Knowledge

K-theory

Source đź“ť

9474: 9257: 9495: 9463: 9532: 9505: 9485: 6691: 4342: 8202: 5151: 6515: 4763: 188:
into an abelian group is a necessary ingredient for defining K-theory since all definitions start by constructing an abelian monoid from a suitable category and turning it into an abelian group through this universal construction. Given an abelian monoid
102:
in algebraic topology, the reason for this functorial mapping is that it is easier to compute some topological properties from the mapped rings than from the original spaces or schemes. Examples of results gleaned from the K-theory approach include the
7920: 3315: 4966: 3678: 97:
that map from topological spaces or schemes, or to be even more general: any object of a homotopy category to associated rings; these rings reflect some aspects of the structure of the original spaces or schemes. As with functors to
6153: 7185: 4233: 6879: 8413: 4648: 7317: 494: 5583: 5681:. This makes it possible to compute the Grothendieck group on weighted projective spaces since they typically have isolated quotient singularities. In particular, if these singularities have isotropy groups 7191:
singularities, giving techniques for computing the Grothendieck group of any singular algebraic curve. This is because reduction gives a generically smooth curve, and all singularities are Cohen-Macaulay.
7038: 4855: 2037: 8042: 5979: 5854: 4682: 6934: 4053:. Since a vector bundle over this space is just a finite dimensional vector space, which is a free object in the category of coherent sheaves, hence projective, the monoid of isomorphism classes is 1639: 1573: 1856: 6352: 2792: 6520: 4452: 5073: 7975: 5271: 364: 2611: 8500: 8264: 6981: 4029: 3595: 3072: 2570: 7756: 5235: 6510: 5679: 3171: 4181: 4860: 2718: 7551: 5764: 8034: 5336: 4391: 3118:
In algebraic geometry, the same construction can be applied to algebraic vector bundles over a smooth scheme. But, there is an alternative construction for any Noetherian scheme
2825: 2146: 1475: 7229: 7597: 6686:{\displaystyle {\begin{aligned}E_{\infty }^{1,-1}\cong E_{2}^{1,-1}&\cong {\text{CH}}^{1}(C)\\E_{\infty }^{0,0}\cong E_{2}^{0,0}&\cong {\text{CH}}^{0}(C)\end{aligned}}} 5012: 1930: 4677: 2985: 2393: 544: 6020: 1680: 1105: 283: 7792: 5048: 2081: 4534: 8457: 7105: 7100: 5358: 4785: 4228: 4206: 4095: 4073: 4051: 1790: 5643: 2425: 843: 224: 1761: 890: 5484: 1055: 6736: 6731: 6408: 6238: 5886: 5442: 5406: 3717: 3446: 3390: 3354: 3108: 2861: 2667: 2524: 802: 588: 7355: 6186: 3029: 1504: 2213: 1131: 393: 5706: 5298: 2919: 2892: 2280: 2248: 2178: 1888: 933: 244: 6287: 5180: 4563: 1410: 1343: 1186: 3610: 1311: 1157: 758: 3243: 1723: 8311: 8288: 7502: 7435: 7415: 7395: 7375: 7078: 7058: 6448: 6428: 6372: 6258: 6206: 6003: 5918: 5607: 5068: 4411: 4130: 3410: 3136: 3009: 2954: 2631: 2362: 2342: 1700: 973: 953: 5445: 2451: 1381: 1011: 8764: 8502:. The theory was developed by R. W. Thomason in 1980s. Specifically, he proved equivariant analogs of fundamental theorems such as the localization theorem. 6694: 4568: 8207:
The Chern character is useful in part because it facilitates the computation of the Chern class of a tensor product. The Chern character is used in the
3758:
of sheaves as generators of the group, subject to a relation that identifies any extension of two sheaves with their sum. The resulting group is called
5493: 9535: 3254: 5444:, which comes from the fact every vector bundle can be equivalently described as a coherent sheaf. This is done using the Grothendieck group of the 5923: 8323: 4337:{\displaystyle K_{0}\left({\text{Spec}}\left({\frac {\mathbb {F} }{(x^{9})}}\times \mathbb {F} \right)\right)=\mathbb {Z} \oplus \mathbb {Z} } 3947:
which is related to the study of pseudo-isotopies. Much modern research on higher K-theory is related to algebraic geometry and the study of
7205:
One useful application of the Grothendieck-group is to define virtual vector bundles. For example, if we have an embedding of smooth spaces
7237: 6292: 5372:
One recent technique for computing the Grothendieck group of spaces with minor singularities comes from evaluating the difference between
8694: 8670: 8546: 5487: 3736: 3601: 104: 8197:{\displaystyle \operatorname {ch} (V)=e^{x_{1}}+\dots +e^{x_{n}}:=\sum _{m=0}^{\infty }{\frac {1}{m!}}(x_{1}^{m}+\dots +x_{n}^{m}).} 6986: 7507:
Another useful application of virtual bundles is with the definition of a virtual tangent bundle of an intersection of spaces: Let
4790: 1938: 7187:
Moreover, the techniques above using the derived category of singularities for isolated singularities can be extended to isolated
2867:, which makes it very accessible. The only required computations for understanding the spectral sequences are computing the group 8208: 5769: 2864: 2613:. We can then apply the Grothendieck completion to get an abelian group from this abelian monoid. This is called the K-theory of 7553:
be projective subvarieties of a smooth projective variety. Then, we can define the virtual tangent bundle of their intersection
9116: 9008: 8981: 8942: 8850: 8601: 6884: 1581: 1515: 5146:{\displaystyle \mathbb {P} ({\mathcal {E}})=\operatorname {Proj} (\operatorname {Sym} ^{\bullet }({\mathcal {E}}^{\vee }))} 1795: 763:
Equivalence classes in this group should be thought of as formal differences of elements in the abelian monoid. This group
5711: 2731: 2676:
and some algebra to get an alternative description of vector bundles over the ring of continuous complex-valued functions
4416: 9169: 4075:
corresponding to the dimension of the vector space. It is an easy exercise to show that the Grothendieck group is then
8765:"ag.algebraic geometry - Is the algebraic Grothendieck group of a weighted projective space finitely generated ?" 7928: 398: 9523: 9518: 9064: 9034: 5240: 291: 5026:
Another important formula for the Grothendieck group is the projective bundle formula: given a rank r vector bundle
9026: 2575: 4758:{\displaystyle \mathbb {P} ^{n}=\mathbb {A} ^{n}\coprod \mathbb {A} ^{n-1}\coprod \cdots \coprod \mathbb {A} ^{0}} 9513: 8466: 8230: 6939: 4001: 3864: 3860: 112: 3454: 3034: 2532: 8220: 7605: 2313:
There are a number of basic definitions of K-theory: two coming from topology and two from algebraic geometry.
5189: 9415: 8291: 6453: 5648: 3144: 147: 4135: 8791:
Pavic, Nebojsa; Shinder, Evgeny (2021). "K-theory and the singularity category of quotient singularities".
2679: 7510: 893: 8526: 7980: 5303: 4358: 2797: 2089: 1418: 7208: 2863:. One of the main techniques for computing the Grothendieck group for topological spaces comes from the 9423: 7915:{\displaystyle \operatorname {ch} (L)=\exp(c_{1}(L)):=\sum _{m=0}^{\infty }{\frac {c_{1}(L)^{m}}{m!}}.} 7556: 4971: 3927: 3891: 4653: 2959: 2367: 499: 6006: 1644: 1060: 249: 5029: 2045: 9222: 4457: 3856: 151: 8421: 7083: 5341: 4768: 4211: 4189: 4078: 4056: 4034: 1773: 9508: 9494: 7188: 5612: 3974: 3868: 3821:, then all extensions of locally free sheaves split, so the group has an alternative definition. 2988: 2398: 807: 139: 79: 4355:
One of the most commonly used computations of the Grothendieck group is with the computation of
1932:
by using the invariance under scaling. For example, we can see from the scaling invariance that
1728: 848: 9443: 9364: 9241: 9229: 9202: 9162: 8653: 5450: 3803: 3732: 2673: 1016: 9438: 6700: 6377: 6211: 5859: 5411: 5375: 4961:{\displaystyle \mathbb {A} ^{n-k_{1}}\cap \mathbb {A} ^{n-k_{2}}=\mathbb {A} ^{n-k_{1}-k_{2}}} 3686: 3415: 3359: 3323: 3077: 2830: 2636: 2463: 766: 552: 9285: 9212: 7325: 6158: 3014: 1893: 1480: 155: 131: 9132: 7040:, we have the sequence of abelian groups above splits, giving the isomorphism. Note that if 4393:
for projective space over a field. This is because the intersection numbers of a projective
3673:{\displaystyle \operatorname {ch} :K_{0}(X)\otimes \mathbb {Q} \to A(X)\otimes \mathbb {Q} } 2183: 1110: 372: 192: 9433: 9385: 9359: 9207: 8991: 8952: 8896: 8881:, Progress in Mathematics, vol. 129, Boston, MA: Birkhäuser Boston, pp. 335–368, 8730: 8536: 7779: 5684: 5276: 3940: 3837: 2897: 2870: 2307: 2253: 2221: 2151: 1861: 906: 229: 83: 59: 47: 8695:"kt.k theory and homology - Grothendieck group for projective space over the dual numbers" 6263: 5156: 4539: 1386: 1319: 1162: 8: 9280: 3778:) when all are coherent sheaves. Either of these two constructions is referred to as the 3720: 1194: 1136: 596: 547: 123: 99: 9484: 9096: 9003:. Cambridge Studies in Advanced Mathematics. Vol. 111. Cambridge University Press. 8734: 6148:{\displaystyle E_{1}^{p,q}=\coprod _{x\in X^{(p)}}K^{-p-q}(k(x))\Rightarrow K_{-p-q}(X)} 5363: 5300:
or Hirzebruch surfaces. In addition, this can be used to compute the Grothendieck group
3176: 1705: 9478: 9448: 9428: 9349: 9339: 9217: 9197: 9078: 8909: 8882: 8818: 8800: 8570: 8531: 8460: 8296: 8273: 8224: 7443: 7420: 7400: 7380: 7360: 7063: 7043: 6433: 6413: 6357: 6289:
the algebraic function field of the subscheme. This spectral sequence has the property
6243: 6191: 6010: 5988: 5903: 5592: 5586: 5053: 4396: 4115: 3948: 3915: 3779: 3767: 3395: 3121: 3110:
is defined by the application of the Grothendieck construction on this abelian monoid.
2994: 2939: 2930: 2616: 2347: 2327: 2303: 2295: 1685: 958: 938: 179: 167: 71: 67: 51: 35: 8626: 2794:. We can define equivalence classes of idempotent matrices and form an abelian monoid 2430: 1348: 978: 9556: 9473: 9466: 9332: 9290: 9155: 9112: 9060: 9030: 9004: 8977: 8938: 8856: 8846: 8746: 8607: 8597: 8541: 8267: 7180:{\displaystyle K_{0}(C)\cong \mathbb {Z} \oplus (\mathbb {C} ^{g}/\mathbb {Z} ^{2g})} 4110: 3919: 3903: 3887: 3879: 3849: 3755: 3748: 2934: 2721: 1576: 1345:. This should give us the hint that we should be thinking of the equivalence classes 900: 55: 43: 9498: 8822: 8742: 4765:
since the Grothendieck group of coherent sheaves on affine spaces are isomorphic to
3031:
of isomorphisms classes of vector bundles is well-defined, giving an abelian monoid
9246: 9192: 9052: 8969: 8874: 8810: 8738: 8511: 3998:
The easiest example of the Grothendieck group is the Grothendieck group of a point
1412:
Another useful observation is the invariance of equivalence classes under scaling:
127: 108: 75: 8649: 2344:
consider the set of isomorphism classes of finite-dimensional vector bundles over
9305: 9300: 8987: 8965: 8948: 8892: 7770: 6874:{\displaystyle 0\to F^{1}(K_{0}(X))\to K_{0}(X)\to K_{0}(X)/F^{1}(K_{0}(X))\to 0} 3936: 3895: 2322: 116: 9488: 3310:{\displaystyle 0\to {\mathcal {E}}'\to {\mathcal {E}}\to {\mathcal {E}}''\to 0.} 9395: 9327: 9104: 8934: 8926: 8566: 8314: 6014: 3963: 3955: 3932: 3833: 3818: 3814: 3744: 3246: 3139: 3113: 159: 39: 9056: 8973: 9550: 9405: 9315: 9295: 9092: 8860: 8750: 8611: 7782:
of a space to (the completion of) its rational cohomology. For a line bundle
7775: 4184: 3970: 3883: 3829: 2924: 163: 9137: 9390: 9310: 9256: 9018: 8814: 5982: 3925:
There followed a period in which there were various partial definitions of
8840: 8591: 3754:. Rather than working directly with the sheaves, he defined a group using 2572:
is an abelian monoid where the unit is given by the trivial vector bundle
2453:. Since isomorphism classes of vector bundles behave well with respect to 9400: 9074: 9044: 8627:"SGA 6 - Formalisme des intersections sur les schema algebriques propres" 3899: 2725: 27: 8408:{\displaystyle K_{i}^{G}(X)=\pi _{i}(B^{+}\operatorname {Coh} ^{G}(X)).} 3902:; this assertion is correct, but was not settled until 20 years later. ( 9344: 9275: 9234: 8887: 8718: 8657: 3872: 3791: 2454: 4536:. This makes it possible to do concrete calculations with elements in 3894:, which states that every finitely generated projective module over a 9369: 9142: 9083: 8575: 8521: 8516: 6017:
of finite type over a field, there is a convergent spectral sequence
4643:{\displaystyle K(\mathbb {P} ^{n})={\frac {\mathbb {Z} }{(T^{n+1})}}} 1770:
An illustrative example to look at is the Grothendieck completion of
1575:
and it has the property that it is left adjoint to the corresponding
7312:{\displaystyle 0\to \Omega _{Y}\to \Omega _{X}|_{Y}\to C_{Y/X}\to 0} 6733:
as the desired explicit direct sum since it gives an exact sequence
2929:
There is an analogous construction by considering vector bundles in
9354: 9322: 9271: 9178: 8805: 3978: 3959: 3825: 3448:
is special because there is also a ring structure: we define it as
135: 20: 5368:
of singular spaces and spaces with isolated quotient singularities
3914:
The other historical origin of algebraic K-theory was the work of
2316: 8721:(1969-01-01). "Lectures on the K-functor in algebraic geometry". 5578:{\displaystyle \cdots \to K^{0}(X)\to K_{0}(X)\to K_{sg}(X)\to 0} 4230:, one for each connected component of its spectrum. For example, 1510: 143: 94: 63: 9111:. Grad. Studies in Math. Vol. 145. American Math Society. 8671:"Grothendieck group for projective space over the dual numbers" 6450:
points, the only nontrivial parts of the spectral sequence are
5237:. This formula allows one to compute the Grothendieck group of 3931:. Finally, two useful and equivalent definitions were given by 185: 7033:{\displaystyle {\text{Ext}}_{\text{Ab}}^{1}(\mathbb {Z} ,G)=0} 4850:{\displaystyle \mathbb {A} ^{n-k_{1}},\mathbb {A} ^{n-k_{2}}} 2032:{\displaystyle (4,6)\sim (3,5)\sim (2,4)\sim (1,3)\sim (0,2)} 8877:(1995), "Enumeration of rational curves via torus actions", 3114:
Grothendieck group of coherent sheaves in algebraic geometry
1159:
and apply the equation from the equivalence relation to get
9147: 5974:{\displaystyle K_{0}(C)=\mathbb {Z} \oplus {\text{Pic}}(C)} 5849:{\displaystyle {\text{lcm}}(|G_{1}|,\ldots ,|G_{k}|)^{n-1}} 899:
To get a better understanding of this group, consider some
7977:
is a direct sum of line bundles, with first Chern classes
7778:
can be used to construct a homomorphism of rings from the
2925:
Grothendieck group of vector bundles in algebraic geometry
2457:, we can write these operations on isomorphism classes by 4100: 7761:
Kontsevich uses this construction in one of his papers.
