Knowledge

Infragravity wave

Source đź“ť

123: 160: 896: 84: 1784: 1805: 885: 1794: 191:. Their frequencies more closely couple with the ice shelf natural frequencies and they produce a larger amplitude ice shelf movement than the normal ocean swell of gravity waves. Further, they are not damped by sea ice as normal ocean swell is. As a result, they flex floating ice shelves such as the Ross Ice Shelf; this flexure contributes significantly to the breakup on the ice shelf. 144:
methods, the now well-known result. Namely, the mean sea level oscillates with a wavelength that is equal to the length of the group, with a low level where the wind waves are highest and a high level where these waves are lowest. This oscillation of the sea surface is proportional to the square of the short wave amplitude and becomes very large when the
143:
induced by these groupy waves transports more water where the waves are highest. The waves also push the water around in a way that can be interpreted as a force: the divergence of the radiation stresses. Combining mass and momentum conservation, Longuet-Higgins and Stewart give, with three different
148:
approaches the speed of shallow water waves. The details of this process are modified when the bottom is sloping, which is generally the case near the shore, but the theory captures the important effect, observed in most conditions, that the high water of this 'surf beat' arrives with the waves of
152:
Another process was proposed later by Graham Symonds and his collaborators. To explain some cases in which this phase of long and short waves were not opposed, they proposed that the position of the breaker line in the surf, moving towards deep water when waves are higher, could act like a wave
130:
Two main processes can explain the transfer of energy from the short wind waves to the long infragravity waves, and both are important in shallow water and for steep wind waves. The most common process is the
57:
generated by ocean waves of shorter periods. The amplitude of infragravity waves is most relevant in shallow water, in particular along coastlines hit by high amplitude and long period wind waves and
65:
are shorter, with typical dominant periods of 1 to 25 s. In contrast, the dominant period of infragravity waves is typically 80 to 300 s, which is close to the typical periods of
422:
Lugo-Fernández, A.; H. H. Roberts; W. J. Wiseman Jr.; B. L. Carter (December 1998). "Water level and currents of tidal and infragravity periods at Tague Reef, St. Croix (USVI)".
99:
Technically infragravity waves are simply a subcategory of gravity waves and refer to all gravity waves with periods greater than 30 s. This could include phenomena such as
135:
interaction of trains of wind waves which was first observed by Munk and Tucker and explained by Longuet-Higgins and Stewart. Because wind waves are not
1524: 207: 1514: 573: 210:; Arshad Rawat; Jerome Aucan (2014), "A numerical model for free infragravity waves: Definition and validation at regional and global scales", 80:
Whatever the details of their generation mechanism, discussed below, infragravity waves are these subharmonics of the impinging gravity waves.
126:
Surf can be seen breaking as it crosses the sand bar offshore. Sandbars aid in generating infragravity waves and in turn are shaped by them.
348:
Longuet-Higgins, Michael; R.W. Stewart (1962), "Radiation stress and mass transport in gravity waves, with application to 'surf beats",
378:
Symonds, Graham; D. A. Huntley; A. J. Bowent (1982), "Two-dimensional surf beat: Long wavegeneration by a time-varying breakpoint",
176:, unusually large and long-duration waves that cause water to surge far onshore and that have killed a number of people in the US 1430: 1797: 845: 613: 1077: 183:
Infragravity waves generated along the Pacific coast of North America have been observed to propagate transoceanically to
566: 294: 967: 1672: 1099: 987: 1519: 790: 977: 937: 1707: 693: 526: 1787: 1380: 559: 835: 107:, but the common scientific usage is limited to gravity waves that are generated by groups of wind waves. 156:
In the case of coral reefs, the infragravity periods are established by resonances with the reef itself.
895: 1032: 502: 153:
maker. It appears that this is probably a good explanation for infragravity wave generation on a reef.
