Knowledge

Tafel equation

Source đź“ť

20: 1986: 382:" assumes that the concentrations at the electrode are practically equal to the concentrations in the bulk electrolyte, allowing the current to be expressed as a function of potential only. In other words, it assumes that the electrode mass transfer rate is much greater than the reaction rate, and that the reaction is dominated by the slower chemical reaction rate ". 780:
The following derivation of the extended Butler–Volmer equation is adapted from that of Bard and Faulkner and Newman and Thomas-Alyea. the current is expressed as a function not only of potential (as in the simple version), but of the given concentrations as well. The mass-transfer rate may be
394:
The exchange current is the current at equilibrium, i.e. the rate at which oxidized and reduced species transfer electrons with the electrode. In other words, the exchange current density is the rate of reaction at the reversible potential (when the overpotential is zero by definition). At the
1695:
to an electrode causes the reaction to move in one direction, away from equilibrium. Tafel's law determines the new rate, and as long as the reaction kinetics are under control, the overpotential is proportional to the log of the corrosion current.
529: 1128: 1040: 198: 1282: 1399: 863: 1207: 1478: 444: 1659: 598: 111: 59:
It describes how the electrical current through an electrode depends on the voltage difference between the electrode and the bulk electrolyte for a simple, unimolecular redox reaction.
1597: 781:
relatively small, but its only effect on the chemical reaction is through the altered (given) concentrations. In effect, the concentrations are a function of the potential as well.
735: 456: 1326: 398:
The Tafel slope is measured experimentally. It can, however, be shown theoretically that when the dominant reaction mechanism involves the transfer of a single electron that
1044: 376: 626: 395:
reversible potential, the reaction is in equilibrium meaning that the forward and reverse reactions progress at the same rates. This rate is the exchange current density.
1520: 951: 761: 325: 240: 975: 678: 652: 292: 266: 1211: 1331: 793: 1133: 51:. The Tafel equation was first deduced experimentally and was later shown to have a theoretical justification. The equation is named after Swiss chemist 1816: 133: 386:
Also, at a given electrode the Tafel equation assumes that the reverse half reaction rate is negligible compared to the forward reaction rate.
1775: 401: 1404: 1817:"Tafel Slope for Cathodic Reaction from Tafel Equation Calculator | Calculate Tafel Slope for Cathodic Reaction from Tafel Equation" 1776:"Tafel Slope for Anodic Reaction from Tafel Equation Calculator | Calculate Tafel Slope for Anodic Reaction from Tafel Equation" 336: 269: 125:, the Tafel equation is applied to each electrode separately. On a single electrode the Tafel equation can be stated as: 2011: 1744:
Bard, A. J.; Faulkner, L. R. “Electrochemical Methods. Fundamentals and Applications” 2nd Ed. Wiley, New York. 2001.
1749: 1725: 1605: 1913: 1857: 553: 65: 1899: 1990: 1685: 1956:
Burstein, G.T. (2005). "A century of Tafel's equation: 1905–2005 a commemorative issue of corrosion science".
1539: 689: 2016: 954: 764: 2006: 1710: 921:
the plus sign under the exponent refers to an anodic reaction, and a minus sign to a cathodic reaction,
220:
the plus sign under the exponent refers to an anodic reaction, and a minus sign to a cathodic reaction,
1293: 335:
A verification plus further explanation for this equation can be found here. The Tafel equation is an
342: 1840: 328: 40: 604: 1927: 1483: 1599:. In such case, the dependence of current on polarization is usually linear (not logarithmic): 928: 899: 936: 746: 524:{\displaystyle A={\frac {\lambda k_{\text{B}}T}{e\alpha }}={\frac {\lambda V_{T}}{\alpha }}} 1871: 1802: 655: 303: 225: 8: 1885: 1123:{\displaystyle \eta =\pm A\cdot {\frac {\ln \left({\frac {i}{i_{0}}}\right)}{\ln(10)}},} 663: 637: 629: 277: 251: 1745: 681: 1965: 1720: 909: 44: 1969: 1715: 889: 738: 295: 16:
Equation relating the rate of an electrochemical reaction to the overpotential
2000: 1705: 1692: 771: 243: 118: 48: 1684:
develops is determined by the kinetics of the reactions involved, hence the
1669: 52: 1035:{\displaystyle \eta =\pm A\cdot \log _{10}\left({\frac {i}{i_{0}}}\right)} 193:{\displaystyle \eta =\pm A\cdot \log _{10}\left({\frac {i}{i_{0}}}\right)} 1277:{\displaystyle i=i_{0}\exp \left(\pm \alpha e{\frac {\eta }{kT}}\right),} 1761: 1394:{\displaystyle i=i_{0}\exp \left(\pm \alpha F{\frac {\eta }{RT}}\right)} 918:
is the reactive species concentration at the electrode surface in mol/m,
858:{\displaystyle i=nkFC\exp \left(\pm \alpha F{\frac {\eta }{RT}}\right)} 19: 1202:{\displaystyle i=i_{0}\exp \left(\pm {\frac {\ln(10)\eta }{A}}\right)} 1886:"Connection between the Avogadro constant and the Boltzmann constant" 1681: 122: 28: 1900:"Link between the Avogadro constant Na and the Faraday constant F" 1473:{\displaystyle {\frac {e}{k}}={\frac {e/Na}{k/Na}}={\frac {F}{R}}} 1531: 1985: 1536:
An other equation is applicable at low values of polarization
24: 772:
Equation in case of non-negligible electrode mass transfer
1914:"Expression in terms of the standard rate constant k=k0" 439:{\displaystyle {\frac {\lambda k_{\text{B}}T}{e}}<A} 1608: 1542: 1486: 1407: 1334: 1296: 1214: 1136: 1047: 978: 939: 796: 749: 692: 666: 640: 607: 556: 459: 404: 345: 306: 280: 254: 228: 136: 68: 1872:"Derivation of the extended Butler–Volmer equation" 1653: 1591: 1514: 1472: 1393: 1320: 1276: 1201: 1122: 1034: 945: 888:is the number of electrons exchanged, like in the 857: 755: 729: 672: 646: 620: 592: 523: 438: 370: 319: 286: 260: 234: 192: 105: 1998: 117:Where an electrochemical reaction occurs in two 1654:{\displaystyle i=i_{0}{\frac {nF}{RT}}\Delta E} 1532:Equation in case of low values of polarization 593:{\displaystyle \lambda =\ln(10)=2.302\ 585...} 957:, the value of which must be between 0 and 1. 767:, the value of which must be between 0 and 1. 