4650:
One technique for determining the Grothendieck group of
6929:{\displaystyle {\text{CH}}^{1}(C)\cong {\text{Pic}}(C)} 3954:
The corresponding constructions involving an auxiliary
1634:{\displaystyle U:\mathbf {AbGrp} \to \mathbf {AbMon} .} 1568:{\displaystyle G:\mathbf {AbMon} \to \mathbf {AbGrp} ,} 5338:
by observing it is a projective bundle over the field
4565:
without having to explicitly know its structure since
4109:
One important property of the Grothendieck group of a
1316:
hence we have an additive inverse for each element in
8469: 8424: 8326: 8299: 8276: 8233: 8045: 7983: 7931: 7795: 7608: 7559: 7513: 7446: 7423: 7403: 7383: 7363: 7328: 7240: 7211: 7108: 7086: 7066: 7046: 6989: 6942: 6887: 6739: 6703: 6518: 6456: 6436: 6416: 6380: 6360: 6295: 6266: 6246: 6214: 6194: 6161: 6023: 5991: 5926: 5906: 5862: 5772: 5714: 5687: 5651: 5615: 5595: 5496: 5453: 5414: 5378: 5344: 5306: 5279: 5243: 5192: 5159: 5076: 5056: 5032: 4974: 4863: 4793: 4771: 4685: 4656: 4571: 4542: 4460: 4419: 4399: 4361: 4236: 4214: 4192: 4138: 4118: 4081: 4059: 4037: 4004: 3743:, meaning "class". Grothendieck needed to work with 3689: 3613: 3457: 3418: 3398: 3362: 3326: 3257: 3179: 3147: 3124: 3080: 3037: 3017: 2997: 2962: 2942: 2900: 2873: 2833: 2800: 2734: 2682: 2639: 2619: 2578: 2535: 2466: 2433: 2401: 2370: 2350: 2330: 2256: 2224: 2186: 2154: 2092: 2048: 1941: 1896: 1864: 1851:{\displaystyle G((\mathbb {N} ,+))=(\mathbb {Z} ,+).} 1798: 1776: 1731: 1708: 1702:
to the underlying abelian monoid of an abelian group
1688: 1647: 1584: 1518: 1483: 1421: 1389: 1351: 1322: 1197: 1165: 1139: 1113: 1063: 1019: 981: 961: 941: 909: 851: 810: 769: 599: 555: 502: 401: 375: 294: 252: 232: 195: 6347:{\displaystyle E_{2}^{p,-p}\cong {\text{CH}}^{p}(X)} 3863:. It played a major role in the second proof of the 2787:{\displaystyle M_{n\times n}(C^{0}(X;\mathbb {C} ))} 4447:{\displaystyle i:X\hookrightarrow \mathbb {P} ^{n}} 8959: 8494: 8451: 8407: 8305: 8282: 8258: 8196: 8028: 7969: 7914: 7750: 7591: 7545: 7496: 7429: 7409: 7389: 7369: 7349: 7311: 7223: 7179: 7094: 7072: 7052: 7032: 6975: 6928: 6873: 6725: 6685: 6504: 6442: 6422: 6402: 6366: 6346: 6281: 6252: 6232: 6200: 6180: 6147: 5997: 5973: 5912: 5891: 5880: 5848: 5758: 5700: 5673: 5637: 5601: 5577: 5478: 5436: 5400: 5352: 5330: 5292: 5265: 5229: 5174: 5145: 5070:, the Grothendieck group of the projective bundle 5062: 5042: 5006: 4960: 4849: 4779: 4757: 4671: 4642: 4557: 4528: 4446: 4405: 4385: 4336: 4222: 4200: 4175: 4124: 4089: 4067: 4045: 4023: 3867:(circa 1962). Furthermore, this approach led to a 3711: 3672: 3589: 3440: 3404: 3384: 3348: 3309: 3237: 3165: 3130: 3102: 3066: 3023: 3003: 2979: 2948: 2913: 2886: 2855: 2819: 2786: 2712: 2661: 2625: 2605: 2564: 2518: 2445: 2419: 2387: 2356: 2336: 2274: 2242: 2207: 2172: 2140: 2075: 2031: 1924: 1882: 1850: 1784: 1755: 1717: 1694: 1674: 1633: 1567: 1498: 1469: 1404: 1375: 1337: 1305: 1180: 1151: 1125: 1099: 1049: 1005: 967: 947: 927: 884: 837: 796: 752: 582: 538: 488: 387: 358: 277: 238: 218: 89:K-theory involves the construction of families of 78:. It can be seen as the study of certain kinds of 9109:The K-book: an introduction to algebraic K-theory 8960:Friedlander, Eric; Grayson, Daniel, eds. (2005). 3817:, the two groups are the same. If it is a smooth 2395:and let the isomorphism class of a vector bundle 134:where it has been conjectured that they classify 9548: 9077:(2006). "K-theory. An elementary introduction". 7970:{\displaystyle V=L_{1}\oplus \dots \oplus L_{n}} 5766:is injective and the cokernel is annihilated by 2055: 489:{\displaystyle a_{1}+'b_{2}+'c=a_{2}+'b_{1}+'c.} 74:. It is also a fundamental tool in the field of 8879:The moduli space of curves (Texel Island, 1994) 8650:http://string.lpthe.jussieu.fr/members.pl?key=7 5490:. It gives a long exact sequence starting with 5266:{\displaystyle \mathbb {P} _{\mathbb {F} }^{n}} 4132:is that it is invariant under reduction, hence 2317:Grothendieck group for compact Hausdorff spaces 1509:The Grothendieck completion can be viewed as a 359:{\displaystyle (a_{1},a_{2})\sim (b_{1},b_{2})} 9025:. Lecture Notes in Mathematics. Vol. 76. 3939:in 1969 and 1972. A variant was also given by 1765: 935:. Here we will denote the identity element of 804:is also associated with a monoid homomorphism 9163: 3683:is an isomorphism of rings. Hence we can use 2827:. Its Grothendieck completion is also called 2606:{\displaystyle \mathbb {R} ^{0}\times X\to X} 1725:there exists a unique abelian group morphism 9051:. Classics in Mathematics. Springer-Verlag. 8838: 8790: 8589: 5017: 2070: 2058: 8495:{\displaystyle \operatorname {Coh} ^{G}(X)} 8259:{\displaystyle \operatorname {Coh} ^{G}(X)} 6976:{\displaystyle CH^{0}(C)\cong \mathbb {Z} } 4024:{\displaystyle {\text{Spec}}(\mathbb {F} )} 3138:. If we look at the isomorphism classes of 9531: 9504: 9170: 9156: 8873: 8036:the Chern character is defined additively 6881:where the left hand term is isomorphic to 3984: 3590:{\displaystyle \cdot =\sum (-1)^{k}\left.} 3067:{\displaystyle ({\text{Vect}}(X),\oplus )} 2565:{\displaystyle ({\text{Vect}}(X),\oplus )} 2294:, the most basic K-theory group (see also 173: 9082: 8933:. Advanced Book Classics (2nd ed.). 8886: 8804: 8596:. Cambridge: Cambridge University Press. 8574: 7751:{\displaystyle ^{vir}=|_{Z}+|_{Z}-|_{Z}.} 7437:we define the virtual conormal bundle as 7161: 7144: 7132: 7088: 7011: 6969: 6936:and the right hand term is isomorphic to 5950: 5589:. Note that vector bundles on a singular 5488:derived noncommutative algebraic geometry 5346: 5315: 5252: 5246: 5078: 4922: 4894: 4866: 4824: 4796: 4773: 4745: 4718: 4703: 4688: 4659: 4600: 4580: 4434: 4370: 4346: 4330: 4322: 4304: 4266: 4216: 4194: 4083: 4061: 4039: 4014: 3918:and others on what later became known as 3666: 3643: 2774: 2703: 2581: 1832: 1809: 1778: 8624: 6374:, essentially giving the computation of 5230:{\displaystyle 1,\xi ,\dots ,\xi ^{n-1}} 9091: 9073: 9043: 8214: 7786:, the Chern character ch is defined by 6505:{\displaystyle E_{1}^{0,q},E_{1}^{1,q}} 6007:Brown-Gersten-Quillen spectral sequence 5674:{\displaystyle X_{sm}\hookrightarrow X} 5273:. This make it possible to compute the 3828:, by applying the same construction to 3166:{\displaystyle \operatorname {Coh} (X)} 2298:). For definitions of higher K-groups K 2218:This shows that we should think of the 9549: 9103: 8925: 8565: 7060:is a smooth projective curve of genus 6208:points, meaning the set of subschemes 4208:-algebra is a direct sum of copies of 4183:. Hence the Grothendieck group of any 4176:{\displaystyle K(X)=K(X_{\text{red}})} 3731:The subject can be said to begin with 9151: 8834: 8832: 8786: 8784: 8717: 8569:(2000). "K-Theory Past and Present". 7231:then there is a short exact sequence 3739:. It takes its name from the German 3735:(1957), who used it to formulate his 2724:. Then, these can be identified with 2713:{\displaystyle C^{0}(X;\mathbb {C} )} 1890:we can find a minimal representative 34:is, roughly speaking, the study of a 9017: 8998: 7546:{\displaystyle Y_{1},Y_{2}\subset X} 5759:{\displaystyle K^{0}(X)\to K_{0}(X)} 3977:strengths and the charges of stable 3906:is another aspect of this analogy.) 8029:{\displaystyle x_{i}=c_{1}(L_{i}),} 7764: 5331:{\displaystyle K(\mathbb {P} ^{n})} 4386:{\displaystyle K(\mathbb {P} ^{n})} 4105:of an Artinian algebra over a field 2865:Atiyah–Hirzebruch spectral sequence 2820:{\displaystyle {\textbf {Idem}}(X)} 2803: 2141:{\displaystyle (a,b)\sim (a-k,b-k)} 1470:{\displaystyle (a,b)\sim (a+k,b+k)} 154:K-theory has been used to classify 13: 8829: 8781: 8292:action of a linear algebraic group 8126: 7864: 7482: 7451: 7261: 7248: 7224:{\displaystyle Y\hookrightarrow X} 7200: 6611: 6528: 5126: 5087: 5035: 4515: 4489: 3567: 3556: 3535: 3480: 3463: 3320:This gives the Grothendieck-group 3292: 3281: 3267: 3223: 3202: 3185: 3011:. Then, as before, the direct sum 2728:matrices in some ring of matrices 1641:That means that, given a morphism 184:The Grothendieck completion of an 14: 9568: 9126: 8658:K-theory and Ramond–Ramond Charge 8547:Grothendieck–Riemann–Roch theorem 7592:{\displaystyle Z=Y_{1}\cap Y_{2}} 5585:where the higher terms come from 5007:{\displaystyle k_{1}+k_{2}\leq n} 4679:comes from its stratification as 3973:, the K-theory classification of 3737:Grothendieck–Riemann–Roch theorem 3602:Grothendieck–Riemann–Roch theorem 105:Grothendieck–Riemann–Roch theorem 9530: 9503: 9493: 9483: 9472: 9462: 9461: 9255: 4672:{\displaystyle \mathbb {P} ^{n}} 4454:and using the push pull formula 3989: 3726: 2980:{\displaystyle {\text{Vect}}(X)} 2388:{\displaystyle {\text{Vect}}(X)} 1624: 1621: 1618: 1615: 1612: 1604: 1601: 1598: 1595: 1592: 1558: 1555: 1552: 1549: 1546: 1538: 1535: 1532: 1529: 1526: 1013:will be the identity element of 539:{\displaystyle G(A)=A^{2}/\sim } 9097:"Vector Bundles & K-Theory" 8902: 8867: 8743:10.1070/rm1969v024n05abeh001357 8209:Hirzebruch–Riemann–Roch theorem 7195: 3909: 3861:extraordinary cohomology theory 3173:we can mod out by the relation 3074:. Then, the Grothendieck group 1675:{\displaystyle \phi :A\to U(B)} 1100:{\displaystyle (0,0)\sim (n,n)} 278:{\displaystyle A^{2}=A\times A} 8910:Robert W. Thomason (1952–1995) 8757: 8711: 8687: 8663: 8642: 8633: 8618: 8583: 8559: 8489: 8483: 8446: 8440: 8399: 8396: 8390: 8364: 8348: 8342: 8253: 8247: 8221:equivariant algebraic K-theory 8188: 8146: 8058: 8052: 8020: 8007: 7889: 7882: 7842: 7839: 7833: 7820: 7808: 7802: 7735: 7730: 7717: 7704: 7699: 7679: 7666: 7661: 7641: 7623: 7609: 7491: 7478: 7472: 7462: 7447: 7397:. If we have a singular space 7303: 7282: 7272: 7257: 7244: 7215: 7174: 7139: 7125: 7119: 7021: 7007: 6962: 6956: 6923: 6917: 6906: 6900: 6865: 6862: 6859: 6853: 6840: 