77:, which are created by wind acting on the surface of the sea, and are slower than the generating wind. 458: 1567: 972: 932: 400: 1697: 1072: 1062: 1002: 638: 608: 1830: 1734: 1717: 1554: 1047: 912: 850: 840: 733: 1729: 1667: 1094: 780: 395: 1562: 1544: 1052: 947: 582: 527:"Breaking waves: The coup de grace that shatters ice shelves is administered by ocean waves" 1835: 1749: 1582: 1285: 1142: 1007: 718: 473: 387: 245: 23: 8: 1744: 1629: 1624: 1350: 1022: 982: 698: 477: 421: 391: 249: 1687: 1400: 1390: 1355: 1255: 1240: 1137: 439: 361: 263: 1769: 1759: 1702: 1682: 1365: 1330: 1265: 1245: 1235: 1117: 805: 365: 330: 308: 177: 443: 267: 122: 1724: 1692: 1662: 1471: 1456: 1325: 1260: 1152: 1067: 997: 922: 703: 673: 603: 598: 481: 431: 405: 353: 298: 253: 92: 1529: 1425: 1375: 1340: 1300: 1192: 1162: 1012: 962: 872: 830: 763: 688: 648: 159: 288: 1639: 1634: 1539: 1534: 1370: 1310: 1305: 1037: 927: 748: 683: 658: 188: 70: 884: 357: 136: 1824: 1809: 1657: 1577: 1466: 1385: 1360: 1295: 1225: 1132: 1027: 904: 825: 785: 758: 668: 618: 456: 312: 231: 62: 58: 43: 39: 409: 233: 1764: 1712: 1652: 1603: 1481: 1476: 1451: 1435: 1410: 1127: 1017: 957: 743: 653: 628: 459:"Forcing of resonant modes on a fringing reef during tropical storm Man-Yi" 173: 140: 74: 69:, with which they share similar propagation properties including very fast 54: 435: 334: 1754: 1486: 1415: 1280: 1220: 1187: 1177: 1172: 1057: 992: 952: 942: 917: 800: 773: 753: 713: 678: 486: 284: 258: 145: 132: 111: 104: 73:
in deep water. This distinguishes infragravity waves from normal oceanic
551: 1572: 1420: 1395: 1290: 1270: 1197: 1182: 1167: 1157: 1122: 1042: 862: 857: 820: 815: 810: 708: 184: 1804: 303: 83: 1644: 1506: 1491: 1405: 1250: 1089: 1084: 867: 795: 723: 643: 633: 590: 31: 27: 232:
Bromirski, Peter D.; Olga V. Sergienko; Douglas R. MacAyeal (2010).
1739: 1461: 1320: 1212: 1202: 1147: 623: 457:
PĂ©quignet, A. C.; J. M. Becker; M. A. Merrifield; J. Aucan (2009).
215: 172:
Infragravity waves are thought to be a generating mechanism behind
88: 35: 1608: 1598: 768: 738: 327:
Wind Waves: Their Generation and Propagation on the Ocean Surface
234:"Transoceanic infragravity waves impacting Antarctic ice shelves" 66: 377: 16:
Surface gravity waves with frequencies lower than the wind waves
1315: 728: 290:
Proceedings 1st International Conference on Coastal Engineering
206: 352:, vol. 13, Cambridge University Press, pp. 481–504, 1677: 1496: 1275: 1230: 47: 110:
The term "infragravity wave" appears to have been coined by
1109: 347: 100: 329:. Englewood Cliffs, N.J.: Prentice-Hall. pp. 22–23. 1525:North West Shelf Operational Oceanographic System 415: 46:lower than the frequencies directly generated by 1822: 1515:Deep-ocean Assessment and Reporting of Tsunamis 227: 225: 567: 450: 222: 574: 560: 371: 287:(1950), "Origin and generation of waves", 200: 42:– thus corresponding with the part of the 581: 485: 399: 302: 257: 158: 121: 82: 324: 1823: 846:one-dimensional Saint-Venant equations 500: 341: 279: 277: 555: 53:Infragravity waves are ocean surface 1793: 503:"Why Sneaker Waves Are So Insidious" 283: 274: 13: 1673:National Oceanographic