Knowledge

Hardy–Weinberg principle

Source 📝

3077: 607: 38: 2826: 4567: 1756: 95: 1522: 4184:, using the observed genotype frequencies obtained from the data and the expected genotype frequencies obtained using the HWP. For systems where there are large numbers of alleles, this may result in data with many empty possible genotypes and low genotype counts, because there are often not enough individuals present in the sample to adequately represent all genotype classes. If this is the case, then the 9297: 7263: 4897: 2821:{\displaystyle {\begin{aligned}&\left=\\&\qquad =f_{t}({\text{AA}})f_{t}({\text{AA}})\left+2f_{t}({\text{AA}})f_{t}({\text{Aa}})\left+2f_{t}({\text{AA}})f_{t}({\text{aa}})\left\\&\qquad \qquad +f_{t}({\text{Aa}})f_{t}({\text{Aa}})\left+2f_{t}({\text{Aa}})f_{t}({\text{aa}})\left+f_{t}({\text{aa}})f_{t}({\text{aa}})\left\\&\qquad =\left\\&\qquad =\left\end{aligned}}} 4290: 341:, where each organism produces male and female gametes at equal frequency, and has two alleles at each gene locus. We assume that the population is so large that it can be treated as infinite. Organisms reproduce by random union of gametes (the "gene pool" population model). A locus in this population has two alleles, A and a, that occur with initial frequencies 6193: 5129: 1182: 8284: 6852: 4664: 2937:. The HWP states the population will have the given genotypic frequencies (called Hardy–Weinberg proportions) after a single generation of random mating within the population. When the random mating assumption is violated, the population will not have Hardy–Weinberg proportions. A common cause of non-random mating is 5169:, the problem can be viewed as testing for the proper number of heterozygotes. In this way, the hypothesis of Hardy–Weinberg proportions is rejected if the number of heterozygotes is too large or too small. The conditional probabilities for the heterozygote, given the allele frequencies are given in Emigh (1980) as 8758: 4170: 4562:{\displaystyle {\begin{aligned}p&={2\times \mathrm {obs} ({\text{AA}})+\mathrm {obs} ({\text{Aa}}) \over 2\times (\mathrm {obs} ({\text{AA}})+\mathrm {obs} ({\text{Aa}})+\mathrm {obs} ({\text{aa}}))}\\\\&={2\times 1469+138 \over 2\times (1469+138+5)}\\\\&={3076 \over 3224}\\\\&=0.954\end{aligned}}} 8105:. It can be shown that the other two equilibrium conditions imply the same equation. Together, the solutions of the three equilibrium equations imply sufficiency of Hardy's condition for equilibrium. Since the condition always holds for the second generation, all succeeding generations have the same proportions. 6525:
To the Editor of Science: I am reluctant to intrude in a discussion concerning matters of which I have no expert knowledge, and I should have expected the very simple point which I wish to make to have been familiar to biologists. However, some remarks of Mr. Udny Yule, to which Mr. R. C. Punnett has
2970:
will have a very subtle effect on allele frequencies through the introduction of new allele into a population. Mutation rates are of the order 10 to 10, and the change in allele frequency will be, at most, the same order. Recurrent mutation will maintain alleles in the population, even if there is
5624:
Using this table, one must look up the significance level of the test based on the observed number of heterozygotes. For example, if one observed 20 heterozygotes, the significance level for the test is 0.007. As is typical for Fisher's exact test for small samples, the gradation of significance
6548:
Finally, suppose that the numbers are fairly large, so that mating may be regarded as random, that the sexes are evenly distributed among the three varieties, and that all are equally fertile. A little mathematics of the multiplication-table type is enough to show that in the next generation the
3055:
If a population is brought together with males and females with a different allele frequency in each subpopulation (males or females), the allele frequency of the male population in the next generation will follow that of the female population because each son receives its X chromosome from its
8409: 6012: 4911: 5969:
can be rejected then the population is close to Hardy Weinberg equilibrium with a high probability. The equivalence tests for the biallelic case are developed among others in Wellek (2004). The equivalence tests for the case of multiple alleles are proposed in Ostrovski (2020).
8025: 6740:
being homozygous dominant. Alleles are inherited independently from each parent. A dominant allele can be inherited from a homozygous dominant parent with probability 1, or from a heterozygous parent with probability 0.5. To represent this reasoning in an equation, let
1517:{\displaystyle {\begin{aligned}f_{1}({\text{A}})&=f_{1}({\text{AA}})+{\tfrac {1}{2}}f_{1}({\text{Aa}})=p^{2}+pq=p(p+q)=p=f_{0}({\text{A}})\\f_{1}({\text{a}})&=f_{1}({\text{aa}})+{\tfrac {1}{2}}f_{1}({\text{Aa}})=q^{2}+pq=q(p+q)=q=f_{0}({\text{a}})\end{aligned}}} 7636: 7258:{\displaystyle {\begin{aligned}p_{t}&=P(A_{t},A_{t})=P(A_{t})^{2}\\&=\left(P(A_{t}\mid AA_{t-1})P(AA_{t-1})+P(A_{t}\mid Aa_{t-1})P(Aa_{t-1})\right)^{2}\\&=\left((1)p_{t-1}+(0.5)2q_{t-1}\right)^{2}\\&=\left(p_{t-1}+q_{t-1}\right)^{2}\end{aligned}}} 4892:{\displaystyle {\begin{aligned}\mathrm {Exp} ({\text{AA}})&=p^{2}n=0.954^{2}\times 1612=1467.4\\\mathrm {Exp} ({\text{Aa}})&=2pqn=2\times 0.954\times 0.046\times 1612=141.2\\\mathrm {Exp} ({\text{aa}})&=q^{2}n=0.046^{2}\times 1612=3.4\end{aligned}}} 8133: 5351: 9098: 9316:) to represent the distribution of the three genotype frequencies in relation to each other. It differs from many other such plots in that the direction of one of the axes has been reversed. The curved line in the diagram is the Hardy–Weinberg 8548: 3931: 7268:
The same reasoning, applied to the other genotypes yields the two remaining recurrence relations. Equilibrium occurs when each proportion is constant between subsequent generations. More formally, a population is at equilibrium at generation
9251: 1708:
and constructs a Punnett square for each, so as to calculate its contribution to the next generation's genotypes. These contributions are weighted according to the probability of each diploid-diploid combination, which follows a
588: 472: 8118:
An example computation of the genotype distribution given by Hardy's original equations is instructive. The phenotype distribution from Table 3 above will be used to compute Hardy's initial genotype distribution. Note that the
4649: 1000: 8292: 6188:{\displaystyle F={\frac {\operatorname {E} {(f({\text{Aa}}))}-\operatorname {O} (f({\text{Aa}}))}{\operatorname {E} (f({\text{Aa}}))}}=1-{\frac {\operatorname {O} (f({\text{Aa}}))}{\operatorname {E} (f({\text{Aa}}))}},} 8553: 8979:, this is about the frequency of homozygous individuals observed in Northern European populations. We can use the Hardy–Weinberg equations to estimate the carrier frequency, the frequency of heterozygous individuals, 5124:{\displaystyle {\begin{aligned}\chi ^{2}&=\sum {(O-E)^{2} \over E}\\&={(1469-1467.4)^{2} \over 1467.4}+{(138-141.2)^{2} \over 141.2}+{(5-3.4)^{2} \over 3.4}\\&=0.001+0.073+0.756\\&=0.83\end{aligned}}} 5766: 8845: 1118:
These frequencies define the Hardy–Weinberg equilibrium. It should be mentioned that the genotype frequencies after the first generation need not equal the genotype frequencies from the initial generation, e.g.