6822: 6816: 6803: 6800: 6794: 6781: 6778: 6775: 6769: 6756: 6743: 6720: 6714: 6697:can then be used to determine 6676: 6670: 6599: 6593: 6397: 6391: 6341: 6335: 6276: 6270: 6224: 6173: 6167: 6142: 6136: 6114: 6111: 6108: 6102: 6096: 6070: 6064: 5968: 5962: 5943: 5937: 5900:For a smooth projective curve 5831: 5826: 5811: 5797: 5782: 5778: 5753: 5747: 5734: 5731: 5725: 5665: 5619: 5569: 5566: 5560: 5544: 5541: 5535: 5522: 5519: 5513: 5500: 5473: 5467: 5431: 5425: 5395: 5389: 5325: 5310: 5169: 5163: 5140: 5137: 5120: 5104: 5092: 5082: 5043:{\displaystyle {\mathcal {E}}} 4634: 4615: 4610: 4604: 4590: 4575: 4552: 4546: 4523: 4520: 4500: 4494: 4474: 4471: 4429: 4380: 4365: 4294: 4281: 4276: 4270: 4170: 4157: 4148: 4142: 4018: 4010: 3706: 3700: 3659: 3653: 3647: 3636: 3630: 3576: 3551: 3508: 3498: 3489: 3474: 3468: 3458: 3435: 3429: 3379: 3373: 3343: 3337: 3301: 3286: 3276: 3261: 3232: 3217: 3211: 3196: 3190: 3180: 3160: 3154: 3097: 3091: 3061: 3052: 3046: 3038: 2987:of all isomorphism classes of 2974: 2968: 2850: 2844: 2814: 2808: 2781: 2778: 2764: 2751: 2707: 2693: 2656: 2650: 2597: 2559: 2550: 2544: 2536: 2513: 2496: 2490: 2479: 2473: 2467: 2440: 2434: 2411: 2382: 2376: 2285: 2269: 2257: 2237: 2225: 2199: 2187: 2167: 2155: 2135: 2111: 2105: 2093: 2076:{\displaystyle k:=\min\{a,b\}} 2026: 2014: 2008: 1996: 1990: 1978: 1972: 1960: 1954: 1942: 1919: 1897: 1877: 1865: 1842: 1828: 1822: 1819: 1805: 1802: 1744: 1741: 1735: 1669: 1663: 1657: 1608: 1542: 1464: 1440: 1434: 1422: 1370: 1367: 1355: 1352: 1332: 1326: 1300: 1297: 1285: 1282: 1276: 1273: 1249: 1246: 1240: 1237: 1225: 1222: 1216: 1213: 1201: 1198: 1094: 1082: 1076: 1064: 1041: 1032: 1026: 1020: 1000: 997: 985: 982: 922: 910: 876: 873: 861: 858: 855: 832: 826: 820: 791: 782: 776: 770: 744: 741: 679: 676: 670: 667: 641: 638: 632: 629: 603: 600: 577: 568: 562: 556: 512: 506: 353: 327: 321: 295: 213: 196: 1: 8919: 7417:embedded into a smooth space 4529:{\displaystyle i^{*}(\cdot )} 4413:can be computed by embedding 3945:algebraic K-theory of spaces, 3859:they made it the basis of an 2250:as positive integers and the 148:generalized complex manifolds 140:Ramond–Ramond field strengths 126:, K-theory and in particular 9177: 9001:Complex Topological K-Theory 8723:Russian Mathematical Surveys 8593:Complex topological K-theory 8452:{\displaystyle K_{0}^{G}(C)} 8268:equivariant coherent sheaves 7095:{\displaystyle \mathbb {C} } 5896:of a smooth projective curve 5609:are given by vector bundles 5353:{\displaystyle \mathbb {F} } 4780:{\displaystyle \mathbb {Z} } 4223:{\displaystyle \mathbb {Z} } 4201:{\displaystyle \mathbb {F} } 4090:{\displaystyle \mathbb {Z} } 4068:{\displaystyle \mathbb {N} } 4046:{\displaystyle \mathbb {F} } 3981:was first proposed in 1997. 1785:{\displaystyle \mathbb {N} } 7: 8527:List of cohomology theories 8505: 8227:associated to the category 5638:{\displaystyle E\to X_{sm}} 3865:Atiyah–Singer index theorem 2420:{\displaystyle \pi :E\to X} 1766:Example for natural numbers 838:{\displaystyle i:A\to G(A)} 113:Atiyah–Singer index theorem 19:For the hip hop group, see 10: 9573: 9424:Banach fixed-point theorem 7768: 7357:is the conormal bundle of 5920:the Grothendieck group is 4787:, and the intersection of 3958:received the general name 2289: 1756:{\displaystyle G(A)\to B.} 894:certain universal property 885:{\displaystyle a\mapsto ,} 177: 18: 9457: 9414: 9378: 9264: 9253: 9185: 9143:K-theory preprint archive 9133:Grothendieck-Riemann-Roch 9057:10.1007/978-3-540-79890-3 9049:K-theory: an introduction 8974:10.1007/978-3-540-27855-9 5479:{\displaystyle D_{sg}(X)} 5050:over a Noetherian scheme 1050:{\displaystyle (G(A),+).} 8552: 6726:{\displaystyle K_{0}(C)} 6403:{\displaystyle K_{0}(C)} 6233:{\displaystyle x:Y\to X} 6005:. This follows from the 5881:{\displaystyle n=\dim X} 5437:{\displaystyle K_{0}(X)} 5401:{\displaystyle K^{0}(X)} 3962:. It is a major tool of 3928:higher K-theory functors 3882:had used the analogy of 3857:Bott periodicity theorem 3712:{\displaystyle K_{0}(X)} 3441:{\displaystyle K_{0}(X)} 3385:{\displaystyle K^{0}(X)} 3349:{\displaystyle K_{0}(X)} 3103:{\displaystyle K^{0}(X)} 2989:algebraic vector bundles 2856:{\displaystyle K^{0}(X)} 2662:{\displaystyle K^{0}(X)} 2529:It should be clear that 2519:{\displaystyle \oplus =} 797:{\displaystyle (G(A),+)} 583:{\displaystyle (G(A),+)} 166:. For more details, see 152:condensed matter physics 8927:Atiyah, Michael Francis 8317:; thus, by definition, 8270:on an algebraic scheme 7350:{\displaystyle C_{Y/X}} 6188:the set of codimension 6181:{\displaystyle X^{(p)}} 3985:Examples and properties 3855:in 1959, and using the 3356:which is isomorphic to 3024:{\displaystyle \oplus } 2290:This section is about K 1925:{\displaystyle (a',b')} 1499:{\displaystyle k\in A.} 546:has the structure of a 174:Grothendieck completion 70:, it is referred to as 9479:Mathematics portal 9379:Metrics and properties 9365:Second-countable space 8845:. Boston: Birkhäuser. 8815:10.2140/akt.2021.6.381 8496: 8453: 8409: 8307: 8284: 8260: 8198: 8130: 8030: 7971: 7916: 7868: 7752: 7593: 7547: 7498: 7431: 7411: 7391: 7371: 7351: 7313: 7225: 7181: 7096: 7074: 7054: 7034: 6977: 6930: 6875: 6727: 6687: 6506: 6444: 6424: 6404: 6368: 6348: 6283: 6254: 6234: 6202: 6182: 6149: 5999: 5975: 5914: 5882: 5850: 5760: 5702: 5675: 5639: 5603: 5579: 5480: 5438: 5402: 5354: 5332: 5294: 5267: 5231: 5176: 5147: 5064: 5044: 5022:of a projective bundle 5008: 4962: 4851: 4781: 4759: 4673: 4644: 4559: 4530: 4448: 4407: 4387: 4338: 4224: 4202: 4177: 4126: 4091: 4069: 4047: 4025: 3943:in order to study the 3733:Alexander Grothendieck 3713: 3674: 3591: 3442: 3406: 3386: 3350: 3311: 3239: 3167: 3132: 3104: 3068: 3025: 3005: 2981: 2950: 2915: 2888: 2857: 2821: 2788: 2714: 2663: 2627: 2607: 2566: 2520: 2447: 2421: 2389: 2358: 2338: 2282:as negative integers. 2276: 2244: 2209: 2208:{\displaystyle (0,d).} 2174: 2142: 2077: 2033: 1926: 1884: 1852: 1786: 1757: 1719: 1696: 1676: 1635: 1569: 1500: 1471: 1406: 1383:as formal differences 1377: 1339: 1307: 1182: 1153: 1127: 1126:{\displaystyle n\in A} 1101: 1051: 1007: 969: 949: 929: 903:of the abelian monoid 886: 839: 798: 754: 584: 540: 490: 389: 388:{\displaystyle c\in A} 360: 279: 240: 220: 219:{\displaystyle (A,+')} 156:topological insulators 8839:Srinivas, V. (1991). 8590:Park, Efton. (2008). 8497: 8454: 8410: 8308: 8285: 8261: 8199: 8110: 8031: 7972: 7917: 7848: 7753: 7594: 7548: 7499: 7432: 7412: 7392: 7372: 7352: 7314: 7226: 7182: 7097: 7075: 7055: 7035: 6978: 6931: 6876: 6728: 6688: 6507: 6445: 6425: 6405: 6369: 6354:for the Chow ring of 6349: 6284: 6255: 6235: 6203: 6183: 6150: 6000: 5976: 5915: 5883: 5851: 5761: 5703: 5701:{\displaystyle G_{i}} 5676: 5640: 5604: 5580: 5481: 5439: 5403: 5355: 5333: 5295: 5293:{\displaystyle K_{0}} 5268: 5232: 5177: 5148: 5065: 5045: 5009: 4963: 4852: 4782: 4760: 4674: 4645: 4560: 4531: 4449: 4408: 4388: 4339: 4225: 4203: 4178: 4127: 4092: 4070: 4048: 4026: 3714: 3675: 3592: 3443: 3412:is smooth. The group 3407: 3387: 3351: 3312: 3240: 3168: 3133: 3105: 3069: 3026: 3006: 2982: 2951: 2916: 2914:{\displaystyle S^{n}} 2889: 2887:{\displaystyle K^{0}} 2858: 2822: 2789: 2715: 2664: 2628: 2608: 2567: 2521: 2448: 2422: 2390: 2359: 2339: 2277: 2275:{\displaystyle (0,b)} 2245: 2243:{\displaystyle (a,0)} 2210: 2175: 2173:{\displaystyle (c,0)} 2148:which is of the form 2143: 2078: 2034: 1927: 1885: 1883:{\displaystyle (a,b)} 1853: 1787: 1758: 1720: 1697: 1682:of an abelian monoid 1677: 1636: 1570: 1501: 1472: 1407: 1378: 1340: 1308: 1183: 1154: 1128: 1102: 1052: 1008: 970: 950: 930: 928:{\displaystyle (A,+)} 887: 840: 799: 755: 585: 541: 491: 390: 361: 280: 241: 239:{\displaystyle \sim } 221: 132:Type II string theory 16:Branch of mathematics 9434:Invariance of domain 9386:Euler characteristic 9360:Bundle (mathematics) 8999:Park, Efton (2008). 8964:. Berlin, New York: 8962:Handbook of K-Theory 8537:Topological K-theory 8467: 8422: 8324: 8297: 8274: 8231: 8215:Equivariant K-theory 8043: 7981: 7929: 7793: 7780:topological K-theory 7606: 7557: 7511: 7444: 7421: 7401: 7381: 7361: 7326: 7238: 7209: 7106: 7084: 7064: 7044: 6987: 6940: 6885: 6737: 6701: 6516: 6454: 6434: 6414: 6410:. Note that because 6378: 6358: 6293: 6282:{\displaystyle k(x)} 6264: 6244: 6212: 6192: 6159: 6021: 5989: 5924: 5904: 5860: 5770: 5712: 5685: 5649: 5645:on the smooth locus 5613: 5593: 5494: 5451: 5446:Singularity category 5412: 5376: 5342: 5304: 5277: 5241: 5190: 5175:{\displaystyle K(X)} 5157: 5074: 5054: 5030: 4972: 4861: 4791: 4769: 4683: 4654: 4569: 4558:{\displaystyle K(X)} 4540: 4458: 4417: 4397: 4359: 4234: 4212: 4190: 4136: 4116: 4079: 4057: 4035: 4002: 3941:Friedhelm Waldhausen 3838:Friedrich Hirzebruch 3768:locally free sheaves 3687: 3611: 3455: 3416: 3396: 3360: 3324: 3255: 3247:short exact sequence 3177: 3145: 3122: 3078: 3035: 3015: 2995: 2960: 2940: 2898: 2871: 2831: 2798: 2732: 2680: 2637: 2617: 2576: 2533: 2464: 2431: 2399: 2368: 2348: 2328: 2308:Topological K-theory 2254: 2222: 2184: 2152: 2090: 2046: 1939: 1894: 1862: 1796: 1774: 1729: 1706: 1686: 1645: 1582: 1516: 1481: 1419: 1405:{\displaystyle a-b.} 1387: 1349: 1338:{\displaystyle G(A)} 1320: 1195: 1181:{\displaystyle n=n.} 1163: 1137: 1111: 1061: 1017: 979: 959: 939: 907: 849: 808: 767: 597: 553: 500: 399: 373: 292: 250: 230: 193: 60:topological K-theory 9444:Tychonoff's theorem 9439:PoincarĂ© conjecture 9193:General (point-set) 8908:Charles A. Weibel, 8735:1969RuMaS..24....1M 8648:by Ruben Minasian ( 8439: 8341: 8187: 8163: 7925:More generally, if 7006: 6695:coniveau filtration 6650: 6626: 6573: 6546: 6501: 6477: 6430:has no codimension 6319: 6044: 5262: 4351:of projective space 3975:Ramond–Ramond field 3756:isomorphism classes 3721:intersection theory 3547: 1306:{\displaystyle +==} 1152:{\displaystyle c=0} 901:equivalence classes 753:{\displaystyle +=.