Data Center 1100:World Ocean Circulation Experiment 988:Global Ocean Data Analysis Project 14: 1847: 1520:Global Sea Level Observing System 547: 91:of ocean waves according to wave 1803: 1792: 1783: 1782: 978:Geochemical Ocean Sections Study 894: 883: 1708:Ocean thermal energy conversion 1431:Vine–Matthews–Morley hypothesis 519: 380:Journal of Geophysical Research 494: 318: 1: 194: 117: 968:El Niño–Southern Oscillation 938:Craik–Leibovich vortex force 694:Luke's variational principle 238:Geophysical Research Letters 187:and there to impinge on the 7: 501:Golden, Kate (2022-11-17). 10: 1852: 1033:Ocean dynamical thermostat 881: 350:Journal of Fluid Mechanics 293:, Long Beach, California: 1778: 1617: 1591: 1568:Ocean acoustic tomography 1553: 1505: 1444: 1381:MohoroviÄŤić discontinuity 1339: 1211: 1108: 973:General circulation model 903: 609:Benjamin–Feir instability 589: 358:10.1017/S0022112062000877 167: 1698:Ocean surface topography 1073:Thermohaline circulation 1063:Subsurface ocean current 1003:Hydrothermal circulation 836:Wave–current interaction 614:Boussinesq approximation 1735:Sea surface temperature 1718:Outline of oceanography 913:Atmospheric circulation 851:shallow water equations 841:Waves and shallow water 734:Significant wave height 410:10.1029/JC087iC01p00492 325:Kinsman, Blair (1965). 1730:Sea surface microlayer 1095:Wind generated current 164: 139:they form groups. The 127: 96: 87:Classification of the 1563:Deep scattering layer 1545:World Geodetic System 1053:Princeton Ocean Model 933:Coriolis–Stokes force 583:Physical oceanography 436:10.1007/s003380050137 162: 125: 86: 34:– consisting of both 24:surface gravity waves 1583:Underwater acoustics 1143:Perigean spring tide 1008:Langmuir circulation 719:Rossby-gravity waves 487:10.1029/2008GL036259 259:10.1029/2009GL041488 163:Ice shelf processes. 105:oceanic Rossby waves 1745:Science On a Sphere 1351:Convergent boundary 1023:Modular Ocean Model 983:Geostrophic current 699:Mild-slope equation 533:. February 18, 2010 478:2009GeoRL..36.3607P 392:1982JGR....87..492S 250:2010GeoRL..37.2502B 1401:Seafloor spreading 1391:Outer trench swell 1356:Divergent boundary 1256:Continental margin 1241:Carbonate platform 1138:Lunitidal interval 466:Geophys. Res. Lett 165: 149:lowest amplitude. 128: 97: 50:through the wind. 20:Infragravity waves 1818: 1817: 1810:Oceans portal 1770:World Ocean Atlas 1760:Underwater glider 1703:Ocean temperature 1366:Hydrothermal vent 1331:Submarine volcano 1266:Continental shelf 1246:Coastal geography 1236:Bathymetric chart 1118:Amphidromic point 806:Wave nonlinearity 664:Infragravity wave 304:10.9753/icce.v1.1 178:Pacific Northwest 61:. Wind waves and 1843: 1808: 1807: 1796: 1795: 1786: 1785: 1725:Pelagic sediment 1663:Marine pollution 1457:Deep ocean water 1326:Submarine canyon 1261:Continental rise 1153:Rule of twelfths 1068:Sverdrup balance 998:Humboldt Current 923:Boundary current 898: 887: 704:Radiation stress 674:Iribarren number 649:Equatorial waves 604:Ballantine scale 599:Airy wave theory 576: 569: 562: 553: 552: 542: 541: 539: 538: 523: 517: 516: 514: 513: 498: 492: 491: 489: 463: 454: 448: 