Knowledge

Heterotroph

Source 📝

565: 480:) – to a flask and stimulated them with electricity that resembled lightning present on early Earth. The experiment resulted in the discovery that early Earth conditions were supportive of the production of amino acids, with recent re-analyses of the data recognizing that over 40 different amino acids were produced, including several not currently used by life. This experiment heralded the beginning of the field of synthetic prebiotic chemistry, and is now known as the 31: 725:, the process of converting organic compounds to inorganic forms. When the organic nutrient source taken in by the heterotroph contains essential elements such as N, S, P in addition to C, H, and O, they are often removed first to proceed with the oxidation of organic nutrient and production of ATP via respiration. S and N in organic carbon source are transformed into H 445:. While these authors agreed on the gasses present and the progression of events to a point, Oparin championed a progressive complexity of organic matter prior to the formation of cells, while Haldane had more considerations about the concept of genes as units of heredity and the possibility of light playing a role in chemical synthesis ( 976:"The purpose of saprotrophs and their internal nutrition, as well as the main two types of fungi that are most often referred to, as well as describes, visually, the process of saprotrophic nutrition through a diagram of hyphae, referring to the Rhizobium on damp, stale whole-meal bread or rotting fruit." 487:
On early Earth, oceans and shallow waters were rich with organic molecules that could have been used by primitive heterotrophs. This method of obtaining energy was energetically favorable until organic carbon became more scarce than inorganic carbon, providing a potential evolutionary pressure to
516:
was the main carbon source at the early Earth, suggesting that early cellular life were autotrophs that relied upon inorganic substrates as an energy source and lived at alkaline hydrothermal vents or acidic geothermal ponds. Simple biomolecules transported from space was considered to have been
409:
Heterotrophs, by consuming reduced carbon compounds, are able to use all the energy that they obtain from food for growth and reproduction, unlike autotrophs, which must use some of their energy for carbon fixation. Both heterotrophs and autotrophs alike are usually dependent on the metabolic
402:(or facultative chemolithotroph) can use either carbon dioxide or organic carbon as the carbon source, meaning that mixotrophs have the ability to use both heterotrophic and autotrophic methods. Although mixotrophs have the ability to grow under both heterotrophic and autotrophic conditions, 488:
become autotrophic. Following the evolution of autotrophs, heterotrophs were able to utilize them as a food source instead of relying on the limited nutrients found in their environment. Eventually, autotrophic and heterotrophic cells were engulfed by these early heterotrophs and formed a
508:
relationships that provide needed resources to both organisms. One example of this is the mutualism between corals and algae, where the former provides protection and necessary compounds for photosynthesis while the latter provides oxygen.
410:
activities of other organisms for nutrients other than carbon, including nitrogen, phosphorus, and sulfur, and can die from lack of food that supplies these nutrients. This applies not only to animals and fungi but also to bacteria.
373:
and purple non-sulfur bacteria synthesize organic compounds using sunlight coupled with oxidation of organic substances. They use organic compounds to build structures. They do not fix carbon dioxide and apparently do not have the
504:, allowing the differentiation of tissues and development into multicellularity. This advancement allowed the further diversification of heterotrophs. Today, many heterotrophs and autotrophs also utilize 1670:
Preiner, Martina; Asche, Silke; Becker, Sidney; Betts, Holly C.; Boniface, Adrien; Camprubi, Eloi; Chandru, Kuhan; Erastova, Valentina; Garg, Sriram G.; Khawaja, Nozair; Kostyrka, Gladys (2020-02-26).
276:
to organic carbon compounds and energy to sustain their life. Comparing the two in basic terms, heterotrophs (such as animals) eat either autotrophs (such as plants) or other heterotrophs, or both.
186:, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but not producers. Living organisms that are heterotrophic include all 655:). They release the chemical energy of nutrient molecules by oxidizing carbon and hydrogen atoms from carbohydrates, lipids, and proteins to carbon dioxide and water, respectively. 761:
formed from deamination is further oxidized by lithotrophs to the forms available to plants. Heterotrophs' ability to mineralize essential elements is critical to plant survival.
366:. Phototrophs utilize light to obtain energy and carry out metabolic processes, whereas chemotrophs use the energy obtained by the oxidation of chemicals from their environment. 623:
that use organic carbon (e.g. glucose) as their carbon source, and organic chemicals (e.g. carbohydrates, lipids, proteins) as their electron sources. Heterotrophs function as
536:. Domain Bacteria includes a variety of metabolic activity including photoheterotrophs, chemoheterotrophs, organotrophs, and heterolithotrophs. Within Domain Eukarya, kingdoms 434:, which further reacted to form more complex compounds and eventually resulted in life. Alternative theories of an autotrophic origin of life contradict this theory. 1077:"Oceanithermus profundus gen. nov., sp. nov., a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent" 900: 639:. They break down complex organic compounds (e.g., carbohydrates, fats, and proteins) produced by autotrophs into simpler compounds (e.g., carbohydrates into 944:. Cold Spring Harbor Symposia on Quantitative Biology. Vol. XI (5th ed.). Cold Spring Harbor, N.Y.: The Biological Laboratory. pp. 302–303. 2279: 1170:
Liang, Yanna (July 2009). "Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions".