2974:
Migration genetically links two or more populations together. In general, allele frequencies will become more homogeneous among the populations. Some models for migration inherently include nonrandom mating
9453: 9018: 8297: 321:
allele would automatically tend to increase in frequency (a view possibly based on a misinterpreted question at a lecture). Today, tests for Hardy–Weinberg genotype frequencies are used primarily to test for
7813: 5850: 1100: 866: 5914: 9182: 8138: 3234: 8475: 6255: 2960:
eventually leads to the loss of all alleles except the favored one (unless one allele is dominant, in which case recessive alleles can survive at low frequencies), some forms of selection, such as
8103: 8926: 7818: 7805: 7470: 6857: 4916: 4669: 4583: 4295: 2949:
If a population violates one of the following four assumptions, the population may continue to have Hardy–Weinberg proportions each generation, but the allele frequencies will change over time.
1761: 1187: 7465: 8279:{\displaystyle {\begin{aligned}{\text{sum}}&={\mathrm {obs} ({\text{AA}})+2\times \mathrm {obs} ({\text{Aa}})+\mathrm {obs} ({\text{aa}})}={1469+2\times 138+5}\\&=1750\end{aligned}}} 7459:
By solving these equations necessary and sufficient conditions for equilibrium to occur can be determined. Again, consider the frequency of homozygous dominant animals. Equilibrium implies
6533:
Suppose that Aa is a pair of Mendelian characters, A being dominant, and that in any given generation the number of pure dominants (AA), heterozygotes (Aa), and pure recessives (aa) are as
9169: 8973: 6401: 6307: 5175: 2862:
organisms, either the allele or genotype proportions are initially unequal in either sex, it can be shown that constant proportions are obtained after one generation of random mating. If
3484: 3326: 9283: 9130: 7454: 7400: 7346: 8537: 3923: 3401: 6453: 9013: 7762: 7721: 7680: 5438: 6844: 6806: 5940: 9856:
Wellek, Stefan (September 2004). "Tests for establishing compatibility of an observed genotype distribution with Hardy–Weinberg equilibrium in the case of a biallelic locus".
6768: 8753:{\displaystyle {\begin{aligned}q&={0.15771 \over 2}=0.07886\\\\p_{1}&=(p+q)^{2}=0.84325\\2q_{1}&=2(p+q)(q+r)=0.15007\\r_{1}&=(q+r)^{2}=0.00668.\end{aligned}}} 9005: 5666: 4165:{\displaystyle (p_{1}+\cdots +p_{n})^{c}=\sum _{k_{1},\ldots ,k_{n}\ \in \mathbb {N} :k_{1}+\cdots +k_{n}=c}{c \choose k_{1},\ldots ,k_{n}}p_{1}^{k_{1}}\cdots p_{n}^{k_{n}}} 7289: 6738: 3735: 3589: 3543: 6613:
The interesting question is: in what circumstances will this distribution be the same as that in the generation before? It is easy to see that the condition for this is
1164:. This follows since the genotype frequencies of the next generation depend only on the allele frequencies of the current generation which, as calculated by equations ( 149:
and genotype frequencies in a population will remain constant from generation to generation in the absence of other evolutionary influences. These influences include
3774: 3689: 10416:
Pearson, K. (1903). "Mathematical contributions to the theory of evolution. XI. On the influence of natural selection on the variability and correlation of organs".
1534:
that reproduce by random mating of individuals, it is necessary to calculate the genotype frequencies from the nine possible matings between each parental genotype (
5967: 3807: 3650: 1703: 9177: 8931:
which are the expected values. The reader may demonstrate that subsequent use of the second-generation values for a third generation will yield identical results.
2930:
Violations of the Hardy–Weinberg assumptions can cause deviations from expectation. How this affects the population depends on the assumptions that are violated.
6466:
were rediscovered in 1900. However, it remained somewhat controversial for several years as it was not then known how it could cause continuous characteristics.
