 8011: 8005: 7984: 7982: 7981: 7976: 7964: 7962: 7961: 7956: 7946: 7945: 7942: 7938: 7931: 7930: 7915: 7914: 7884: 7883: 7874: 7873: 7858: 7857: 7839: 7838: 7818: 7816: 7815: 7810: 7793: 7792: 7777: 7776: 7764: 7763: 7726: 7724: 7723: 7718: 7716: 7715: 7710: 7697: 7695: 7694: 7689: 7684: 7683: 7678: 7663: 7662: 7658: 7633: 7632: 7612: 7610: 7609: 7604: 7602: 7584: 7582: 7581: 7576: 7562: 7542: 7515: 7513: 7512: 7507: 7490: 7440: 7438: 7437: 7432: 7417: 7415: 7414: 7409: 7407: 7406: 7401: 7396: 7391: 7381: 7379: 7378: 7373: 7352: 7350: 7349: 7344: 7332: 7330: 7329: 7324: 7294: 7292: 7291: 7286: 7259: 7257: 7256: 7251: 7230: 7228: 7227: 7222: 7217: 7216: 7197: 7195: 7194: 7189: 7178: 7151: 7149: 7148: 7143: 7132: 7131: 7126: 7099: 7098: 7079: 7077: 7076: 7071: 7069: 7068: 7060: 7059: 7046: 7036: 7035: 7016: 7014: 7013: 7008: 6996: 6994: 6993: 6988: 6977: 6950: 6948: 6947: 6942: 6912: 6910: 6909: 6904: 6902: 6901: 6885: 6883: 6882: 6877: 6856: 6854: 6853: 6848: 6830: 6828: 6827: 6822: 6820: 6819: 6814: 6801: 6799: 6798: 6793: 6782: 6781: 6776: 6749: 6735: 6734: 6729: 6720: 6719: 6713: 6699: 6688: 6687: 6668: 6666: 6665: 6660: 6631: 6630: 6614: 6612: 6611: 6606: 6595: 6594: 6572: 6570: 6569: 6564: 6553: 6552: 6520: 6518: 6517: 6512: 6510: 6509: 6504: 6491: 6489: 6488: 6483: 6481: 6473: 6455: 6453: 6452: 6447: 6436: 6435: 6414: 6413: 6400: 6398: 6397: 6392: 6374: 6372: 6371: 6366: 6361: 6360: 6318: 6317: 6292: 6290: 6289: 6284: 6277: 6276: 6273: 6269: 6248: 6246: 6245: 6240: 6222: 6220: 6219: 6214: 6155: 6154: 6129: 6127: 6126: 6121: 6114: 6113: 6110: 6106: 6086: 6084: 6083: 6078: 6060: 6058: 6057: 6052: 6040: 6038: 6037: 6032: 6030: 6022: 6004: 6002: 6001: 5996: 5988: 5987: 5971: 5969: 5968: 5963: 5951: 5949: 5948: 5943: 5932: 5931: 5906: 5904: 5903: 5898: 5886: 5884: 5883: 5878: 5866: 5864: 5863: 5858: 5837: 5835: 5834: 5829: 5824: 5803: 5801: 5800: 5795: 5765: 5763: 5762: 5757: 5737: 5736: 5723: 5721: 5720: 5715: 5689:, the subscheme 5688: 5686: 5685: 5680: 5662: 5660: 5659: 5654: 5642: 5640: 5639: 5634: 5622: 5620: 5619: 5614: 5593: 5591: 5590: 5585: 5556: 5555: 5543:: this contains 5542: 5540: 5539: 5534: 5520: 5519: 5506: 5504: 5503: 5498: 5477: 5475: 5474: 5469: 5447: 5445: 5444: 5439: 5427: 5425: 5424: 5419: 5407: 5405: 5404: 5399: 5387: 5385: 5384: 5379: 5367: 5365: 5364: 5359: 5338: 5336: 5335: 5330: 5318: 5316: 5315: 5310: 5281: 5280: 5267: 5265: 5264: 5259: 5248: 5240: 5239: 5226: 5224: 5223: 5218: 5204: 5177: 5175: 5174: 5169: 5158: 5146: 5144: 5143: 5138: 5133: 5120: 5119: 5116: 5112: 5101: 5096: 5095: 5089: 5068: 5066: 5065: 5060: 5055: 5054: 5030: 5029: 5013: 5011: 5010: 5005: 4989: 4987: 4986: 4981: 4979: 4978: 4969: 4968: 4956: 4955: 4939: 4937: 4936: 4931: 4929: 4917: 4915: 4914: 4909: 4892: 4891: 4873: 4872: 4853: 4851: 4850: 4845: 4833: 4831: 4830: 4825: 4823: 4822: 4817: 4816: 4802: 4800: 4799: 4794: 4792: 4791: 4773: 4772: 4756: 4754: 4753: 4748: 4732: 4730: 4729: 4724: 4716: 4715: 4706: 4705: 4687: 4686: 4677: 4676: 4660: 4658: 4657: 4652: 4650: 4649: 4631: 4630: 4614: 4612: 4611: 4606: 4604: 4603: 4585: 4584: 4561: 4559: 4558: 4553: 4551: 4550: 4545: 4544: 4530: 4528: 4527: 4522: 4517: 4502: 4500: 4499: 4494: 4492: 4481: 4461: 4460: 4455: 4454: 4434: 4432: 4431: 4426: 4414: 4412: 4411: 4406: 4394: 4392: 4391: 4386: 4368: 4366: 4365: 4360: 4358: 4357: 4352: 4351: 4334: 4332: 4331: 4326: 4324: 4323: 4318: 4306: 4305: 4300: 4299: 4279: 4277: 4276: 4271: 4259: 4257: 4256: 4251: 4239: 4237: 4236: 4231: 4229: 4228: 4223: 4222: 4208: 4206: 4205: 4200: 4188: 4186: 4185: 4180: 4178: 4161: 4156: 4144: 4142: 4141: 4136: 4125: 4124: 4119: 4118: 4098: 4096: 4095: 4090: 4083: 4082: 4079: 4075: 4065: 4064: 4059: 4058: 4035: 4033: 4032: 4027: 4011: 4009: 4008: 4003: 4001: 4000: 3995: 3977: 3972: 3961: 3960: 3955: 3954: 3934: 3932: 3931: 3926: 3924: 3923: 3918: 3917: 3903: 3901: 3900: 3895: 3883: 3881: 3880: 3875: 3873: 3852: 3850: 3849: 3844: 3838: 3830: 3811: 3803: 3791: 3774: 3773: 3768: 3767: 3753: 3751: 3750: 3745: 3740: 3739: 3738: 3737: 3727: 3726: 3710: 3709: 3708: 3707: 3697: 3696: 3667: 3665: 3664: 3659: 3643: 3639: 3626: 3625: 3622: 3618: 3617: 3614: 3613: 3601: 3589: 3588: 3573: 3562: 3561: 3549: 3548: 3543: 3542: 3528: 3526: 3525: 3520: 3515: 3514: 3509: 3508: 3489: 3488: 3472: 3470: 3469: 3464: 3462: 3430: 3428: 3427: 3422: 3408: 3407: 3402: 3401: 3387: 3385: 3384: 3379: 3377: 3359: 3357: 3356: 3351: 3337: 3336: 3331: 3330: 3316: 3314: 3313: 3308: 3303: 3276: 3274: 3273: 3268: 3266: 3246: 3244: 3243: 3238: 3218: 3217: 3205: 3204: 3192: 3150: 3148: 3147: 3142: 3139: 3134: 3129: 3112: 3110: 3109: 3104: 3087: 3086: 3074: 3073: 3057: 3055: 3054: 3049: 3037: 3035: 3034: 3029: 3015: 2976: 2974: 2973: 2968: 2941: 2939: 2938: 2933: 2930: 2925: 2920: 2902: 2901: 2893: 2879: 2877: 2876: 2871: 2866: 2865: 2847: 2846: 2815: 2813: 2812: 2807: 2786: 2784: 2783: 2778: 2773: 2772: 2767: 2766: 2746: 2744: 2743: 2738: 2736: 2735: 2723: 2722: 2706: 2704: 2703: 2698: 2690: 2689: 2684: 2683: 2676: 2662: 2661: 2656: 2655: 2632: 2630: 2629: 2624: 2622: 2621: 2616: 2615: 2601: 2599: 2598: 2593: 2591: 2590: 2584: 2563: 2561: 2560: 2555: 2544:as the image of 2543: 2541: 2540: 2535: 2530: 2529: 2506: 2504: 2503: 2498: 2496: 2495: 2489: 2474: 2472: 2471: 2466: 2464: 2463: 2450: 2448: 2447: 2442: 2430: 2428: 2427: 2422: 2420: 2419: 2411: 2401: 2399: 2398: 2393: 2382: 2381: 2363: 2362: 2331: 2329: 2328: 2323: 2311: 2309: 2308: 2303: 2301: 2300: 2295: 2294: 2276: 2274: 2273: 2268: 2263: 2262: 2254: 2240: 2225: 2222: 2221: 2218: 2214: 2211: 2210: 2207: 2206: 2194: 2182: 2181: 2157: 2156: 2144: 2143: 2138: 2137: 2120: 2118: 2117: 2112: 2091: 2089: 2088: 2083: 2078: 2077: 2063: 2060: 2059: 2056: 2052: 2049: 2042: 2041: 2008: 2007: 1988: 1986: 1985: 1980: 1965: 1963: 1962: 1957: 1955: 1954: 1949: 1948: 1938: 1937: 1924: 1922: 1921: 1916: 1914: 1913: 1905: 1889: 1887: 1886: 1881: 1879: 1878: 1873: 1872: 1858: 1856: 1855: 1850: 1845: 1844: 1835: 1834: 1826: 1823: 1822: 1819: 1815: 1812: 1805: 1804: 1789: 1788: 1769: 1767: 1766: 1761: 1759: 1758: 1745: 1743: 1742: 1737: 1735: 1734: 1726: 1717: 1716: 1707: 1706: 1698: 1692: 1691: 1683: 1673: 1671: 1670: 1665: 1657: 1656: 1643: 1641: 1640: 1635: 1623: 1621: 1620: 1615: 1610: 1609: 1597: 1596: 1578: 1577: 1565: 1564: 1549: 1548: 1543: 1542: 1528: 1526: 1525: 1520: 1509: 1482: 1480: 1479: 1474: 1469: 1468: 1450: 1449: 1421: 1419: 1418: 1413: 1401: 1399: 1398: 1393: 1388: 1387: 1369: 1368: 1343: 1341: 1340: 1335: 1332: 1327: 1322: 1313: 1312: 1304: 1294: 1292: 1291: 1286: 1243: 1241: 1240: 1235: 1233: 1232: 1221: 1209:is affine space 1204: 1202: 1201: 1196: 1194: 1193: 1188: 1175: 1173: 1172: 1167: 1165: 1164: 1159: 1115: 1113: 1112: 1107: 1102: 1101: 1021:.) For a scheme 884:of the morphism 699:.) For a scheme 666: 665: 465:as the space of 460:commutative ring 421:Weil conjectures 413:Masayoshi Nagata 409:Claude Chevalley 402:universal domain 375:Jacobian variety 367:projective space 363:abstract variety 352:Zariski topology 348:quasi-projective 259:complex analysis 235:Bernhard Riemann 148:Noetherian rings 85:Weil conjectures 53:commutative ring 11377: 11376: 11372: 11371: 11370: 11368: 11367: 11366: 11352: 11351: 11325:David Mumford, 11322: 11317: 11265: 11227: 11196: 11169: 11115:Dieudonné, Jean 11095: 11085:Springer-Verlag 11071:Eisenbud, David 11056: 11038:Dieudonné, Jean 11003:Cartier, Pierre 10955: 10950: 10949: 10941: 10937: 10926: 10925: 10921: 10915:Hartshorne 1997 10913: 10909: 10901: 10897: 10889: 10885: 10877: 10873: 10867:Hartshorne 1997 10865: 10861: 10855:Hartshorne 1997 10853: 10849: 10841: 10837: 10836: 10832: 10824: 10820: 10814:Hartshorne 1997 10812: 10808: 10797: 10796: 10792: 10784: 10780: 10776:, section II.2. 