990: 675: 1144: 992:
The Environmental Geochemistry of Mineral Deposits: Part A: Processes, Techniques, and Health Issues Part B: Case Studies and Research Topics
517:
either too reduced to have been fermented or too heterogeneous to support microbial growth. Heterotrophic microbes likely originated at low H
945: 1117: 2318: 718:
into the atmosphere, making it available for autotrophs as a source of nutrient and plants as a cellulose synthesis substrate.
2202: 2156: 1758: 1376: 1154: 1127: 1075:
Miroshnichenko, M.L.; L'Haridon, S.; Jeanthon, C.; Antipov, A.N.; Kostrikina, N.A.; Tindall, B.J.; et al. (1 May 2003).
1056: 1003: 881: 714:
O into the atmosphere. Heterotrophic microbes' respiration and fermentation account for a large portion of the release of CO
1438:"The amino-acid sequence in the glycyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates" 441:, and eventually published “The Origin of Life.” It was independently proposed for the first time in English in 1929 by 544:
are entirely heterotrophic, though most fungi absorb nutrients through their environment. Most organisms within Kingdom
2369: 1226: 148: 430:
and energy sources such as electrical energy in the form of lightning, which resulted in reactions that formed simple
375: 2437: 1843:"Major evolutionary transitions of life, metabolic scaling and the number and size of mitochondria and chloroplasts" 911: 556:
plants. Lastly, Domain Archaea varies immensely in metabolic functions and contains many methods of heterotrophy.
229:
Heterotrophs may be subdivided according to their energy source. If the heterotroph uses chemical energy, it is a
1953:
Muchowska, K. B.; Varma, S. J.; Chevallot-Beroux, E.; Lethuillier-Karl, L.; Li, G.; Moran, J. (October 2, 2017).
667: 666:
that carry out fermentation in low oxygen environments, in which the production of ATP is commonly coupled with
406:
have higher biomass and lipid productivity when growing under heterotrophic compared to autotrophic conditions.
165: 17: 2458: 2286: 2018:
Weiss, Madeline C.; Preiner, Martina; Xavier, Joana C.; Zimorski, Verena; Martin, William F. (2018-08-16).
1009: 521:
partial pressures. Bases, amino acids, and ribose are considered to be the first fermentation substrates.
791:
Animals are classified as heterotrophs by ingestion, fungi are classified as heterotrophs by absorption.
437:
The theory of a chemical origin of life beginning with heterotrophic life was first proposed in 1924 by
2189:, Ecological Studies, vol. 157, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 375–413, 481: 457: 215: 2086: 1048: 695: 238: 2463: 722: 1398: 690:
for removing organic fermentation products from anaerobic environments. Heterotrophs can undergo
358:, to obtain electrons. Another way of classifying different heterotrophs is by assigning them as 303: 772:
are heterotrophic; in particular, all animals and fungi are heterotrophs. Some animals, such as
628: 346:
from plants and animals. On the other hand, lithoheterotrophs use inorganic compounds, such as
141: 63: 2020:"The last universal common ancestor between ancient Earth chemistry and the onset of genetics" 1074: 936: 907: 624: 614: 1041: 2236: 1966: 1683: 1625: 1570: 1558: 1356: 1351:, in Gargaud, Muriel; Irvine, William M.; Amils, Ricardo; Cleaves, Henderson James (eds.), 1258: 691: 59: 1348: 745:. The conversion of N and S from organic form to inorganic form is a critical part of the 8: 1247:"New insights into prebiotic chemistry from Stanley Miller's spark discharge experiments" 827: 757:
S formed from desulfurylation is further oxidized by lithotrophs and phototrophs while NH
632: 505: 427: 2311: 2240: 1970: 1687: 1629: 1574: 1360: 1262: 306:
in processing decayed organic matter. The process is most often facilitated through the
2375: 2350: 2162: 2067: 2054: 2019: 1995: 1954: 1935: 1875: 1818: 1714: 1671: 1649: 1539: 1470: 1195: 780:
relationships with autotrophs and obtain organic carbon in this way. Furthermore, some
663: 636: 674:, sulfide). These products can then serve as the substrates for other bacteria in the 426:
with heterotrophs. The summary of this theory is as follows: early Earth had a highly
2433: 2365: 2260: 2252: 2198: 2166: 2152: 2114: 2106: 2059: 2041: 2000: 1982: 1927: 1919: 1880: 1862: 1823: 1805: 1754: 1719: 1701: 1641: 1594: 1586: 1531: 1523: 1503: 1475: 1457: 1418: 1372: 1329: 1321: 1282: 1274: 1222: 1187: 1150: 1123: 1098: 1052: 999: 877: 785: 738: 553: 370: 2379: 2071: 1939: 1653: 1543: 2357: 2244: 2190: 2144: 2098: 2049: 2031: 1990: 1974: 1911: 1870: 1854: 1813: 1797: 1746: 1709: 1691: 1633: 1614:"The 1953 Stanley L. Miller experiment: Fifty years of prebiotic organic chemistry" 1613: 1578: 1515: 1465: 1449: 1410: 1368: 1364: 1313: 1266: 1199: 1179: 1088: 600: 595: 442: 438: 431: 383: 307: 299: 234: 81: 2184: 1738: 182:
that cannot produce its own food, instead taking nutrition from other sources of
2194: 2036: 1786:"Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes" 1750: 1582: 873: 832: 781: 423: 203: 2224: 1785: 807: 2248: 1801: 812: 746: 583: 578: 453: 419: 273: 269: 265: 211: 183: 55: 39: 2361: 2102: 1978: 1952: 1637: 1519: 1414: 1183: 788:
consume animals to augment their nitrogen supply while remaining autotrophic.
