Knowledge

Heterogeneous water oxidation

Source 📝

174:. Therefore, it takes 475 kJ of energy to make one mole of O2 as calculated by thermodynamics. However, in reality no process can be this efficient. Systems always suffer from an overpotential that arise from activation barriers, concentration effects and voltage drops due to resistance. The activation barriers or 309:) shows some of the best performance as an OER material in acidic environments. It has been studied since the early 1970s as a water oxidation catalyst with one of the lowest reported overpotentials for OER at the time. It has since been investigated for OER in Ru(110) single crystal oxide surfaces, compact films, 85:
processes. Since hydrogen can be used as an alternative clean burning fuel, there has been a need to split water efficiently. However, there are known materials that can mediate the reduction step efficiently therefore much of the current research is aimed at the oxidation half reaction also known as
258:
Preparation of the surface and electrolysis conditions have a large effect on reactivity (defects, steps, kinks, low coordinate sites) therefore it is difficult to predict an OER material's properties by its bulk structure. Surface effects have a large influence on the kinetics and thermodynamics of
274:
values on the order of 10 A/cm. Much of the mechanistic knowledge of OER was gathered from studies on platinum and its oxides. It was observed that there was a lag in the evolution of oxygen during electrolysis. Therefore, an oxide film must first form at the surface before OER begins. The Tafel
194:
solutions is shown below. Under acidic conditions water binds to the surface with the irreversible removal of one electron and one proton to form a platinum hydroxide. In an alkaline solution a reversible binding of hydroxide ion coupled to a one electron oxidation is thought to precede a
220: 212: 354:
Blankenship, R.E.; Tiede, D.M.; Barber, J.; Brudvig, G.W.; Fleming, G.; Ghirardi, M.; Gunner, M.R.; Junge, W.; Kramer, D.M.; Melis, A.; Moore, T.A.; Moser, C.C.; Nocera, D.G.; Nozik, A.J.; Ort, D.R.; Parson, W.W.; Prince, R.C.; Sayre, R.T. (2011).
1094:
Sahoo, Pathik; Tan, Jing-Bo; Zhang, Zhi-Ming; Singh, Shiva Kumar; Lu, Tong-Bu (2018-02-06). "Engineering the Surface Structure of Binary/Ternary Ferrite Nanoparticles as High-Performance Electrocatalysts for the Oxygen Evolution Reaction".
199:
step involving the removal of one proton and one electron to form a surface oxide species. The shift in mechanism between the pH extremes has been attributed to the kinetic facility of oxidizing hydroxide ion relative to water. Using the
330: 275:
slope, which is related to the kinetics of the electrocatalytic reaction, was shown to be independent of the oxide layer thickness at low current densities but becomes dependent on oxide thickness at high current densities
72:
Of the two half reactions, the oxidation step is the most demanding because it requires the coupling of 4 electron and proton transfers and the formation of an oxygen-oxygen bond. This process occurs naturally in plants
1138:
Tan, Jing-Bo; Sahoo, Pathik; Wang, Jia-Wei; Hu, Yu-Wen; Zhang, Zhi-Ming; Lu, Tong-Bu (2018). "Highly efficient oxygen evolution electrocatalysts prepared by using reduction-engraved ferrites on graphene oxide".
159:
and therefore shift by -59 mV for each pH unit increase. However, the total cell potential (difference between oxidation and reduction half cell potentials) will remain 1.23 V. This potential can be related to
464:
Conway, B.E.; Liu, T.C. (1990). "Characterization of electrocatalysis in the oxygen evolution reaction at platinum by evaluation of behavior of surface intermediate states at the oxide film".
865:
Rakousky, C.; Keeley, G.P.; Wippermann, K.; Carmo, M.; Stolten, D. (2018). "The stability challenge on the pathway to high-current-density polymer electrolyte membrane water electrolyzers".
900:
Beni, G.; Schiavone, L.M.; Shay, J.L.; Dautremont-Smith, W.C.; Schneider, B.S. (1979). "Electrocatalytic oxygen evolution on reactively sputtered electrochromic iridium oxide films".
627:
Parmon, V.M.; Elizarova, G.L.; Kim, T.V. (1982). "Spinels as heterogeneous catalysts for oxidation of water to dioxygen by tris-bipyridyl complexes of iron(III) and ruthenium(III)".
740:
Hansen, Rebecca E.; Das, Siddhartha (2014). "Biomimetic di-manganese catalyst cage-isolated in a MOF: robust catalyst for water oxidation with Ce(iv), a non-O-donating oxidant".