6337: 781:
Summing the elements of the Punnett square or the binomial expansion, we obtain the expected genotype proportions among the offspring after a single generation:
5996: 5786: 5686: 3860: 3840: 5644:
The equivalence tests are developed in order to establish sufficiently good agreement of the observed genotype frequencies and Hardy Weinberg equilibrium. Let
1546:) in either sex, weighted by the expected genotype contributions of each such mating. Equivalently, one considers the six unique diploid-diploid combinations: 3814:
Whether the organism is a 'true' tetraploid or an amphidiploid will determine how long it will take for the population to reach Hardy–Weinberg equilibrium.
495: 379: 10711: 4578: 6686:
in 1903 also derived the ratios for the special case of equal allele frequencies, and it is sometimes (but rarely) called the Hardy–Weinberg–Castle Law.
8404:{\displaystyle {\begin{aligned}p&={1469 \over 1750}=0.83943\\2q&={2\times 138 \over 1750}=0.15771\\r&={5 \over 1750}=0.00286\end{aligned}}} 889: 10418: 9651:
Hosking, Louise; Lumsden, Sheena; Lewis, Karen; Yeo, Astrid; McCarthy, Linda; Bansal, Aruna; Riley, John; Purvis, Ian; Xu, Chun-Fang (May 2004).
5668:
denote the family of the genotype distributions under the assumption of Hardy Weinberg equilibrium. The distance between a genotype distribution
371:
of the same generation according to the expected contribution from the homozygote and heterozygote genotypes, which are 1 and 1/2, respectively:
3498:
systems, that is, for organisms that have more than two copies of each chromosome. Consider again only two alleles. The diploid case is the
10668: 5691: 8769: 6342:
The inbreeding coefficient is unstable as the expected value approaches zero, and thus not useful for rare and very common alleles. For:
9376: 8020:{\displaystyle {\begin{aligned}0&=p_{t-1}(p_{t-1}+2q_{t-1}+q_{t-1}^{2}/p_{t-1}-1)\\&=q_{t-1}^{2}/p_{t-1}-r_{t-1}\end{aligned}}} 3080:
Punnett square for three-allele case (left) and four-allele case (right). White areas are homozygotes. Colored areas are heterozygotes.
6520:
in some contempt; his view of biologists' use of mathematics comes across in his 1908 paper where he describes this as "very simple":
643:, where the proportion of each genotype is equal to the product of the row and column allele frequencies from the current generation. 9308:
It is possible to represent the distribution of genotype frequencies for a bi-allelic locus within a population graphically using a
6313:
For two alleles, the chi-squared goodness of fit test for Hardy–Weinberg proportions is equivalent to the test for inbreeding, 
5791: 1023: 789: 5855: 9458: 3118: 10961: 10819: 2844:, and so, are constant in time. Similarly, the genotype frequencies depend only on the allele frequencies, and so, after time 17: 8420: 10716: 6205: 10641: 8033: 8856: 7767: 7631:{\displaystyle {\begin{aligned}0&=p_{t}-p_{t-1}\\&=p_{t-1}^{2}+2p_{t-1}q_{t-1}+q_{t-1}^{2}-p_{t-1}\end{aligned}}} 3009:, mammalian males; avian females) have only one copy of the gene (and are termed hemizygous), while the homogametic sex ( 2896:
sex of the previous generation, until an equilibrium is reached at the weighted average of the two initial frequencies.
4229: 10661: 10186: 6711: 5346:{\displaystyle \operatorname {prob} ={\frac {\binom {n}{n_{11},n_{12},n_{22}}}{\binom {2n}{n_{1},n_{2}}}}2^{n_{12}},} 81: 59: 52: 5161:
can be applied to testing for Hardy–Weinberg proportions. Since the test is conditional on the allele frequencies,
10632: 9139: 8949: 6345: 6267: 10756: 5135: 3416: 3271: 367:, respectively. The allele frequencies at each generation are obtained by pooling together the alleles from each 9328:
and its effect on allele frequency on such graphs. The de Finetti diagram was developed and used extensively by
9259: 9106: 7405: 7351: 7297: 5454: = 0.34. The possible observed heterozygotes and their exact significance level is given in Table 4. 10761: 8486: 6470:(1902) argued against Mendelism because he thought that dominant alleles would increase in the population. The 3869: 3341: 9093:{\displaystyle {\begin{aligned}&q^{2}={\frac {1}{2500}}\\&q={\frac {1}{50}}\\&p=1-q\end{aligned}}} 10992: 10114:
Castle, W. E. (1903). "The laws of Galton and Mendel and some laws governing race improvement by selection".
4902: 4181: 6406: 6005:), is one minus the observed frequency of heterozygotes over that expected from Hardy–Weinberg equilibrium. 5138:(degrees of freedom for test for Hardy–Weinberg proportions are # genotypes − # alleles). The 5% 10982: 10654: 3041: 2993:
In real world genotype data, deviations from Hardy–Weinberg Equilibrium may be a sign of genotyping error.
9288:
This can be simplified to the carrier frequency being about twice the square root of the birth frequency.
7726: 7685: 7644: 5628:
However, a table like this has to be created for every experiment, since the tables are dependent on both
5387: 10987: 10736: 9498: 6811: 6773: 3862:-ploids, the genotype frequencies in the Hardy–Weinberg equilibrium are given by individual terms in the 9365: 8940: 5919: 6744: 10997: 10857: 10731: 10128: 9493: 323: 8982: 5647: 10909: 9370: 4204:
methods of testing for deviations from HWP have been proposed (Guo & Thompson, 1992; Wigginton
4201: 4189: 1710: 317:, who first demonstrated it mathematically. Hardy's paper was focused on debunking the view that a 46: 7272: 6721: 2985:
can cause a random change in allele frequencies. This is due to a sampling effect, and is called
10721: 10026: 6715: 6675: 3700: 3554: 3508: 10706: 6671: 5158: 4237: 4193: 3076: 221: 63: 10286: 9757:"Quantification of the Power of Hardy–Weinberg Equilibrium Testing to Detect Genotyping Error" 9624: 8030:
where the final equality holds because the allele proportions must sum to one. In both cases,
3044:
is an X-linked recessive trait. In western European males, the trait affects about 1 in 12, (
606: 10948: 10842: 10837: 10741: 10610: 10237: 9488: 9478: 9246:{\displaystyle {\begin{aligned}2pq=2\cdot {\frac {1}{50}}\\2pq={\frac {1}{25}}\end{aligned}}} 3746: 3661: 2989:. Sampling effects are most important when the allele is present in a small number of copies. 2982: 2979:, for example). For those models, the Hardy–Weinberg proportions will normally not be valid. 2957: 205: 10240:(June 1992). "Performing the exact test of Hardy–Weinberg proportion for multiple alleles". 6678:
pointed out that it had first been formulated independently in 1908 by the German physician
298:. In the absence of selection, mutation, genetic drift, or other forces, allele frequencies 10794: 10458: 10427: 10301: 6710:. These recurrence relations follow from fundamental concepts in probability, specifically 6498: 5945: 3785: 3628: 1552: 318: 114: 10347:
Ineichen, Robert; Batschelet, Eduard (1975). "Genetic selection and de Finetti diagrams".