10774:Hartshorne 1997 10772: 10768: 10760: 10756: 10748: 10744: 10731: 10727: 10719: 10712: 10704: 10700: 10692: 10688: 10679: 10675: 10670: 10652:Reductive group 10644:Abelian variety 10608:Finite morphism 10604:Proper morphism 10600:Smooth morphism 10592: 10564:homotopy theory 10508:algebraic group 10485:algebraic space 10471: 10469:Generalizations 10405: 10384: 10351: 10348: 10347: 10346: 10344: 10324: 10304: 10286:. For a scheme 10276: 10270: 10259: 10200: 10197: 10196: 10165: 10162: 10161: 10127: 10123: 10119: 10105: 10103: 10081: 10077: 10073: 10053: 10051: 10049: 10046: 10045: 9992: 9989: 9988: 9942: 9939: 9938: 9907: 9903: 9882: 9878: 9861: 9858: 9857: 9831: 9827: 9819: 9816: 9815: 9798: 9794: 9786: 9783: 9782: 9757: 9754: 9753: 9748:, consider the 9718: 9715: 9714: 9698: 9695: 9694: 9677: 9672: 9667: 9664: 9661: 9660: 9592: 9587: 9586: 9585: 9558:covering spaces 9550:function fields 9494: 9490: 9476: 9459: 9457: 9454: 9453: 9421: 9371: 9367: 9353: 9345: 9342: 9341: 9325: 9320: 9319: 9318: 9310: 9305: 9304: 9303: 9264: 9259: 9258: 9257: 9245: 9240: 9239: 9238: 9220: 9215: 9214: 9213: 9088:. If the field 9059: 9046: 9040: 9037: 9030:needs expansion 9015: 8963: 8957: 8954: 8953: 8920: 8909: 8904: 8900: 8892: 8889: 8888: 8840: 8837: 8836: 8816: 8812: 8797: 8793: 8785: 8773: 8768: 8767: 8759: 8756: 8755: 8738: 8733: 8732: 8718: 8715: 8714: 8711:Hartogs's lemma 8689: 8684: 8683: 8681: 8678: 8677: 8646: 8642: 8628: 8613: 8611: 8608: 8607: 8583: 8581: 8578: 8577: 8548: 8543: 8542: 8534: 8531: 8530: 8487: 8481: 8480: 8475: 8472: 8469: 8468: 8454: 8426: 8417: 8413: 8398: 8394: 8380: 8377: 8376: 8351: 8346: 8341: 8338: 8335: 8334: 8327: 8321: 8294: 8289: 8288: 8286: 8283: 8282: 8265: 8260: 8259: 8254: 8252: 8249: 8248: 8220: 8215: 8210: 8207: 8204: 8203: 8174: 8169: 8164: 8161: 8158: 8157: 8142: 8115: 8112: 8111: 8094: 8090: 8082: 8079: 8078: 8049: 8045: 8036: 8032: 8028: 8007: 8006: 8004: 7990: 7987: 7986: 7970: 7967: 7966: 7941: 7926: 7922: 7910: 7906: 7879: 7875: 7869: 7865: 7853: 7849: 7834: 7830: 7828: 7825: 7824: 7788: 7784: 7772: 7768: 7759: 7755: 7732: 7729: 7728: 7711: 7706: 7705: 7703: 7700: 7699: 7679: 7674: 7673: 7654: 7644: 7640: 7628: 7624: 7622: 7619: 7618: 7598: 7590: 7587: 7586: 7558: 7538: 7521: 7518: 7517: 7486: 7478: 7475: 7474: 7471: 7459:Arakelov theory 7455:geometric tools 7426: 7423: 7422: 7402: 7392: 7390: 7389: 7387: 7384: 7383: 7358: 7355: 7354: 7338: 7335: 7334: 7300: 7297: 7296: 7265: 7262: 7261: 7236: 7233: 7232: 7212: 7211: 7203: 7200: 7199: 7174: 7157: 7154: 7153: 7127: 7122: 7121: 7094: 7093: 7085: 7082: 7081: 7064: 7063: 7049: 7031: 7030: 7022: 7019: 7018: 7002: 6999: 6998: 6973: 6956: 6953: 6952: 6951:. A polynomial 6918: 6915: 6914: 6897: 6893: 6891: 6888: 6887: 6862: 6859: 6858: 6836: 6833: 6832: 6815: 6810: 6809: 6807: 6804: 6803: 6777: 6772: 6771: 6745: 6730: 6725: 6724: 6715: 6714: 6709: 6695: 6683: 6682: 6674: 6671: 6670: 6626: 6625: 6623: 6620: 6619: 6590: 6586: 6578: 6575: 6574: 6548: 6544: 6530: 6527: 6526: 6505: 6500: 6499: 6497: 6494: 6493: 6472: 6461: 6458: 6457: 6431: 6427: 6409: 6408: 6406: 6403: 6402: 6380: 6377: 6376: 6356: 6352: 6313: 6309: 6298: 6295: 6294: 6272: 6258: 6255: 6254: 6228: 6225: 6224: 6150: 6146: 6135: 6132: 6131: 6109: 6092: 6089: 6088: 6066: 6063: 6062: 6046: 6043: 6042: 6021: 6010: 6007: 6006: 5983: 5979: 5977: 5974: 5973: 5957: 5954: 5953: 5952:corresponds to 5927: 5923: 5915: 5912: 5911: 5892: 5889: 5888: 5872: 5869: 5868: 5843: 5840: 5839: 5820: 5809: 5806: 5805: 5771: 5768: 5767: 5732: 5731: 5729: 5726: 5725: 5694: 5691: 5690: 5668: 5665: 5664: 5648: 5645: 5644: 5628: 5625: 5624: 5599: 5596: 5595: 5551: 5550: 5548: 5545: 5544: 5515: 5514: 5512: 5509: 5508: 5483: 5480: 5479: 5463: 5460: 5459: 5433: 5430: 5429: 5413: 5410: 5409: 5393: 5390: 5389: 5373: 5370: 5369: 5344: 5341: 5340: 5324: 5321: 5320: 5276: 5275: 5273: 5270: 5269: 5244: 5235: 5234: 5232: 5229: 5228: 5200: 5183: 5180: 5179: 5154: 5152: 5149: 5148: 5129: 5115: 5097: 5091: 5090: 5085: 5082: 5079: 5078: 5075: 5050: 5046: 5025: 5021: 5019: 5016: 5015: 4999: 4996: 4995: 4974: 4970: 4964: 4960: 4951: 4947: 4945: 4942: 4941: 4925: 4923: 4920: 4919: 4887: 4883: 4868: 4864: 4859: 4856: 4855: 4839: 4836: 4835: 4818: 4812: 4811: 4810: 4808: 4805: 4804: 4787: 4783: 4768: 4764: 4762: 4759: 4758: 4742: 4739: 4738: 4737:for the scheme 4711: 4707: 4701: 4697: 4682: 4678: 4672: 4668: 4666: 4663: 4662: 4645: 4641: 4626: 4622: 4620: 4617: 4616: 4599: 4595: 4580: 4576: 4574: 4571: 4570: 4546: 4540: 4539: 4538: 4536: 4533: 4532: 4513: 4508: 4505: 4504: 4488: 4477: 4456: 4450: 4449: 4448: 4440: 4437: 4436: 4420: 4417: 4416: 4400: 4397: 4396: 4374: 4371: 4370: 4353: 4347: 4346: 4345: 4343: 4340: 4339: 4319: 4314: 4313: 4301: 4295: 4294: 4293: 4285: 4282: 4281: 4265: 4262: 4261: 4245: 4242: 4241: 4224: 4218: 4217: 4216: 4214: 4211: 4210: 4194: 4191: 4190: 4189:. The function 4174: 4157: 4152: 4150: 4147: 4146: 4120: 4114: 4113: 4112: 4104: 4101: 4100: 4078: 4060: 4054: 4053: 4052: 4044: 4041: 4040: 4021: 4018: 4017: 3996: 3991: 3990: 3973: 3968: 3956: 3950: 3949: 3948: 3940: 3937: 3936: 3919: 3913: 3912: 3911: 3909: 3906: 3905: 3889: 3886: 3885: 3869: 3861: 3858: 3857: 3831: 3826: 3804: 3799: 3787: 3769: 3763: 3762: 3761: 3759: 3756: 3755: 3754:, this induces 3733: 3729: 3728: 3722: 3721: 3720: 3703: 3699: 3698: 3692: 3691: 3690: 3673: 3670: 3669: 3635: 3621: 3609: 3605: 3599: 3581: 3577: 3569: 3557: 3553: 3544: 3538: 3537: 3536: 3534: 3531: 3530: 3510: 3504: 3503: 3502: 3484: 3480: 3478: 3475: 3474: 3458: 3450: 3447: 3446: 3403: 3397: 3396: 3395: 3393: 3390: 3389: 3373: 3365: 3362: 3361: 3332: 3326: 3325: 3324: 3322: 3319: 3318: 3299: 3282: 3279: 3278: 3262: 3260: 3257: 3256: 3253: 3213: 3209: 3200: 3196: 3188: 3156: 3153: 