447: 419: 413: 412: 403: 375: 369: 368: 345: 339: 338: 322: 316: 315: 306: 297:, pp. 1–4, 281: 272: 271: 261: 229: 220: 219: 218:, pp. 20–32 214:, vol. 77, 208:Ardhuin, Fabrice 204: 1851: 1850: 1846: 1845: 1844: 1842: 1841: 1840: 1821: 1820: 1819: 1814: 1802: 1774: 1613: 1587: 1549: 1530:Sea-level curve 1501: 1440: 1426:Transform fault 1376:Mid-ocean ridge 1342: 1335: 1301:Oceanic plateau 1207: 1193:Tidal resonance 1163:Theory of tides 1104: 1013:Longshore drift 963:Ekman transport 899: 893: 892: 891: 890: 889: 888: 879: 831:Wave turbulence 764:Trochoidal wave 689:Longshore drift 585: 580: 550: 545: 536: 534: 525: 524: 520: 511: 509: 499: 495: 472:(L03607): n/a. 461: 455: 451: 420: 416: 401:10.1.1.474.7148 386:(C1): 492–498, 376: 372: 346: 342: 323: 319: 285:Munk, Walter H. 282: 275: 244:(L02502): n/a. 230: 223: 212:Ocean Modelling 205: 201: 197: 170: 120: 30:lower than the 17: 12: 11: 5: 1849: 1839: 1838: 1833: 1831:Fluid dynamics 1816: 1815: 1813: 1812: 1800: 1790: 1779: 1776: 1775: 1773: 1772: 1767: 1762: 1757: 1752: 1750:Stratification 1747: 1742: 1737: 1732: 1727: 1722: 1721: 1720: 1710: 1705: 1700: 1695: 1690: 1685: 1680: 1675: 1670: 1665: 1660: 1655: 1650: 1642: 1640:Color of water 1637: 1635:Benthic lander 1632: 1627: 1621: 1619: 1615: 1614: 1612: 1611: 1606: 1601: 1595: 1593: 1589: 1588: 1586: 1585: 1580: 1575: 1570: 1565: 1559: 1557: 1551: 1550: 1548: 1547: 1542: 1540:Sea level rise 1537: 1535:Sea level drop 1532: 1527: 1522: 1517: 1511: 1509: 1503: 1502: 1500: 1499: 1494: 1489: 1484: 1479: 1474: 1469: 1464: 1459: 1454: 1448: 1446: 1442: 1441: 1439: 1438: 1433: 1428: 1423: 1418: 1413: 1408: 1403: 1398: 1393: 1388: 1383: 1378: 1373: 1371:Marine geology 1368: 1363: 1358: 1353: 1347: 1345: 1337: 1336: 1334: 1333: 1328: 1323: 1318: 1313: 1311:Passive margin 1308: 1306:Oceanic trench 1303: 1298: 1293: 1288: 1283: 1278: 1273: 1268: 1263: 1258: 1253: 1248: 1243: 1238: 1233: 1228: 1223: 1217: 1215: 1209: 1208: 1206: 1205: 1200: 1195: 1190: 1185: 1180: 1175: 1170: 1165: 1160: 1155: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1114: 1112: 1106: 1105: 1103: 1102: 1097: 1092: 1087: 1082: 1081: 1080: 1070: 1065: 1060: 1055: 1050: 1045: 1040: 1038:Ocean dynamics 1035: 1030: 1025: 1020: 1015: 1010: 1005: 1000: 995: 990: 985: 980: 975: 970: 965: 960: 955: 950: 945: 940: 935: 930: 928:Coriolis force 925: 920: 915: 909: 907: 901: 900: 882: 880: 878: 877: 876: 875: 865: 860: 855: 854: 853: 848: 838: 833: 828: 823: 818: 813: 808: 803: 798: 793: 788: 783: 778: 777: 776: 766: 761: 756: 751: 749:Stokes problem 746: 741: 736: 731: 726: 721: 716: 711: 706: 701: 696: 691: 686: 684:Kinematic wave 681: 676: 671: 666: 661: 656: 651: 646: 641: 636: 631: 626: 621: 616: 611: 606: 601: 595: 593: 587: 586: 579: 578: 571: 564: 556: 549: 548:External links 546: 544: 543: 518: 493: 449: 430:(4): 343–349. 