8939:
The Hardy–Weinberg principle can also be used to estimate the frequency of carriers of an
2874:, it can be shown that if the allele frequencies are initially unequal in the two sexes , 8: 10938: 10814: 10701: 10677: 9463: 6695: 6517: 6478: 6316: 3863: 2961: 199: 122: 10462: 10431: 10305: 6661:
may be, the distribution will in any case continue unchanged after the second generation
10928: 10924: 10784: 10605: 10576: 10559: 10541: 10508: 10474: 10404: 10364: 10330: 10265: 10209: 10161: 10073: 10061: 10003: 9978: 9881: 9830: 9792: 9737: 9600: 9567: 9309: 9301: 6463: 5981: 5771: 5671: 5139: 4221: 3845: 3825: 163: 10048:
Cannings, C.; Edwards, A.W.F. (1968). "Natural selection and the de Finetti diagram".
9700:
Pompanon, François; Bonin, Aurélie; Bellemain, Eva; Taberlet, Pierre (November 2005).
583:{\displaystyle f_{t}({\text{a}})=f_{t}({\text{aa}})+{\tfrac {1}{2}}f_{t}({\text{Aa}})} 467:{\displaystyle f_{t}({\text{A}})=f_{t}({\text{AA}})+{\tfrac {1}{2}}f_{t}({\text{Aa}})} 10919: 10914: 10852: 10779: 10771: 10746: 10600: 10546: 10528: 10482: 10449: 10396: 10368: 10335: 10317: 10273: 10257: 10217: 10182: 10166: 10148: 10065: 10008: 9873: 9869: 9838: 9784: 9776: 9729: 9721: 9682: 9674: 9641:
Hartl DL, Clarke AG (2007) Principles of population genetics. Sunderland, MA: Sinauer
9605: 9587: 9508: 9503: 9468: 9325: 6683: 6474: 2953: 169: 10408: 9885: 9796: 9741: 4644:{\displaystyle {\begin{aligned}q&=1-p\\&=1-0.954\\&=0.046\end{aligned}}} 10878: 10789: 10571: 10536: 10520: 10466: 10435: 10388: 10356: 10325: 10309: 10249: 10201: 10156: 10140: 10077: 10057: 9998: 9990: 9915: 9865: 9822: 9768: 9713: 9664: 9595: 9579: 9329: 6679: 6513: 6494: 5377:
are the observed numbers of the three genotypes, AA, Aa, and aa, respectively, and
3499: 3089: 314: 175: 146: 103: 3048: = 0.083) whereas it affects about 1 in 200 females (0.005, compared to 10696: 10636: 10144: 9994: 8976: 5143: 4233: 10470: 10379:(2012). "Rethinking Hardy–Weinberg and genetic drift in undergraduate biology". 9756: 9536:
usually refers to a number or count, but in this context, it is synonymous with
995:{\displaystyle f_{1}({\text{Aa}})=pq+qp=2pq=2f_{0}({\text{A}})f_{0}({\text{a}})} 10943: 10933: 10847: 10726: 10615: 9583: 9473: 9360: 9355: 9350: 6502: 4655: 2976: 2956:, in general, causes allele frequencies to change, often quite rapidly. While 640: 639:
The different ways to form genotypes for the next generation can be shown in a
211: 10313: 9813:
Emigh, Ted H. (1980). "A Comparison of Tests for Hardy–Weinberg Equilibrium".
9324:
are in Hardy–Weinberg equilibrium. It is possible to represent the effects of
5142:
for 1 degree of freedom is 3.84, and since the χ value is less than this, the
10976: 10883: 10873: 10829: 10532: 10321: 10261: 10152: 9974: 9780: 9725: 9678: 9591: 9483: 6718:. For example, consider the probability of an offspring from the generation 6505: 6471: 3064:
The simple derivation above can be generalized for more than two alleles and
2986: 2934: 2882: 2867: 193: 151: 10192:
Emigh, T.H. (1980). "A comparison of tests for Hardy–Weinberg equilibrium".
9669: 9652: 5446:
Using one of the examples from Emigh (1980), we can consider the case where
2904:
The seven assumptions underlying Hardy–Weinberg equilibrium are as follows:
10899: 10751: 10550: 10486: 10439: 10400: 10392: 10376: 10339: 10221: 10170: 10012: 9904:"New equivalence tests for Hardy–Weinberg equilibrium and multiple alleles" 9877: 9842: 9788: 9733: 9686: 9609: 9513: 9345: 9313: 6770:
represent inheritance of a dominant allele from a parent. Furthermore, let
6482: 5999: 2871: 1750:
genotype: . Overall, the resulting genotype frequencies are calculated as:
295: 10630:
Online Hardy–Weinberg equilibrium tests and drawing of de Finetti diagrams
10592: 10277: 10069: 9701: 9285:, which is about the frequency observed in Northern European populations. 260:, respectively, the expected genotype frequencies under random mating are 9920: 9903: 3002: 2893: 310: 157: 10625:
Online de Finetti Diagram Generator and Hardy–Weinberg equilibrium tests
10629: 10478: 10360: 10269: 10213: 9926: 9890: 9834: 4217: 4185: 3065: 3017:
females) have two copies. The genotype frequencies at equilibrium are
2938: 2855: 335: 271: 217: 10646: 10494:
Weinberg, W. (1908). "Über den Nachweis der Vererbung beim Menschen".