2452: 2256: 2110: 2045: 1986: 1923: 1866: 1809: 1705: 1590: 1527: 1461: 1325: 1278: 1215: 742: 658:
They can catabolize organic compounds by respiration, fermentation, or both.
564: 501: 335: 245: 1842: 1301: 847: 2264: 2138: 2118: 2063: 2004: 1931: 1884: 1858: 1827: 1723: 1645: 1598: 1535: 1492:
Haldane, J.B.S. (1929) The Origin of Life. The Rationalist Annual, 3, 3-10.
1479: 1422: 1333: 1286: 1191: 1102: 750: 687: 659: 568:
Flowchart to determine if a species is autotroph, heterotroph, or a subtype
493: 207: 2148: 1093: 1076: 334:. Organotrophs exploit reduced carbon compounds as electron sources, like 1900:"Multispecies Microbial Mutualisms on Coral Reefs: The Host as a Habitat" 1696: 934: 765: 734: 652: 644: 620: 497: 461: 391: 327: 311: 279: 1841:
Okie, Jordan G.; Smith, Val H.; Martin-Cereceda, Mercedes (2016-05-25).
233:(e.g., humans and mushrooms). If it uses light for energy, then it is a 30: 1672:"The Future of Origin of Life Research: Bridging Decades-Old Divisions" 1559:"A Production of Amino Acids Under Possible Primitive Earth Conditions" 1437: 1317: 1270: 1246: 769: 363: 359: 331: 295: 230: 223: 1453: 1355:, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 2010–2014, 2085:
Schönheit, Peter; Buckel, Wolfgang; Martin, William F. (2016-01-01).
777: 573: 489: 446: 399: 249: 171: 154: 35: 1899: 1915: 648: 525: 500:
while the endosymbiosis of smaller heterotrophs developed into the
395: 382:
obtain energy from the oxidation of inorganic compounds, including
347: 343: 287: 283: 261: 195: 179: 2186:
Mycorrhizal Specificity and Function in Myco-heterotrophic Plants
1081:
International Journal of Systematic and Evolutionary Microbiology
640: 545: 533: 529: 351: 219: 199: 698:. This leads to the release of oxidized carbon wastes such as CO 2183:
Taylor, D. L.; Bruns, T. D.; Leake, J. R.; Read, D. J. (2002),
1397:
Schönheit, Peter; Buckel, Wolfgang; Martin, William F. (2016).
541: 537: 387: 355: 244:
Heterotrophs represent one of the two mechanisms of nutrition (
187: 51: 96: 58:(green arrow). Both types of organisms use such compounds via 1745:, Cham: Springer International Publishing, pp. 157–199, 773: 549: 315: 291: 191: 54:
and complex organic compounds, mainly through the process of
47: 970: 460:
in which he added gasses that were thought to be present on
2225:"Animals and the invention of the Phanerozoic Earth system" 496:
of autotrophic cells is suggested to have evolved into the
111: 99: 90: 2356:. Springer Series in Microbiology (2 ed.). Springer. 2312:"Heterotrophic nutrition and control of bacterial density" 2017: 129: 1047:(4th ed.). Jones & Bartlett Publishers. p.  784:
have also turned fully or partially heterotrophic, while
524:
Heterotrophs are currently found in each domain of life:
339: 1840: 935:
Lwoff, A.; C.B. van Niel; P.J. Ryan; E.L. Tatum (1946).
1847:
Proceedings of the Royal Society B: Biological Sciences
1669: 2137:
Kim, Byung Hong; Gadd, Geoffrey Michael (2019-05-04).