} 246:be the relation on 124:high energy physics 9429:De Rham cohomology 9350:Polyhedral complex 9340:Simplicial complex 9138:Max Karoubi's Page 9023:Algebraic K-Theory 8842:Algebraic K-theory 8793:Annals of K-Theory 8532:Algebraic K-theory 8492: 8461:Grothendieck group 8449: 8425: 8405: 8327: 8303: 8280: 8256: 8225:algebraic K-theory 8194: 8173: 8149: 8026: 7967: 7912: 7748: 7589: 7543: 7494: 7427: 7407: 7387: 7367: 7347: 7309: 7221: 7177: 7092: 7070: 7050: 7030: 6990: 6973: 6926: 6871: 6723: 6683: 6681: 6630: 6606: 6550: 6523: 6502: 6481: 6457: 6440: 6420: 6400: 6364: 6344: 6296: 6279: 6250: 6230: 6198: 6178: 6145: 6076: 6024: 6011:algebraic K-theory 5995: 5971: 5910: 5878: 5846: 5756: 5698: 5671: 5635: 5599: 5575: 5476: 5434: 5398: 5350: 5328: 5290: 5263: 5244: 5227: 5172: 5143: 5060: 5040: 5004: 4958: 4847: 4777: 4755: 4669: 4640: 4555: 4526: 4444: 4403: 4383: 4334: 4220: 4198: 4173: 4122: 4087: 4065: 4043: 4021: 3949:motivic cohomology 3916:J. H. C. Whitehead 3892:Serre's conjecture 3888:projective modules 3780:Grothendieck group 3709: 3670: 3587: 3522: 3438: 3402: 3382: 3346: 3307: 3238:{\displaystyle =+} 3235: 3163: 3128: 3100: 3064: 3021: 3001: 2977: 2946: 2931:algebraic geometry 2911: 2884: 2853: 2817: 2784: 2722:projective modules 2710: 2674:Serre–Swan theorem 2659: 2623: 2603: 2562: 2516: 2443: 2417: 2385: 2354: 2334: 2304:Algebraic K-theory 2296:Grothendieck group 2272: 2240: 2205: 2170: 2138: 2073: 2029: 1922: 1880: 1848: 1792:. We can see that 1782: 1753: 1718:{\displaystyle B,} 1715: 1692: 1672: 1631: 1565: 1496: 1467: 1402: 1373: 1335: 1303: 1178: 1149: 1123: 1097: 1047: 1003: 965: 945: 925: 882: 835: 794: 750: 580: 536: 486: 385: 369:if there exists a 356: 275: 236: 216: 180:Grothendieck group 168:K-theory (physics) 72:algebraic K-theory 68:algebraic geometry 52:algebraic topology 9544: 9543: 9333:fundamental group 9118:978-0-8218-9132-2 9010:978-0-521-85634-8 8983:978-3-540-30436-4 8944:978-0-201-09394-0 8875:Kontsevich, Maxim 8852:978-1-4899-6735-0 8603:978-0-511-38869-9 8542:Operator K-theory 8313:, via Quillen's 8306:{\displaystyle G} 8283:{\displaystyle X} 8144: 7907: 7497:{\displaystyle -} 7430:{\displaystyle X} 7410:{\displaystyle Y} 7390:{\displaystyle X} 7370:{\displaystyle Y} 7073:{\displaystyle g} 7053:{\displaystyle C} 6999: 6994: 6915: 6892: 6662: 6585: 6443:{\displaystyle 2} 6423:{\displaystyle C} 6367:{\displaystyle X} 6327: 6253:{\displaystyle p} 6201:{\displaystyle p} 6048: 5998:{\displaystyle C} 5960: 5913:{\displaystyle C} 5776: 5602:{\displaystyle X} 5063:{\displaystyle X} 4638: 4406:{\displaystyle X} 4298: 4255: 4167: 4125:{\displaystyle X} 4111:Noetherian scheme 4008: 3920:Whitehead torsion 3880:Jean-Pierre Serre 3878:Already in 1955, 3850:topological space 3749:algebraic variety 3405:{\displaystyle X} 3131:{\displaystyle X} 3044: 3004:{\displaystyle X} 2966: 2949:{\displaystyle X} 2935:Noetherian scheme 2805: 2626:{\displaystyle X} 2542: 2374: 2357:{\displaystyle X} 2337:{\displaystyle X} 1695:{\displaystyle A} 1577:forgetful functor 1133:since we can set 968:{\displaystyle 0} 948:{\displaystyle A} 142:and also certain 130:have appeared in 76:operator algebras 56:cohomology theory 44:topological space 9564: 9534: 9533: 9507: 9506: 9497: 9487: 9477: 9476: 9465: 9464: 9259: 9172: 9165: 9158: 9149: 9148: 9122: 9100: 9088: 9086: 9070: 9040: 9014: 8995: 8956: 8913: 8906: 8900: 8899: 8890: 8871: 8865: 8864: 8836: 8827: 8826: 8808: 8788: 8779: 8778: 8776: 8775: 8761: 8755: 8754: 8715: 8709: 8708: 8706: 8705: 8691: 8685: 8684: 8682: 8681: 8675:mathoverflow.net 8667: 8661: 8646: 8640: 8637: 8631: 8630: 8622: 8616: 8615: 8587: 8581: 8580: 8578: 8563: 8512:Bott periodicity 8501: 8499: 8498: 8493: 8479: 8478: 8458: 8456: 8455: 8450: 8438: 8433: 8414: 8412: 8411: 8406: 8386: 8385: 8376: 8375: 8363: 8362: 8340: 8335: 8312: 8310: 8309: 8304: 8289: 8287: 8286: 8281: 8265: 8263: 8262: 8257: 8243: 8242: 8203: 8201: 8200: 8195: 8186: 8181: 8162: 8157: 8145: 8143: 8132: 8129: 8124: 8106: 8105: 8104: 8103: 8080: 8079: 8078: 8077: 8035: 8033: 8032: 8027: 8019: 8018: 8006: 8005: 7993: 7992: 7976: 7974: 7973: 7968: 7966: 7965: 7947: 7946: 7921: 7919: 7918: 7913: 7908: 7906: 7898: 7897: 7896: 7881: 7880: 7870: 7867: 7862: 7832: 7831: 7765:Chern characters 7757: 7755: 7754: 7749: 7744: 7743: 7738: 7729: 7728: 7713: 7712: 7707: 7698: 7697: 7696: 7695: 7675: 7674: 7669: 7660: 7659: 7658: 7657: 7637: 7636: 7621: 7620: 7598: 7596: 7595: 7590: 7588: 7587: 7575: 7574: 7552: 7550: 7549: 7544: 7536: 7535: 7523: 7522: 7503: 7501: 7500: 7495: 7490: 7489: 7471: 7470: 7465: 7459: 7458: 7436: 7434: 7433: 7428: 7416: 7414: 7413: 7408: 7396: 7394: 7393: 7388: 7376: 7374: 7373: 7368: 7356: 7354: 7353: 7348: 7346: 7345: 7341: 7318: 7316: 7315: 7310: 7302: 7301: 7297: 7281: 7280: 7275: 7269: 7268: 7256: 7255: 7230: 7228: 7227: 7222: 7186: 7184: 7183: 7178: 7173: 7172: 7164: 7158: 7153: 7152: 7147: 7135: 7118: 7117: 7101: 7099: 7098: 7093: 7091: 7079: 7077: 7076: 7071: 7059: 7057: 7056: 7051: 7039: 7037: 7036: 7031: 7014: 7005: 7000: 6997: 6995: 6992: 6982: 6980: 6979: 6974: 6972: 6955: 6954: 6935: 6933: 6932: 6927: 6916: 6913: 6899: 6898: 6893: 6890: 6880: 6878: 6877: 6872: 6852: 6851: 6839: 6838: 6829: 6815: 6814: 6793: 6792: 6768: 6767: 6755: 6754: 6732: 6730: 6729: 6724: 6713: 6712: 6692: 6690: 6689: 6684: 6682: 6669: 6668: 6663: 6660: 6649: 6638: 6625: 6614: 6592: 6591: 6586: 6583: 6572: 6558: 6545: 6531: 6511: 6509: 6508: 6503: 6500: 6489: 6476: 6465: 6449: 6447: 6446: 6441: 6429: 6427: 6426: 6421: 6409: 6407: 6406: 6401: 6390: 6389: 6373: 6371: 6370: 6365: 6353: 6351: 6350: 6345: 6334: 6333: 6328: 6325: 6318: 6304: 6288: 6286: 6285: 6280: 6259: 6257: 6256: 6251: 6239: 6237: 6236: 6231: 6207: 6205: 6204: 6199: 6187: 6185: 6184: 6179: 6177: 6176: 6154: 6152: 6151: 6146: 6135: 6134: 6095: 6094: 6075: 6074: 6073: 6043: 6032: 6004: 6002: 6001: 5996: 5980: 5978: 5977: 5972: 5961: 5958: 5953: 5936: 5935: 5919: 5917: 5916: 5911: 5887: 5885: 5884: 5879: 5855: 5853: 5852: 5847: 5845: 5844: 5829: 5824: 5823: 5814: 5800: 5795: 5794: 5785: 5777: 5774: 5765: 5763: 5762: 5757: 5746: 5745: 5724: 5723: 5707: 5705: 5704: 5699: 5697: 5696: 5680: 5678: 5677: 5672: 5664: 5663: 5644: 5642: 5641: 5636: 5634: 5633: 5608: 5606: 5605: 5600: 5584: 5582: 5581: 5576: 5559: 5558: 5534: 5533: 5512: 5511: 5485: 5483: 5482: 5477: 5466: 5465: 5443: 5441: 5440: 5435: 5424: 5423: 5407: 5405: 5404: 5399: 5388: 5387: 5359: 5357: 5356: 5351: 5349: 5337: 5335: 5334: 5329: 5324: 5323: 5318: 5299: 5297: 5296: 5291: 5289: 5288: 5272: 5270: 5269: 5264: 5261: 5256: 5255: 5249: 5236: 5234: 5233: 5228: 5226: 5225: 5182:-module of rank 5181: 5179: 5178: 5173: 5152: 5150: 5149: 5144: 5136: 5135: 5130: 5129: 5116: 5115: 5091: 5090: 5081: 5069: 5067: 5066: 5061: 5049: 5047: 5046: 5041: 5039: 5038: 5013: 5011: 5010: 5005: 4997: 4996: 4984: 4983: 4967: 4965: 4964: 4959: 4957: 4956: 4955: 4954: 4942: 4941: 4925: 4916: 4915: 4914: 4913: 4897: 4888: 4887: 4886: 4885: 4869: 4856: 4854: 4853: 4848: 4846: 4845: 4844: 4843: 4827: 4818: 4817: 4816: 4815: 4799: 4786: 4784: 4783: 4778: 4776: 4764: 4762: 4761: 4756: 4754: 4753: 4748: 4733: 4732: 4721: 4712: 4711: 4706: 4697: 4696: 4691: 4678: 4676: 4675: 4670: 4668: 4667: 4662: 4649: 4647: 4646: 4641: 4639: 4637: 4633: 4632: 4613: 4603: 4597: 4589: 4588: 4583: 4564: 4562: 4561: 4556: 4535: 4533: 4532: 4527: 4519: 4518: 4512: 4511: 4493: 4492: 4486: 4485: 4470: 4469: 4453: 4451: 4450: 4445: 4443: 4442: 4437: 4412: 4410: 4409: 4404: 4392: 4390: 4389: 4384: 4379: 4378: 4373: 4343: 4341: 4340: 4335: 4333: 4325: 4317: 4313: 4312: 4308: 4307: 4299: 4297: 4293: 4292: 4279: 4269: 4263: 4256: 4253: 4246: 4245: 4229: 4227: 4226: 4221: 4219: 4207: 4205: 4204: 4199: 4197: 4182: 4180: 4179: 4174: 4169: 4168: 4165: 4131: 4129: 4128: 4123: 4096: 4094: 4093: 4088: 4086: 4074: 4072: 4071: 4066: 4064: 4052: 4050: 4049: 4044: 4042: 4030: 4028: 4027: 4022: 4017: 4009: 4006: 3745:coherent sheaves 3718: 3716: 3715: 3710: 3699: 3698: 3679: 3677: 3676: 3671: 3669: 3646: 3629: 3628: 3596: 3594: 3593: 3588: 3583: 3579: 3575: 3571: 3570: 3560: 3559: 3546: 3545: 3544: 3539: 3538: 3530: 3516: 3515: 3488: 3484: 3483: 3467: 3466: 3447: 3445: 3444: 3439: 3428: 3427: 3411: 3409: 3408: 3403: 3391: 3389: 3388: 3383: 3372: 3371: 3355: 3353: 3352: 3347: 3336: 3335: 3316: 3314: 3313: 3308: 3300: 3296: 3295: 3285: 3284: 3275: 3271: 3270: 3244: 3242: 3241: 3236: 3231: 3227: 3226: 3210: 3206: 3205: 3189: 3188: 3172: 3170: 3169: 3164: 3140:coherent sheaves 3137: 3135: 3134: 3129: 3109: 3107: 3106: 3101: 3090: 3089: 3073: 3071: 3070: 3065: 3045: 3042: 3030: 3028: 3027: 3022: 3010: 3008: 3007: 3002: 2986: 2984: 2983: 2978: 2967: 2964: 2955: 2953: 2952: 2947: 2920: 2918: 2917: 2912: 2910: 2909: 2894:for the spheres 2893: 2891: 2890: 2885: 2883: 2882: 2862: 2860: 2859: 2854: 2843: 2842: 2826: 2824: 2823: 2818: 2807: 2806: 2793: 2791: 2790: 2785: 2777: 2763: 2762: 2750: 2749: 2719: 2717: 2716: 2711: 2706: 2692: 2691: 2668: 2666: 2665: 2660: 2649: 2648: 2632: 2630: 2629: 2624: 2612: 2610: 2609: 2604: 2590: 2589: 2584: 2571: 2569: 2568: 2563: 2543: 2540: 2525: 2523: 2522: 2517: 2512: 2489: 2452: 2450: 2449: 2446:{\displaystyle } 2444: 2426: 2424: 2423: 2418: 2394: 2392: 2391: 2386: 2375: 2372: 2363: 2361: 2360: 2355: 2343: 2341: 2340: 2335: 2321:Given a compact 2281: 2279: 2278: 2273: 2249: 2247: 2246: 2241: 2214: 2212: 2211: 2206: 2179: 2177: 2176: 2171: 2147: 2145: 2144: 2139: 2082: 2080: 2079: 2074: 2038: 2036: 2035: 2030: 1931: 1929: 1928: 1923: 1918: 1907: 1889: 1887: 1886: 1881: 1857: 1855: 1854: 1849: 1835: 1812: 1791: 1789: 1788: 1783: 