9772: 9653:"Detection of genotyping errors by Hardy–Weinberg equilibrium testing" 10904: 9296: 6467: 6199:
where the expected value from Hardy–Weinberg equilibrium is given by
5761:{\displaystyle d(p,{\mathcal {M}})=\min _{q\in {\mathcal {M}}}d(p,q)} 4225: 3495: 2863: 2859: 1528: 187: 10560:"Mendel's laws and their probable relation to intra-racial heredity" 10496:
Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg
10253: 10205: 9826: 9717: 9312:. This uses a triangular plot (also known as trilinear, triaxial or 8840:{\displaystyle p_{1}+2q_{1}+r_{1}=0.84325+0.15007+0.00668=1.00000\,} 6846:
represent potential parental genotypes in the preceding generation.
10524: 10506: 9317: 4197: 3407: 3332: 2967: 2942: 1531: 368: 338: 181: 10624: 2926:
there is no migration, gene flow, admixture, mutation or selection
9448:{\displaystyle (\theta ^{2},2\theta (1-\theta ),(1-\theta )^{2})} 6526:
called my attention, suggest that it may still be worth making...
6509: 4236:
is that the population is in Hardy–Weinberg proportions, and the
3100:), and thus the three-allele case is the trinomial expansion of ( 94: 4192:, will no longer hold, and it may be necessary to use a form of 631:). Then area of rectangle represents genotype frequencies (thus 9373:(Hardy–Weinberg is a trinomial distribution with probabilities 9321: 3599: 3548:
and therefore the polyploid case is the binomial expansion of:
3056:
mother. The population converges on equilibrium very quickly.
3052: = 0.007), very close to Hardy–Weinberg proportions. 229: 99: 9699: 5845:{\displaystyle H_{0}=\{d(p,{\mathcal {M}})\geq \varepsilon \}} 1095:{\displaystyle f_{1}({\text{aa}})=q^{2}=f_{0}({\text{a}})^{2}} 861:{\displaystyle f_{1}({\text{AA}})=p^{2}=f_{0}({\text{A}})^{2}} 5909:{\displaystyle H_{1}=\{d(p,{\mathcal {M}})<\varepsilon \}} 4240:
is that the population is not in Hardy–Weinberg proportions.
3014: 2899: 306:
are constant between generations, so equilibrium is reached.
6497:, unable to counter Yule's point, introduced the problem to 4180:
Testing deviation from the HWP is generally performed using
2831:
As before, one can show that the allele frequencies at time
10047: 8127:
values used by Hardy are not the same as those used above.
5788:
is some distance. The equivalence test problem is given by
3229:{\displaystyle (p+q+r)^{2}=p^{2}+q^{2}+r^{2}+2pq+2pr+2qr\,} 3071: 10346: 5153: 4211: 1720:. For example, the probability of the mating combination 10116:
Proceedings of the American Academy of Arts and Sciences
8470:{\displaystyle p+2q+r=0.83943+0.15771+0.00286=1.00000\,} 5146:
that the population is in Hardy–Weinberg frequencies is
3494:
The Hardy–Weinberg principle may also be generalized to
10181:
Cambridge University Press, Cambridge (2nd ed., 2000).
9702:"Genotyping errors: causes, consequences and solutions" 3610:
Table 2: Expected genotype frequencies for tetraploidy
1140:
times will equal the Hardy–Weinberg frequencies, e.g.
9650: 9263: 9143: 9110: 8986: 8953: 8113: 8037: 7791: 7771: 7730: 7689: 7648: 7409: 7355: 7301: 7276: 6815: 6777: 6748: 6725: 6250:{\displaystyle \operatorname {E} (f({\text{Aa}}))=2pq} 4244:
Table 3: Example Hardy–Weinberg principle calculation
2638: 2567: 2500: 2421: 2288: 2273: 2197: 2182: 2167: 2012: 1997: 1405: 1243: 548: 432: 117:. Each line shows one of the three possible genotypes. 10509:"A Note on Exact Tests of Hardy–Weinberg Equilibrium" 9379: 9262: 9180: 9142: 9109: 9016: 8985: 8952: 8859: 8772: 8551: 8489: 8423: 8295: 8136: 8098:{\displaystyle \textstyle q_{t-1}^{2}=p_{t-1}r_{t-1}} 8036: 7816: 7770: 7729: 7688: 7647: 7468: 7408: 7354: 7300: 7275: 6855: 6814: 6776: 6747: 6724: 6485:(1903) found one equilibrium position with values of 6409: 6348: 6319: 6270: 6208: 6015: 5984: 5948: 5922: 5858: 5794: 5774: 5694: 5674: 5650: 5390: 5178: 4914: 4667: 4581: 4293: 3934: 3872: 3848: 3828: 3788: 3749: 3703: 3664: 3631: 3557: 3511: 3419: 3344: 3274: 3121: 1759: 1555: 1185: 1026: 892: 792: 633:
AA : Aa : aa = 0.36 : 0.48 : 0.16
498: 382: 10507:
Wigginton, Je; Cutler, Dj; Abecasis, Gr (May 2005).