94:
Both the oxidation and reduction steps are pH dependent. Figure 1 shows the standard potentials at pH 0 (strongly acidic) as referenced to the normal hydrogen electrode (NHE).
822:
Birss, V. I.; Damjanovic, A. (1987-01-01). "Oxygen Evolution at Platinum Electrodes in Alkaline Solutions: I . Dependence on Solution pH and Oxide Film Thickness".
208:
and the Tafel slope. OER is presumed to not take place on clean metal surfaces such as platinum, but instead an oxide surface is formed prior to oxygen evolution.
190:
Heterogeneous OER is sensitive to the surface which the reaction takes place and is also affected by the pH of the solution. The general mechanism for acidic and
182:
that are reached during the electrochemical process of OER. The lowering of these barriers would allow for OER to occur at lower overpotentials and faster rates.
86:
the Oxygen Evolution Reaction (OER). Current research focuses on understanding the mechanism of OER and development of new materials that catalyze the process.
943:
Trasatti, Sergio; Buzzanca, Giovanni (1971). "Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour".
294:
due to its high stability. It was first proposed in the 1970s as an OER catalyst, and has been widely researched and implemented since then.
501:; Damjanovic, A.; Hudson, P.G. (1986). "Oxygen Evolution at Platinum Electrodes in Alkaline Solutions: II . Mechanism of the Reaction". 337:
over the carbon materials and reduced further to create oxygen vacancy in their lattice to enhance the water oxidation capabilities.
291: 697:
Nepal, Binod; Das, Siddhartha (2013-05-31). "Sustained Water Oxidation by a Catalyst Cage-Isolated in a Metal-Organic Framework".
573:
Damjanovic, A.; Yeh, L.S.R.; Wolf, J.F. (1980). "Temperature Study of Oxide Film Growth at Platinum Anodes in H2SO4 Solutions".
254:(MOF)-based materials have been shown to be a highly promising candidate for water oxidation with first row transition metals.; 270:
has been a widely studied material for OER because it is the catalytically most active element for this reaction. It exhibits
978:
Castelli, Piero; Trasatti, Sergio; Pollak, Fred H.; O'Grady, William E. (1986). "Single crystals as model electrocatalysts".
600:
Matsumoto, Y.; Sato, E. (1986). "Electrocatalytic properties of transition metal oxides for oxygen evolution reaction".
546:
Zeng, K.; Zhang, D. (2010). "Recent progress in alkaline water electrolysis for hydrogen production and applications".
155:
Water splitting can be done at higher pH values as well however the standard potentials will vary according to the
779:(2010-06-28). "The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis". 333:
are extremely useful in designing heterogeneous water oxidation catalysts. Generally these spinels are ofter
1180: 1185: 1016:
Lodi, G.; Sivieri, E.; De Battisti, A.; Trasatti, S. (1978). "Ruthenium dioxide-based film electrodes".
357:"Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement" 776: 662:
Bockris, John O'M.; Otagawa, Takaaki (1983-07-01). "Mechanism of oxygen evolution on perovskites".
271: 205: 251: 334: 204:, one can obtain kinetic information about the kinetics of the electrode material such as the 909: 831: 510: 368: 8: 913: 835: 514: 372: 1120: 1041: 925: 882: 804: 644: 412:"Corrosion Potential Modulation on Lead Anodes Using Water Oxidation Catalyst Coatings" 392: 318: 1072: 956: 1156: 1124: 1112: 1076: 1033: 995: 991: 960: 886: 847: 796: 757: 722: 714: 679: 613: 384: 175: 161: 1045: 878: 808: 648: 396: 1148: 1104: 1068: 1025: 987: 952: 929: 917: 874: 839: 788: 749: 706: 671: 636: 609: 582: 555: 526: 518: 473: 423: 376: 179: 171: 302: 196: 156: 17: 775:
Dau, Holger; Limberg, Christian; Reier, Tobias; Risch, Marcel; Roggan, Stefan;
559: 201: 82: 78: 74: 1174: 1160: 1116: 1080: 1037: 999: 964: 851: 800: 761: 718: 683: 283: 428: 411: 380: 356: 1108: 1059:
Trasatti, S (2000). "Electrocatalysis: understanding the success of DSA®".