1781: 1762: 1760: 1759: 1754: 1724: 1722: 1721: 1716: 1701: 1699: 1698: 1693: 1681: 1679: 1678: 1673: 1640: 1638: 1637: 1632: 1627: 1607: 1574: 1572: 1571: 1566: 1561: 1541: 1505: 1503: 1502: 1497: 1476: 1474: 1473: 1468: 1411: 1409: 1408: 1403: 1382: 1380: 1379: 1376:{\displaystyle } 1374: 1344: 1342: 1341: 1336: 1312: 1310: 1309: 1304: 1187: 1185: 1184: 1179: 1158: 1156: 1155: 1150: 1132: 1130: 1129: 1124: 1106: 1104: 1103: 1098: 1056: 1054: 1053: 1048: 1012: 1010: 1009: 1006:{\displaystyle } 1004: 974: 972: 971: 966: 954: 952: 951: 946: 934: 932: 931: 926: 891: 889: 888: 883: 844: 842: 841: 836: 803: 801: 800: 795: 759: 757: 756: 751: 740: 739: 730: 722: 721: 709: 708: 699: 691: 690: 666: 665: 653: 652: 628: 627: 615: 614: 589: 587: 586: 581: 545: 543: 542: 537: 532: 527: 526: 495: 493: 492: 487: 479: 471: 470: 461: 453: 452: 437: 429: 428: 419: 411: 410: 394: 392: 391: 386: 365: 363: 362: 357: 352: 351: 339: 338: 320: 319: 307: 306: 284: 282: 281: 276: 262: 261: 245: 243: 242: 237: 225: 223: 222: 217: 212: 128:twisted K-theory 117:Adams operations 109:Bott periodicity 9572: 9571: 9567: 9566: 9565: 9563: 9562: 9561: 9547: 9546: 9545: 9540: 9471: 9453: 9449:Urysohn's lemma 9410: 9374: 9260: 9251: 9223:low-dimensional 9181: 9176: 9129: 9119: 9105:Weibel, Charles 9067: 9037: 9011: 8984: 8966:Springer-Verlag 8945: 8922: 8917: 8916: 8907: 8903: 8872: 8868: 8853: 8837: 8830: 8789: 8782: 8773: 8771: 8763: 8762: 8758: 8716: 8712: 8703: 8701: 8693: 8692: 8688: 8679: 8677: 8669: 8668: 8664: 8647: 8643: 8638: 8634: 8623: 8619: 8604: 8588: 8584: 8567:Atiyah, Michael 8564: 8560: 8555: 8508: 8474: 8470: 8468: 8465: 8464: 8434: 8429: 8423: 8420: 8419: 8418:In particular, 8381: 8377: 8371: 8367: 8358: 8354: 8336: 8331: 8325: 8322: 8321: 8298: 8295: 8294: 8275: 8272: 8271: 8238: 8234: 8232: 8229: 8228: 8217: 8182: 8177: 8158: 8153: 8136: 8131: 8125: 8114: 8099: 8095: 8094: 8090: 8073: 8069: 8068: 8064: 8044: 8041: 8040: 8014: 8010: 8001: 7997: 7988: 7984: 7982: 7979: 7978: 7961: 7957: 7942: 7938: 7930: 7927: 7926: 7899: 7892: 7888: 7876: 7872: 7871: 7869: 7863: 7852: 7827: 7823: 7794: 7791: 7790: 7773: 7771:Chern character 7767: 7739: 7734: 7733: 7724: 7720: 7708: 7703: 7702: 7691: 7687: 7686: 7682: 7670: 7665: 7664: 7653: 7649: 7648: 7644: 7626: 7622: 7616: 7612: 7607: 7604: 7603: 7583: 7579: 7570: 7566: 7558: 7555: 7554: 7531: 7527: 7518: 7514: 7512: 7509: 7508: 7485: 7481: 7466: 7461: 7460: 7454: 7450: 7445: 7442: 7441: 7422: 7419: 7418: 7402: 7399: 7398: 7382: 7379: 7378: 7362: 7359: 7358: 7337: 7333: 7329: 7327: 7324: 7323: 7293: 7289: 7285: 7276: 7271: 7270: 7264: 7260: 7251: 7247: 7239: 7236: 7235: 7210: 7207: 7206: 7203: 7201:Virtual bundles 7198: 7165: 7160: 7159: 7154: 7148: 7143: 7142: 7131: 7113: 7109: 7107: 7104: 7103: 7087: 7085: 7082: 7081: 7065: 7062: 7061: 7045: 7042: 7041: 7010: 7001: 6996: 6991: 6988: 6985: 6984: 6968: 6950: 6946: 6941: 6938: 6937: 6912: 6894: 6889: 6888: 6886: 6883: 6882: 6847: 6843: 6834: 6830: 6825: 6810: 6806: 6788: 6784: 6763: 6759: 6750: 6746: 6738: 6735: 6734: 6708: 6704: 6702: 6699: 6698: 6680: 6679: 6664: 6659: 6658: 6651: 6639: 6634: 6615: 6610: 6603: 6602: 6587: 6582: 6581: 6574: 6559: 6554: 6532: 6527: 6519: 6517: 6514: 6513: 6490: 6485: 6466: 6461: 6455: 6452: 6451: 6435: 6432: 6431: 6415: 6412: 6411: 6385: 6381: 6379: 6376: 6375: 6359: 6356: 6355: 6329: 6324: 6323: 6305: 6300: 6294: 6291: 6290: 6265: 6262: 6261: 6245: 6242: 6241: 6240:of codimension 6213: 6210: 6209: 6193: 6190: 6189: 6166: 6162: 6160: 6157: 6156: 6121: 6117: 6081: 6077: 6063: 6059: 6052: 6033: 6028: 6022: 6019: 6018: 5990: 5987: 5986: 5957: 5949: 5931: 5927: 5925: 5922: 5921: 5905: 5902: 5901: 5898: 5895: 5861: 5858: 5857: 5834: 5830: 5825: 5819: 5815: 5810: 5796: 5790: 5786: 5781: 5773: 5771: 5768: 5767: 5741: 5737: 5719: 5715: 5713: 5710: 5709: 5692: 5688: 5686: 5683: 5682: 5656: 5652: 5650: 5647: 5646: 5626: 5622: 5614: 5611: 5610: 5594: 5591: 5590: 5587:higher K-theory 5551: 5547: 5529: 5525: 5507: 5503: 5495: 5492: 5491: 5458: 5454: 5452: 5449: 5448: 5419: 5415: 5413: 5410: 5409: 5383: 5379: 5377: 5374: 5373: 5370: 5367: 5345: 5343: 5340: 5339: 5319: 5314: 5313: 5305: 5302: 5301: 5284: 5280: 5278: 5275: 5274: 5257: 5251: 5250: 5245: 5242: 5239: 5238: 5215: 5211: 5191: 5188: 5187: 5158: 5155: 5154: 5131: 5125: 5124: 5123: 5111: 5107: 5086: 5085: 5077: 5075: 5072: 5071: 5055: 5052: 5051: 5034: 5033: 5031: 5028: 5027: 5024: 5021: 4992: 4988: 4979: 4975: 4973: 4970: 4969: 4950: 4946: 4937: 4933: 4926: 4921: 4920: 4909: 4905: 4898: 4893: 4892: 4881: 4877: 4870: 4865: 4864: 4862: 4859: 4858: 4857:is generically 4839: 4835: 4828: 4823: 4822: 4811: 4807: 4800: 4795: 4794: 4792: 4789: 4788: 4772: 4770: 4767: 4766: 4749: 4744: 4743: 4722: 4717: 4716: 4707: 4702: 4701: 4692: 4687: 4686: 4684: 4681: 4680: 4663: 4658: 4657: 4655: 4652: 4651: 4622: 4618: 4614: 4599: 4598: 4596: 4584: 4579: 4578: 4570: 4567: 4566: 4541: 4538: 4537: 4514: 4513: 4507: 4503: 4488: 4487: 4481: 4477: 4465: 4461: 4459: 4456: 4455: 4438: 4433: 4432: 4418: 4415: 4414: 4398: 4395: 4394: 4374: 4369: 4368: 4360: 4357: 4356: 4353: 4350: 4329: 4321: 4303: 4288: 4284: 4280: 4265: 4264: 4262: 4261: 4257: 4252: 4251: 4247: 4241: 4237: 4235: 4232: 4231: 4215: 4213: 4210: 4209: 4193: 4191: 4188: 4187: 4164: 4160: 4137: 4134: 4133: 4117: 4114: 4113: 4107: 4104: 4082: 4080: 4077: 4076: 4060: 4058: 4055: 4054: 4038: 4036: 4033: 4032: 4013: 4005: 4003: 4000: 3999: 3996: 3993: 3987: 3937:homotopy theory 3912: 3896:polynomial ring 3729: 3694: 3690: 3688: 3685: 3684: 3665: 3642: 3624: 3620: 3612: 3609: 3608: 3604:, we have that 3566: 3565: 3564: 3555: 3554: 3540: 3534: 3533: 3532: 3531: 3526: 3521: 3517: 3511: 3507: 3479: 3478: 3477: 3462: 3461: 3456: 3453: 3452: 3423: 3419: 3417: 3414: 3413: 3397: 3394: 3393: 3367: 3363: 3361: 3358: 3357: 3331: 3327: 3325: 3322: 3321: 3291: 3290: 3289: 3280: 3279: 3266: 3265: 3264: 3256: 3253: 3252: 3222: 3221: 3220: 3201: 3200: 3199: 3184: 3183: 3178: 3175: 3174: 3146: 3143: 3142: 3123: 3120: 3119: 3116: 3085: 3081: 3079: 3076: 3075: 3041: 3036: 3033: 3032: 3016: 3013: 3012: 2996: 2993: 2992: 2963: 2961: 2958: 2957: 2956:there is a set 2941: 2938: 2937: 2927: 2905: 2901: 2899: 2896: 2895: 2878: 2874: 2872: 2869: 2868: 2838: 2834: 2832: 2829: 2828: 2802: 2801: 2799: 2796: 2795: 2773: 2758: 2754: 2739: 2735: 2733: 2730: 2729: 2702: 2687: 2683: 2681: 2678: 2677: 2672:We can use the 2644: 2640: 2638: 2635: 2634: 2633:and is denoted 2618: 2615: 2614: 2585: 2580: 2579: 2577: 2574: 2573: 2539: 2534: 2531: 2530: 2505: 2482: 2465: 2462: 2461: 2432: 2429: 2428: 2400: 2397: 2396: 2371: 2369: 2366: 2365: 2349: 2346: 2345: 2329: 2326: 2325: 2323:Hausdorff space 2319: 2311: 2301: 2293: 2288: 2255: 2252: 2251: 2223: 2220: 2219: 2185: 2182: 2181: 2153: 2150: 2149: 2091: 2088: 2087: 2047: 2044: 2043: 2042:In general, if 1940: 1937: 1936: 1911: 1900: 1895: 1892: 1891: 1863: 1860: 1859: 1831: 1808: 1797: 1794: 1793: 1777: 1775: 1772: 1771: 1768: 1730: 1727: 1726: 1707: 1704: 1703: 1687: 1684: 1683: 1646: 1643: 1642: 1611: 1591: 1583: 1580: 1579: 1545: 1525: 1517: 1514: 1513: 1482: 1479: 1478: 1420: 1417: 1416: 1388: 1385: 1384: 1350: 1347: 1346: 1321: 1318: 1317: 1196: 1193: 1192: 1164: 1161: 1160: 1138: 1135: 1134: 1112: 1109: 1108: 1062: 1059: 1058: 1018: 1015: 1014: 980: 977: 976: 960: 957: 956: 940: 937: 936: 908: 905: 904: 850: 847: 846: 809: 806: 805: 768: 765: 764: 735: 731: 723: 717: 713: 704: 700: 692: 686: 682: 661: 657: 648: 644: 623: 619: 610: 606: 598: 595: 594: 554: 551: 550: 528: 522: 518: 501: 498: 497: 472: 466: 462: 454: 448: 444: 430: 424: 420: 412: 406: 402: 400: 397: 396: 374: 371: 370: 347: 343: 334: 330: 315: 311: 302: 298: 293: 290: 289: 257: 253: 251: 248: 247: 231: 228: 227: 205: 194: 191: 190: 182: 176: 160:superconductors 24: 17: 12: 11: 5: 9570: 9560: 9559: 9542: 9541: 9539: 9538: 9528: 9527: 9526: 9521: 9516: 9501: 9491: 9481: 9469: 9458: 9455: 9454: 9452: 9451: 9446: 9441: 9436: 9431: 9426: 9420: 9418: 9412: 9411: 9409: 9408: 9403: 9398: 9396:Winding number 9393: 9388: 9382: 9380: 9376: 9375: 9373: 9372: 9367: 9362: 9357: 9352: 9347: 9342: 9337: 9336: 9335: 9330: 9328:homotopy group 9320: 9319: 9318: 9313: 9308: 9303: 9298: 9288: 9283: 9278: 9268: 9266: 9262: 9261: 9254: 9252: 9250: 9249: 9244: 9239: 9238: 9237: 9227: 9226: 9225: 9215: 9210: 9205: 9200: 9195: 9189: 9187: 9183: 9182: 9175: 9174: 9167: 9160: 9152: 9146: 9145: 9140: 9135: 9128: 9127:External links 9125: 9124: 9123: 9117: 9101: 9093:Hatcher, Allen 9089: 9071: 9065: 9041: 9035: 9015: 9009: 8996: 8982: 8957: 8943: 8935:Addison-Wesley 8921: 8918: 8915: 8914: 8901: 8888:hep-th/9405035 8866: 8851: 8828: 8799:(3): 381–424. 8780: 8756: 8710: 8686: 8662: 8641: 8632: 8625:Grothendieck. 