2084: 1955:"Metals promote sequences of the reverse Krebs cycle" 1396: 861: 132: 120: 114: 102: 2280:"The role of bacteria in environmental geochemistry" 2182: 998:. Society of Economic Geologists. pp. 125–132. 721:
Respiration in heterotrophs is often accompanied by
670:
and the production of end products (e.g. alcohol, CO
126: 123: 108: 105: 93: 2432:. Oxford: Oxford University Press. pp. 79–98. 938:
Nomenclature of nutritional types of microorganisms
452:Evidence grew to support this theory in 1953, when 87: 84: 2349: 1214: 1212: 1040: 27:Organism that ingests organic carbon for nutrition 2406:MICB 201: Introductory Environmental Microbiology 1221:(7th ed.). Benjamin-Cummings Publishing Co. 314:within the internal mycelium and its constituent 2450: 662:heterotrophs are either facultative or obligate 1146:The prokaryotes: ecophysiology and biochemistry 1109: 290:(decomposing plant and animal parts as well as 218:. The term is now used in many fields, such as 1897: 1618:Origins of Life and Evolution of the Biosphere 1435: 512:However this hypothesis is controversial as CO 422:hypothesis suggests that life originated in a 1436:Sanger, F.; Thompson, E. O. P. (1953-02-01). 1122:(2nd ed.). Academic Press. p. 192. 413: 1784:Zachar, István; Boza, Gergely (2020-02-01). 966:(3rd ed.). Academic Press. p. 700. 961: 737:, respectively. Heterotrophs also allow for 2222: 1612:Lazcano, Antonio; Bada, Jeffrey L. (2003). 1611: 1136: 552:is almost entirely autotrophic, except for 2347: 1783: 1743:Evolution from a Thermodynamic Perspective 694:, in which ATP production is coupled with 2053: 2035: 1994: 1874: 1817: 1713: 1695: 1504:"J. B. S. Haldane and the origin of life" 1469: 1092: 1034: 1032: 1030: 260:= nutrition). Autotrophs use energy from 2427: 1898:Knowlton, Nancy; Rohwer, Forest (2003). 1043:Botany: An introduction to plant biology 978:Advanced Biology Principles, p 296. 563: 38:and heterotrophs. Autotrophs use light, 29: 2136: 1346: 1299: 1149:(3rd ed.). Springer. p. 988. 1142: 1038: 268:) or oxidation of inorganic compounds ( 210:in 1946 as part of a classification of 14: 2451: 1779: 1777: 1775: 1736: 1665: 1663: 1556: 1501: 1240: 1238: 1119:Introduction to Marine Biogeochemistry 1027: 895: 893: 2423: 2421: 2419: 2417: 2415: 2399: 2397: 2395: 2393: 2391: 2389: 2343: 2341: 2339: 2178: 2176: 2140:Prokaryotic Metabolism and Physiology 2132: 2130: 2128: 1169: 1115: 988: 686:, which is an important step for the 2403: 1790:Cellular and Molecular Life Sciences 1244: 964:Limnology: Lake and river ecosystems 867: 850:. Biology Dictionary. April 28, 2017 1772: 1739:"A Thermodynamic View of Evolution" 1660: 1302:"Primordial soup that cooks itself" 1235: 890: 627:: they obtain these nutrients from 24: 2412: 2386: 2336: 2173: 2125: 25: 2475: 2277: 2229:Trends in Ecology & Evolution 2223:Butterfield, Nicholas J. (2011). 1557:Miller, Stanley L. (1953-05-15). 369:Photoorganoheterotrophs, such as 951:from the original on 2017-11-07. 548:are heterotrophic while Kingdom 206:. The term heterotroph arose in 80: 2324:from the original on 2011-05-24 2304: 2271: 2216: 2087:"On the Origin of Heterotrophy" 2078: 2011: 1946: 1891: 1834: 1730: 1605: 1550: 1495: 1486: 1429: 1399:"On the Origin of Heterotrophy" 1390: 1340: 1293: 1206: 1163: 1068: 668:substrate-level phosphorylation 2430:Processes in Microbial Ecology 2143:. Cambridge University Press. 1959:Nature Ecology & Evolution 1369:10.1007/978-3-662-44185-5_1275 982: 955: 928: 840: 833:Merriam-Webster.com Dictionary 820: 800: 378:. Chemolithoheterotrophs like 282:are heterotrophs which obtain 13: 1: 794: 443:John Burdon Sanderson Haldane 298:(also called lysotrophs) are 2348:Gottschalk, Gerhard (2012). 2195:10.1007/978-3-540-38364-2_15 2037:10.1371/journal.pgen.1007518 1751:10.1007/978-3-030-85186-6_12 1583:10.1126/science.117.3046.528 1353:Encyclopedia of Astrobiology 908:McGraw-Hill Higher Education 733:through desulfurylation and 559: 7: 2428:Kirchman, David L. (2014). 