8921:{\displaystyle E_{1}=q_{1}^{2}-p_{1}r_{1}=0.00000\,} 9568:"G. H. Hardy (1908) and Hardy–Weinberg Equilibrium" 9304:
representing a distribution of genotype frequencies
8943:in a population based on the frequency of suffers. 7800:{\displaystyle \textstyle p_{t-1}\neq \textstyle 0} 4175: 9447: 9277: 9245: 9163: 9124: 9092: 8999: 8967: 8934: 8920: 8839: 8752: 8531: 8469: 8403: 8278: 8097: 8019: 7799: 7756: 7715: 7674: 7630: 7448: 7394: 7340: 7283: 7257: 6838: 6800: 6762: 6732: 6689: 6447: 6395: 6331: 6301: 6249: 6187: 5990: 5961: 5934: 5908: 5844: 5780: 5760: 5680: 5660: 5432: 5345: 5123: 4891: 4643: 4561: 4164: 3917: 3854: 3834: 3801: 3768: 3729: 3683: 3644: 3583: 3537: 3478: 3395: 3320: 3228: 2820: 1697: 1516: 1094: 994: 860: 582: 466: 10611:HARDY C implementation of Guo & Thompson 1992 10419:Philosophical Transactions of the Royal Society A 4284:From this, allele frequencies can be calculated: 4109: 4068: 10974: 8542:For the next generation, Hardy's equations give 6481:, the genotype frequencies would remain stable. 5721: 3489: 228:In the simplest case of a single locus with two 10235: 740:, as the genotype frequencies must sum to one. 2964:, lead to equilibrium without loss of alleles. 1176:), are preserved from the initial generation: 10662: 10375: 10287:"Mendelian Proportions in a Mixed Population" 9256:We therefore estimate the carrier rate to be 8763:Again as checks on the distribution, compute 6416: 6355: 5688:and Hardy Weinberg equilibrium is defined by 5316: 5276: 5269: 5221: 4228:of a sample of the population were recorded. 1136:. However, the genotype frequencies for all 10616:Source code (C/C++/Fortran/R) for Wigginton 10447:Stern, C. (1943). "The Hardy–Weinberg law". 9808: 9806: 9164:{\displaystyle \textstyle 1-{\frac {1}{50}}} 8968:{\displaystyle \textstyle {\frac {1}{2500}}} 6396:{\displaystyle F{\big |}_{E=0,O=0}=-\infty } 6302:{\displaystyle F=1-{138 \over 141.2}=0.023.} 5942:is a tolerance parameter. If the hypothesis 5903: 5872: 5839: 5808: 5458:Table 4: Example of Fisher's exact test for 9291: 3479:{\displaystyle f(A_{i}A_{j})=2p_{i}p_{j}\,} 3321:{\displaystyle (p_{1}+\cdots +p_{n})^{2}\,} 647:Table 1: Punnett square for Hardy–Weinberg 10669: 10655: 10129:"Hardy, Weinberg and language impediments" 9979:"Hardy, Weinberg and language impediments" 9278:{\displaystyle \textstyle {\frac {1}{25}}} 9125:{\displaystyle \textstyle {\frac {1}{50}}} 7449:{\displaystyle \textstyle 0=r_{t}-r_{t-1}} 7395:{\displaystyle \textstyle 0=q_{t}-q_{t-1}} 7341:{\displaystyle \textstyle 0=p_{t}-p_{t-1}} 3817: 2900:Deviations from Hardy–Weinberg equilibrium 10575: 10540: 10329: 10160: 10002: 9919: 9901: 9891:Official web link (subscription required) 9803: 9668: 9599: 8917: 8836: 8532:{\displaystyle E_{0}=q^{2}-pr=0.00382.\,} 8528: 8466: 7764:. Now consider the remaining case, where 5973: 4021: 3918:{\displaystyle (p_{1}+\cdots +p_{n})^{c}} 3580: 3534: 3475: 3396:{\displaystyle f(A_{i}A_{i})=p_{i}^{2}\,} 3392: 3317: 3225: 3084:Consider an extra allele frequency,  2923:allele frequencies are equal in the sexes 113:and the vertical axis shows the expected 82:Learn how and when to remove this message 10493: 10126: 9754: 9635: 9295: 4232:is assumed to be negligibly small. The 3075: 3072:Generalization for more than two alleles 620:corresponds to allele frequencies (here 605: 93: 45:This article includes a list of general 10676: 10415: 10090:See e.g. Ineichen & Batschelet 1975 9625:"Hardy–Weinberg in dioecious organisms" 9565: 9459:Additive disequilibrium and z statistic 8414:As checks on the distribution, compute 14: 10975: 10962:Index of evolutionary biology articles 10606:genetics Population Genetics Simulator 10113: 9855: 6448:{\displaystyle F{\big |}_{E=0,O>0}} 5154:Fisher's exact test (probability test) 4212:Example chi-squared test for deviation 3239:More generally, consider the alleles A 326:and other forms of non-random mating. 10650: 10642:Hardy–Weinberg Equilibrium Calculator 10601:Hardy–Weinberg Equilibrium Calculator 10446: 10284: 10191: 10179:Foundations of Mathematical Genetics. 10025: 10019: 9902:Ostrovski, Vladimir (February 2020). 9812: 4200:to solve. More recently a number of 2870:and the gene locus is located on the 651: 10557: 9973: 9967: 9755:Cox, David G.; Kraft, Peter (2006). 