8617: 8602: 8582: 8557: 8556: 8554: 8551: 8550: 8549: 8544: 8539: 8534: 8529: 8524: 8519: 8514: 8507: 8504: 8491: 8488: 8485: 8482: 8477: 8473: 8448: 8445: 8442: 8437: 8432: 8428: 8416: 8415: 8404: 8401: 8398: 8395: 8392: 8389: 8384: 8380: 8374: 8370: 8366: 8361: 8357: 8353: 8350: 8347: 8344: 8339: 8334: 8330: 8315:Q-construction 8302: 8279: 8255: 8252: 8249: 8246: 8241: 8237: 8216: 8213: 8205: 8204: 8193: 8190: 8185: 8180: 8176: 8172: 8169: 8166: 8161: 8156: 8152: 8148: 8142: 8139: 8135: 8128: 8123: 8120: 8117: 8113: 8109: 8102: 8098: 8093: 8089: 8086: 8083: 8076: 8072: 8067: 8063: 8060: 8057: 8054: 8051: 8048: 8025: 8022: 8017: 8013: 8009: 8004: 8000: 7996: 7991: 7987: 7964: 7960: 7956: 7953: 7950: 7945: 7941: 7937: 7934: 7923: 7922: 7911: 7905: 7902: 7895: 7891: 7887: 7884: 7879: 7875: 7866: 7861: 7858: 7855: 7851: 7847: 7844: 7841: 7838: 7835: 7830: 7826: 7822: 7819: 7816: 7813: 7810: 7807: 7804: 7801: 7798: 7769:Main article: 7766: 7763: 7759: 7758: 7747: 7742: 7737: 7732: 7727: 7723: 7719: 7716: 7711: 7706: 7701: 7694: 7690: 7685: 7681: 7678: 7673: 7668: 7663: 7656: 7652: 7647: 7643: 7640: 7635: 7632: 7629: 7625: 7619: 7615: 7611: 7586: 7582: 7578: 7573: 7569: 7565: 7562: 7542: 7539: 7534: 7530: 7526: 7521: 7517: 7505: 7504: 7493: 7488: 7484: 7480: 7477: 7474: 7469: 7464: 7457: 7453: 7449: 7426: 7406: 7386: 7366: 7344: 7340: 7336: 7332: 7320: 7319: 7308: 7305: 7300: 7296: 7292: 7288: 7284: 7279: 7274: 7267: 7263: 7259: 7254: 7250: 7246: 7243: 7220: 7217: 7214: 7202: 7199: 7197: 7194: 7189:Cohen-Macaulay 7176: 7171: 7168: 7163: 7157: 7151: 7146: 7141: 7138: 7134: 7130: 7127: 7124: 7121: 7116: 7112: 7090: 7069: 7049: 7029: 7026: 7023: 7020: 7017: 7013: 7009: 7004: 6971: 6967: 6964: 6961: 6958: 6953: 6949: 6945: 6925: 6922: 6919: 6911: 6908: 6905: 6902: 6897: 6870: 6867: 6864: 6861: 6858: 6855: 6850: 6846: 6842: 6837: 6833: 6828: 6824: 6821: 6818: 6813: 6809: 6805: 6802: 6799: 6796: 6791: 6787: 6783: 6780: 6777: 6774: 6771: 6766: 6762: 6758: 6753: 6749: 6745: 6742: 6722: 6719: 6716: 6711: 6707: 6678: 6675: 6672: 6667: 6657: 6654: 6652: 6648: 6645: 6642: 6637: 6633: 6629: 6624: 6621: 6618: 6613: 6609: 6605: 6604: 6601: 6598: 6595: 6590: 6580: 6577: 6575: 6571: 6568: 6565: 6562: 6557: 6553: 6549: 6544: 6541: 6538: 6535: 6530: 6526: 6522: 6521: 6499: 6496: 6493: 6488: 6484: 6480: 6475: 6472: 6469: 6464: 6460: 6439: 6419: 6399: 6396: 6393: 6388: 6384: 6363: 6343: 6340: 6337: 6332: 6322: 6317: 6314: 6311: 6308: 6303: 6299: 6278: 6275: 6272: 6269: 6249: 6229: 6226: 6223: 6220: 6217: 6197: 6175: 6172: 6169: 6165: 6144: 6141: 6138: 6133: 6130: 6127: 6124: 6120: 6116: 6113: 6110: 6107: 6104: 6101: 6098: 6093: 6090: 6087: 6084: 6080: 6072: 6069: 6066: 6062: 6058: 6055: 6051: 6047: 6042: 6039: 6036: 6031: 6027: 6015:regular scheme 5994: 5970: 5967: 5964: 5956: 5952: 5948: 5945: 5942: 5939: 5934: 5930: 5909: 5897: 5893: 5890: 5877: 5874: 5871: 5868: 5865: 5843: 5840: 5837: 5833: 5828: 5822: 5818: 5813: 5809: 5806: 5803: 5799: 5793: 5789: 5784: 5780: 5755: 5752: 5749: 5744: 5740: 5736: 5733: 5730: 5727: 5722: 5718: 5695: 5691: 5670: 5667: 5662: 5659: 5655: 5632: 5629: 5625: 5621: 5618: 5598: 5574: 5571: 5568: 5565: 5562: 5557: 5554: 5550: 5546: 5543: 5540: 5537: 5532: 5528: 5524: 5521: 5518: 5515: 5510: 5506: 5502: 5499: 5475: 5472: 5469: 5464: 5461: 5457: 5433: 5430: 5427: 5422: 5418: 5397: 5394: 5391: 5386: 5382: 5369: 5365: 5362: 5348: 5327: 5322: 5317: 5312: 5309: 5287: 5283: 5260: 5254: 5248: 5224: 5221: 5218: 5214: 5210: 5207: 5204: 5201: 5198: 5195: 5171: 5168: 5165: 5162: 5142: 5139: 5134: 5128: 5122: 5119: 5114: 5110: 5106: 5103: 5100: 5097: 5094: 5089: 5084: 5080: 5059: 5037: 5023: 5019: 5016: 5003: 5000: 4995: 4991: 4987: 4982: 4978: 4953: 4949: 4945: 4940: 4936: 4932: 4929: 4924: 4919: 4912: 4908: 4904: 4901: 4896: 4891: 4884: 4880: 4876: 4873: 4868: 4842: 4838: 4834: 4831: 4826: 4821: 4814: 4810: 4806: 4803: 4798: 4775: 4752: 4747: 4742: 4739: 4736: 4731: 4728: 4725: 4720: 4715: 4710: 4705: 4700: 4695: 4690: 4666: 4661: 4636: 4631: 4628: 4625: 4621: 4617: 4612: 4609: 4606: 4602: 4595: 4592: 4587: 4582: 4577: 4574: 4554: 4551: 4548: 4545: 4525: 4522: 4517: 4510: 4506: 4502: 4499: 4496: 4491: 4484: 4480: 4476: 4473: 4468: 4464: 4441: 4436: 4431: 4428: 4425: 4422: 4402: 4382: 4377: 4372: 4367: 4364: 4352: 4348: 4345: 4332: 4328: 4324: 4320: 4316: 4311: 4306: 4302: 4296: 4291: 4287: 4283: 4278: 4275: 4272: 4268: 4260: 4250: 4244: 4240: 4218: 4196: 4172: 4163: 4159: 4156: 4153: 4150: 4147: 4144: 4141: 4121: 4106: 4102: 4099: 4085: 4063: 4041: 4020: 4016: 4012: 3995: 3991: 3988: 3986: 3983: 3964:surgery theory 3956:quadratic form 3933:Daniel Quillen 3911: 3908: 3904:Swan's theorem 3884:vector bundles 3869:noncommutative 3834:Michael Atiyah 3830:vector bundles 3819:affine variety 3815:smooth variety 3728: 3725: 3708: 3705: 3702: 3697: 3693: 3681: 3680: 3668: 3664: 3661: 3658: 3655: 3652: 3649: 3645: 3641: 3638: 3635: 3632: 3627: 3623: 3619: 3616: 3598: 3597: 3586: 3582: 3578: 3574: 3569: 3563: 3558: 3553: 3550: 3543: 3537: 3529: 3525: 3520: 3514: 3510: 3506: 3503: 3500: 3497: 3494: 3491: 3487: 3482: 3476: 3473: 3470: 3465: 3460: 3437: 3434: 3431: 3426: 3422: 3401: 3381: 3378: 3375: 3370: 3366: 3345: 3342: 3339: 3334: 3330: 3318: 3317: 3306: 3303: 3299: 3294: 3288: 3283: 3278: 3274: 3269: 3263: 3260: 3245:if there is a 3234: 3230: 3225: 3219: 3216: 3213: 3209: 3204: 3198: 3195: 3192: 3187: 3182: 3162: 3159: 3156: 3153: 3150: 3127: 3115: 3112: 3099: 3096: 3093: 3088: 3084: 3063: 3060: 3057: 3054: 3051: 3048: 3040: 3020: 3000: 2976: 2973: 2970: 2945: 2926: 2923: 2908: 2904: 2881: 2877: 2852: 2849: 2846: 2841: 2837: 2816: 2813: 2810: 2783: 2780: 2776: 2772: 2769: 2766: 2761: 2757: 2753: 2748: 2745: 2742: 2738: 2709: 2705: 2701: 2698: 2695: 2690: 2686: 2658: 2655: 2652: 2647: 2643: 2622: 2602: 2599: 2596: 2593: 2588: 2583: 2561: 2558: 2555: 2552: 2549: 2546: 2538: 2527: 2526: 2515: 2511: 2508: 2504: 2501: 2498: 2495: 2492: 2488: 2485: 2481: 2478: 2475: 2472: 2469: 2442: 2439: 2436: 2416: 2413: 2410: 2407: 2404: 2384: 2381: 2378: 2353: 2333: 2318: 2315: 2299: 2291: 2287: 2284: 2271: 2268: 2265: 2262: 2259: 2239: 2236: 2233: 2230: 2227: 2216: 2215: 2204: 2201: 2198: 2195: 2192: 2189: 2169: 2166: 2163: 2160: 2157: 2137: 2134: 2131: 2128: 2125: 2122: 2119: 2116: 2113: 2110: 2107: 2104: 2101: 2098: 2095: 2072: 2069: 2066: 2063: 2060: 2057: 2054: 2051: 2040: 2039: 2028: 2025: 2022: 2019: 2016: 2013: 2010: 2007: 2004: 2001: 1998: 1995: 1992: 1989: 1986: 1983: 1980: 1977: 1974: 1971: 1968: 1965: 1962: 1959: 1956: 1953: 1950: 1947: 1944: 1921: 1917: 1914: 1910: 1906: 1903: 1899: 1879: 1876: 1873: 1870: 1867: 1847: 1844: 1841: 1838: 1834: 1830: 1827: 1824: 1821: 1818: 1815: 1811: 1807: 1804: 1801: 1780: 1767: 1764: 1752: 1749: 1746: 1743: 1740: 1737: 1734: 1714: 1711: 1691: 1671: 1668: 1665: 1662: 1659: 1656: 1653: 1650: 1630: 1626: 1623: 1620: 1617: 1614: 1610: 1606: 1603: 1600: 1597: 1594: 1590: 1587: 1564: 1560: 1557: 1554: 1551: 1548: 1544: 1540: 1537: 1534: 1531: 1528: 1524: 1521: 1507: 1506: 1495: 1492: 1489: 1486: 1466: 1463: 1460: 1457: 1454: 1451: 1448: 1445: 1442: 1439: 1436: 1433: 1430: 1427: 1424: 1401: 1398: 1395: 1392: 1372: 1369: 1366: 1363: 1360: 1357: 1354: 1334: 1331: 1328: 1325: 1314: 1313: 1302: 1299: 1296: 1293: 1290: 1287: 1284: 1281: 1278: 1275: 1272: 1269: 1266: 1263: 1260: 1257: 1254: 1251: 1248: 1245: 1242: 1239: 1236: 1233: 1230: 1227: 1224: 1221: 1218: 1215: 1212: 1209: 1206: 1203: 1200: 1177: 1174: 1171: 1168: 1148: 1145: 1142: 1122: 1119: 1116: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1069: 1066: 1046: 1043: 1040: 1037: 1034: 1031: 1028: 1025: 1022: 1002: 999: 996: 993: 990: 987: 984: 964: 944: 924: 921: 918: 915: 912: 881: 878: 875: 872: 869: 866: 863: 860: 857: 854: 834: 831: 828: 825: 822: 819: 816: 813: 793: 790: 787: 784: 781: 778: 775: 772: 761: 760: 749: 746: 743: 738: 734: 729: 726: 720: 716: 712: 707: 703: 698: 695: 689: 685: 681: 678: 675: 672: 669: 664: 660: 656: 651: 647: 643: 640: 637: 634: 631: 626: 622: 618: 613: 609: 605: 602: 579: 576: 573: 570: 567: 564: 561: 558: 535: 531: 525: 521: 517: 514: 511: 508: 505: 496:Then, the set 485: 482: 478: 475: 469: 465: 460: 457: 451: 447: 443: 440: 436: 433: 427: 423: 418: 415: 409: 405: 384: 381: 378: 367: 366: 355: 350: 346: 342: 337: 333: 329: 326: 323: 318: 314: 310: 305: 301: 297: 274: 271: 268: 265: 260: 256: 235: 215: 211: 208: 204: 201: 198: 186:abelian monoid 178:Main article: 175: 172: 164:Fermi surfaces 40:vector bundles 15: 9: 6: 4: 3: 2: 9569: 9558: 9555: 9554: 9552: 9537: 9529: 9525: 9522: 9520: 9517: 9515: 9512: 9511: 9510: 9502: 9500: 9496: 9492: 9490: 9486: 9482: 9480: 9475: 9470: 9468: 9460: 9459: 9456: 9450: 9447: 9445: 9442: 9440: 9437: 9435: 9432: 9430: 9427: 9425: 9422: 9421: 9419: 9417: 9413: 9407: 9406:Orientability 9404: 9402: 9399: 9397: 9394: 9392: 9389: 9387: 9384: 9383: 9381: 9377: 9371: 9368: 9366: 9363: 9361: 9358: 9356: 9353: 9351: 9348: 9346: 9343: 9341: 9338: 9334: 9331: 9329: 9326: 9325: 9324: 9321: 9317: 9314: 9312: 9309: 9307: 9304: 9302: 9299: 9297: 9294: 9293: 9292: 9289: 9287: 9284: 9282: 9279: 9277: 9273: 9270: 9269: 9267: 9263: 9258: 9248: 9245: 9243: 9242:Set-theoretic 9240: 9236: 9233: 9232: 9231: 9228: 9224: 9221: 9220: 9219: 9216: 9214: 9211: 9209: 9206: 9204: 9203:Combinatorial 9201: 9199: 9196: 9194: 9191: 9190: 9188: 9184: 9180: 9173: 9168: 9166: 9161: 9159: 9154: 9153: 9150: 9144: 9141: 9139: 9136: 9134: 9131: 9130: 9120: 9114: 9110: 9106: 9102: 9098: 9094: 9090: 9085: 9080: 9076: 9072: 9068: 9066:0-387-08090-2 9062: 9058: 9054: 9050: 9046: 9042: 9038: 9036:3-540-04245-8 9032: 9028: 9024: 9020: 9016: 9012: 9006: 9002: 8997: 8993: 8989: 8985: 8979: 8975: 8971: 8967: 8963: 8958: 8954: 8950: 8946: 8940: 8936: 8932: 8928: 8924: 8923: 8911: 8905: 8898: 8894: 8889: 8884: 8880: 8876: 8870: 8862: 8858: 8854: 8848: 8844: 8843: 8835: 8833: 8824: 8820: 8816: 8812: 8807: 8802: 8798: 8794: 8787: 8785: 8770: 8766: 8760: 8752: 8748: 8744: 8740: 8736: 8732: 8728: 8724: 8720: 8719:Manin, Yuri I 8714: 8700: 8696: 8690: 8676: 8672: 8666: 8659: 8655: 8654:Gregory Moore 8651: 8645: 8639:Karoubi, 2006 8636: 8628: 8621: 8613: 8609: 8605: 8599: 8595: 8594: 8586: 8577: 8572: 8568: 8562: 8558: 8548: 8545: 8543: 8540: 8538: 8535: 8533: 8530: 8528: 8525: 8523: 8520: 8518: 8515: 8513: 8510: 8509: 8503: 8486: 8480: 8475: 8471: 8462: 8443: 8435: 8430: 8426: 8402: 8393: 8387: 8382: 8378: 8372: 8368: 8359: 8355: 8351: 8345: 8337: 8332: 8328: 8320: 8319: 8318: 8316: 8300: 8293: 8277: 8269: 8250: 8244: 8239: 8235: 8226: 8222: 8212: 8210: 8191: 8183: 8178: 8174: 8170: 8167: 8164: 8159: 8154: 8150: 8140: 8137: 8133: 8121: 8118: 8115: 8111: 8107: 8100: 8096: 8091: 8087: 8084: 8081: 