3152: 3135: 3130: 3125: 3122: 3119: 3118: 3082: 3078: 3069: 3065: 3063: 3060: 3059: 3043: 3040: 3039: 3011: 2982: 2979: 2978: 2950: 2947: 2946: 2944:principal ideal 2926: 2921: 2916: 2892: 2891: 2889: 2886: 2885: 2861: 2857: 2842: 2838: 2824: 2821: 2820: 2792: 2789: 2788: 2768: 2762: 2761: 2760: 2752: 2749: 2748: 2731: 2727: 2718: 2714: 2712: 2709: 2708: 2685: 2679: 2678: 2677: 2672: 2657: 2651: 2650: 2649: 2641: 2638: 2637: 2617: 2611: 2610: 2609: 2607: 2604: 2603: 2586: 2585: 2580: 2569: 2566: 2565: 2549: 2546: 2545: 2525: 2524: 2516: 2513: 2512: 2491: 2490: 2485: 2480: 2477: 2476: 2459: 2458: 2456: 2453: 2452: 2451:whose value at 2436: 2433: 2432: 2410: 2409: 2407: 2404: 2403: 2377: 2373: 2358: 2354: 2340: 2337: 2336: 2317: 2314: 2313: 2296: 2290: 2289: 2288: 2286: 2283: 2282: 2255: 2250: 2249: 2217: 2202: 2198: 2192: 2174: 2170: 2152: 2148: 2139: 2133: 2132: 2131: 2129: 2126: 2125: 2100: 2097: 2096: 2073: 2072: 2055: 2037: 2036: 2003: 1999: 1997: 1994: 1993: 1974: 1971: 1970: 1950: 1944: 1943: 1942: 1933: 1932: 1930: 1927: 1926: 1904: 1903: 1895: 1892: 1891: 1874: 1868: 1867: 1866: 1864: 1861: 1860: 1840: 1839: 1830: 1829: 1818: 1800: 1799: 1784: 1783: 1775: 1772: 1771: 1754: 1753: 1751: 1748: 1747: 1725: 1724: 1712: 1711: 1697: 1696: 1682: 1681: 1679: 1676: 1675: 1652: 1651: 1649: 1646: 1645: 1629: 1626: 1625: 1605: 1601: 1592: 1588: 1573: 1569: 1560: 1556: 1544: 1538: 1537: 1536: 1534: 1531: 1530: 1496: 1488: 1485: 1484: 1464: 1460: 1445: 1441: 1427: 1424: 1423: 1407: 1404: 1403: 1383: 1379: 1364: 1360: 1349: 1346: 1345: 1328: 1323: 1318: 1303: 1302: 1300: 1297: 1296: 1280: 1277: 1276: 1273: 1265: 1222: 1217: 1216: 1214: 1211: 1210: 1189: 1184: 1183: 1181: 1178: 1177: 1160: 1155: 1154: 1152: 1149: 1148: 1097: 1093: 1088: 1085: 1084: 1012:field extension 938:rational points 912:with values in 855:terminal object 691:Schemes form a 689: 679:, meaning Spec( 664: 659: 658: 657: 625: 589: 576: 563: 554: 516: 489: 441: 433:André Martineau 356:metric topology 277:polynomial ring 243:complex numbers 219: 116:coordinate ring 43:(the equations 23:, specifically 17: 12: 11: 5: 11375: 11365: 11364: 11350: 11349: 11339: 11329: 11321: 11320:External links 11318: 11316: 11315: 11277: 11263: 11255:10.1007/b62130 11243:Mumford, David 11239: 11225: 11208: 11195:978-3642380099 11194: 11181: 11167: 11149: 11107: 11093: 11067: 11054: 11034: 11015:(4): 389–408, 10999: 10956: 10954: 10951: 10948: 10947: 10935: 10919: 10917:, Chapter III. 10907: 10903:Dieudonné 1985 10895: 10883: 10871: 10859: 10847: 10830: 10818: 10806: 10790: 10778: 10766: 10762:Dieudonné 1985 10754: 10742: 10725: 10721:Dieudonné 1985 10710: 10706:Dieudonné 1985 10698: 10694:Dieudonné 1985 10686: 10672: 10671: 10669: 10666: 10665: 10664: 10662:Gluing schemes 10659: 10654: 10637: 10624: 10619: 10614: 10612:Étale morphism 10591: 10588: 10580:tensor product 10525:quotient stack 10476:étale topology 10470: 10467: 10427:tangent bundle 10419:vector bundles 10401: 10391:coherent sheaf 10380: 10340: 10333:determines an 10320: 10300: 10284:vector bundles 10274:Coherent sheaf 10272:Main article: 10269: 10266: 10265: 10264: 10255: 10216: 10215:-vector space. 10204: 10184: 10181: 10178: 10175: 10172: 10169: 10141: 10135: 10130: 10126: 10122: 10117: 10114: 10111: 10108: 10102: 10096: 10093: 10089: 10084: 10080: 10076: 10071: 10068: 10065: 10062: 10059: 10056: 10029: 10026: 10023: 10020: 10017: 10014: 10011: 10008: 10005: 10002: 9999: 9996: 9976: 9973: 9970: 9967: 9964: 9961: 9958: 9955: 9952: 9949: 9946: 9922: 9919: 9915: 9910: 9906: 9902: 9899: 9896: 9893: 9890: 9885: 9881: 9877: 9874: 9871: 9868: 9865: 9845: 9842: 9839: 9834: 9830: 9826: 9823: 9801: 9797: 9793: 9790: 9770: 9767: 9764: 9761: 9737: 9734: 9731: 9728: 9725: 9722: 9702: 9680: 9675: 9670: 9653: 9650:infinitesimals 9588: 9574: 9573: 9537: 9533: 9528: 9525: 9522: 9519: 9516: 9513: 9510: 9507: 9504: 9501: 9498: 9493: 9489: 9486: 9483: 9479: 9475: 9472: 9469: 9466: 9462: 9437: 9434: 9431: 9428: 9424: 9420: 9417: 9414: 9410: 9405: 9402: 9399: 9396: 9393: 9390: 9387: 9384: 9381: 9378: 9375: 9370: 9366: 9363: 9360: 9356: 9352: 9349: 9321: 9306: 9280: 9260: 9241: 9235:Generic point. 9232: 9216: 9058: 9055: 9048: 9047: 9027: 9025: 9014: 9011: 9010: 9009: 8977: 8972: 8969: 8966: 8962: 8932: 8928: 8923: 8918: 8915: 8912: 8908: 8903: 8899: 8896: 8881: 8880:is not affine. 8853: 8850: 8847: 8844: 8824: 8819: 8815: 8811: 8808: 8805: 8800: 8796: 8792: 8788: 8784: 8781: 8776: 8771: 8766: 8763: 8741: 8736: 8731: 8728: 8725: 8722: 8692: 8687: 8657: 8652: 8649: 8645: 8641: 8638: 8635: 8631: 8625: 8622: 8619: 8616: 8586: 8565: 8562: 8559: 8556: 8551: 8546: 8541: 8538: 8527: 8518:(over a field 8512: 8505:elliptic curve 8490: 8484: 8478: 8442: 8439: 8436: 8433: 8429: 8425: 8420: 8416: 8412: 8409: 8406: 8401: 8397: 8393: 8390: 8387: 8384: 8354: 8349: 8344: 8311: 8297: 8292: 8268: 8263: 8257: 8223: 8218: 8213: 8177: 8172: 8167: 8141: 8138: 8125: 8122: 8119: 8097: 8093: 8089: 8086: 8063: 8060: 8057: 8052: 8048: 8044: 8039: 8035: 8031: 8026: 8023: 8020: 8017: 8014: 8010: 8003: 8000: 7997: 7994: 7974: 7954: 7951: 7937: 7934: 7929: 7925: 7921: 7918: 7913: 7909: 7905: 7902: 7899: 7896: 7893: 7890: 7887: 7882: 7878: 7872: 7868: 7864: 7861: 7856: 7852: 7848: 7845: 7842: 7837: 7833: 7821:elliptic curve 7808: 7805: 7802: 7799: 7796: 7791: 7787: 7783: 7780: 7775: 7771: 7767: 7762: 7758: 7754: 7751: 7748: 7745: 7742: 7739: 7736: 7714: 7709: 7687: 7682: 7677: 7672: 7669: 7666: 7661: 7657: 7653: 7650: 7647: 7643: 7639: 7636: 7631: 7627: 7601: 7597: 7594: 7574: 7571: 7568: 7565: 7561: 7557: 7554: 7551: 7548: 7545: 7541: 7537: 7534: 7531: 7528: 7525: 7505: 7502: 7499: 7496: 7493: 7489: 7485: 7482: 7470: 7467: 7430: 7405: 7399: 7395: 7371: 7368: 7365: 7362: 7342: 7322: 7319: 7316: 7313: 7310: 7307: 7304: 7284: 7281: 7278: 7275: 7272: 7269: 7249: 7246: 7243: 7240: 7220: 7215: 7210: 7207: 7187: 7184: 7181: 7177: 7173: 7170: 7167: 7164: 7161: 7141: 7138: 7135: 7130: 7125: 7120: 7117: 7114: 7111: 7108: 7105: 7102: 7097: 7092: 7089: 7067: 7058: 7055: 7052: 7045: 7042: 7039: 7034: 7029: 7026: 7006: 6986: 6983: 6980: 6976: 6972: 6969: 6966: 6963: 6960: 6940: 6937: 6934: 6931: 6928: 6925: 6922: 6900: 6896: 6875: 6872: 6869: 6866: 6846: 6843: 6840: 6818: 6813: 6791: 6788: 6785: 6780: 6775: 6770: 6767: 6764: 6761: 6758: 6755: 6752: 6748: 6744: 6741: 6738: 6733: 6728: 6723: 6718: 6712: 6708: 6705: 6702: 6698: 6694: 6691: 6686: 6681: 6678: 6658: 6655: 6652: 6649: 6646: 6643: 6640: 6637: 6634: 6629: 6604: 6601: 6598: 6593: 6589: 6585: 6582: 6562: 6559: 6556: 6551: 6547: 6543: 6540: 6537: 6534: 6508: 6503: 6479: 6476: 6471: 6468: 6465: 6445: 6442: 6439: 6434: 6430: 6426: 6423: 6420: 6417: 6412: 6401:, we get that 6390: 6387: 6384: 6364: 6359: 