792: 726: 710: 388: 498: 247: 675: 477: 443: 1152: 1029: 980:
Journal of Electroanalytical Chemistry and Interfacial Electrochemistry
945:
Journal of Electroanalytical Chemistry and Interfacial Electrochemistry
753: 640: 843: 586: 531: 522: 921: 35: 310: 267: 191: 170:
Where n is the number of electrons per mole products and F is the
977: 899: 243: 81:
process and release oxygen to the atmosphere, as well as in some
219: 1015: 864: 353: 211: 48: 232:
OER has been studied on a variety of materials including:
1024:(2). Springer Science and Business Media LLC: 135–143. 497: 1011: 1009: 774: 1093: 670:(15). American Chemical Society (ACS): 2960–2971. 626: 317:films can be prepared by thermal decomposition of 1006: 572: 1172: 1147:(2). Royal Society of Chemistry (RSC): 310–318. 942: 748:(1). Royal Society of Chemistry (RSC): 317–322. 409: 290:) is the industry standard OER catalyst used in 16:Water oxidation is one of the half reactions of 821: 410:Kotyk, J.F.K.; Chen, C.; Sheehan, S.W. (2018). 1137: 661: 599: 830:(1). The Electrochemical Society: 113–117. 739: 545: 530: 463: 427: 292:polymer electrolyte membrane electrolysis 77:to provide protons and electrons for the 1058: 696: 493: 491: 489: 487: 218: 210: 699:Angewandte Chemie International Edition 629:Reaction Kinetics and Catalysis Letters 1173: 824:Journal of the Electrochemical Society 484: 227: 1018:Journal of Applied Electrochemistry 324: 13: 297: 150:E°cell = -1.23 V; ΔG = 475 kJ/mol 14: 1197: 1067:(15–16). Elsevier BV: 2377–2385. 664:The Journal of Physical Chemistry 89: 278: 1131: 1087: 1052: 971: 936: 893: 879:10.1016/j.electacta.2018.04.154 858: 815: 768: 733: 690: 655: 178:is associated with high energy 620: 593: 566: 539: 457: 444:"Anode - Lewis Research Group" 436: 403: 347: 223:OER under alkaline conditions. 1: 1141:Inorganic Chemistry Frontiers 1073:10.1016/s0013-4686(00)00338-8 957:10.1016/s0022-0728(71)80111-0 340: 992:10.1016/0022-0728(86)90325-6 614:10.1016/0254-0584(86)90045-3 215:OER under acidic conditions. 185: 97:2 half reactions (at pH = 0) 7: 986:(1). Elsevier BV: 189–194. 262: 242:first-row transition metal 51:(generation of dihydrogen) 10: 1202: 560:10.1016/j.pecs.2009.11.002 951:(2). Elsevier BV: A1–A5. 548:Prog. Energy Combust. Sci 38:(generation of dioxygen) 705:(28). Wiley: 7224–7227. 272:exchange current density 239:transition metal oxides 206:exchange current density 1103:(5). Wiley: 1075–1083. 429:10.3390/coatings8070246 381:10.1126/science.1200165 252:Metal-Organic Framework 1109:10.1002/cctc.201701790 793:10.1002/cctc.201000126 711:10.1002/anie.201301327 224: 216: 787:(7). Wiley: 724–761. 321:on inert substrates. 222: 214: 114:E° = -1.23 V vs. NHE 313:supported films. RuO 167:ΔG°cell = −nFE°cell 128:E° = 0.00 V vs. NHE 1181:Hydrogen production 1061:Electrochimica Acta 914:1979Natur.282..281B 836:1987JElS..134..113B 742:Energy Environ. Sci 676:10.1021/j100238a048 575:J. Electrochem. Soc 515:1986JElS..133.1621B 503:J. Electrochem. Soc 478:10.1021/la00091a044 373:2011Sci...332..805B 1186:Chemical reactions 1153:10.1039/c7qi00681k 1030:10.1007/bf00617671 754:10.1039/c3ee43040e 641:10.1007/BF02070609 319:ruthenium chloride 236:platinum