106:{\displaystyle Ox+ne^{-}\leftrightarrows Red} 1928:"Kinetics of Corrosion - the Tafel Equation" 785:The Tafel equation can be also written as: 1803:"Limiting cases of Butler–Volmer equation" 1955: 1675: 1592:{\displaystyle |vert\eta |vert\simeq 0V} 389: 18: 1999: 730:{\displaystyle V_{T}=k_{\text{B}}T/e} 1852: 1850: 1797: 1795: 787: 450: 127: 1480:due to the electrode mass transfer 13: 1948: 1645: 337:approximation of the Butler–Volmer 14: 2028: 1978: 1847: 1792: 1522:, which finally yields equation ( 1984: 1841:"Verification of Tafel Equation" 1668:due to its formal similarity to 1321:{\displaystyle \lambda =\ln(10)} 961: 902:for the electrode reaction in s, 1920: 1906: 1892: 371:{\displaystyle |\eta |>0.1V} 1878: 1864: 1833: 1809: 1768: 1754: 1738: 1726:Faraday's laws of electrolysis 1564: 1544: 1315: 1309: 1182: 1176: 1111: 1105: 575: 569: 355: 347: 91: 1: 1731: 1664:This linear region is called 1970:10.1016/j.corsci.2005.07.002 621:{\displaystyle k_{\text{B}}} 7: 1699: 1524: 1286: 968: 955:charge transfer coefficient 871: 765:charge transfer coefficient 537: 206: 10: 2033: 1515:{\displaystyle i_{0}=nkFC} 2012:Electrochemical equations 776:In a more general case, 339:equation in the case of 329:exchange current density 43:relating the rate of an 41:electrochemical kinetics 1686:electrical double layer 1666:polarization resistance 946:{\displaystyle \alpha } 756:{\displaystyle \alpha } 1821:www.calculatoratoz.com 1780:www.calculatoratoz.com 1711:Butler–Volmer equation 1655: 1593: 1516: 1474: 1395: 1322: 1278: 1203: 1124: 1036: 947: 929:universal gas constant 859: 783: 757: 731: 674: 648: 622: 594: 525: 448:where A is defined as 440: 384: 372: 321: 288: 262: 236: 194: 115: 107: 32: 1676:Kinetics of corrosion 1656: 1594: 1517: 1475: 1396: 1323: 1284:as seen in equation ( 1279: 1204: 1125: 1037: 966:As seen in equation ( 948: 860: 778: 758: 732: 675: 649: 623: 595: 526: 441: 390:Overview of the terms 380: 373: 322: 320:{\displaystyle i_{0}} 289: 263: 237: 235:{\displaystyle \eta } 195: 108: 57: 22: 1993:at Wikimedia Commons 1606: 1540: 1484: 1405: 1332: 1294: 1212: 1134: 1045: 976: 937: 794: 747: 690: 664: 656:absolute temperature 638: 605: 554: 457: 402: 343: 304: 278: 252: 226: 134: 66: 2017:Physical chemistry 1932:www.doitpoms.ac.uk 1680:The pace at which 1651: 1589: 1512: 1470: 1391: 1318: 1274: 1199: 1120: 1032: 943: 855: 753: 727: 670: 644: 630:Boltzmann constant 618: 590: 521: 436: 368: 317: 284: 258: 232: 190: 103: 39:is an equation in 33: 23:Tafel plot for an 2007:Chemical kinetics 1989:Media related to 1964:(12): 2858–2870. 1958:Corrosion Science 1643: 1468: 1455: 1416: 1384: 1264: 1192: 1115: 1091: 1026: 879: 878: 848: 713: 682:elementary charge 673:{\displaystyle e} 647:{\displaystyle T} 615: 586: 545: 544: 519: 494: 479: 428: 418: 287:{\displaystyle i} 261:{\displaystyle A} 214: 213: 184: 2024: 1988: 1973: 1942: 1941: 1939: 1938: 1924: 1918: 1917: 1910: 1904: 1903: 1896: 1890: 1889: 1882: 1876: 1875: 1868: 1862: 1861: 1854: 1845: 1844: 1837: 1831: 1830: 1828: 1827: 1813: 1807: 1806: 1799: 1790: 1789: 1787: 1786: 1772: 1766: 1765: 1758: 1752: 1742: 1721:Faradaic current 1660: 1658: 1657: 1652: 1644: 1642: 1634: 1626: 1624: 1623: 1598: 1596: 1595: 1590: 1567: 1547: 1521: 1519: 1518: 1513: 1496: 1495: 1479: 1477: 1476: 1471: 1469: 1461: 1456: 1454: 1447: 1438: 1431: 1422: 1417: 1409: 1400: 1398: 1397: 1392: 1390: 1386: 1385: 1383: 1372: 1350: 1349: 