6355: 6351: 6348: 6345: 6342: 6339: 6336: 6333: 6330: 6327: 6324: 6321: 6316: 6312: 6308: 6305: 6302: 6282: 6268: 6265: 6262: 6238: 6235: 6232: 6212: 6209: 6206: 6203: 6200: 6197: 6194: 6191: 6188: 6185: 6182: 6179: 6176: 6173: 6170: 6167: 6164: 6161: 6158: 6153: 6149: 6145: 6142: 6139: 6119: 6105: 6102: 6099: 6096: 6076: 6073: 6070: 6050: 6028: 6025: 6020: 6017: 6014: 5994: 5991: 5986: 5982: 5961: 5941: 5938: 5935: 5930: 5926: 5922: 5919: 5896: 5876: 5856: 5853: 5850: 5847: 5827: 5823: 5819: 5816: 5813: 5793: 5790: 5787: 5784: 5781: 5778: 5775: 5755: 5752: 5749: 5746: 5743: 5740: 5735: 5713: 5710: 5707: 5704: 5701: 5698: 5678: 5675: 5672: 5652: 5632: 5612: 5609: 5606: 5603: 5583: 5580: 5577: 5574: 5571: 5568: 5565: 5562: 5559: 5554: 5532: 5529: 5526: 5523: 5518: 5496: 5493: 5490: 5487: 5467: 5437: 5417: 5397: 5377: 5357: 5354: 5351: 5348: 5328: 5308: 5305: 5302: 5299: 5296: 5293: 5290: 5287: 5284: 5279: 5257: 5254: 5251: 5247: 5243: 5238: 5216: 5213: 5210: 5207: 5203: 5199: 5196: 5193: 5190: 5187: 5167: 5164: 5161: 5157: 5136: 5132: 5128: 5125: 5111: 5108: 5105: 5100: 5094: 5088: 5074: 5071: 5058: 5053: 5049: 5045: 5042: 5039: 5036: 5033: 5028: 5024: 5003: 4977: 4973: 4967: 4963: 4959: 4954: 4950: 4928: 4907: 4904: 4901: 4898: 4895: 4890: 4886: 4882: 4879: 4876: 4871: 4867: 4863: 4843: 4821: 4815: 4790: 4786: 4782: 4779: 4776: 4771: 4767: 4746: 4722: 4719: 4714: 4710: 4704: 4700: 4696: 4693: 4690: 4685: 4681: 4675: 4671: 4648: 4644: 4640: 4637: 4634: 4629: 4625: 4602: 4598: 4594: 4591: 4588: 4583: 4579: 4567:Bezout's lemma 4549: 4543: 4520: 4516: 4512: 4491: 4487: 4484: 4480: 4476: 4473: 4470: 4467: 4464: 4459: 4453: 4447: 4444: 4424: 4404: 4384: 4381: 4378: 4356: 4350: 4322: 4317: 4312: 4309: 4304: 4298: 4292: 4289: 4269: 4249: 4227: 4221: 4198: 4177: 4173: 4170: 4167: 4164: 4160: 4155: 4134: 4131: 4128: 4123: 4117: 4111: 4108: 4088: 4074: 4071: 4068: 4063: 4057: 4051: 4048: 4025: 3999: 3994: 3989: 3986: 3983: 3980: 3976: 3971: 3967: 3964: 3959: 3953: 3947: 3944: 3922: 3916: 3893: 3872: 3868: 3865: 3842: 3837: 3834: 3829: 3825: 3821: 3818: 3815: 3810: 3807: 3802: 3798: 3794: 3790: 3786: 3783: 3780: 3777: 3772: 3766: 3743: 3736: 3732: 3725: 3719: 3716: 3713: 3706: 3702: 3695: 3689: 3686: 3683: 3680: 3677: 3657: 3654: 3651: 3648: 3642: 3638: 3634: 3631: 3612: 3608: 3604: 3598: 3595: 3592: 3587: 3584: 3580: 3576: 3572: 3568: 3565: 3560: 3556: 3552: 3547: 3541: 3518: 3513: 3507: 3501: 3498: 3495: 3492: 3487: 3483: 3461: 3457: 3454: 3420: 3417: 3414: 3411: 3406: 3400: 3376: 3372: 3369: 3349: 3346: 3343: 3340: 3335: 3329: 3306: 3302: 3298: 3295: 3292: 3289: 3286: 3265: 3252: 3249: 3236: 3233: 3230: 3227: 3224: 3221: 3216: 3212: 3208: 3203: 3199: 3195: 3191: 3187: 3184: 3181: 3178: 3175: 3172: 3169: 3166: 3163: 3160: 3138: 3133: 3128: 3102: 3099: 3096: 3093: 3090: 3085: 3081: 3077: 3072: 3068: 3047: 3027: 3024: 3021: 3018: 3014: 3010: 3007: 3004: 3001: 2998: 2995: 2992: 2989: 2986: 2966: 2963: 2960: 2957: 2954: 2929: 2924: 2919: 2914: 2911: 2908: 2905: 2899: 2896: 2869: 2864: 2860: 2856: 2853: 2850: 2845: 2841: 2837: 2834: 2831: 2828: 2805: 2802: 2799: 2796: 2776: 2771: 2765: 2759: 2756: 2734: 2730: 2726: 2721: 2717: 2696: 2693: 2688: 2682: 2675: 2671: 2668: 2665: 2660: 2654: 2648: 2645: 2620: 2614: 2589: 2583: 2579: 2576: 2573: 2553: 2533: 2528: 2523: 2520: 2494: 2488: 2484: 2462: 2440: 2417: 2414: 2391: 2388: 2385: 2380: 2376: 2372: 2369: 2366: 2361: 2357: 2353: 2350: 2347: 2344: 2321: 2299: 2293: 2266: 2261: 2258: 2253: 2248: 2245: 2239: 2236: 2233: 2230: 2205: 2201: 2197: 2191: 2188: 2185: 2180: 2177: 2173: 2169: 2166: 2163: 2160: 2155: 2151: 2147: 2142: 2136: 2110: 2107: 2104: 2081: 2076: 2071: 2068: 2048: 2045: 2040: 2035: 2032: 2029: 2026: 2023: 2020: 2017: 2014: 2011: 2006: 2002: 1978: 1953: 1947: 1941: 1936: 1911: 1908: 1902: 1899: 1877: 1871: 1848: 1843: 1838: 1833: 1811: 1808: 1803: 1798: 1795: 1792: 1787: 1782: 1779: 1757: 1732: 1729: 1723: 1720: 1715: 1710: 1704: 1701: 1695: 1689: 1686: 1663: 1660: 1655: 1633: 1613: 1608: 1604: 1600: 1595: 1591: 1587: 1584: 1581: 1576: 1572: 1568: 1563: 1559: 1555: 1552: 1547: 1541: 1518: 1515: 1512: 1508: 1505: 1502: 1499: 1495: 1492: 1472: 1467: 1463: 1459: 1456: 1453: 1448: 1444: 1440: 1437: 1434: 1431: 1411: 1391: 1386: 1382: 1378: 1375: 1372: 1367: 1363: 1359: 1356: 1353: 1331: 1326: 1321: 1316: 1310: 1307: 1284: 1272: 1269: 1264: 1261: 1231: 1228: 1225: 1220: 1192: 1187: 1163: 1158: 1105: 1100: 1096: 1092: 892:). One writes 843:initial object 688: 685: 660: 651:natural number 621: 585: 572: 559: 550: 515: 512: 485: 440: 437: 429:Pierre Cartier 407:In the 1950s, 390:Italian school 308:Wolfgang Krull 273:maximal ideals 251:characteristic 218: 215: 163:maximal ideals 128:generic points 89:Pierre Deligne 83:, such as the 55:(for example, 41:multiplicities 15: 9: 6: 4: 3: 2: 11374: 11363: 11362:Scheme theory 11360: 11359: 11357: 11347: 11343: 11340: 11337: 11336: 11330: 11328: 11324: 11323: 11313: 11309: 11305: 11301: 11296: 11291: 11287: 11283: 11278: 11274: 11270: 11266: 11260: 11256: 11252: 11248: 11244: 11240: 11236: 11232: 11228: 11222: 11218: 11214: 11209: 11205: 11201: 11197: 11191: 11187: 11182: 11178: 11174: 11170: 11164: 11160: 11159: 11154: 11150: 11146: 11142: 11138: 11134: 11130: 11126: 11125: 11120: 11116: 11112: 11108: 11104: 11100: 11096: 11090: 11086: 11082: 11081: 11076: 11072: 11068: 11065: 11061: 11057: 11051: 11048:, Wadsworth, 11046: 11045: 11039: 11035: 11032: 11028: 11023: 11018: 11014: 11010: 11009: 11004: 11000: 10997: 10993: 10988: 10983: 10978: 10973: 10969: 10965: 10964: 10958: 10957: 10944: 10939: 10931: 10930: 10923: 10916: 10911: 10904: 10899: 10892: 10887: 10880: 10875: 10868: 10863: 10856: 10851: 10844:. p. 20. 10840: 10834: 10827: 10822: 10815: 10810: 10802: 10801: 10794: 10788:, Chapter II. 10787: 10782: 10775: 10770: 10763: 10758: 10751: 10746: 10738: 10737: 10729: 10722: 10717: 10715: 10707: 10702: 10695: 10690: 10683: 10677: 10673: 10663: 10660: 10658: 10655: 10653: 10649: 10645: 10641: 10638: 10636: 10632: 10628: 10625: 10623: 10620: 10618: 10615: 10613: 10609: 10605: 10601: 10597: 10596:Flat morphism 10594: 10593: 10587: 10585: 10581: 10577: 10573: 10569: 10565: 10560: 10558: 10554: 10550: 10546: 10542: 10537: 10535: 10531: 10527: 10526: 10522:determines a 10521: 10517: 10513: 10509: 10505: 10504: 10499: 10494: 10492: 10487: 10486: 10481: 10480:Michael Artin 10477: 10466: 10464: 10460: 10456: 10452: 10448: 10444: 10440: 10436: 10432: 10428: 10424: 10420: 10415: 10413: 10409: 10404: 10400: 10397:, say) is an 10396: 10392: 10389:. Finally, a 10388: 10383: 10379: 10375: 10371: 10370: 10365: 10361: 10354: 10343: 10339: 10336: 10332: 10328: 10323: 10319: 10315: 10311: 10307: 10306: 10303: 10299: 10293: 10289: 10285: 10281: 