surfaces 228:Catalyst Materials 225: 217: 195:turnover-limiting 867:Electrochim. Acta 844:10.1149/1.2100385 602:Mater. Chem. Phys 587:10.1149/1.2129773 523:10.1149/1.2108978 446:. Nsl.caltech.edu 180:transition states 176:activation energy 162:Gibbs free energy 1193: 1165: 1164: 1135: 1129: 1128: 1091: 1085: 1084: 1056: 1050: 1049: 1013: 1004: 1003: 975: 969: 968: 940: 934: 933: 922:10.1038/282281a0 897: 891: 890: 862: 856: 855: 819: 813: 812: 772: 766: 765: 737: 731: 730: 694: 688: 687: 659: 653: 652: 624: 618: 617: 597: 591: 590: 570: 564: 563: 543: 537: 536: 534: 495: 482: 481: 461: 455: 454: 452: 451: 440: 434: 433: 431: 407: 401: 400: 351: 331:spinel compounds 325:Spinel materials 172:Faraday constant 149: 134: 127: 120: 113: 102: 68: 47: 34: 1201: 1200: 1196: 1195: 1194: 1192: 1191: 1190: 1171: 1170: 1169: 1168: 1136: 1132: 1092: 1088: 1057: 1053: 1014: 1007: 976: 972: 941: 937: 898: 894: 863: 859: 820: 816: 777:Strasser, Peter 773: 769: 738: 734: 695: 691: 660: 656: 625: 621: 598: 594: 571: 567: 544: 540: 496: 485: 462: 458: 449: 447: 442: 441: 437: 408: 404: 367:(6031): 805–9. 352: 348: 343: 327: 316: 308: 303:Ruthenium oxide 300: 298:Ruthenium oxide 289: 281: 265: 230: 197:electrochemical 188: 157:Nernst equation 154: 151: 147: 146: 142: 138: 132: 125: 124: 118: 111: 110: 107:O → 4H + 4e + O 106: 100: 98: 92: 69:Total Reaction 66: 65: 61: 57: 45: 44: 32: 30: 26: 18:water splitting 12: 11: 5: 1199: 1189: 1188: 1183: 1167: 1166: 1130: 1086: 1051: 1005: 970: 935: 892: 857: 814: 767: 732: 689: 654: 619: 592: 565: 538: 483: 456: 435: 402: 345: 344: 342: 339: 326: 323: 314: 306: 299: 296: 287: 280: 277: 264: 261: 256: 255: 240: 237: 229: 226: 202:Tafel equation 187: 184: 144: 140: 136: 122: 108: 104: 91: 90:Thermodynamics 88: 83:electrowinning 79:photosynthesis 75:photosystem II 63: 59: 55: 42: 28: 24: 9: 6: 4: 3: 2: 1198: 1187: 1184: 1182: 1179: 1178: 1176: 1162: 1158: 1154: 1150: 1146: 1142: 1134: 1126: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1090: 1082: 1078: 1074: 1070: 1066: 1062: 1055: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1012: 1010: 1001: 997: 993: 989: 985: 981: 974: 966: 962: 958: 954: 950: 946: 939: 931: 927: 923: 919: 915: 911: 908:(5736): 281. 907: 903: 896: 888: 884: 880: 876: 872: 868: 861: 853: 849: 845: 841: 837: 833: 829: 825: 818: 810: 806: 802: 798: 794: 790: 786: 782: 778: 771: 763: 759: 755: 751: 747: 743: 736: 728: 724: 720: 716: 712: 708: 704: 700: 693: 685: 681: 677: 673: 669: 665: 658: 650: 646: 642: 638: 634: 630: 623: 615: 611: 607: 603: 596: 588: 584: 580: 576: 569: 561: 557: 553: 549: 542: 533: 528: 524: 520: 516: 512: 508: 504: 500: 494: 492: 490: 488: 479: 475: 471: 467: 460: 445: 439: 430: 425: 421: 417: 413: 406: 398: 394: 390: 386: 382: 378: 374: 370: 366: 362: 358: 350: 346: 338: 336: 332: 322: 320: 312: 304: 295: 293: 285: 284:Iridium oxide 279:Iridium oxide 276: 273: 269: 260: 253: 249: 245: 241: 238: 235: 234: 233: 221: 213: 209: 207: 203: 198: 193: 183: 181: 177: 173: 168: 165: 163: 158: 152: 129: 115: 95: 87: 84: 80: 76: 70: 52: 50: 39: 37: 21: 19: 1144: 1140: 1133: 1100: 1096: 1089: 1064: 1060: 1054: 1021: 1017: 983: 979: 973: 948: 944: 938: 905: 901: 895: 870: 866: 860: 827: 823: 817: 784: 780: 770: 745: 741: 735: 702: 698: 692: 667: 663: 657: 632: 628: 622: 605: 601: 595: 578: 574: 568: 551: 547: 541: 506: 502: 469: 465: 459: 448:. Retrieved 438: 419: 415: 405: 364: 360: 349: 328: 301: 282: 266: 257: 231: 189: 169: 166: 153: 130: 121:4H + 4e → 2H 116: 96: 93: 71: 53: 41:4H + 4e → 2H 40: 22: 15: 1097:ChemCatChem 781:ChemCatChem 509:(8): 1621. 