9334:Foundations of Mathematical Genetics 8108: 7757:{\displaystyle \textstyle r_{t-1}=1} 7716:{\displaystyle \textstyle q_{t-1}=0} 7675:{\displaystyle \textstyle p_{t-1}=0} 6260:For example, for Ford's data above: 5639: 5433:{\displaystyle n_{1}=2n_{11}+n_{12}} 1017: 883: 783: 489: 373: 102:: the horizontal axis shows the two 31: 8114:Estimation of genotype distribution 6839:{\displaystyle \textstyle Aa_{t-1}} 6801:{\displaystyle \textstyle AA_{t-1}} 2920:population size is infinitely large 98:Hardy–Weinberg proportions for two 24: 10577:10.1111/j.1469-8137.1902.tb07336.x 10513:American Journal of Human Genetics 10062:10.1111/j.1469-1809.1968.tb00575.x 9657:European Journal of Human Genetics 8217: 8214: 8211: 8192: 8189: 8186: 8161: 8158: 8155: 6390: 6209: 6153: 6125: 6084: 6056: 6025: 5889: 5825: 5733: 5709: 5653: 5384:is the number of A alleles, where 5280: 5225: 4825: 4822: 4819: 4750: 4747: 4744: 4679: 4676: 4673: 4432: 4429: 4426: 4407: 4404: 4401: 4382: 4379: 4376: 4349: 4346: 4343: 4324: 4321: 4318: 4072: 3059: 51:it lacks sufficient corresponding 25: 11009: 10586: 5935:{\displaystyle \varepsilon >0} 9870:10.1111/j.0006-341X.2004.00219.x 9622: 7682:, and note that it implies that 6763:{\displaystyle \textstyle A_{t}} 6694:Hardy's statement begins with a 6666:The principle was thus known as 4176:Significance tests for deviation 3249:given by the allele frequencies 36: 10349:Journal of Mathematical Biology 10093: 10084: 10041: 9958: 9949: 9940: 9931: 9895: 9320:and represents the state where 8935:Estimation of carrier frequency 7641:First consider the case, where 6690:Derivation of Hardy's equations 3602:, for example with tetraploid ( 2911:only sexual reproduction occurs 2693: 2381: 2115: 2114: 1872: 10762:Constructive neutral evolution 9849: 9748: 9693: 9644: 9616: 9559: 9526: 9442: 9433: 9420: 9414: 9402: 9380: 9000:{\displaystyle \textstyle 2pq} 8731: 8718: 8688: 8676: 8673: 8661: 8619: 8606: 8229: 8221: 8204: 8196: 8173: 8165: 7939: 7847: 7156: 7150: 7128: 7122: 7092: 7070: 7064: 7029: 7020: 6998: 6992: 6957: 6929: 6915: 6906: 6880: 6232: 6229: 6221: 6215: 6176: 6173: 6165: 6159: 6148: 6145: 6137: 6131: 6107: 6104: 6096: 6090: 6079: 6076: 6068: 6062: 6049: 6046: 6038: 6032: 5894: 5878: 5830: 5814: 5755: 5743: 5714: 5698: 5661:{\displaystyle {\mathcal {M}}} 5211: 5185: 5064: 5051: 5030: 5017: 4996: 4983: 4955: 4942: 4837: 4829: 4762: 4754: 4691: 4683: 4510: 4492: 4447: 4444: 4436: 4419: 4411: 4394: 4386: 4372: 4361: 4353: 4336: 4328: 4230:Genotype–phenotype distinction 3968: 3935: 3906: 3873: 3571: 3558: 3525: 3512: 3446: 3423: 3371: 3348: 3308: 3275: 3141: 3122: 3088:. The two-allele case is the 3025:for the heterogametic sex but 2996: 2971:strong selection against them. 2941:, which causes an increase in 2914:generations are nonoverlapping 2800: 2791: 2775: 2767: 2754: 2746: 2721: 2712: 2667: 2659: 2631: 2623: 2596: 2588: 2560: 2552: 2529: 2521: 2493: 2485: 2450: 2442: 2414: 2406: 2346: 2338: 2325: 2317: 2258: 2250: 2237: 2229: 2158: 2150: 2137: 2129: 2079: 2071: 2058: 2050: 1988: 1980: 1967: 1959: 1915: 1907: 1894: 1886: 1854: 1846: 1824: 1816: 1794: 1786: 1746:and it can only result in the 1687: 1671: 1665: 1649: 1643: 1627: 1621: 1605: 1599: 1583: 1577: 1561: 1507: 1499: 1477: 1465: 1434: 1426: 1398: 1390: 1370: 1362: 1345: 1337: 1315: 1303: 1272: 1264: 1236: 1228: 1208: 1200: 1083: 1074: 1045: 1037: 989: 981: 968: 960: 911: 903: 849: 840: 811: 803: 778:gives the same relationships. 577: 569: 541: 533: 517: 509: 461: 453: 425: 417: 401: 393: 13: 1: 9547: 8941:autosomal recessive condition 3490:Generalization for polyploidy 1527:For the more general case of 329: 309:The principle is named after 10712:Fisher's fundamental theorem 10029:(1962). "Wilhelm Weinberg". 9552: 7284:{\displaystyle \textstyle t} 6733:{\displaystyle \textstyle t} 5978:The inbreeding coefficient, 754:, the binomial expansion of 284:for the aa homozygotes, and 7: 10737:Coefficient of relationship 10471:10.1126/science.97.2510.137 9499:Coefficient of relationship 9339: 8946:Let us assume an estimated 6477:(1903) showed that without 3730:{\displaystyle 6p^{2}q^{2}} 3584:{\displaystyle (p+q)^{c}\,} 3538:{\displaystyle (p+q)^{2}\,} 2851:are also constant in time. 1172: 1166: 1108: 1008: 874: 596: 480: 10: 11014: 10285:Hardy, G. H. (July 1908). 10145:10.1093/genetics/152.3.821 10106: 9995:10.1093/genetics/152.3.821 9584:10.1534/genetics.104.92940 9566:Edwards, A. W. F. (2008). 9366:Regression toward the mean 6458: 4903:Pearson's chi-squared test 4182:Pearson's chi-squared test 725:The sum of the entries is 131:Hardy–Weinberg equilibrium 10957: 10892: 10866: 10828: 10803: 10770: 10732:Coefficient of inbreeding 10684: 10314:10.1126/science.28.706.49 9494:Coefficient of inbreeding 3037:for the homogametic sex. 3005:, the heterogametic sex ( 674: 653: 334:Consider a population of 324:population stratification 10910:Evolutionary game theory 10692:Hardy–Weinberg principle 10050:Annals of Human Genetics 9519: 9371:Multinomial distribution 9292:Graphical representation 5625:levels is quite coarse. 