10275: 10262: 10258: 10253: 10252:tangent space 10249: 10245: 10241: 10237: 10233: 10229: 10225: 10221: 10217: 10202: 10179: 10176: 10173: 10167: 10159: 10155: 10139: 10128: 10124: 10112: 10106: 10100: 10091: 10087: 10082: 10078: 10066: 10063: 10060: 10054: 10043: 10024: 10021: 10018: 10012: 10009: 10003: 10000: 9997: 9971: 9968: 9965: 9959: 9953: 9950: 9947: 9936: 9917: 9913: 9908: 9904: 9897: 9891: 9888: 9883: 9879: 9872: 9866: 9840: 9837: 9832: 9828: 9821: 9799: 9795: 9791: 9788: 9765: 9759: 9751: 9732: 9729: 9726: 9720: 9700: 9693:over a field 9678: 9673: 9658: 9654: 9651: 9647: 9643: 9642: 9637: 9636: 9630: 9626: 9622: 9618: 9614: 9610: 9606: 9602: 9598: 9591: 9583: 9579: 9576: 9575: 9571: 9567: 9563: 9559: 9555: 9551: 9535: 9531: 9523: 9520: 9517: 9508: 9505: 9502: 9496: 9491: 9484: 9473: 9467: 9451: 9435: 9429: 9418: 9415: 9408: 9400: 9397: 9394: 9385: 9382: 9379: 9373: 9368: 9361: 9350: 9347: 9339: 9335: 9331: 9324: 9316: 9309: 9301: 9297: 9293: 9289: 9285: 9281: 9278: 9274: 9270: 9263: 9255: 9251: 9244: 9236: 9233: 9230: 9226: 9219: 9211: 9207: 9203: 9199: 9195: 9191: 9188:over a field 9187: 9183: 9179: 9175: 9171: 9167: 9164:) empty, but 9163: 9159: 9155: 9151: 9147: 9143: 9139: 9135: 9131: 9127: 9123: 9119: 9115: 9111: 9107: 9103: 9099: 9095: 9091: 9087: 9083: 9079: 9075: 9071: 9067: 9064: 9063: 9062: 9054: 9044: 9035: 9031: 9028:This section 9026: 9023: 9019: 9018: 9007: 9003: 9002:quasi-compact 8999: 8995: 8991: 8975: 8970: 8967: 8964: 8960: 8951: 8947: 8930: 8926: 8916: 8913: 8910: 8906: 8901: 8897: 8894: 8886: 8882: 8879: 8875: 8871: 8867: 8848: 8842: 8817: 8813: 8809: 8806: 8803: 8798: 8794: 8782: 8774: 8761: 8739: 8726: 8723: 8720: 8712: 8708: 8690: 8675: 8671: 8650: 8647: 8643: 8639: 8636: 8605: 8601: 8560: 8554: 8549: 8539: 8536: 8528: 8525: 8521: 8517: 8513: 8510: 8506: 8488: 8465: 8461: 8457: 8440: 8434: 8427: 8418: 8414: 8410: 8407: 8404: 8399: 8395: 8388: 8385: 8382: 8374: 8370: 8352: 8347: 8330: 8324: 8319: 8316: 8312: 8295: 8266: 8247: 8243: 8239: 8221: 8216: 8201: 8197: 8193: 8175: 8170: 8156: 8152: 8148: 8144: 8143: 8137: 8123: 8120: 8117: 8095: 8091: 8087: 8084: 8058: 8055: 8050: 8046: 8042: 8037: 8033: 8021: 8018: 8015: 8001: 7998: 7995: 7992: 7972: 7952: 7949: 7935: 7932: 7927: 7923: 7919: 7916: 7911: 7907: 7903: 7900: 7897: 7894: 7891: 7888: 7885: 7880: 7876: 7870: 7866: 7862: 7859: 7854: 7850: 7846: 7843: 7840: 7835: 7822: 7806: 7803: 7800: 7797: 7794: 7789: 7785: 7781: 7778: 7773: 7769: 7765: 7760: 7756: 7752: 7746: 7743: 7740: 7734: 7712: 7680: 7667: 7664: 7648: 7645: 7641: 7637: 7634: 7629: 7625: 7617:. The fibers 7616: 7595: 7592: 7566: 7559: 7552: 7549: 7546: 7532: 7529: 7526: 7523: 7500: 7497: 7494: 7483: 7480: 7466: 7464: 7460: 7456: 7452: 7448: 7444: 7428: 7419: 7403: 7366: 7360: 7340: 7314: 7308: 7302: 7282: 7279: 7273: 7267: 7244: 7238: 7205: 7182: 7171: 7165: 7159: 7152:. Again each 7136: 7128: 7118: 7112: 7106: 7103: 7087: 7043: 7040: 7024: 7004: 6981: 6970: 6964: 6958: 6935: 6929: 6926: 6923: 6920: 6898: 6894: 6870: 6864: 6844: 6841: 6838: 6816: 6786: 6778: 6768: 6759: 6753: 6746: 6739: 6731: 6721: 6710: 6703: 6692: 6676: 6650: 6644: 6641: 6638: 6632: 6616: 6599: 6596: 6591: 6587: 6580: 6557: 6554: 6549: 6545: 6541: 6538: 6532: 6524: 6506: 6477: 6474: 6469: 6466: 6463: 6440: 6437: 6432: 6428: 6424: 6421: 6415: 6388: 6385: 6382: 6357: 6349: 6346: 6343: 6337: 6334: 6328: 6322: 6319: 6314: 6310: 6306: 6303: 6280: 6266: 6263: 6260: 6253:double-point 6252: 6249:, we get one 6236: 6233: 6230: 6207: 6204: 6201: 6198: 6195: 6189: 6183: 6180: 6177: 6174: 6171: 6165: 6159: 6156: 6151: 6147: 6143: 6140: 6117: 6103: 6100: 6097: 6094: 6074: 6071: 6068: 6048: 6026: 6023: 6018: 6015: 6012: 5992: 5989: 5984: 5980: 5959: 5936: 5933: 5928: 5924: 5917: 5908: 5894: 5887:which divide 5874: 5851: 5845: 5825: 5821: 5817: 5814: 5811: 5788: 5785: 5782: 5779: 5773: 5750: 5747: 5744: 5738: 5708: 5705: 5702: 5696: 5676: 5673: 5670: 5650: 5630: 5607: 5601: 5575: 5569: 5566: 5563: 5557: 5527: 5521: 5491: 5485: 5465: 5453: 5449: 5435: 5415: 5395: 5375: 5352: 5346: 5326: 5300: 5294: 5291: 5288: 5282: 5252: 5241: 5208: 5194: 5191: 5188: 5185: 5162: 5126: 5123: 5109: 5103: 5098: 5070: 5051: 5047: 5040: 5037: 5034: 5031: 5026: 5022: 5001: 4993: 4975: 4971: 4965: 4961: 4957: 4952: 4948: 4902: 4896: 4888: 4884: 4880: 4877: 4874: 4869: 4865: 4841: 4819: 4788: 4784: 4780: 4777: 4774: 4769: 4765: 4744: 4736: 4720: 4717: 4712: 4708: 4702: 4698: 4694: 4691: 4688: 4683: 4679: 4673: 4669: 4646: 4642: 4638: 4635: 4632: 4627: 4623: 4600: 4596: 4592: 4589: 4586: 4581: 4577: 4568: 4563: 4547: 4518: 4514: 4510: 4503:. A fraction 4485: 4471: 4468: 4465: 4457: 4442: 4422: 4402: 4382: 4379: 4376: 4354: 4336: 4320: 4310: 4302: 4287: 4267: 4247: 4225: 4196: 4171: 4165: 4158: 4132: 4129: 4121: 4106: 4086: 4072: 4069: 4061: 4046: 4038: 4023: 4015: 3997: 3987: 3981: 3974: 3965: 3957: 3942: 3920: 3891: 3866: 3863: 3854: 3835: 3832: 3827: 3823: 3819: 3816: 3813: 3808: 3805: 3800: 3796: 3784: 3778: 3770: 3734: 3730: 3717: 3714: 3711: 3704: 3700: 3684: 3681: 3678: 3675: 3652: 3649: 3646: 3640: 3632: 3629: 3610: 3606: 3602: 3593: 3585: 3582: 3578: 3566: 3558: 3554: 3545: 3511: 3496: 3493: 3490: 3485: 3481: 3455: 3452: 3440: 3436: 3434: 3415: 3409: 3404: 3370: 3367: 3344: 3338: 3333: 3293: 3290: 3287: 3284: 3248: 3228: 3225: 3222: 3214: 3210: 3206: 3201: 3197: 3189: 3182: 3179: 3176: 3170: 3167: 3164: 3161: 3158: 3136: 3131: 3116: 3097: 3094: 3091: 3083: 3079: 3075: 3070: 3066: 3045: 3019: 3012: 3008: 3002: 2999: 2996: 2990: 2984: 2964: 2961: 2955: 2945: 2927: 2922: 2912: 2906: 2894: 2883: 2862: 2858: 2854: 2851: 2848: 2843: 2839: 2832: 2829: 2826: 2817: 2800: 2794: 2769: 2754: 2732: 2728: 2719: 2715: 2694: 2691: 2686: 2673: 2669: 2666: 2658: 2643: 2636: 2635:residue field 2618: 2581: 2577: 2571: 2551: 2518: 2510: 2486: 2482: 2438: 2412: 2389: 2386: 2378: 2374: 2370: 2367: 2364: 2359: 2355: 2348: 2345: 2342: 2333: 2319: 2297: 2278: 2259: 2256: 2246: 2243: 2237: 2234: 2231: 2228: 2203: 2199: 2195: 2186: 2178: 2175: 2171: 2164: 2161: 2153: 2149: 2140: 2122: 2108: 2105: 2102: 2092: 2069: 2066: 2046: 2043: 2030: 2024: 2018: 2015: 2012: 2009: 2004: 2000: 1990: 1976: 1967: 1951: 1939: 1906: 1900: 1897: 1875: 1836: 1809: 1806: 1793: 1777: 1727: 1721: 1699: 1693: 1684: 1661: 1658: 1631: 1606: 1602: 1598: 1593: 1589: 1585: 1582: 1579: 1574: 1570: 1566: 1561: 1557: 1550: 1545: 1513: 1493: 1490: 1465: 1461: 1457: 1454: 1451: 1446: 1442: 1435: 1432: 1429: 1409: 1384: 1380: 1376: 1373: 1370: 1365: 1361: 1354: 1351: 1329: 1324: 1314: 1305: 1282: 1268: 1260: 1258: 1254: 1249: 1247: 1229: 1226: 1223: 1208: 1190: 1161: 1146: 1142: 1138: 1135: 1131: 1127: 1123: 1119: 1103: 1098: 1094: 1090: 1083: 1079: 1075: 1071: 1067: 