414: 370: 340: 317: 273: 221: 198: 196: 193: 189:Ross Ice Shelf 169: 166: 119: 116: 15: 9: 6: 4: 3: 2: 1848: 1837: 1834: 1832: 1829: 1828: 1826: 1811: 1806: 1801: 1799: 1791: 1789: 1781: 1780: 1777: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1751: 1748: 1746: 1743: 1741: 1738: 1736: 1733: 1731: 1728: 1726: 1723: 1719: 1716: 1715: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1658:Marine energy 1656: 1654: 1651: 1649: 1648: 1643: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1625:Acidification 1623: 1622: 1620: 1616: 1610: 1607: 1605: 1602: 1600: 1597: 1596: 1594: 1590: 1584: 1581: 1579: 1578:SOFAR channel 1576: 1574: 1571: 1569: 1566: 1564: 1561: 1560: 1558: 1556: 1552: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1512: 1510: 1508: 1504: 1498: 1495: 1493: 1490: 1488: 1485: 1483: 1480: 1478: 1475: 1473: 1470: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1449: 1447: 1443: 1437: 1434: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1386:Oceanic crust 1384: 1382: 1379: 1377: 1374: 1372: 1369: 1367: 1364: 1362: 1361:Fracture zone 1359: 1357: 1354: 1352: 1349: 1348: 1346: 1344: 1338: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1302: 1299: 1297: 1296:Oceanic basin 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1272: 1269: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1237: 1234: 1232: 1229: 1227: 1226:Abyssal plain 1224: 1222: 1219: 1218: 1216: 1214: 1210: 1204: 1201: 1199: 1196: 1194: 1191: 1189: 1186: 1184: 1181: 1179: 1176: 1174: 1171: 1169: 1166: 1164: 1161: 1159: 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1133:Internal tide 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1115: 1113: 1111: 1107: 1101: 1098: 1096: 1093: 1091: 1088: 1086: 1083: 1079: 1076: 1075: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1054: 1051: 1049: 1046: 1044: 1041: 1039: 1036: 1034: 1031: 1029: 1028:Ocean current 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 984: 981: 979: 976: 974: 971: 969: 966: 964: 961: 959: 956: 954: 951: 949: 946: 944: 941: 939: 936: 934: 931: 929: 926: 924: 921: 919: 916: 914: 911: 910: 908: 906: 902: 897: 886: 874: 871: 870: 869: 866: 864: 861: 859: 856: 852: 849: 847: 844: 843: 842: 839: 837: 834: 832: 829: 827: 826:Wave shoaling 824: 822: 819: 817: 814: 812: 809: 807: 804: 802: 799: 797: 794: 792: 789: 787: 786:Ursell number 784: 782: 779: 775: 772: 771: 770: 767: 765: 762: 760: 757: 755: 752: 750: 747: 745: 742: 740: 737: 735: 732: 730: 727: 725: 722: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 690: 687: 685: 682: 680: 677: 675: 672: 670: 669:Internal wave 667: 665: 662: 660: 657: 655: 652: 650: 647: 645: 642: 640: 637: 635: 632: 630: 627: 625: 622: 620: 619:Breaking wave 617: 615: 612: 610: 607: 605: 602: 600: 597: 596: 594: 592: 588: 584: 577: 572: 570: 565: 563: 558: 557: 554: 532: 531:The Economist 528: 522: 508: 504: 497: 488: 483: 479: 475: 471: 467: 460: 453: 445: 441: 437: 433: 429: 425: 418: 411: 407: 402: 397: 393: 389: 385: 381: 374: 367: 363: 359: 355: 351: 344: 336: 332: 328: 321: 314: 310: 305: 300: 296: 292: 291: 286: 280: 278: 269: 265: 260: 255: 251: 247: 243: 239: 235: 228: 226: 217: 213: 209: 203: 199: 192: 190: 186: 181: 179: 175: 174:sneaker waves 161: 157: 154: 150: 147: 142: 138: 137:monochromatic 134: 124: 115: 113: 108: 106: 102: 94: 90: 85: 81: 78: 76: 75:gravity waves 72: 68: 64: 60: 56: 55:gravity waves 51: 49: 45: 44:wave spectrum 41: 37: 33: 29: 25: 21: 