1327: 1325: 1324: 1319: 1283: 1281: 1280: 1275: 1270: 1266: 1265: 1263: 1252: 1230: 1229: 1208: 1206: 1205: 1200: 1198: 1194: 1193: 1188: 1168: 1152: 1151: 1129: 1127: 1126: 1121: 1116: 1114: 1097: 1096: 1092: 1090: 1089: 1077: 1064: 1041: 1039: 1038: 1033: 1031: 1027: 1025: 1024: 1012: 1003: 1002: 952: 950: 949: 944: 910:Faraday constant 873: 864: 862: 861: 856: 854: 850: 849: 847: 836: 788: 762: 760: 759: 754: 736: 734: 733: 728: 723: 715: 714: 711: 702: 701: 680:is the electric 679: 677: 676: 671: 653: 651: 650: 645: 627: 625: 624: 619: 617: 616: 613: 599: 597: 596: 591: 584: 539: 530: 528: 527: 522: 520: 515: 514: 513: 500: 495: 493: 485: 481: 480: 477: 467: 451: 445: 443: 442: 437: 429: 424: 420: 419: 416: 406: 377: 375: 374: 369: 358: 350: 326: 324: 323: 318: 316: 315: 293: 291: 290: 285: 267: 265: 264: 259: 241: 239: 238: 233: 208: 199: 197: 196: 191: 189: 185: 183: 182: 170: 161: 160: 128: 112: 110: 109: 104: 90: 89: 47:reaction to the 2032: 2031: 2027: 2026: 2025: 2023: 2022: 2021: 1997: 1996: 1981: 1976: 1951: 1949:Further reading 1946: 1945: 1936: 1934: 1926: 1925: 1921: 1912: 1911: 1907: 1898: 1897: 1893: 1884: 1883: 1879: 1870: 1869: 1865: 1858:"Applicability" 1856: 1855: 1848: 1839: 1838: 1834: 1825: 1823: 1815: 1814: 1810: 1801: 1800: 1793: 1784: 1782: 1774: 1773: 1769: 1762:"Applicability" 1760: 1759: 1755: 1743: 1739: 1734: 1716:Electrocatalyst 1702: 1678: 1635: 1627: 1625: 1619: 1615: 1607: 1604: 1603: 1563: 1543: 1541: 1538: 1537: 1534: 1491: 1487: 1485: 1482: 1481: 1460: 1443: 1439: 1427: 1423: 1421: 1408: 1406: 1403: 1402: 1376: 1371: 1361: 1357: 1345: 1341: 1333: 1330: 1329: 1295: 1292: 1291: 1256: 1251: 1241: 1237: 1225: 1221: 1213: 1210: 1209: 1169: 1167: 1163: 1159: 1147: 1143: 1135: 1132: 1131: 1098: 1085: 1081: 1076: 1072: 1065: 1063: 1046: 1043: 1042: 1020: 1016: 1011: 1007: 998: 994: 977: 974: 973: 964: 938: 935: 934: 890:Nernst equation 840: 835: 825: 821: 795: 792: 791: 774: 748: 745: 744: 739:thermal voltage 719: 710: 706: 697: 693: 691: 688: 687: 684:of an electron, 665: 662: 661: 639: 636: 635: 612: 608: 606: 603: 602: 555: 552: 551: 509: 505: 501: 499: 486: 476: 472: 468: 466: 458: 455: 454: 415: 411: 407: 405: 403: 400: 399: 392: 354: 346: 344: 341: 340: 311: 307: 305: 302: 301: 296:current density 279: 276: 275: 253: 250: 249: 227: 224: 223: 178: 174: 169: 165: 156: 152: 135: 132: 131: 85: 81: 67: 64: 63: 45:electrochemical 17: 12: 11: 5: 2030: 2020: 2019: 2014: 2009: 1995: 1994: 1991:Tafel equation 1980: 1979:External links 1977: 1975: 1974: 1952: 1950: 1947: 1944: 1943: 1919: 1905: 1891: 1877: 1863: 1846: 1832: 1808: 1791: 1767: 1753: 1736: 1735: 1733: 1730: 1729: 1728: 1723: 1718: 1713: 1708: 1701: 1698: 1688:is critical. 