Knowledge

Exchange current density

Source đź“ť

55:. This ongoing current in both directions is called the exchange current density. When the potential is set more negative than the formal potential, the cathodic current is greater than the anodic current. Written as a reduction, cathodic current is positive. The net current density is the difference between the cathodic and anodic current density. 46:
The exchange current density is the current in the absence of net electrolysis and at zero overpotential. The exchange current can be thought of as a background current to which the net current observed at various overpotentials is normalized. For a redox reaction written as a reduction at the
96:
Less important but still relevant are the environment of the solution including the solvent, nature of other electrolytes, and temperature. For the concentration dependence of the exchange current density, the following expression is given for a one-electron reaction:
78:
electrodes for reduction of protons differ by a factor of 10, indicative of the excellent catalytic properties of platinum. Owing to this difference, mercury is the preferred electrode material at reducing (cathodic) potentials in aqueous solution.
92:
oxides and adsorbed species on the surface, also influence the electron transfer. The nature of the electroactive species (the analyte) in the solution also critically affects the exchange current densities, both the reduced and oxidized form.
87:
The exchange current density depends critically on the nature of the electrode, not only its structure, but also physical parameters such as surface roughness. Of course, factors that change the composition of the electrode, including
195: 269: 234: 291: 342: 313: 70:. Such rates provide insights into the structure and bonding in the analyte and the electrode. For example, the exchange current densities for 565: 103: 561: 541: 47:
equilibrium potential, electron transfer processes continue at electrode/solution interface in both directions. The
32: 594: 39:
expressions. The Tafel equation describes the dependence of current for an electrolytic process to
36: 89: 241: 206: 276: 320: 8: 355:
Comparison of exchange current density for proton reduction reaction in 1 mol/kg H
298: 557: 537: 506: 75: 59: 20: 579: 52: 48: 28: 588: 40: 486: 386: 67: 466: 446: 396: 71: 476: 456: 416: 406: 63: 190:{\displaystyle j_{0}=Fk_{0}(C_{oxy}^{1-\beta }C_{red}^{\beta })} 82: 426: 496: 436: 58:
Exchange current densities reflect intrinsic rates of
323: 301: 279: 244: 209: 106: 552:Carl H. Hamann, Andrew Hamnett, Wolf Vielstich, 336: 307: 285: 263: 228: 189: 586: 532:D. T. Sawyer, A. Sobkowiak, and J. L. Roberts, 83:Parameters affecting exchange current density 236:: the concentration of the oxidized species 271:: the concentration of the reduced species 528: 526: 587: 523: 556:, 2nd edition: 2, Wiley-VCH, 2007, 13: 14: 606: 348: 546: 184: 133: 1: 534:Electrochemistry for Chemists 517: 7: 573: 510: 500: 490: 480: 470: 460: 450: 440: 430: 420: 410: 400: 390: 27:is a parameter used in the 10: 611: 564:, 9783527310692, page 169 536:, John Wiley, NY, 1995. 