8074: 8070: 8065: 8061: 8055: 8049: 8046: 8039: 8038: 8037: 8023: 8015: 8011: 8002: 7998: 7994: 7989: 7985: 7962: 7958: 7954: 7951: 7948: 7943: 7939: 7935: 7932: 7909: 7903: 7900: 7893: 7885: 7877: 7873: 7859: 7856: 7853: 7849: 7845: 7836: 7828: 7824: 7817: 7814: 7811: 7805: 7799: 7796: 7789: 7788: 7787: 7785: 7781: 7777: 7776:Chern classes 7772: 7762: 7745: 7740: 7725: 7721: 7714: 7709: 7692: 7688: 7683: 7676: 7671: 7654: 7650: 7645: 7638: 7633: 7630: 7627: 7617: 7613: 7602: 7601: 7600: 7584: 7580: 7576: 7571: 7567: 7563: 7560: 7540: 7537: 7532: 7528: 7524: 7519: 7515: 7486: 7475: 7467: 7455: 7440: 7439: 7438: 7424: 7404: 7384: 7364: 7342: 7338: 7334: 7330: 7306: 7298: 7294: 7290: 7286: 7277: 7265: 7252: 7241: 7234: 7233: 7232: 7218: 7212: 7193: 7190: 7169: 7166: 7155: 7149: 7136: 7128: 7122: 7114: 7110: 7067: 7047: 7027: 7024: 7018: 7015: 7002: 6965: 6959: 6951: 6947: 6943: 6920: 6909: 6903: 6895: 6868: 6856: 6848: 6844: 6835: 6831: 6826: 6819: 6811: 6807: 6797: 6789: 6785: 6772: 6764: 6760: 6751: 6747: 6740: 6717: 6709: 6705: 6696: 6673: 6665: 6655: 6653: 6646: 6643: 6640: 6635: 6631: 6627: 6622: 6619: 6616: 6607: 6596: 6588: 6578: 6576: 6569: 6566: 6563: 6560: 6555: 6551: 6547: 6542: 6539: 6536: 6533: 6524: 6497: 6494: 6491: 6486: 6482: 6478: 6473: 6470: 6467: 6462: 6458: 6437: 6417: 6394: 6386: 6382: 6361: 6338: 6330: 6320: 6315: 6312: 6309: 6306: 6301: 6297: 6273: 6267: 6247: 6227: 6221: 6218: 6215: 6195: 6170: 6163: 6139: 6131: 6128: 6125: 6122: 6118: 6105: 6099: 6091: 6088: 6085: 6082: 6078: 6067: 6060: 6056: 6053: 6049: 6045: 6040: 6037: 6034: 6029: 6025: 6016: 6012: 6008: 5992: 5984: 5965: 5954: 5946: 5940: 5932: 5928: 5907: 5889: 5875: 5872: 5869: 5866: 5863: 5841: 5838: 5835: 5820: 5816: 5807: 5804: 5801: 5791: 5787: 5750: 5742: 5738: 5728: 5720: 5716: 5708:then the map 5693: 5689: 5668: 5660: 5657: 5653: 5630: 5627: 5623: 5616: 5596: 5588: 5572: 5563: 5555: 5552: 5548: 5538: 5530: 5526: 5516: 5508: 5504: 5497: 5489: 5470: 5462: 5459: 5455: 5447: 5428: 5420: 5416: 5392: 5384: 5380: 5361: 5320: 5307: 5285: 5281: 5258: 5222: 5219: 5216: 5212: 5208: 5205: 5202: 5199: 5196: 5193: 5185: 5166: 5160: 5132: 5117: 5112: 5108: 5101: 5098: 5095: 5057: 5015: 5001: 4998: 4993: 4989: 4985: 4980: 4976: 4951: 4947: 4943: 4938: 4934: 4930: 4927: 4917: 4910: 4906: 4902: 4899: 4889: 4882: 4878: 4874: 4871: 4840: 4836: 4832: 4829: 4819: 4812: 4808: 4804: 4801: 4750: 4740: 4737: 4734: 4729: 4726: 4723: 4713: 4708: 4698: 4693: 4664: 4629: 4626: 4623: 4619: 4607: 4593: 4585: 4572: 4549: 4543: 4508: 4504: 4497: 4482: 4478: 4466: 4462: 4439: 4426: 4423: 4420: 4400: 4375: 4362: 4344: 4326: 4318: 4314: 4309: 4300: 4289: 4285: 4273: 4258: 4248: 4242: 4238: 4186: 4161: 4154: 4151: 4145: 4139: 4119: 4112: 4098: 3982: 3980: 3976: 3972: 3971:string theory 3967: 3965: 3961: 3957: 3952: 3950: 3946: 3942: 3938: 3934: 3930: 3929: 3923: 3921: 3917: 3907: 3905: 3901: 3897: 3893: 3890:to formulate 3889: 3885: 3881: 3876: 3874: 3871:K-theory for 3870: 3866: 3862: 3858: 3854: 3851: 3847: 3843: 3839: 3835: 3831: 3827: 3822: 3820: 3816: 3812: 3807: 3805: 3801: 3797: 3794:behavior and 3793: 3792:cohomological 3789: 3785: 3781: 3777: 3773: 3770:are used, or 3769: 3765: 3761: 3757: 3753: 3750: 3746: 3742: 3738: 3734: 3727:Early history 3724: 3722: 3703: 3695: 3691: 3662: 3656: 3650: 3639: 3633: 3625: 3621: 3617: 3614: 3607: 3606: 3605: 3603: 3584: 3580: 3572: 3561: 3548: 3541: 3527: 3523: 3518: 3512: 3504: 3501: 3495: 3492: 3485: 3471: 3451: 3450: 3449: 3432: 3424: 3420: 3399: 3376: 3368: 3364: 3340: 3332: 3328: 3304: 3297: 3272: 3258: 3251: 3250: 3249: 3248: 3228: 3214: 3207: 3193: 3157: 3151: 3148: 3141: 3125: 3111: 3094: 3086: 3082: 3058: 3055: 3049: 3018: 2998: 2990: 2971: 2943: 2936: 2932: 2922: 2906: 2902: 2879: 2875: 2866: 2847: 2839: 2835: 2811: 2770: 2767: 2759: 2755: 2746: 2743: 2740: 2736: 2727: 2723: 2699: 2696: 2688: 2684: 2675: 2670: 2653: 2645: 2641: 2620: 2600: 2594: 2591: 2586: 2556: 2553: 2547: 2509: 2506: 2502: 2499: 2493: 2486: 2483: 2476: 2470: 2460: 2459: 2458: 2456: 2437: 2414: 2408: 2405: 2402: 2379: 2351: 2331: 2324: 2314: 2309: 2305: 2297: 2283: 2266: 2263: 2260: 2234: 2231: 2228: 2202: 2196: 2193: 2190: 2164: 2161: 2158: 2132: 2129: 2126: 2123: 2120: 2117: 2114: 2108: 2102: 2099: 2096: 2086: 2085: 2084: 2067: 2064: 2061: 2052: 2049: 2023: 2020: 2017: 2011: 2005: 2002: 1999: 1993: 1987: 1984: 1981: 1975: 1969: 1966: 1963: 1957: 1951: 1948: 1945: 1935: 1934: 1933: 1915: 1912: 1908: 1904: 1901: 1874: 1871: 1868: 1858:For any pair 1845: 1839: 1836: 1825: 1816: 1813: 1799: 1763: 1750: 1747: 1738: 1732: 1712: 1709: 1689: 1666: 1660: 1654: 1651: 1648: 1628: 1588: 1585: 1578: 1562: 1522: 1519: 1512: 1493: 1490: 1487: 1484: 1461: 1458: 1455: 1452: 1449: 1446: 1443: 1437: 1431: 1428: 1425: 1415: 1414: 1413: 1399: 1396: 1393: 1390: 1364: 1361: 1358: 1329: 1323: 1294: 1291: 1288: 1279: 1270: 1267: 1264: 1261: 1258: 1255: 1252: 1243: 1234: 1231: 1228: 1219: 1210: 1207: 1204: 1191: 1190: 1189: 1188:This implies 1175: 1172: 1169: 1166: 1146: 1143: 1140: 1120: 1117: 1114: 1091: 1088: 1085: 1079: 1073: 1070: 1067: 1044: 1038: 1035: 1029: 1023: 994: 991: 988: 962: 942: 919: 916: 913: 902: 897: 895: 879: 870: 867: 864: 852: 829: 823: 817: 814: 811: 788: 785: 779: 773: 747: 736: 732: 727: 724: 718: 714: 710: 705: 701: 696: 693: 687: 683: 673: 662: 658: 654: 649: 645: 635: 624: 620: 616: 611: 607: 593: 592: 591: 574: 571: 565: 559: 549: 533: 529: 523: 519: 515: 509: 503: 483: 480: 476: 473: 467: 463: 458: 455: 449: 445: 441: 438: 434: 431: 425: 421: 416: 413: 407: 403: 382: 379: 376: 348: 344: 340: 335: 331: 324: 316: 312: 308: 303: 299: 288: 287: 286: 272: 269: 266: 263: 258: 254: 233: 209: 206: 202: 199: 187: 181: 171: 169: 165: 161: 157: 153: 149: 145: 141: 137: 133: 129: 125: 120: 118: 114: 110: 106: 101: 96: 92: 87: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 38:generated by 37: 33: 29: 22: 9536:Publications 9401:Chern number 9391:Betti number 9274: / 9265:Key concepts 9213:Differential 9108: 9084:math/0602082 9075:Karoubi, Max 9048: 9045:Karoubi, Max 9022: 9000: 8961: 8930: 8904: 8878: 8869: 8841: 8796: 8792: 8772:. Retrieved 8769:MathOverflow 8768: 8759: 8726: 8722: 8713: 8702:. Retrieved 8699:MathOverflow 8698: 8689: 8678:. Retrieved 8674: 8665: 8644: 8635: 8620: 8592: 8585: 8576:math/0012213 8561: 8417: 8218: 8206: 7924: 7783: 7774: 7760: 7506: 7321: 7204: 7196:Applications 5983:Picard group 5899: 5371: 5183: 5025: 4354: 4108: 4031:for a field 3997: 3968: 3953: 3944: 3926: 3924: 3913: 3910:Developments 3877: 3852: 3845: 3841: 3823: 3810: 3808: 3799: 3795: 3787: 3783: 3775: 3771: 3766:) when only 3763: 3759: 3751: 3740: 3730: 3682: 3599: 3319: 3117: 2928: 2671: 2528: 2320: 2312: 2217: 2041: 1769: 1508: 1315: 898: 892:which has a 762: 368: 183: 121: 90: 88: 31: 25: 9499:Wikiversity 9416:Key results 9019:Swan, R. G. 8729:(5): 1–89. 5186:with basis 3873:C*-algebras 3804:homological 2455:direct sums 2427:be denoted 2286:Definitions 285:defined by 162:and stable 28:mathematics 9345:CW complex 9286:Continuity 9276:Closed set 9235:cohomology 8920:References 8806:1809.10919 8774:2020-10-20 8704:2020-10-20 8680:2017-04-16 5153:is a free 3994:of a field 3806:behavior. 3600:Using the 2726:idempotent 2364:, denoted 395:such that 115:, and the 80:invariants 54:, it is a 9524:geometric 9519:algebraic 9370:Cobordism 9306:Hausdorff 9301:connected 9218:Geometric 9208:Continuum 9198:Algebraic 8861:624583210 8751:0036-0279 8612:227161674 8522:KR-theory 8517:KK-theory 8481:⁡ 8388:⁡ 8356:π 8245:⁡ 8168:⋯ 8127:∞ 8112:∑ 8085:⋯ 8050:⁡ 7955:⊕ 7952:⋯ 7949:⊕ 7865:∞ 7850:∑ 7818:⁡ 7800:⁡ 7715:− 7577:∩ 7538:⊂ 7483:Ω 7476:− 7452:Ω 7304:→ 7283:→ 7262:Ω 7258:→ 7249:Ω 7245:→ 7216:↪ 7137:⊕ 7129:≅ 6966:≅ 6910:≅ 6866:→ 6804:→ 6782:→ 6744:→ 6656:≅ 6628:≅ 6612:∞ 6579:≅ 6567:− 6548:≅ 6540:− 6529:∞ 6321:≅ 6313:− 6225:→ 6129:− 6123:− 6115:⇒ 6089:− 6083:− 6057:∈ 6050:∐ 5955:⊕ 5873:⁡ 5839:− 5805:… 5735:→ 5666:↪ 5620:→ 5570:→ 5545:→ 5523:→ 5501:→ 5498:⋯ 5220:− 5213:ξ 5206:… 5200:ξ 5133:∨ 5118:⁡ 5113:∙ 5102:⁡ 4999:≤ 4944:− 4931:− 4903:− 4890:∩ 4875:− 4833:− 4805:− 4741:∐ 4738:⋯ 4735:∐ 4727:− 4714:∐ 4509:∗ 4498:⋅ 4483:∗ 4467:∗ 4430:↪ 4327:⊕ 4301:× 3663:⊗ 3648:→ 3640:⊗ 3549:⁡ 3502:− 3496:∑ 3472:⋅ 3302:→ 3287:→ 3277:→ 3262:→ 3152:⁡ 3059:⊕ 3019:⊕ 2744:× 2598:→ 2592:× 2557:⊕ 2503:⊕ 2477:⊕ 2412:→ 2403:π 2130:− 2118:− 2109:∼ 2012:∼ 1994:∼ 1976:∼ 1958:∼ 1745:→ 1658:→ 1649:ϕ 1609:→ 1543:→ 1488:∈ 1438:∼ 1394:− 1118:∈ 1080:∼ 856:↦ 845:given by 821:→ 534:∼ 380:∈ 325:∼ 270:× 234:∼ 82:of large 58:known as 9557:K-theory 9551:Category 9489:Wikibook 9467:Category 9355:Manifold 9323:Homotopy 9281:Interior 9272:Open set 9230:Homology 9179:Topology 9107:(2013). 9095:(2003). 9047:(1978). 9027:Springer 9021:(1968). 8931:K-theory 8929:(1989). 8823:85502709 8506:See also 6983:. Since 6512:, hence 6013:. For a 4185:Artinian 3979:D-branes 3960:L-theory 3848:) for a 3840:defined 3826:topology 3573:′ 3486:′ 3298:″ 3273:′ 3229:″ 3208:′ 2933:. For a 2510:′ 2487:′ 1916:′ 1905:′ 1477:for any 1107:for any 975:so that 728:′ 697:′ 477:′ 459:′ 435:′ 417:′ 210:′ 136:D-branes 95:functors 84:matrices 32:K-theory 21:K Theory 9514:general 9316:uniform 9296:compact 9247:Digital 8992:2182598 8953:1043170 8897:1363062 8731:Bibcode 8652:), and 8459:is the 7102:, then 1511:functor 1057:First, 590:where: 144:spinors 64:algebra 42:over a 9509:Topics 9311:metric 9186:Fields 9115:  9063:  9033:  9007:  8990:  8980:  8951:  8941:  8895:  8859:  8849:  8821:  8749:  8610:  8600:  8223:is an 7322:where 6260:, and 3935:using 3802:) has 3790:) has 3747:on an 3741:Klasse 2302:, see 111:, the 100:groups 48:scheme 9291:Space 9079:arXiv 8883:arXiv 8819:S2CID 8801:arXiv 8571:arXiv 8553:Notes 8290:with 7080:over 5486:from 3886:with 3813:is a 2083:then 548:group 150:. In 62:. In 50:. In 9113:ISBN 9061:ISBN 9031:ISBN 9005:ISBN 8978:ISBN 8939:ISBN 8857:OCLC 8847:ISBN 8747:ISSN 8608:OCLC 8598:ISBN 8219:The 6693:The 6155:for 5981:for 5856:for 5408:and 5099:Proj 4968:for 4254:Spec 4007:Spec 3900:free 3836:and 3719:for 3043:Vect 2965:Vect 2804:Idem 2541:Vect 2373:Vect 2306:and 226:let 66:and 36:ring 9053:doi 8970:doi 8811:doi 8739:doi 8656:in 8472:Coh 8463:of 8379:Coh 8266:of 8236:Coh 7815:exp 7599:as 7377:in 6993:Ext 6914:Pic 6009:of 5985:of 5959:Pic 5870:dim 5775:lcm 5109:Sym 4166:red 3969:In 3898:is 3824:In 3809:If 3524:Tor 3392:if 3149:Coh 2991:on 2720:as 2180:or 2056:min 955:by 146:on 122:In 46:or 26:In 9553:: 9059:. 