1677: 1674: 1662: 1661: 1650: 1647: 1641: 1638: 1633: 1630: 1622: 1618: 1614: 1611: 1588: 1585: 1582: 1579: 1576: 1573: 1570: 1566: 1562: 1559: 1556: 1553: 1550: 1546: 1533: 1530: 1511: 1508: 1505: 1502: 1499: 1494: 1490: 1467: 1464: 1459: 1453: 1450: 1446: 1442: 1437: 1434: 1430: 1426: 1420: 1415: 1412: 1389: 1382: 1379: 1375: 1370: 1367: 1364: 1360: 1356: 1353: 1348: 1344: 1340: 1337: 1317: 1314: 1311: 1308: 1305: 1302: 1299: 1290:) and because 1273: 1269: 1262: 1259: 1255: 1250: 1247: 1244: 1240: 1236: 1233: 1228: 1224: 1220: 1217: 1197: 1191: 1187: 1184: 1181: 1178: 1175: 1172: 1166: 1162: 1158: 1155: 1150: 1146: 1142: 1139: 1119: 1113: 1110: 1107: 1104: 1101: 1095: 1088: 1084: 1080: 1075: 1071: 1068: 1062: 1059: 1056: 1053: 1050: 1030: 1023: 1019: 1015: 1010: 1006: 1001: 997: 993: 990: 987: 984: 981: 963: 960: 959: 958: 942: 932: 922: 919: 913: 903: 893: 877: 876: 867: 865: 853: 846: 843: 839: 834: 831: 828: 824: 820: 817: 814: 811: 808: 805: 802: 799: 773: 770: 769: 768: 752: 742: 726: 722: 718: 709: 705: 700: 696: 685: 669: 659: 643: 633: 611: 600: 589: 583: 580: 577: 574: 571: 568: 565: 562: 559: 543: 542: 533: 531: 518: 512: 508: 504: 498: 492: 489: 484: 475: 471: 465: 462: 435: 432: 427: 423: 414: 410: 391: 388: 367: 364: 361: 357: 353: 349: 333: 332: 314: 310: 299: 283: 273: 257: 247: 231: 221: 212: 211: 202: 200: 188: 181: 177: 173: 168: 164: 159: 155: 151: 148: 145: 142: 139: 119:half reactions 114: 113: 102: 99: 96: 93: 88: 84: 80: 77: 74: 71: 37:Tafel equation 15: 9: 6: 4: 3: 2: 2029: 2018: 2015: 2013: 2010: 2008: 2005: 2004: 2002: 1992: 1987: 1983: 1982: 1971: 1967: 1963: 1959: 1954: 1953: 1933: 1929: 1923: 1915: 1909: 1901: 1895: 1887: 1881: 1873: 1867: 1859: 1853: 1851: 1842: 1836: 1822: 1818: 1812: 1804: 1798: 1796: 1781: 1777: 1771: 1763: 1757: 1751: 1750:0-471-04372-9 1747: 1741: 1737: 1727: 1724: 1722: 1719: 1717: 1714: 1712: 1709: 1707: 1706:Overpotential 1704: 1703: 1697: 1694: 1693:overpotential 1689: 1687: 1683: 1673: 1671: 1667: 1648: 1639: 1636: 1631: 1628: 1620: 1616: 1612: 1609: 1602: 1601: 1600: 1586: 1583: 1580: 1577: 1574: 1571: 1568: 1560: 1557: 1554: 1551: 1548: 1529: 1527: 1526: 1509: 1506: 1503: 1500: 1497: 1492: 1488: 1465: 1462: 1457: 1451: 1448: 1444: 1440: 1435: 1432: 1428: 1424: 1418: 1413: 1410: 1387: 1380: 1377: 1373: 1368: 1365: 1362: 1358: 1354: 1351: 1346: 1342: 1338: 1335: 1312: 1306: 1303: 1300: 1297: 1289: 1288: 1271: 1267: 1260: 1257: 1253: 1248: 1245: 1242: 1238: 1234: 1231: 1226: 1222: 1218: 1215: 1195: 1189: 1185: 1179: 1173: 1170: 1164: 1160: 1156: 1153: 1148: 1144: 1140: 1137: 1117: 1108: 1102: 1099: 1093: 1086: 1082: 1078: 1073: 1069: 1066: 1060: 1057: 1054: 1051: 1048: 1028: 1021: 1017: 1013: 1008: 1004: 999: 995: 991: 988: 985: 982: 979: 971: 970: 962:Demonstration 956: 940: 933: 930: 926: 923: 920: 917: 914: 911: 907: 904: 901: 900:rate constant 897: 894: 891: 887: 884: 883: 882: 875: 868: 866: 851: 844: 841: 837: 832: 829: 826: 822: 818: 815: 812: 809: 806: 803: 800: 797: 790: 789: 786: 782: 777: 766: 750: 743: 740: 724: 720: 716: 707: 703: 698: 694: 686: 683: 667: 660: 657: 641: 634: 631: 609: 601: 587: 581: 578: 572: 566: 563: 560: 557: 550: 549: 548: 541: 534: 532: 516: 510: 506: 502: 496: 490: 487: 482: 473: 469: 463: 460: 453: 452: 449: 446: 433: 430: 425: 421: 412: 408: 396: 387: 383: 379: 365: 362: 359: 351: 338: 330: 312: 308: 300: 297: 281: 274: 271: 255: 248: 245: 244:overpotential 229: 222: 219: 218: 217: 210: 203: 201: 186: 179: 175: 171: 166: 162: 157: 153: 149: 146: 143: 140: 137: 130: 129: 126: 124: 120: 100: 97: 94: 86: 82: 78: 75: 72: 69: 62: 61: 60: 56: 54: 50: 