499:Birss, V.I. 250:. Recently 248:perovskites 1175:Categories 635:(3): 195. 608:(5): 397. 581:(4): 874. 554:(3): 307. 532:1880/44753 472:(1): 268. 450:2012-08-05 422:(7): 246. 341:References 31:+ 4H + 4e 1161:2052-1553 1125:104164617 1117:1867-3880 1081:0013-4686 1038:0021-891X 1000:0022-0728 965:0022-0728 887:103333449 852:0013-4651 801:1867-3880 762:1754-5692 719:1433-7851 684:0022-3654 186:Mechanism 164:(ΔG) by: 117:Reduction 99:Oxidation 49:Reduction 36:Oxidation 1046:92764049 809:35384870 727:23729244 649:97265373 466:Langmuir 416:Coatings 397:22798697 389:21566184 311:Titanium 268:Platinum 263:Platinum 192:alkaline 930:4264659 910:Bibcode 873:: 324. 832:Bibcode 511:Bibcode 369:Bibcode 361:Science 244:spinels 131:Overall 1159:  1123:  1115:  1079:  1044:  1036:  998:  963:  928:  902:Nature 885:  850:  807:  799:  760:  725:  717:  682:  647:  395:  387:  335:coated 148:  139:O → 2H 133:  126:  119:  112:  101:  67:  58:O → 2H 46:  33:  1121:S2CID 1042:S2CID 926:S2CID 883:S2CID 805:S2CID 645:S2CID 393:S2CID 259:OER. 27:O → O 1157:ISSN 1113:ISSN 1077:ISSN 1034:ISSN 996:ISSN 961:ISSN 848:ISSN 797:ISSN 758:ISSN 723:PMID 715:ISSN 680:ISSN 385:PMID 329:The 305:(RuO 286:(IrO 246:and 1149:doi 1105:doi 1069:doi 1026:doi 988:doi 984:210 953:doi 918:doi 906:282 875:doi 871:278 840:doi 828:134 789:doi 750:doi 707:doi 672:doi 637:doi 610:doi 583:doi 579:127 556:doi 527:hdl 519:doi 507:133 474:doi 424:doi 377:doi 365:332 143:+ O 62:+ O 1177:: 1155:. 1143:. 1119:. 1111:. 1101:10 1099:. 1075:. 1065:45 1063:. 1040:. 1032:. 1020:. 1008:^ 994:. 982:. 959:. 949:29 947:. 924:. 916:. 904:. 881:. 869:. 846:. 838:. 826:. 803:. 795:. 783:. 756:. 744:. 721:. 713:. 703:52 701:. 678:. 668:87 666:. 643:. 633:21 631:. 606:14 604:. 577:. 552:36 550:. 525:. 517:. 505:. 486:^ 468:. 418:. 414:. 391:. 383:. 375:. 363:. 359:. 135:2H 103:2H 54:2H 23:2H 20:: 1163:. 1151:: 1145:5 1127:. 1107:: 1083:. 1071:: 1048:. 1028:: 1022:8 1002:. 990:: 967:. 955:: 932:. 920:: 912:: 889:. 877:: 854:. 842:: 834:: 811:. 791:: 785:2 764:. 752:: 746:7 729:. 709:: 686:. 674:: 651:. 639:: 616:. 612:: 589:. 585:: 562:. 558:: 535:. 529:: 521:: 513:: 480:. 476:: 470:6 453:. 432:. 426:: 420:8 399:. 379:: 371:: 315:2 307:2 288:2 145:2 141:2 137:2 123:2 109:2 105:2 64:2 60:2 56:2 43:2 29:2 25:2

Index

water splitting
Oxidation
Reduction
photosystem II
photosynthesis
electrowinning
Nernst equation
Gibbs free energy
Faraday constant
activation energy
transition states
alkaline
electrochemical
Tafel equation
exchange current density


spinels
perovskites
Metal-Organic Framework
Platinum
exchange current density
Iridium oxide
polymer electrolyte membrane electrolysis
Ruthenium oxide
Titanium
ruthenium chloride
spinel compounds
coated
"Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.