1213:Campbell and Reece (2002). 70:and water (two red arrows). 10: 2480: 2249:10.1016/j.tree.2010.11.012 1802:10.1007/s00018-020-03462-6 1039:Mauseth, James D. (2008). 901:"How Cells Harvest Energy" 678:, and be converted into CO 612: 608: 439:Alexander Ivanovich Oparin 414:Origin and diversification 310:of such materials through 164: 161: 'other' and 147: 2362:10.1007/978-1-4612-1072-6 2103:10.1016/j.tim.2015.10.003 1979:10.1038/s41559-017-0311-7 1520:10.1007/s12041-017-0831-6 1502:Tirard, Stéphane (2017). 1415:10.1016/j.tim.2015.10.003 1347:Lazcano, Antonio (2015), 1300:Bracher, Paul J. (2015). 1245:Bada, Jeffrey L. (2013). 1184:10.1007/s10529-009-9975-7 813:Dictionary.com Unabridged 702:and reduced wastes like H 696:oxidative phosphorylation 239:green non-sulfur bacteria 178: 'nutrition') is an 1251:Chemical Society Reviews 1143:Dworkin, Martin (2006). 1116:Libes, Susan M. (2009). 848:"Heterotroph Definition" 321: 1904:The American Naturalist 1737:Jordan, Carl F (2022), 1638:10.1023/A:1024807125069 1063:heterotroph fix carbon. 625:consumers in food chain 621:chemoorganoheterotrophs 380:Oceanithermus profundus 304:extracellular digestion 272:) to convert inorganic 214:based on their type of 2091:Trends in Microbiology 1859:10.1098/rspb.2016.0611 1403:Trends in Microbiology 870:Essential Microbiology 619:Many heterotrophs are 569: 482:Miller–Urey experiment 71: 2404:Wade, Bingle (2016). 2149:10.1017/9781316761625 1172:Biotechnology Letters 1094:10.1099/ijs.0.02367-0 962:Wetzel, R.G. (2001). 868:Hogg, Stuart (2013). 615:Consumer (food chain) 567: 33: 2352:Bacterial Metabolism 1697:10.3390/life10030020 989:Mills, A.L. (1997). 651:, and proteins into 326:Heterotrophs can be 222:, in describing the 60:cellular respiration 2459:Biology terminology 2408:. pp. 236–250. 2241:2011TEcoE..26...81B 1971:2017NatEE...1.1716M 1688:2020Life...10...20P 1630:2003OLEB...33..235L 1575:1953Sci...117..528M 1508:Journal of Genetics 1442:Biochemical Journal 1361:2015enas.book.2010L 1263:2013CSRev..42.2186B 428:reducing atmosphere 248:), the other being 1853:(1831): 20160611. 1318:10.1038/nchem.2219 1271:10.1039/c3cs35433d 836:. Merriam-Webster. 786:carnivorous plants 637:holozoic nutrients 570: 554:myco-heterotrophic 492:relationship. The 476:), and hydrogen (H 72: 2204:978-3-540-00204-8 2158:978-1-316-76162-5 1965:(11): 1716–1721. 1796:(18): 3503–3523. 1760:978-3-030-85185-9 1569:(3046): 528–529. 1454:10.1042/bj0530353 1378:978-3-662-44184-8 1349:"Primordial Soup" 1156:978-0-387-25492-0 1129:978-0-12-088530-5 1058:978-0-7637-5345-0 1005:978-1-62949-013-7 883:978-1-119-97890-9 739:dephosphorylation 432:organic compounds 371:Rhodospirillaceae 300:chemoheterotrophs 66:and again form CO 62:to both generate 16:(Redirected from 2471: 2444: 2443: 2425: 2410: 2409: 2401: 2384: 2383: 2355: 2345: 2334: 2333: 2331: 2329: 2323: 2316: 2308: 2302: 2301: 2299: 2297: 2291: 2285:. Archived from 2284: 2275: 2269: 2268: 2220: 2214: 2213: 2212: 2211: 2180: 2171: 2170: 2134: 2123: 2122: 2082: 2076: 2075: 2057: 2039: 2015: 2009: 2008: 1998: 1950: 1944: 1943: 1895: 1889: 1888: 1878: 1838: 1832: 1831: 1821: 1781: 1770: 1769: 1768: 1767: 1734: 1728: 1727: 1717: 1699: 1667: 1658: 1657: 1609: 1603: 1602: 1554: 1548: 1547: 1499: 1493: 1490: 1484: 1483: 1473: 1433: 1427: 1426: 1394: 1388: 1387: 1386: 1385: 1344: 1338: 1337: 1306:Nature Chemistry 1297: 1291: 1290: 1257:(5): 2186–2196. 1242: 1233: 1232: 1220: 1210: 1204: 1203: 1178:(7): 1043–1049. 1167: 1161: 1160: 1140: 1134: 1133: 1113: 1107: 1106: 1096: 1072: 1066: 1065: 1046: 1036: 1025: 1024: 1022: 1020: 1014: 1008:. Archived from 997: 986: 980: 974: 968: 967: 959: 953: 952: 950: 943: 932: 926: 925: 923: 922: 916: 910:. Archived from 905: 897: 888: 887: 872:(2nd ed.). 