1765:Water column 1713:Oceanography 1688:Observations 1683:Explorations 1653:Marginal sea 1646: 1604:OSTM/Jason-2 1436:Volcanic arc 1411:Slab suction 1128:Head of tide 1018:Loop Current 958:Ekman spiral 744:Stokes drift 663: 654:Gravity wave 629:Cnoidal wave 535:. Retrieved 530: 521: 510:. Retrieved 506: 496: 469: 465: 452: 427: 423: 417: 383: 379: 373: 349: 343: 326: 320: 289: 241: 237: 211: 202: 182: 171: 155: 151: 141:Stokes drift 129: 109: 98: 79: 63:ocean swells 59:ocean swells 52: 19: 18: 1836:Water waves 1755:Thermocline 1472:Mesopelagic 1445:Ocean zones 1416:Slab window 1281:Hydrography 1221:Abyssal fan 1188:Tidal range 1178:Tidal power 1173:Tidal force 1058:Rip current 993:Gulf Stream 953:Ekman layer 943:Downwelling 918:Baroclinity 905:Circulation 801:Wave height 791:Wave action 774:megatsunami 754:Stokes wave 714:Rossby wave 679:Kelvin wave 659:Green's law 424:Coral Reefs 146:group speed 133:subharmonic 112:Walter Munk 28:frequencies 1825:Categories 1693:Reanalysis 1592:Satellites 1573:Sofar bomb 1421:Subduction 1396:Ridge push 1291:Ocean bank 1271:Contourite 1198:Tide gauge 1183:Tidal race 1168:Tidal bore 1158:Slack tide 1123:Earth tide 1043:Ocean gyre 863:Wind setup 858:Wind fetch 821:Wave setup 816:Wave radar 811:Wave power 709:Rogue wave 639:Dispersion 537:2010-11-25 512:2022-11-22 507:Bay Nature 195:References 185:Antarctica 118:Generation 71:celerities 32:wind waves 1555:Acoustics 1507:Sea level 1406:Slab pull 1343:tectonics 1251:Cold seep 1213:Landforms 1090:Whirlpool 1085:Upwelling 868:Wind wave 796:Wave base 724:Sea state 644:Edge wave 634:Cross sea 396:CiteSeerX 366:117932573 313:2156-1028 114:in 1950. 1788:Category 1740:Seawater 1467:Littoral 1462:Deep sea 1321:Seamount 1203:Tideline 1148:Rip tide 1078:shutdown 1048:Overflow 781:Undertow 624:Clapotis 444:24665450 268:38071443 216:Elsevier 89:spectrum 67:tsunamis 36:wind sea 1798:Commons 1668:Mooring 1618:Related 1609:Jason-3 1599:Jason-1 1482:Pelagic 1477:Oceanic 1452:Benthic 769:Tsunami 739:Soliton 474:Bibcode 388:Bibcode 246:Bibcode 48:forcing 1487:Photic 1316:Seabed 729:Seiche 442:  398:  364:  335:489729 333:  311:  266:  168:Impact 93:period 1678:Ocean 1647:Alvin 1497:Swash 1341:Plate 1286:Knoll 1276:Guyot 1231:Atoll 1110:Tides 873:model 759:Swell 591:Waves 462:(PDF) 440:S2CID 362:S2CID 264:S2CID 101:tides 40:swell 26:with 1645:DSV 1630:Argo 1492:Surf 948:Eddy 331:OCLC 309:ISSN 295:ASCE 103:and 38:and 22:are 482:doi 432:doi 406:doi 354:doi 299:doi 254:doi 1827:: 529:. 505:. 480:. 470:36 468:. 464:. 438:. 428:17 426:. 404:, 394:, 384:87 382:, 360:, 307:, 276:^ 262:. 252:. 242:37 240:. 236:. 224:^ 180:. 575:e 568:t 561:v 540:. 515:. 490:. 484:: 476:: 446:. 434:: 408:: 390:: 356:: 337:. 301:: 270:. 256:: 248:: 95:.

Index

surface gravity waves
frequencies
wind waves
wind sea
swell
wave spectrum
forcing
gravity waves
ocean swells
ocean swells
tsunamis
celerities
gravity waves

spectrum
period
tides
oceanic Rossby waves
Walter Munk

subharmonic
monochromatic
Stokes drift
group speed

sneaker waves
Pacific Northwest
Antarctica
Ross Ice Shelf
Ardhuin, Fabrice

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