1062: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1016: 1013: 1009: 1005: 1001: 997: 993: 990:. One writes 989: 985: 981: 977: 973: 969: 965: 962: 958: 954: 950: 945: 943: 939: 935: 931: 927: 923: 919: 915: 911: 907: 903: 899: 895: 891: 887: 883: 879: 875: 871: 867: 863: 860:For a scheme 858: 856: 852: 848: 844: 840: 835: 833: 829: 825: 821: 817: 813: 809: 805: 801: 797: 793: 789: 785: 780: 778: 774: 770: 766: 762: 758: 754: 749: 747: 743: 739: 735: 732: 728: 724: 720: 716: 712: 709: 706: 702: 698: 694: 684: 682: 678: 674: 670: 663: 655: 652: 648: 645:over a field 644: 642: 635: 633: 629: 624: 620: 616: 612: 608: 603: 601: 597: 594:) called the 593: 588: 584: 580: 575: 571: 567: 562: 558: 553: 549: 545: 541: 537: 533: 529: 525: 521: 520:affine scheme 511: 508: 503: 501: 497: 493: 488: 484: 480: 476: 472: 468: 464: 461: 457: 454: 450: 446: 436: 434: 430: 426: 422: 418: 414: 410: 405: 403: 399: 395: 394:generic point 391: 386: 384: 380: 376: 372: 368: 364: 359: 357: 353: 349: 345: 344:Oscar Zariski 341: 337: 333: 329: 325: 320: 318: 314: 309: 305: 301: 297: 293: 289: 285: 281: 278: 274: 270: 266: 262: 260: 256: 252: 248: 244: 240: 236: 232: 228: 224: 214: 212: 207: 205: 201: 197: 193: 190: 189:over the base 187: 183: 179: 175: 170: 168: 164: 160: 156: 151: 149: 145: 141: 137: 133: 129: 125: 121: 117: 112: 110: 106: 105:number theory 102: 98: 94: 90: 86: 82: 78: 77: 72: 68: 67:Scheme theory 64: 62: 58: 57:Fermat curves 54: 50: 46: 42: 38: 34: 30: 26: 22: 11334: 11295:math/0412512 11281: 11246: 11212: 11185: 11157: 11128: 11122: 11079: 11043: 11012: 11006: 10967: 10961: 10943:Vistoli 2005 10938: 10928: 10922: 10910: 10898: 10886: 10881:, section 1. 10879:Arapura 2011 10874: 10862: 10850: 10833: 10821: 10809: 10799: 10793: 10786:Mumford 1999 10781: 10769: 10757: 10750:Cartier 2001 10745: 10735: 10728: 10701: 10689: 10676: 10640:Group scheme 10635:Hodge theory 10617:Stable curve 10586:on modules. 10561: 10547:(similar to 10538: 10533: 10523: 10519: 10515: 10501: 10495: 10483: 10472: 10457:. Moreover, 10454: 10450: 10447:direct image 10442: 10438: 10434: 10430: 10423:free modules 10418: 10416: 10411: 10402: 10398: 10394: 10390: 10386: 10381: 10377: 10373: 10372:on a scheme 10367: 10363: 10359: 10352: 10341: 10337: 10330: 10326: 10321: 10317: 10312:that form a 10309: 10301: 10297: 10295: 10287: 10277: 10260: 10256: 10247: 10243: 10239: 10235: 10231: 10227: 10223: 10041: 9749: 9639: 9632: 9628: 9620: 9616: 9612: 9608: 9604: 9600: 9596: 9589: 9581: 9577: 9562:Galois group 9337: 9333: 9329: 9322: 9307: 9299: 9295: 9291: 9287: 9283: 9272: 9268: 9261: 9253: 9249: 9242: 9234: 9228: 9224: 9217: 9209: 9205: 9201: 9197: 9193: 9189: 9185: 9181: 9177: 9173: 9169: 9165: 9161: 9157: 9153: 9149: 9145: 9141: 9137: 9133: 9129: 9125: 9121: 9117: 9113: 9109: 9105: 9101: 9097: 9093: 9089: 9085: 9081: 9077: 9073: 9069: 9065: 9060: 9051: 9038: 9034:adding to it 9029: 8989: 8950:ultrafilters 8884: 8877: 8873: 8869: 8865: 8706: 8673: 8669: 8603: 8599: 8523: 8519: 8515: 8463: 8459: 8455: 8328: 8322: 8317: 8241: 8199: 8198:-space over 8195: 8191: 8154: 8150: 8146: 7472: 7420: 7017:with values 6617: 6523:Galois group 5909: 5457: 5076: 4564: 4337: 4036: 4014:finite field 3855: 3444: 3254: 2882:hypersurface 2818: 2634: 2511:. We define 2509:residue ring 2508: 2334: 2280: 2124: 2094: 1992: 1968: 1274: 1271:Affine space 1266: 1252: 1250: 1245: 1206: 1144: 1140: 1136: 1133: 1129: 1125: 1121: 1117: 1077: 1073: 1069: 1063: 1054: 1050: 1046: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1007: 1003: 999: 995: 991: 987: 983: 979: 975: 971: 967: 963: 956: 952: 948: 946: 941: 933: 929: 925: 921: 917: 913: 909: 905: 901: 897: 893: 889: 885: 877: 873: 869: 865: 861: 859: 850: 838: 836: 831: 827: 823: 819: 815: 811: 807: 803: 799: 795: 791: 787: 783: 781: 776: 764: 760: 756: 752: 750: 745: 741: 737: 733: 730: 726: 722: 718: 714: 710: 707: 704: 700: 690: 680: 676: 672: 668: 661: 653: 646: 640: 638: 636: 631: 627: 622: 618: 606: 604: 599: 595: 591: 586: 582: 578: 573: 569: 565: 560: 556: 551: 547: 543: 539: 535: 531: 519: 517: 506: 504: 499: 495: 491: 486: 482: 478: 470: 467:prime ideals 462: 455: 448: 444: 442: 424: 406: 401: 397: 387: 362: 360: 323: 321: 304:Emmy Noether 299: 296:prime ideals 291: 287: 283: 279: 268: 263: 255:number rings 227:real numbers 220: 208: 204:moduli space 199: 191: 188: 185: 181: 177: 171: 159:prime ideals 152: 136:ringed space 113: 74: 66: 65: 48: 44: 28: 18: 11346:Terence Tao 11075:Harris, Joe 10736:Les schémas 10584:Hom functor 10482:defined an 9814:, which is 9595:defined by 9223:defined by 8367:, called a 7421:The scheme 4099:, and also 2884:subvariety 1969:The scheme 1002:-points of 920:is a field 904:-points of 782:A morphism 773:finite type 703:, a scheme 217:Development 21:mathematics 10953:References 10752:, note 29. 10631:Chow group 10335:associated 9935:transverse 9635:derivative 9633:and first 9041:March 2024 8668:. To show 7463:valuations 7080:, that is 6913:elements, 5867:for those 3113:defines a 2747:, so that 2633:gives the 771:scheme of 514:Definition 340:André Weil 317:Noetherian 294:, and the 223:polynomial 11155:(1997) . 10977:0806.1033 10668:Citations 10549:orbifolds 10376:means an 10101:≅ 10010:⊂ 9889:− 9838:− 9625:nilpotent 9601:fat point 9521:− 9506:− 9474:⊂ 9419:⁡ 9413:→ 9398:− 9383:− 9351:⁡ 9156:= −1 has 8968:≠ 8961:∏ 8922:∞ 8907:∏ 8898:⁡ 8807:… 8730:→ 8648:− 8555:∖ 8507:over the 8408:… 8386:⁡ 8085:− 8056:− 8043:− 8002:⁡ 7917:− 7901:− 7844:− 7832:Δ 7766:− 7668:⁡ 7649:⁡ 7642:× 7596:⁡ 7533:⁡ 7484:∈ 7398:¯ 7172:∈ 7137:α 7119:∈ 7113:α 6971:∈ 6930:⁡ 6845:α 6787:α 6769:≅ 6475:− 6470:± 6375:. And at 6347:− 6190:∩ 6181:− 6101:± 6024:− 6019:± 6005:, namely 5786:− 5748:− 5706:− 5242:⊂ 5195:⁡ 5127:∈ 5038:∖ 4949:ρ 4878:… 4778:… 4692:⋯ 4636:… 4590:… 4472:⁡ 4311:∈ 3867:∈ 3856:A number 3833:− 3828:ℓ 3817:… 3806:− 3735:ℓ 3715:… 3685:∖ 3650:≥ 3633:∈ 3583:− 3497:∖ 3456:∈ 3371:∈ 3294:⁡ 3207:− 3168:⁡ 3003:⁡ 2962:⊂ 2913:⊂ 2898:¯ 2852:… 2725:↦ 2692:≅ 2575:→ 2416:¯ 2387:∈ 2368:… 2257:≥ 2247:∈ 2232:∈ 2176:− 2106:∈ 2070:∉ 2044:∈ 2016:∖ 1940:⊂ 1910:¯ 1901:∈ 1837:⊂ 1807:∈ 1731:¯ 1722:⊂ 1703:¯ 1688:¯ 1659:⊂ 1599:− 1583:… 1567:− 1455:… 1374:… 1309:¯ 1095:× 822:) → Spec( 767:means an 611:separated 607:prescheme 431:, it was 383:Matsusaka 371:manifolds 313:dimension 33:structure 11356:Category 11245:(1999). 11117:(1960). 11077:(1998). 