865: 859: 858: 856: 855: 844: 838: 837: 824: 818: 817: 804: 782:parasitic plants 676:anaerobic digest 601:Photoheterotroph 596:Chemoheterotroph 394:, and molecular 384:hydrogen sulfide 308:active transport 235:photoheterotroph 231:chemoheterotroph 204:parasitic plants 175: 168: 158: 151: 139: 138: 135: 134: 131: 128: 125: 122: 117: 116: 113: 110: 107: 104: 101: 98: 95: 92: 89: 86: 21: 2479: 2478: 2474: 2473: 2472: 2470: 2469: 2468: 2464:Trophic ecology 2449: 2448: 2447: 2440: 2426: 2413: 2402: 2387: 2372: 2346: 2337: 2327: 2325: 2321: 2314: 2310: 2309: 2305: 2295: 2293: 2292:on 6 April 2019 2289: 2282: 2276: 2272: 2221: 2217: 2209: 2207: 2205: 2181: 2174: 2159: 2135: 2126: 2083: 2079: 2030:(8): e1007518. 2016: 2012: 1951: 1947: 1910:(S4): S51–S62. 1896: 1892: 1839: 1835: 1782: 1773: 1765: 1763: 1761: 1735: 1731: 1668: 1661: 1610: 1606: 1555: 1551: 1500: 1496: 1491: 1487: 1434: 1430: 1395: 1391: 1383: 1381: 1379: 1345: 1341: 1298: 1294: 1243: 1236: 1229: 1211: 1207: 1168: 1164: 1157: 1141: 1137: 1130: 1114: 1110: 1073: 1069: 1059: 1037: 1028: 1018: 1016: 1015:on 6 April 2019 1012: 1006: 995: 987: 983: 975: 971: 960: 956: 948: 941: 933: 929: 920: 918: 914: 903: 899: 898: 891: 884: 874:Wiley-Blackwell 866: 862: 853: 851: 846: 845: 841: 826: 825: 821: 806: 805: 801: 797: 760: 756: 732: 728: 717: 713: 709: 705: 701: 685: 681: 673: 617: 611: 562: 520: 515: 479: 475: 471: 468:O), methane (CH 467: 416: 324: 270:lithoautotrophs 266:photoautotrophs 119: 83: 79: 69: 45: 28: 23: 22: 15: 12: 11: 5: 2477: 2467: 2466: 2461: 2446: 2445: 2438: 2411: 2385: 2371:978-0387961538 2370: 2335: 2303: 2270: 2215: 2203: 2172: 2157: 2124: 2077: 2010: 1945: 1916:10.1086/378684 1890: 1833: 1771: 1759: 1729: 1659: 1624:(3): 235–242. 1604: 1549: 1514:(5): 735–739. 1494: 1485: 1448:(3): 353–366. 1428: 1389: 1377: 1339: 1312:(4): 273–274. 1292: 1234: 1228:978-0805371710 1227: 1205: 1162: 1155: 1135: 1128: 1108: 1087:(3): 747–752. 1067: 1057: 1026: 1004: 981: 969: 954: 927: 889: 882: 876:. p. 86. 860: 839: 819: 816:(Online). n.d. 798: 796: 793: 758: 754: 730: 726: 723:mineralization 715: 711: 707: 703: 699: 683: 679: 671: 613:Main article: 610: 607: 606: 605: 604: 603: 598: 588: 587: 586: 584:Photoautotroph 581: 579:Chemoautotroph 561: 558: 518: 513: 477: 473: 472:), ammonia (NH 469: 465: 454:Stanley Miller 424:prebiotic soup 420:origin of life 415: 412: 323: 320: 274:carbon dioxide 246:trophic levels 212:microorganisms 184:organic carbon 67: 56:photosynthesis 43: 40:carbon dioxide 34:Cycle between 26: 9: 6: 4: 3: 2: 2476: 2465: 2462: 2460: 2457: 2456: 2454: 2441: 2439:9780199586936 2435: 2431: 2424: 2422: 2420: 2418: 2416: 2407: 2400: 2398: 2396: 2394: 2392: 2390: 2381: 2377: 2373: 2367: 2363: 2359: 2354: 2353: 2344: 2342: 2340: 2320: 2313: 2307: 2288: 2281: 2274: 2266: 2262: 2258: 2254: 2250: 2246: 2242: 2238: 2234: 2230: 2226: 2219: 2206: 2200: 2196: 2192: 2188: 2187: 2179: 2177: 2168: 2164: 2160: 2154: 2150: 2146: 2142: 2141: 2133: 2131: 2129: 2120: 2116: 2112: 2108: 2104: 2100: 2096: 2092: 2088: 2081: 2073: 2069: 2065: 2061: 2056: 2051: 2047: 2043: 2038: 2033: 2029: 2025: 2024:PLOS Genetics 2021: 2014: 2006: 2002: 1997: 1992: 1988: 1984: 1980: 1976: 1972: 1968: 1964: 1960: 1956: 1949: 1941: 1937: 1933: 1929: 1925: 1921: 1917: 1913: 1909: 1905: 1901: 1894: 1886: 1882: 1877: 1872: 1868: 1864: 1860: 1856: 1852: 1848: 1844: 1837: 1829: 1825: 1820: 1815: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1780: 1778: 1776: 1762: 1756: 1752: 1748: 1744: 1740: 1733: 1725: 1721: 1716: 1711: 1707: 1703: 1698: 1693: 1689: 1685: 1681: 1677: 1673: 1666: 1664: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1623: 1619: 1615: 1608: 1600: 1596: 1592: 1588: 1584: 1580: 1576: 1572: 1568: 1564: 1560: 1553: 1545: 1541: 1537: 1533: 1529: 1525: 1521: 1517: 1513: 1509: 1505: 1498: 1489: 1481: 1477: 1472: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1432: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1393: 1380: 1374: 1370: 1366: 1362: 1358: 1354: 1350: 1343: 1335: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1296: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1241: 1239: 1230: 1224: 1219: 1218: 1209: 1201: 1197: 1193: 1189: 