49:overpotential 46: 42: 38: 30: 26: 21: 1961: 1957: 1935:. Retrieved 1931: 1922: 1908: 1894: 1880: 1866: 1835: 1824:. Retrieved 1820: 1811: 1783:. Retrieved 1779: 1770: 1756: 1740: 1691:Applying an 1690: 1679: 1665: 1663: 1535: 1523: 1285: 967: 965: 924: 915: 905: 895: 885: 880: 869: 784: 779: 775: 546: 535: 447: 397: 393: 385: 381: 334: 215: 204: 121:on separate 116: 58: 53:Julius Tafel 36: 34: 270:Tafel slope 2001:Categories 1937:2024-05-28 1826:2024-05-28 1785:2024-05-28 1732:References 123:electrodes 1682:corrosion 1670:Ohm's law 1646:Δ 1581:≃ 1561:η 1374:η 1366:α 1363:± 1355:⁡ 1307:⁡ 1298:λ 1254:η 1246:α 1243:± 1235:⁡ 1186:η 1174:⁡ 1165:± 1157:⁡ 1103:⁡ 1070:⁡ 1061:⋅ 1055:± 1049:η 1005:⁡ 992:⋅ 986:± 980:η 941:α 838:η 830:α 827:± 819:⁡ 751:α 567:⁡ 558:λ 517:α 503:λ 491:α 470:λ 409:λ 352:η 327: : " 230:η 163:⁡ 150:⋅ 144:± 138:η 92:⇆ 87:− 29:oxidation 27:process ( 1700:See also 1401:because 294: : 268: : 242: : 953:is the 927:is the 908:is the 898:is the 763:is the 737:is the 654:is the 628:is the 1748:  881:where 588:585... 585:  547:where 216:where 25:anodic 741:, and 582:2.302 1746:ISBN 1130:so: 431:< 360:> 331:", . 35:The 1966:doi 1528:). 1352:exp 1232:exp 1154:exp 996:log 972:), 816:exp 378:. 363:0.1 272:", 154:log 2003:: 1962:47 1960:. 1930:. 1849:^ 1819:. 1794:^ 1778:. 1672:. 1328:. 1313:10 1304:ln 1180:10 1171:ln 1109:10 1100:ln 1067:ln 1000:10 573:10 564:ln 298:, 246:, 158:10 1972:. 1968:: 1940:. 1916:. 1902:. 1888:. 1874:. 1860:. 1843:. 1829:. 1805:. 1788:. 1764:. 1649:E 1640:T 1637:R 1632:F 1629:n 1621:0 1617:i 1613:= 1610:i 1587:V 1584:0 1578:t 1575:r 1572:e 1569:v 1565:| 1558:t 1555:r 1552:e 1549:v 1545:| 1525:3 1510:C 1507:F 1504:k 1501:n 1498:= 1493:0 1489:i 1466:R 1463:F 1458:= 1452:a 1449:N 1445:/ 1441:k 1436:a 1433:N 1429:/ 1425:e 1419:= 1414:k 1411:e 1388:) 1381:T 1378:R 1369:F 1359:( 1347:0 1343:i 1339:= 1336:i 1316:) 1310:( 1301:= 1287:2 1272:, 1268:) 1261:T 1258:k 1249:e 1239:( 1227:0 1223:i 1219:= 1216:i 1196:) 1190:A 1183:) 1177:( 1161:( 1149:0 1145:i 1141:= 1138:i 1118:, 1112:) 1106:( 1094:) 1087:0 1083:i 1079:i 1074:( 1058:A 1052:= 1029:) 1022:0 1018:i 1014:i 1009:( 989:A 983:= 969:1 931:. 925:R 916:C 912:, 906:F 896:k 892:, 886:n 874:) 872:3 870:( 852:) 845:T 842:R 833:F 823:( 813:C 810:F 807:k 804:n 801:= 798:i 725:e 721:/ 717:T 712:B 708:k 704:= 699:T 695:V 668:e 658:, 642:T 632:, 614:B 610:k 579:= 576:) 570:( 561:= 540:) 538:2 536:( 511:T 507:V 497:= 488:e 483:T 478:B 474:k 464:= 461:A 434:A 426:e 422:T 417:B 413:k 366:V 356:| 348:| 313:0 309:i 282:i 256:A 209:) 207:1 205:( 187:) 180:0 176:i 172:i 167:( 147:A 141:= 101:d 98:e 95:R 83:e 79:n 76:+ 73:x 70:O 55:. 31:)

Index


anodic
oxidation
electrochemical kinetics
electrochemical
overpotential
Julius Tafel
half reactions
electrodes
overpotential
Tafel slope
current density
exchange current density
approximation of the Butler–Volmer
Boltzmann constant
absolute temperature
elementary charge
thermal voltage
charge transfer coefficient
Nernst equation
rate constant
Faraday constant
universal gas constant
charge transfer coefficient
1
2
3
Ohm's law
corrosion
electrical double layer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