11040:(1985), 10590:See also 10582:and the 10445:(by the 10345:-module 10305:-modules 10160:of this 9646:calculus 9315:ramified 9267:, where 6293:, since 6251:ramified 6130:, since 5594:for all 5319:, where 1263:Examples 880:means a 693:category 649:, for a 528:spectrum 453:spectrum 155:spectrum 97:topology 61:integers 47:= 0 and 11312:2223406 11300:Bibcode 11273:1748380 11235:1917232 11204:0456457 11177:0463157 11145:0217083 11103:1730819 11064:0780183 11031:1848254 10996:3082873 10541:descent 10362:= Spec( 10234:= Spec 9641:reduced 8598:; then 8310:is not. 7441:is not 1134:product 1043:functor 1041:) is a 961:algebra 916:. When 888:→ Spec( 882:section 853:) as a 845:in the 761:variety 744:→ Spec( 639:affine 615:Mumford 332:compact 275:in the 11310:  11271:  11261:  11233:  11223:  11202:  11192:  11175:  11165:  11143:  11101:  11091:  11062:  11052:  11029:  10994:  10512:action 10314:module 10220:smooth 10158:length 9580:. Let 9450:degree 9256:)) → A 8503:is an 8238:proper 7947:  7939:  7819:is an 7443:proper 7295:; and 7061:  7047:  6278:  6270:  6115:  6107:  5121:  5113:  4084:  4076:  4012:, the 3644:  3627:  3619:  2507:, the 2241:  2226:  2223:  2215:  2212:  2064:  2061:  2053:  2050:  1827:  1824:  1816:  1813:  1257:limits 1080:, the 841:is an 837:Since 719:scheme 713:(or a 643:-space 540:scheme 425:scheme 324:affine 271:: the 29:scheme 11290:arXiv 10972:arXiv 10842:(PDF) 10498:stack 10366:). A 9200:) of 8864:. If 8705:when 8240:over 7727:. If 7453:with 6223:. At 4661:with 4280:with 2880:is a 1890:with 1244:over 1205:over 1053:over 1025:over 986:over 972:point 966:, an 874:point 868:, an 775:over 763:over 530:Spec( 522:is a 475:sheaf 458:of a 239:field 140:sheaf 138:or a 132:atlas 120:ideal 31:is a 11259:ISBN 11221:ISBN 11190:ISBN 11163:ISBN 11089:ISBN 11050:ISBN 10152:The 9648:and 9416:Spec 9348:Spec 9298:−1)( 9282:Let 8895:Spec 8883:Let 8514:The 8383:Proj 7999:Spec 7665:Spec 7646:Spec 7593:Spec 7530:Spec 7465:. 5192:Spec 4469:Frac 4335:. 3291:Spec 3165:Spec 3000:Spec 2057:with 1820:with 1275:Let 1176:and 1120:and 1072:and 1064:The 982:) → 810:) → 734:over 708:over 538:. A 415:and 381:and 379:Chow 342:and 306:and 233:and 172:The 99:and 63:). 27:, a 11251:doi 11133:doi 11017:doi 10982:doi 10433:of 10358:on 10294:of 10246:of 9623:is 9619:on 9607:is 9208:of 9132:of 9036:. 8835:to 8467:of 8331:= 0 8236:is 7943:mod 6927:deg 6857:of 6669:is 6274:mod 6111:mod 5907:. 5117:for 5069:. 4834:in 4080:mod 3623:for 3473:is 2816:. 2332:. 2219:for 1966:. 1017:of 974:of 940:of 876:of 802:*: 748:). 683:). 598:on 518:An 469:of 385:.) 286:of 241:of 111:. 19:In 11358:: 11348:). 11308:MR 11306:, 11298:, 11269:MR 11267:. 11257:. 11231:MR 11229:. 11219:. 11215:. 11200:MR 11198:. 11173:MR 11171:. 11141:MR 11139:. 11131:. 11127:. 11121:. 11113:; 11099:MR 11097:. 11087:. 11083:. 11073:; 11060:MR 11058:, 11027:MR 11025:, 11013:38 11011:, 10992:MR 10990:, 10980:, 10968:55 10966:, 10713:^ 10684:". 10650:, 10646:, 10642:, 10633:, 10629:, 10610:, 10606:, 10602:, 10598:, 10478:. 10414:. 10238:/( 10042:x- 9750:x- 9611:/( 9290:= 9227:+ 9152:+ 8462:= 8458:+ 8313:A 8153:, 8136:. 8088:27 7920:27 7889:18 7457:. 7418:. 5448:. 3853:. 3247:. 2277:. 1259:. 1248:. 1139:× 1061:. 1033:↦ 944:. 924:, 857:. 830:→ 790:→ 786:: 779:. 725:→ 507:k, 411:, 338:, 213:. 206:. 180:→ 169:. 150:. 11302:: 11292:: 11275:. 11253:: 11237:. 11206:. 11179:. 11147:. 11135:: 11129:4 11105:. 11019:: 10984:: 10974:: 10933:. 10804:. 10534:G 10520:X 10516:G 10455:X 10451:X 10443:Y 10439:X 10435:X 10431:Y 10412:X 10403:X 10399:O 10395:X 10387:X 10382:X 10378:O 10374:X 10364:R 10360:X 10353:M 10349:~ 10342:X 10338:O 10331:R 10327:M 10322:X 10318:O 10310:X 10302:X 10298:O 10288:X 10261:Y 10257:y 10254:T 10248:Y 10244:y 10240:x 10236:C 10232:X 10228:Y 10224:Y 10203:k 10183:] 10180:y 10177:, 10174:x 10171:[ 10168:k 10140:. 10134:) 10129:2 10125:x 10121:( 10116:] 10113:x 10110:[ 10107:k 10095:) 10092:y 10088:, 10083:2 10079:x 10075:( 10070:] 10067:y 10064:, 10061:x 10058:[ 10055:k 10028:] 10025:y 10022:, 10019:x 10016:[ 10013:k 10007:) 10004:y 10001:, 9998:x 9995:( 9975:) 9972:0 9969:, 9966:0 9963:( 9960:= 9957:) 9954:y 9951:, 9948:x 9945:( 9921:) 9918:y 9914:, 9909:2 9905:x 9901:( 9898:= 9895:) 9892:y 9884:2 9880:x 9876:( 9873:+ 9870:) 9867:y 9864:( 9844:) 9841:y 9833:2 9829:x 9825:( 9822:V 9800:2 9796:x 9792:= 9789:y 9769:) 9766:y 9763:( 9760:V 9736:] 9733:y 9730:, 9727:x 9724:[ 9721:k 9701:k 9679:2 9674:k 9669:A 9629:X 9621:X 9617:x 9613:x 9609:C 9605:X 9597:x 9590:C 9582:X 9536:. 9532:) 9527:) 9524:5 9518:x 9515:( 9512:) 9509:1 9503:x 9500:( 9497:x 9492:( 9488:) 9485:x 9482:( 9478:C 9471:) 9468:x 9465:( 9461:C 9436:. 9433:) 9430:x 9427:( 9423:C 9409:) 9404:) 9401:5 9395:x 9392:( 9389:) 9386:1 9380:x 9377:( 9374:x 9369:( 9365:) 9362:x 9359:( 9355:C 9338:X 9334:X 9330:x 9323:C 9308:C 9300:x 9296:x 9294:( 9292:x 9288:y 9284:X 9273:x 9271:( 9269:C 9262:C 9254:x 9252:( 9250:C 9243:C 9229:y 9225:x 9218:R 9210:k 9206:E 9202:E 9198:E 9196:( 9194:X 9190:k 9186:X 9182:C 9178:C 9176:( 9174:X 9170:C 9168:( 9166:X 9162:R 9160:( 9158:X 9154:y 9150:x 9146:X 9142:k 9140:( 9138:X 9134:k 9130:E 9126:E 9124:( 9122:X 9118:k 9116:( 9114:X 9110:k 9106:k 9104:( 9102:X 9098:k 9096:( 9094:X 9090:k 9086:k 9082:k 9080:( 9078:X 9074:k 9070:n 9043:) 9039:( 8990:n 8976:k 8971:n 8965:m 8931:) 8927:k 8917:1 8914:= 8911:n 8902:( 8885:k 8878:X 8874:f 8870:f 8866:X 8852:) 8849:X 8846:( 8843:O 8823:] 8818:n 8814:x 8810:, 8804:, 8799:1 8795:x 8791:[ 8787:C 8783:= 8780:) 8775:n 8770:A 8765:( 8762:O 8740:n 8735:A 8727:X 8724:: 8721:f 8707:n 8691:n 8686:A 8674:X 8670:X 8656:] 8651:1 8644:x 8640:, 8637:x 8634:[ 8630:C 8624:c 8621:e 8618:p 8615:S 8604:n 8600:X 8585:C 8564:} 8561:0 8558:{ 8550:n 8545:A 8540:= 8537:X 8524:k 8520:k 8511:. 8489:2 8483:Q 8477:P 8464:z 8460:y 8456:x 8441:. 8438:) 8435:f 8432:( 8428:/ 8424:] 8419:n 8415:x 8411:, 8405:, 8400:0 8396:x 8392:[ 8389:R 8353:n 8348:R 8343:P 8329:f 8323:R 8318:f 8296:n 8291:C 8267:n 8262:P 8256:C 8242:R 8222:n 8217:R 8212:P 8200:R 8196:n 8192:n 8176:n 8171:R 8166:P 8151:n 8147:R 8124:p 8121:, 8118:3 8096:2 8092:p 8062:) 8059:p 8051:3 8047:x 8038:2 8034:y 8030:( 8025:] 8022:y 8019:, 8016:x 8013:[ 8009:Z 7996:= 7993:X 7973:p 7953:, 7950:p 7936:0 7933:= 7928:2 7924:c 7912:3 7908:b 7904:4 7898:c 7895:b 7892:a 7886:+ 7881:2 7877:b 7871:2 7867:a 7863:+ 7860:c 7855:3 7851:a 7847:4 7841:= 7836:f 7807:c 7804:+ 7801:x 7798:b 7795:+ 7790:2 7786:x 7782:a 7779:+ 7774:3 7770:x 7761:2 7757:y 7753:= 7750:) 7747:y 7744:, 7741:x 7738:( 7735:f 7713:p 7708:F 7686:) 7681:p 7676:F 7671:( 7660:) 7656:Z 7652:( 7638:X 7635:= 7630:p 7626:X 7600:Z 7573:) 7570:) 7567:f 7564:( 7560:/ 7556:] 7553:y 7550:, 7547:x 7544:[ 7540:Z 7536:( 7527:= 7524:X 7504:] 7501:y 7498:, 7495:x 7492:[ 7488:Z 7481:f 7429:Y 7404:p 7394:F 7370:) 7367:x 7364:( 7361:f 7341:p 7321:) 7318:) 7315:x 7312:( 7309:f 7306:( 7303:V 7283:p 7280:= 7277:) 7274:x 7271:( 7268:r 7248:) 7245:p 7242:( 7239:V 7219:) 7214:m 7209:( 7206:r 7186:] 7183:x 7180:[ 7176:Z 7169:) 7166:x 7163:( 7160:r 7140:) 7134:( 7129:p 7124:F 7116:) 7110:( 7107:r 7104:= 7101:) 7096:m 7091:( 7088:r 7066:m 7057:d 7054:o 