1185: 1181: 1177: 1173: 1166: 1158: 1152: 1148: 1147: 1139: 1131: 1125: 1121: 1120: 1112: 1104: 1100: 1095: 1090: 1086: 1082: 1078: 1071: 1064: 1060: 1054: 1050: 1045: 1044: 1035: 1033: 1031: 1011: 1007: 1001: 994: 993: 985: 979: 973: 965: 958: 947: 940: 939: 931: 917:on 2012-07-31 913: 909: 902: 896: 894: 885: 879: 875: 871: 864: 849: 843: 835: 834: 829: 828:"heterotroph" 823: 815: 814: 809: 808:"heterotroph" 803: 799: 792: 789: 787: 783: 779: 775: 771: 767: 762: 752: 748: 744: 743:decomposition 740: 736: 724: 719: 697: 693: 689: 677: 669: 665: 661: 656: 654: 650: 646: 642: 638: 634: 630: 626: 622: 616: 602: 599: 597: 594: 593: 592: 589: 585: 582: 580: 577: 576: 575: 572: 571: 566: 557: 555: 551: 547: 543: 539: 535: 531: 527: 522: 510: 507: 503: 499: 495: 494:endosymbiosis 491: 485: 483: 463: 459: 456:conducted an 455: 450: 448: 444: 440: 435: 433: 429: 425: 421: 418:The chemical 411: 407: 405: 401: 397: 393: 389: 385: 381: 377: 372: 367: 365: 361: 357: 353: 349: 345: 341: 337: 336:carbohydrates 333: 329: 319: 317: 313: 309: 305: 301: 297: 293: 289: 286:by consuming 285: 281: 277: 275: 271: 267: 263: 259: 255: 251: 247: 242: 240: 236: 232: 227: 225: 221: 217: 213: 209: 205: 201: 197: 193: 189: 185: 181: 177: 174: 167: 163: 160: 157: 150: 146: 143: 142:Ancient Greek 137: 77: 65: 61: 57: 53: 49: 41: 37: 32: 19: 18:Heterotrophic 2429: 2405: 2351: 2326:. Retrieved 2306: 2294:. Retrieved 2287:the original 2278:Mills, A.L. 2273: 2235:(2): 81–87. 2232: 2228: 2218: 2208:, retrieved 2185: 2139: 2097:(1): 12–25. 2094: 2090: 2080: 2027: 2023: 2013: 1962: 1958: 1948: 1907: 1903: 1893: 1850: 1846: 1836: 1793: 1789: 1764:, retrieved 1742: 1732: 1679: 1675: 1621: 1617: 1607: 1566: 1562: 1552: 1511: 1507: 1497: 1488: 1445: 1441: 1431: 1409:(1): 12–25. 1406: 1402: 1392: 1382:, retrieved 1352: 1342: 1309: 1305: 1295: 1254: 1250: 1216: 1208: 1175: 1171: 1165: 1145: 1138: 1118: 1111: 1084: 1080: 1070: 1062: 1042: 1017:. Retrieved 1010:the original 991: 984: 977: 972: 963: 957: 937: 930: 919:. Retrieved 912:the original 869: 863: 852:. Retrieved 842: 831: 822: 811: 802: 790: 766:opisthokonts 763: 751:sulfur cycle 720: 688:carbon cycle 657: 643:, fats into 629:saprotrophic 618: 590: 523: 511: 502:mitochondria 498:chloroplasts 486: 451: 436: 417: 408: 403: 386:, elemental 379: 376:Calvin cycle 368: 328:organotrophs 325: 280:Detritivores 278: 257: 253: 243: 228: 208:microbiology 172: 169: 162: 155: 152: 145: 75: 73: 2328:19 November 2296:19 November 770:prokaryotes 741:as part of 735:deamination 692:respiration 653:amino acids 645:fatty acids 591:Heterotroph 506:mutualistic 462:early Earth 404:C. vulgaris 392:thiosulfate 364:phototrophs 360:chemotrophs 332:lithotrophs 312:endocytosis 296:Saprotrophs 202:, and many 140:; from 76:heterotroph 2453:Categories 2210:2022-04-23 1766:2022-04-23 1384:2022-04-23 921:2010-10-10 854:2023-12-02 795:References 660:Fermenting 464:– water (H 458:experiment 449:).   447:autotrophy 400:Mixotrophs 250:autotrophs 224:food chain 36:autotrophs 2257:0169-5347 2167:165100369 2111:0966-842X 2046:1553-7404 1987:2397-334X 1924:0003-0147 1867:0962-8452 1810:1420-682X 1706:2075-1729 1682:(3): 20. 1591:0036-8075 1528:0022-1333 1462:0306-3283 1326:1755-4330 1279:0306-0012 1019:9 October 778:symbiotic 664:anaerobes 633:parasitic 574:Autotroph 560:Flowchart 490:symbiotic 302:that use 284:nutrients 216:nutrition 2380:32635137 2319:Archived 2265:21190752 2119:26578093 2072:52019935 2064:30114187 2005:28970480 1940:24127308 1932:14583857 1885:27194700 1828:32008087 1724:32110893 1654:19515024 1646:14515862 1599:13056598 1544:28775520 1536:29237880 1480:13032078 1423:26578093 1334:25803461 1287:23340907 1192:19322523 1103:12807196 946:Archived 747:nitrogen 729:S and NH 649:glycerol 546:Protista 542:Animalia 526:Bacteria 396:hydrogen 348:ammonium 344:proteins 288:detritus 262:sunlight 256:= self, 200:protists 196:bacteria 180:organism 50:to form 2237:Bibcode 2055:6095482 1996:5659384 1967:Bibcode 