344:: reaction rate constant 37:electrochemical kinetics 25:exchange current density 264:{\displaystyle C_{red}} 229:{\displaystyle C_{oxy}} 566:(text at Google books) 338: 309: 287: 286:{\displaystyle \beta } 265: 230: 191: 33:Butler–Volmer equation 339: 337:{\displaystyle k_{0}} 310: 288: 266: 231: 192: 321: 299: 277: 242: 207: 104: 364: 293:: a symmetry factor 183: 162: 51:is balanced by the 368:Electrode material 353: 334: 315:: Faraday constant 305: 283: 261: 226: 187: 163: 136: 515: 514: 308:{\displaystyle F} 60:electron transfer 602: 595:Electrochemistry 568: 554:Electrochemistry 550: 544: 530: 365: 352: 343: 341: 340: 335: 333: 332: 314: 312: 311: 306: 292: 290: 289: 284: 270: 268: 267: 262: 260: 259: 235: 233: 232: 227: 225: 224: 196: 194: 193: 188: 182: 177: 161: 150: 132: 131: 116: 115: 49:cathodic current 21:electrochemistry 610: 609: 605: 604: 603: 601: 600: 599: 585: 584: 580:Partial current 576: 571: 551: 547: 531: 524: 520: 380: 376: 374: 372: 362: 358: 351: 328: 324: 322: 319: 318: 300: 297: 296: 278: 275: 274: 249: 245: 243: 240: 239: 214: 210: 208: 205: 204: 178: 167: 151: 140: 127: 123: 111: 107: 105: 102: 101: 85: 17: 12: 11: 5: 608: 598: 597: 583: 582: 575: 572: 570: 569: 545: 521: 519: 516: 513: 512: 509: 503: 502: 499: 493: 492: 489: 483: 482: 479: 473: 472: 469: 463: 462: 459: 453: 452: 449: 443: 442: 439: 433: 432: 429: 423: 422: 419: 413: 412: 409: 403: 402: 399: 393: 392: 389: 383: 382: 378: 369: 360: 356: 350: 349:Example values 347: 346: 345: 331: 327: 316: 304: 294: 282: 272: 258: 255: 252: 248: 237: 223: 220: 217: 213: 198: 197: 186: 181: 176: 173: 170: 166: 160: 157: 154: 149: 146: 143: 139: 135: 130: 126: 122: 119: 114: 110: 84: 81: 53:anodic current 29:Tafel equation 15: 9: 6: 4: 3: 2: 607: 596: 593: 592: 590: 581: 578: 577: 567: 563: 562:3-527-31069-X 559: 555: 549: 543: 542:0-471-59468-7 539: 535: 529: 527: 522: 508: 505: 504: 498: 495: 494: 488: 485: 484: 478: 475: 474: 468: 465: 464: 458: 455: 454: 448: 445: 444: 438: 435: 434: 428: 425: 424: 418: 415: 414: 408: 405: 404: 398: 395: 394: 388: 385: 384: 370: 367: 366: 363: 329: 325: 317: 302: 295: 280: 273: 256: 253: 250: 246: 238: 221: 218: 215: 211: 203: 202: 201: 179: 174: 171: 168: 164: 158: 155: 152: 147: 144: 141: 137: 128: 124: 120: 117: 112: 108: 100: 99: 98: 94: 91: 80: 77: 73: 69: 65: 61: 56: 54: 50: 44: 42: 41:overpotential 38: 34: 30: 26: 22: 553: 548: 533: 354: 199: 95: 86: 57: 45: 24: 18: 90:passivating 62:between an 16:A parameter 518:References 35:and other 487:Manganese 387:Palladium 281:β 180:β 159:β 156:− 68:electrode 589:Category 574:See also 467:Titanium 447:Tungsten 397:Platinum 371:Exchange 72:platinum 66:and the 507:Mercury 477:Cadmium 457:Niobium 417:Iridium 407:Rhodium 381:(A/cm) 375:density 373:current 200:where: 76:mercury 64:analyte 560:  540:  427:Nickel 511:12.3 501:12.0 491:10.9 481:10.8 558:ISBN 538:ISBN 497:Lead 471:8.2 461:6.8 451:5.9 441:5.4 437:Gold 431:5.2 421:3.7 411:3.6 401:3.1 391:3.0 377:-log 74:and 19:In 591:: 525:^ 379:10 359:SO 43:. 31:, 23:, 361:4 357:2 330:0 326:k 303:F 257:d 254:e 251:r 247:C 222:y 219:x 216:o 212:C 185:) 175:d 172:e 169:r 165:C 153:1 148:y 145:x 142:o 138:C 134:( 129:0 125:k 121:F 118:= 113:0 109:j

Index

electrochemistry
Tafel equation
Butler–Volmer equation
electrochemical kinetics
overpotential
cathodic current
anodic current
electron transfer
analyte
electrode
platinum
mercury
passivating
Palladium
Platinum
Rhodium
Iridium
Nickel
Gold
Tungsten
Niobium
Titanium
Cadmium
Manganese
Lead
Mercury


ISBN
0-471-59468-7

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