7051:m 7044:r 7041:= 7038:) 7033:m 7028:( 7025:r 7005:Y 6985:] 6982:x 6979:[ 6975:Z 6968:) 6965:x 6962:( 6959:r 6939:) 6936:f 6933:( 6924:= 6921:d 6899:d 6895:p 6874:) 6871:x 6868:( 6865:f 6842:= 6839:x 6817:p 6812:F 6790:) 6784:( 6779:p 6774:F 6766:) 6763:) 6760:x 6757:( 6754:f 6751:( 6747:/ 6743:] 6740:x 6737:[ 6732:p 6727:F 6722:= 6717:m 6711:/ 6707:] 6704:x 6701:[ 6697:Z 6693:= 6690:) 6685:m 6680:( 6677:k 6657:) 6654:) 6651:x 6648:( 6645:f 6642:, 6639:p 6636:( 6633:= 6628:m 6603:) 6600:1 6597:+ 6592:2 6588:x 6584:( 6581:V 6561:) 6558:1 6555:+ 6550:2 6546:x 6542:, 6539:3 6536:( 6533:V 6507:3 6502:F 6478:1 6467:= 6464:x 6444:) 6441:1 6438:+ 6433:2 6429:x 6425:, 6422:3 6419:( 6416:= 6411:m 6389:3 6386:= 6383:p 6363:) 6358:2 6354:) 6350:1 6344:x 6341:( 6338:, 6335:2 6332:( 6329:= 6326:) 6323:1 6320:+ 6315:2 6311:x 6307:, 6304:2 6301:( 6281:2 6267:1 6264:= 6261:x 6237:2 6234:= 6231:p 6211:) 6208:2 6205:+ 6202:x 6199:, 6196:5 6193:( 6187:) 6184:2 6178:x 6175:, 6172:5 6169:( 6166:= 6163:) 6160:1 6157:+ 6152:2 6148:x 6144:, 6141:5 6138:( 6118:5 6104:2 6098:= 6095:x 6075:5 6072:= 6069:p 6049:p 6027:1 6016:= 6013:x 5993:1 5990:+ 5985:2 5981:x 5960:x 5940:) 5937:1 5934:+ 5929:2 5925:x 5921:( 5918:V 5895:b 5875:p 5855:) 5852:p 5849:( 5846:V 5826:b 5822:/ 5818:a 5815:= 5812:x 5792:) 5789:a 5783:x 5780:b 5777:( 5774:V 5754:) 5751:a 5745:x 5742:( 5739:= 5734:p 5712:) 5709:a 5703:x 5700:( 5697:V 5677:a 5674:= 5671:x 5651:x 5631:p 5611:) 5608:x 5605:( 5602:f 5582:) 5579:) 5576:x 5573:( 5570:f 5567:, 5564:p 5561:( 5558:= 5553:m 5531:) 5528:p 5525:( 5522:= 5517:p 5495:) 5492:p 5489:( 5486:V 5466:p 5436:x 5416:p 5396:Y 5376:p 5356:) 5353:x 5350:( 5347:f 5327:p 5307:) 5304:) 5301:x 5298:( 5295:f 5292:, 5289:p 5286:( 5283:= 5278:m 5256:] 5253:x 5250:[ 5246:Z 5237:p 5215:) 5212:] 5209:x 5206:[ 5202:Z 5198:( 5189:= 5186:Y 5166:] 5163:x 5160:[ 5156:Z 5135:} 5131:Z 5124:a 5110:a 5107:{ 5104:= 5099:1 5093:Z 5087:A 5057:) 5052:i 5048:n 5044:( 5041:V 5035:Z 5032:= 5027:i 5023:U 5002:Z 4976:i 4972:n 4966:i 4962:a 4958:= 4953:i 4927:Z 4906:) 4903:1 4900:( 4897:= 4894:) 4889:r 4885:n 4881:, 4875:, 4870:1 4866:n 4862:( 4842:Z 4820:p 4814:m 4789:r 4785:n 4781:, 4775:, 4770:1 4766:n 4745:Z 4721:1 4718:= 4713:r 4709:n 4703:r 4699:a 4695:+ 4689:+ 4684:1 4680:n 4674:1 4670:a 4647:r 4643:a 4639:, 4633:, 4628:1 4624:a 4601:r 4597:n 4593:, 4587:, 4582:1 4578:n 4548:p 4542:m 4519:b 4515:/ 4511:a 4490:Q 4486:= 4483:) 4479:Z 4475:( 4466:= 4463:) 4458:0 4452:p 4446:( 4443:k 4423:Z 4403:p 4383:p 4380:= 4377:n 4355:p 4349:m 4321:p 4316:F 4308:) 4303:p 4297:m 4291:( 4288:f 4268:f 4248:n 4226:p 4220:m 4197:n 4176:Z 4172:= 4169:) 4166:0 4163:( 4159:/ 4154:Z 4133:n 4130:= 4127:) 4122:0 4116:p 4110:( 4107:n 4087:p 4073:n 4070:= 4067:) 4062:p 4056:m 4050:( 4047:n 4037:: 4024:p 3998:p 3993:F 3988:= 3985:) 3982:p 3979:( 3975:/ 3970:Z 3966:= 3963:) 3958:p 3952:m 3946:( 3943:k 3921:p 3915:m 3892:Z 3871:Z 3864:n 3841:] 3836:1 3824:p 3820:, 3814:, 3809:1 3801:1 3797:p 3793:[ 3789:Z 3785:= 3782:) 3779:U 3776:( 3771:Z 3765:O 3742:} 3731:p 3724:m 3718:, 3712:, 3705:1 3701:p 3694:m 3688:{ 3682:Z 3679:= 3676:U 3656:} 3653:0 3647:m 3641:, 3637:Z 3630:n 3611:m 3607:p 3603:n 3597:{ 3594:= 3591:] 3586:1 3579:p 3575:[ 3571:Z 3567:= 3564:) 3559:p 3555:U 3551:( 3546:Z 3540:O 3517:} 3512:p 3506:m 3500:{ 3494:Z 3491:= 3486:p 3482:U 3460:Z 3453:p 3419:) 3416:0 3413:( 3410:= 3405:0 3399:p 3375:Z 3368:p 3348:) 3345:p 3342:( 3339:= 3334:p 3328:m 3305:) 3301:Z 3297:( 3288:= 3285:Z 3264:Z 3235:) 3232:) 3229:1 3226:+ 3223:y 3220:( 3215:2 3211:y 3202:2 3198:x 3194:( 3190:/ 3186:] 3183:y 3180:, 3177:x 3174:[ 3171:k 3162:= 3159:V 3137:2 3132:k 3127:A 3101:) 3098:1 3095:+ 3092:y 3089:( 3084:2 3080:y 3076:= 3071:2 3067:x 3046:k 3026:) 3023:) 3020:f 3017:( 3013:/ 3009:R 3006:( 2997:= 2994:) 2991:f 2988:( 2985:V 2965:R 2959:) 2956:f 2953:( 2928:n 2923:k 2918:A 2910:) 2907:f 2904:( 2895:V 2868:) 2863:n 2859:x 2855:, 2849:, 2844:1 2840:x 2836:( 2833:f 2830:= 2827:f 2804:) 2801:a 2798:( 2795:r 2775:) 2770:a 2764:m 2758:( 2755:r 2733:i 2729:a 2720:i 2716:x 2695:k 2687:a 2681:m 2674:/ 2670:R 2667:= 2664:) 2659:a 2653:m 2647:( 2644:k 2619:a 2613:m 2588:p 2582:/ 2578:R 2572:R 2552:r 2532:) 2527:p 2522:( 2519:r 2493:p 2487:/ 2483:R 2461:p 2439:X 2413:X 2390:R 2384:) 2379:n 2375:x 2371:, 2365:, 2360:1 2356:x 2352:( 2349:r 2346:= 2343:r 2320:U 2298:X 2292:O 2265:} 2260:0 2252:Z 2244:m 2238:, 2235:R 2229:r 2204:m 2200:f 2196:r 2190:{ 2187:= 2184:] 2179:1 2172:f 2168:[ 2165:R 2162:= 2159:) 2154:f 2150:U 2146:( 2141:X 2135:O 2109:R 2103:f 2080:} 2075:p 2067:f 2047:X 2039:p 2034:{ 2031:= 2028:) 2025:f 2022:( 2019:V 2013:X 2010:= 2005:f 2001:U 1977:X 1952:a 1946:m 1935:p 1907:V 1898:a 1876:a 1870:m 1847:} 1842:q 1832:p 1810:X 1802:q 1797:{ 1794:= 1791:) 1786:p 1781:( 1778:V 1756:p 1728:X 1719:) 1714:p 1709:( 1700:V 1694:= 1685:V 1662:R 1654:p 1632:a 1612:) 1607:n 1603:a 1594:n 1590:x 1586:, 1580:, 1575:1 1571:a 1562:1 1558:x 1554:( 1551:= 1546:a 1540:m 1517:) 1514:R 1511:( 1507:c 1504:e 1501:p 1498:S 1494:= 1491:X 1471:] 1466:n 1462:x 1458:, 1452:, 1447:1 1443:x 1439:[ 1436:k 1433:= 1430:R 1410:k 1390:) 1385:n 1381:a 1377:, 1371:, 1366:1 1362:a 1358:( 1355:= 1352:a 1330:n 1325:k 1320:A 1315:= 1306:X 1283:k 1253:Z 1246:k 1230:n 1227:+ 1224:m 1219:A 1207:k 1191:n 1186:A 1162:m 1157:A 1145:k 1141:Z 1137:X 1130:k 1126:k 1122:Z 1118:X 1104:Z 1099:Y 1091:X 1078:Y 1074:Z 1070:X 1055:R 1051:X 1047:R 1039:S 1037:( 1035:X 1031:S 1027:R 1023:X 1019:k 1015:E 1008:k 1004:X 1000:S 996:S 994:( 992:X 988:R 984:X 980:S 976:X 970:- 968:S 964:S 959:- 957:R 953:R 949:X 942:X 936:- 934:k 930:k 928:( 926:X 922:k 918:R 914:R 910:X 906:X 902:R 898:R 896:( 894:X 890:R 886:X 878:X 872:- 870:R 866:R 862:X 851:Z 839:Z 832:A 828:B 824:B 820:A 816:X 814:( 812:O 808:Y 806:( 804:O 800:f 792:Y 788:X 784:f 777:k 765:k 757:k 753:k 746:R 742:X 738:R 731:X 727:Y 723:X 717:- 715:Y 711:Y 705:X 701:Y 681:R 677:R 673:n 669:k 662:k 654:n 647:k 641:n 632:, 628:U 626:( 623:X 619:O 600:U 592:U 590:( 587:X 583:O 579:U 574:X 570:O 566:X 561:i 557:U 552:i 548:U 544:X 536:R 532:R 500:R 496:U 492:U 490:( 487:X 483:O 479:U 471:R 463:R 456:X 300:k 292:k 288:n 284:k 280:k 269:k 200:Y 192:Y 186:X 182:Y 178:X 49:x 45:x

Index

mathematics
algebraic geometry
structure
algebraic variety
multiplicities
commutative ring
Fermat curves
integers
Alexander Grothendieck
Éléments de géométrie algébrique
algebraic geometry
Weil conjectures
Pierre Deligne
commutative algebra
topology
homological algebra
number theory
Wiles's proof of Fermat's Last Theorem
coordinate ring
ideal
topological space
generic points
atlas
ringed space
sheaf
Noetherian schemes
Noetherian rings
spectrum
prime ideals
maximal ideals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.