1876:4892803 1819:7452879 1715:7151616 1684:Bibcode 1626:Bibcode 1571:Bibcode 1563:Science 1471:1198157 1357:Bibcode 1259:Bibcode 1217:Biology 1200:1989922 776:, form 710:S, or N 641:glucose 609:Ecology 550:Plantae 534:Eukarya 530:Archaea 352:nitrite 237:(e.g., 220:ecology 194:, some 188:animals 156:héteros 46:), and 2436:  2378:  2368:  2263:  2255:  2201:  2165:  2155:  2117:  2109:  2070:  2062:  2052:  2044:  2003:  1993:  1985:  1938:  1930:  1922:  1883:  1873:  1865:  1826:  1816:  1808:  1757:  1722:  1712:  1704:  1652:  1644:  1597:  1589:  1542:  1534:  1526:  1478:  1468:  1460:  1421:  1375:  1332:  1324:  1285:  1277:  1225:  1198:  1190:  1153:  1126:  1101:  1055:  1002:  880:  774:corals 682:and CH 532:, and 388:sulfur 356:sulfur 342:, and 316:hyphae 173:trophḗ 149:ἕτερος 52:oxygen 2376:S2CID 2322:(PDF) 2315:(PDF) 2290:(PDF) 2283:(PDF) 2163:S2CID 2068:S2CID 1936:S2CID 1650:S2CID 1540:S2CID 1196:S2CID 1013:(PDF) 996:(PDF) 949:(PDF) 942:(PDF) 915:(PDF) 904:(PDF) 764:Most 635:, or 538:Fungi 354:, or 322:Types 292:feces 258:troph 192:fungi 166:τροφή 144: 48:water 2434:ISBN 2366:ISBN 2330:2017 2298:2017 2261:PMID 2253:ISSN 2199:ISBN 2153:ISBN 2115:PMID 2107:ISSN 2060:PMID 2042:ISSN 2001:PMID 1983:ISSN 1928:PMID 1920:ISSN 1881:PMID 1863:ISSN 1824:PMID 1806:ISSN 1755:ISBN 1720:PMID 1702:ISSN 1676:Life 1642:PMID 1595:PMID 1587:ISSN 1532:PMID 1524:ISSN 1476:PMID 1458:ISSN 1419:PMID 1373:ISBN 1330:PMID 1322:ISSN 1283:PMID 1275:ISSN 1223:ISBN 1188:PMID 1151:ISBN 1124:ISBN 1099:PMID 1053:ISBN 1021:2017 1000:ISBN 878:ISBN 768:and 749:and 706:O, H 647:and 540:and 340:fats 254:auto 198:and 190:and 2358:doi 2245:doi 2191:doi 2145:doi 2099:doi 2050:PMC 2032:doi 1991:PMC 1975:doi 1912:doi 1908:162 1871:PMC 1855:doi 1851:283 1814:PMC 1798:doi 1747:doi 1710:PMC 1692:doi 1634:doi 1579:doi 1567:117 1516:doi 1466:PMC 1450:doi 1411:doi 1365:doi 1314:doi 1267:doi 1180:doi 1089:doi 1049:252 753:. H 362:or 330:or 294:). 241:). 64:ATP 42:(CO 2455:: 2414:^ 2388:^ 2374:. 2364:. 2338:^ 2317:. 2259:. 2251:. 2243:. 2233:26 2231:. 2227:. 2197:, 2175:^ 2161:. 2151:. 2127:^ 2113:. 2105:. 2095:24 2093:. 2089:. 2066:. 2058:. 2048:. 2040:. 2028:14 2026:. 2022:. 1999:. 1989:. 1981:. 1973:. 1961:. 1957:. 1934:. 1926:. 1918:. 1906:. 1902:. 1879:. 1869:. 1861:. 1849:. 1845:. 1822:. 1812:. 1804:. 1794:77 1792:. 1788:. 1774:^ 1753:, 1741:, 1718:. 1708:. 1700:. 1690:. 1680:10 1678:. 1674:. 1662:^ 1648:. 1640:. 1632:. 1622:33 1620:. 1616:. 1593:. 1585:. 1577:. 1565:. 1561:. 1538:. 1530:. 1522:. 1512:96 1510:. 1506:. 1474:. 1464:. 1456:. 1446:53 1444:. 1440:. 1417:. 1407:24 1405:. 1401:. 1371:, 1363:, 1328:. 1320:. 1308:. 1304:. 1281:. 1273:. 1265:. 1255:42 1253:. 1249:. 1237:^ 1194:. 1186:. 1176:31 1174:. 1097:. 1085:53 1083:. 1079:. 1061:. 1051:. 1029:^ 906:. 892:^ 830:. 810:. 631:, 528:, 484:. 398:. 390:, 350:, 338:, 318:. 226:. 118:,- 112:oʊ 97:ər 74:A 2442:. 2382:. 2360:: 2332:. 2300:. 2267:. 2247:: 2239:: 2193:: 2169:. 2147:: 2121:. 2101:: 2074:. 2034:: 2007:. 1977:: 1969:: 1963:1 1942:. 1914:: 1887:. 1857:: 1830:. 1800:: 1749:: 1726:. 1694:: 1686:: 1656:. 1636:: 1628:: 1601:. 1581:: 1573:: 1546:. 1518:: 1482:. 1452:: 1425:. 1413:: 1367:: 1359:: 1336:. 1316:: 1310:7 1289:. 1269:: 1261:: 1231:. 1202:. 1182:: 1159:. 1132:. 1105:. 1091:: 1023:. 924:. 886:. 857:. 759:4 755:2 731:4 727:2 716:2 712:2 708:2 704:2 700:2 684:4 680:2 672:2 519:2 514:2 478:2 474:3 470:4 466:2 264:( 252:( 176:) 170:( 159:) 153:( 136:/ 133:f 130:ɒ 127:r 124:t 121:ˌ 115:f 109:r 106:t 103:ˌ 100:ə 94:t 91:ɛ 88:h 85:ˈ 82:/ 78:( 68:2 44:2 20:)

Index

Heterotrophic

autotrophs
carbon dioxide
water
oxygen
photosynthesis
cellular respiration
ATP
/ˈhɛtərəˌtrf,-ˌtrɒf/
Ancient Greek
ἕτερος
τροφή
organism
organic carbon
animals
fungi
bacteria
protists
parasitic plants
microbiology
microorganisms
nutrition
ecology
food chain
chemoheterotroph
photoheterotroph
green non-sulfur bacteria
trophic levels
autotrophs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.