9029:. 8988:MR 8986:. 8976:. 8968:. 8949:MR 8947:. 8937:. 8893:MR 8891:, 8855:. 8831:^ 8817:. 8809:. 8795:. 8783:^ 8767:. 8745:. 8737:. 8727:24 8725:. 8697:. 8673:. 8606:. 8211:. 8108::= 8047:ch 7846::= 7797:ch 6998:Ab 6891:CH 6661:CH 6584:CH 6326:CH 5888:. 5360:. 5014:. 4097:. 3966:. 3951:. 3922:. 3875:. 3832:, 3782:; 3723:. 3615:ch 3305:0. 2921:. 2669:. 2053::= 896:. 170:. 158:, 138:, 119:. 107:, 86:. 30:, 9171:e 9164:t 9157:v 9121:. 9099:. 9087:. 9081:: 9069:. 9055:: 9039:. 9013:. 8994:. 8972:: 8955:. 8912:. 8885:: 8863:. 8825:. 8813:: 8803:: 8797:6 8777:. 8753:. 8741:: 8733:: 8707:. 8683:. 8660:. 8629:. 8614:. 8579:. 8573:: 8490:) 8487:X 8484:( 8476:G 8447:) 8444:C 8441:( 8436:G 8431:0 8427:K 8403:. 8400:) 8397:) 8394:X 8391:( 8383:G 8373:+ 8369:B 8365:( 8360:i 8352:= 8349:) 8346:X 8343:( 8338:G 8333:i 8329:K 8301:G 8278:X 8254:) 8251:X 8248:( 8240:G 8192:. 8189:) 8184:m 8179:n 8175:x 8171:+ 8165:+ 8160:m 8155:1 8151:x 8147:( 8141:! 8138:m 8134:1 8122:0 8119:= 8116:m 8101:n 8097:x 8092:e 8088:+ 8082:+ 8075:1 8071:x 8066:e 8062:= 8059:) 8056:V 8053:( 8024:, 8021:) 8016:i 8012:L 8008:( 8003:1 7999:c 7995:= 7990:i 7986:x 7963:n 7959:L 7944:1 7940:L 7936:= 7933:V 7910:. 7904:! 7901:m 7894:m 7890:) 7886:L 7883:( 7878:1 7874:c 7860:0 7857:= 7854:m 7843:) 7840:) 7837:L 7834:( 7829:1 7825:c 7821:( 7812:= 7809:) 7806:L 7803:( 7784:L 7746:. 7741:Z 7736:| 7731:] 7726:X 7722:T 7718:[ 7710:Z 7705:| 7700:] 7693:2 7689:Y 7684:T 7680:[ 7677:+ 7672:Z 7667:| 7662:] 7655:1 7651:Y 7646:T 7642:[ 7639:= 7634:r 7631:i 7628:v 7624:] 7618:Z 7614:T 7610:[ 7585:2 7581:Y 7572:1 7568:Y 7564:= 7561:Z 7541:X 7533:2 7529:Y 7525:, 7520:1 7516:Y 7492:] 7487:Y 7479:[ 7473:] 7468:Y 7463:| 7456:X 7448:[ 7425:X 7405:Y 7385:X 7365:Y 7343:X 7339:/ 7335:Y 7331:C 7307:0 7299:X 7295:/ 7291:Y 7287:C 7278:Y 7273:| 7266:X 7253:Y 7242:0 7219:X 7213:Y 7175:) 7170:g 7167:2 7162:Z 7156:/ 7150:g 7145:C 7140:( 7133:Z 7126:) 7123:C 7120:( 7115:0 7111:K 7089:C 7068:g 7048:C 7028:0 7025:= 7022:) 7019:G 7016:, 7012:Z 7008:( 7003:1 6970:Z 6963:) 6960:C 6957:( 6952:0 6948:H 6944:C 6924:) 6921:C 6918:( 6907:) 6904:C 6901:( 6896:1 6869:0 6863:) 6860:) 6857:X 6854:( 6849:0 6845:K 6841:( 6836:1 6832:F 6827:/ 6823:) 6820:X 6817:( 6812:0 6808:K 6801:) 6798:X 6795:( 6790:0 6786:K 6779:) 6776:) 6773:X 6770:( 6765:0 6761:K 6757:( 6752:1 6748:F 6741:0 6721:) 6718:C 6715:( 6710:0 6706:K 6677:) 6674:C 6671:( 6666:0 6647:0 6644:, 6641:0 6636:2 6632:E 6623:0 6620:, 6617:0 6608:E 6600:) 6597:C 6594:( 6589:1 6570:1 6564:, 6561:1 6556:2 6552:E 6543:1 6537:, 6534:1 6525:E 6498:q 6495:, 6492:1 6487:1 6483:E 6479:, 6474:q 6471:, 6468:0 6463:1 6459:E 6438:2 6418:C 6398:) 6395:C 6392:( 6387:0 6383:K 6362:X 6342:) 6339:X 6336:( 6331:p 6316:p 6310:, 6307:p 6302:2 6298:E 6277:) 6274:x 6271:( 6268:k 6248:p 6228:X 6222:Y 6219:: 6216:x 6196:p 6174:) 6171:p 6168:( 6164:X 6143:) 6140:X 6137:( 6132:q 6126:p 6119:K 6112:) 6109:) 6106:x 6103:( 6100:k 6097:( 6092:q 6086:p 6079:K 6071:) 6068:p 6065:( 6061:X 6054:x 6046:= 6041:q 6038:, 6035:p 6030:1 6026:E 5993:C 5969:) 5966:C 5963:( 5951:Z 5947:= 5944:) 5941:C 5938:( 5933:0 5929:K 5908:C 5894:0 5892:K 5876:X 5867:= 5864:n 5842:1 5836:n 5832:) 5827:| 5821:k 5817:G 5812:| 5808:, 5802:, 5798:| 5792:1 5788:G 5783:| 5779:( 5754:) 5751:X 5748:( 5743:0 5739:K 5732:) 5729:X 5726:( 5721:0 5717:K 5694:i 5690:G 5669:X 5661:m 5658:s 5654:X 5631:m 5628:s 5624:X 5617:E 5597:X 5573:0 5567:) 5564:X 5561:( 5556:g 5553:s 5549:K 5542:) 5539:X 5536:( 5531:0 5527:K 5520:) 5517:X 5514:( 5509:0 5505:K 5474:) 5471:X 5468:( 5463:g 5460:s 5456:D 5432:) 5429:X 5426:( 5421:0 5417:K 5396:) 5393:X 5390:( 5385:0 5381:K 5366:0 5364:K 5347:F 5326:) 5321:n 5316:P 5311:( 5308:K 5286:0 5282:K 5259:n 5253:F 5247:P 5223:1 5217:n 5209:, 5203:, 5197:, 5194:1 5184:r 5170:) 5167:X 5164:( 5161:K 5141:) 5138:) 5127:E 5121:( 5105:( 5096:= 5093:) 5088:E 5083:( 5079:P 5058:X 5036:E 5020:0 5018:K 5002:n 4994:2 4990:k 4986:+ 4981:1 4977:k 4952:2 4948:k 4939:1 4935:k 4928:n 4923:A 4918:= 4911:2 4907:k 4900:n 4895:A 4883:1 4879:k 4872:n 4867:A 4841:2 4837:k 4830:n 4825:A 4820:, 4813:1 4809:k 4802:n 4797:A 4774:Z 4751:0 4746:A 4730:1 4724:n 4719:A 4709:n 4704:A 4699:= 4694:n 4689:P 4665:n 4660:P 4635:) 4630:1 4627:+ 4624:n 4620:T 4616:( 4611:] 4608:T 4605:[ 4601:Z 4594:= 4591:) 4586:n 4581:P 4576:( 4573:K 4553:) 4550:X 4547:( 4544:K 4524:) 4521:] 4516:F 4505:i 4501:[ 4495:] 4490:E 4479:i 4475:[ 4472:( 4463:i 4440:n 4435:P 4427:X 4424:: 4421:i 4401:X 4381:) 4376:n 4371:P 4366:( 4363:K 4349:0 4347:K 4331:Z 4323:Z 4319:= 4315:) 4310:) 4305:F 4295:) 4290:9 4286:x 4282:( 4277:] 4274:x 4271:[ 4267:F 4259:( 4249:( 4243:0 4239:K 4217:Z 4195:F 4171:) 4162:X 4158:( 4155:K 4152:= 4149:) 4146:X 4143:( 4140:K 4120:X 4103:0 4101:K 4084:Z 4062:N 4040:F 4019:) 4015:F 4011:( 3992:0 3990:K 3853:X 3846:X 3844:( 3842:K 3811:X 3800:X 3798:( 3796:G 3788:X 3786:( 3784:K 3776:X 3774:( 3772:G 3764:X 3762:( 3760:K 3752:X 3707:) 3704:X 3701:( 3696:0 3692:K 3667:Q 3660:) 3657:X 3654:( 3651:A 3644:Q 3637:) 3634:X 3631:( 3626:0 3622:K 3618:: 3585:. 3581:] 3577:) 3568:E 3562:, 3557:E 3552:( 3542:X 3536:O 3528:k 3519:[ 3513:k 3509:) 3505:1 3499:( 3493:= 3490:] 3481:E 3475:[ 3469:] 3464:E 3459:[ 3436:) 3433:X 3430:( 3425:0 3421:K 3400:X 3380:) 3377:X 3374:( 3369:0 3365:K 3344:) 3341:X 3338:( 3333:0 3329:K 3293:E 3282:E 3268:E 3259:0 3233:] 3224:E 3218:[ 3215:+ 3212:] 3203:E 3197:[ 3194:= 3191:] 3186:E 3181:[ 3161:) 3158:X 3155:( 3126:X 3098:) 3095:X 3092:( 3087:0 3083:K 3062:) 3056:, 3053:) 3050:X 3047:( 3039:( 2999:X 2975:) 2972:X 2969:( 2944:X 2907:n 2903:S 2880:0 2876:K 2851:) 2848:X 2845:( 2840:0 2836:K 2815:) 2812:X 2809:( 2782:) 2779:) 2775:C 2771:; 2768:X 2765:( 2760:0 2756:C 2752:( 2747:n 2741:n 2737:M 2708:) 2704:C 2700:; 2697:X 2694:( 2689:0 2685:C 2657:) 2654:X 2651:( 2646:0 2642:K 2621:X 2601:X 2595:X 2587:0 2582:R 2560:) 2554:, 2551:) 2548:X 2545:( 2537:( 2514:] 2507:E 2500:E 2497:[ 2494:= 2491:] 2484:E 2480:[ 2474:] 2471:E 2468:[ 2441:] 2438:E 2435:[ 2415:X 2409:E 2406:: 2383:) 2380:X 2377:( 2352:X 2332:X 2310:. 2300:i 2292:0 2270:) 2267:b 2264:, 2261:0 2258:( 2238:) 2235:0 2232:, 2229:a 2226:( 2203:. 2200:) 2197:d 2194:, 2191:0 2188:( 2168:) 2165:0 2162:, 2159:c 2156:( 2136:) 2133:k 2127:b 2124:, 2121:k 2115:a 2112:( 2106:) 2103:b 2100:, 2097:a 2094:( 2071:} 2068:b 2065:, 2062:a 2059:{ 2050:k 2027:) 2024:2 2021:, 2018:0 2015:( 2009:) 2006:3 2003:, 2000:1 1997:( 1991:) 1988:4 1985:, 1982:2 1979:( 1973:) 1970:5 1967:, 1964:3 1961:( 1955:) 1952:6 1949:, 1946:4 1943:( 1920:) 1913:b 1909:, 1902:a 1898:( 1878:) 1875:b 1872:, 1869:a 1866:( 1846:. 1843:) 1840:+ 1837:, 1833:Z 1829:( 1826:= 1823:) 1820:) 1817:+ 1814:, 1810:N 1806:( 1803:( 1800:G 1779:N 1751:. 1748:B 1742:) 1739:A 1736:( 1733:G 1713:, 1710:B 1690:A 1670:) 1667:B 1664:( 1661:U 1655:A 1652:: 1629:. 1625:n 1622:o 1619:M 1616:b 1613:A 1605:p 1602:r 1599:G 1596:b 1593:A 1589:: 1586:U 1563:, 1559:p 1556:r 1553:G 1550:b 1547:A 1539:n 1536:o 1533:M 1530:b 1527:A 1523:: 1520:G 1494:. 1491:A 1485:k 1465:) 1462:k 1459:+ 1456:b 1453:, 1450:k 1447:+ 1444:a 1441:( 1435:) 1432:b 1429:, 1426:a 1423:( 1400:. 1397:b 1391:a 1371:] 1368:) 1365:b 1362:, 1359:a 1356:( 1353:[ 1333:) 1330:A 1327:( 1324:G 1301:] 1298:) 1295:0 1292:, 1289:0 1286:( 1283:[ 1280:= 1277:] 1274:) 1271:b 1268:+ 1265:a 1262:, 1259:b 1256:+ 1253:a 1250:( 1247:[ 1244:= 1241:] 1238:) 1235:a 1232:, 1229:b 1226:( 1223:[ 1220:+ 1217:] 1214:) 1211:b 1208:, 1205:a 1202:( 1199:[ 1176:. 1173:n 1170:= 1167:n 1147:0 1144:= 1141:c 1121:A 1115:n 1095:) 1092:n 1089:, 1086:n 1083:( 1077:) 1074:0 1071:, 1068:0 1065:( 1045:. 1042:) 1039:+ 1036:, 1033:) 1030:A 1027:( 1024:G 1021:( 1001:] 998:) 995:0 992:, 989:0 986:( 983:[ 963:0 943:A 923:) 920:+ 917:, 914:A 911:( 880:, 877:] 874:) 871:0 868:, 865:a 862:( 859:[ 853:a 833:) 830:A 827:( 824:G 818:A 815:: 812:i 792:) 789:+ 786:, 783:) 780:A 777:( 774:G 771:( 748:. 745:] 742:) 737:2 733:b 725:+ 719:2 715:a 711:, 706:1 702:b 694:+ 688:1 684:a 680:( 677:[ 674:= 671:] 668:) 663:2 659:b 655:, 650:1 646:b 642:( 639:[ 636:+ 633:] 630:) 625:2 621:a 617:, 612:1 608:a 604:( 601:[ 578:) 575:+ 572:, 569:) 566:A 563:( 560:G 557:( 530:/ 524:2 520:A 516:= 513:) 510:A 507:( 504:G 484:. 481:c 474:+ 468:1 464:b 456:+ 450:2 446:a 442:= 439:c 432:+ 426:2 422:b 414:+ 408:1 404:a 383:A 377:c 354:) 349:2 345:b 341:, 336:1 332:b 328:( 322:) 317:2 313:a 309:, 304:1 300:a 296:( 273:A 267:A 264:= 259:2 255:A 214:) 207:+ 203:, 200:A 197:( 93:- 91:K 23:.

Index

K Theory
mathematics
ring
vector bundles
topological space
scheme
algebraic topology
cohomology theory
topological K-theory
algebra
algebraic geometry
algebraic K-theory
operator algebras
invariants
matrices
functors
groups
Grothendieck–Riemann–Roch theorem
Bott periodicity
Atiyah–Singer index theorem
Adams operations
high energy physics
twisted K-theory
Type II string theory
D-branes
Ramond–Ramond field strengths
spinors
generalized complex manifolds
condensed matter physics
topological insulators

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