5471:Number of heterozygotes 4190:chi-squared distribution 3042:red–green colorblindness 1711:multinomial distribution 127:Hardy–Weinberg principle 10722:Shifting balance theory 9706:Nature Reviews Genetics 9670:10.1038/sj.ejhg.5201164 6716:conditional probability 3818:Complete generalization 3769:{\displaystyle 4pq^{3}} 3684:{\displaystyle 4p^{3}q} 3040:For example, in humans 66:more precise citations. 10707:Linkage disequilibrium 10440:10.1098/rsta.1903.0001 10393:10.1002/bies.201100178 10238:Thompson, Elizabeth A. 10177:Edwards, A.W.F. 1977. 10127:Crow, Jf (July 1999). 9449: 9305: 9279: 9247: 9165: 9126: 9094: 9001: 8969: 8922: 8841: 8754: 8533: 8471: 8405: 8280: 8099: 8021: 7801: 7758: 7717: 7676: 7632: 7450: 7396: 7342: 7285: 7259: 6840: 6802: 6764: 6734: 6672:English-speaking world 6644:whatever the values of 6508:, with whom he played 6449: 6397: 6333: 6303: 6251: 6189: 5992: 5974:Inbreeding coefficient 5963: 5936: 5910: 5846: 5782: 5762: 5682: 5662: 5450: = 100, and 5434: 5347: 5125: 4893: 4654:So the Hardy–Weinberg 4645: 4563: 4238:alternative hypothesis 4166: 3919: 3856: 3836: 3803: 3770: 3731: 3685: 3646: 3585: 3539: 3480: 3397: 3322: 3230: 3081: 2822: 1699: 1518: 1096: 996: 862: 636: 584: 468: 222:outbreeding depression 118: 10949:Quantitative genetics 10858:Balding–Nichols model 10843:Population bottleneck 10838:Small population size 10742:Selection coefficient 9489:Inbreeding depression 9479:Population bottleneck 9450: 9299: 9280: 9248: 9166: 9132:is small we can take 9127: 9095: 9002: 8975:babies are born with 8970: 8923: 8842: 8755: 8534: 8472: 8406: 8281: 8100: 8022: 7802: 7759: 7718: 7677: 7633: 7451: 7397: 7343: 7286: 7260: 6841: 6803: 6765: 6735: 6450: 6398: 6334: 6304: 6252: 6190: 5993: 5964: 5962:{\displaystyle H_{0}} 5937: 5911: 5847: 5783: 5763: 5683: 5663: 5435: 5348: 5126: 4894: 4646: 4564: 4258:Little spotting (aa) 4167: 3920: 3864:multinomial expansion 3857: 3837: 3804: 3802:{\displaystyle q^{4}} 3771: 3732: 3686: 3647: 3645:{\displaystyle p^{4}} 3586: 3540: 3481: 3398: 3323: 3231: 3079: 2983:Small population size 2958:directional selection 2908:organisms are diploid 2823: 1700: 1698:{\displaystyle \left} 1519: 1097: 997: 863: 609: 585: 469: 206:population bottleneck 97: 27:Principle in genetics 10993:Statistical genetics 10820:Background selection 10807:on genomic variation 10805:Effects of selection 10757:Population structure 10570:(193–207): 222–238. 10558:Yule, G. U. (1902). 9921:10.3390/stats3010004 9623:Carr, Dr. Steven M. 9377: 9260: 9178: 9140: 9107: 9014: 8983: 8950: 8857: 8770: 8549: 8487: 8421: 8293: 8134: 8034: 7814: 7768: 7727: 7686: 7645: 7466: 7406: 7352: 7298: 7273: 6853: 6812: 6774: 6745: 6722: 6698:for the frequencies 6407: 6346: 6317: 6268: 6206: 6013: 5982: 5946: 5920: 5856: 5792: 5772: 5692: 5672: 5648: 5388: 5176: 4912: 4665: 4579: 4291: 3932: 3870: 3846: 3842:distinct alleles in 3826: 3786: 3747: 3701: 3662: 3629: 3555: 3509: 3417: 3342: 3272: 3119: 3001:Where the A gene is 2838:equal those at time 1757: 1553: 1183: 1024: 890: 790: 496: 380: 129:, also known as the 115:genotype frequencies 10983:Population genetics 10939:Population genomics 10815:Genetic hitchhiking 10702:Identity by descent 10678:Population genetics 10635:26 May 2015 at the 10596:(at bottom of page) 10463:1943Sci....97..137S 10432:1903RSPTA.200....1P 10306:1908Sci....28...49H 10230:Ecological Genetics 10228:Ford, E.B. (1971). 9464:Population genetics 8887: 8058: 7972: 7911: 7604: 7542: 6696:recurrence relation 6518:applied mathematics 6332:{\displaystyle F=0} 5474:Significance level 5467: 5466: = 0.34. 5159:Fisher's exact test 4252:White-spotted (AA) 4245: 4196:, which requires a 4194:Fisher's exact test 4161: 4136: 3611: 3391: 2962:balancing selection 743:Note again that as 648: 200:genetic hitchhiking 123:population genetics 10988:Classical genetics 10925:Landscape genetics 10361:10.1007/BF00276014 9445: 9310:de Finetti diagram 9306: 9302:de Finetti diagram 9275: 9274: 9243: 9241: 9161: 9160: 9122: 9121: 9090: 9088: 8997: 8996: 8965: 8964: 8918: 8873: 8837: 8750: 8748: 8529: 8467: 8401: 8399: 8276: 8274: 8095: 8094: 8038: 8017: 8015: 7952: 7891: 7797: 7796: 7795: 7754: 7753: 7713: 7712: 7672: 7671: 7628: 7626: 7584: 7522: 7446: 7445: 7392: 7391: 7338: 7337: 7281: 7280: 7255: 7253: 6836: 6835: 6798: 6797: 6760: 6759: 6730: 6729: 6549:numbers will be as 6514:pure mathematician 6493: = 0.5. 6464:Mendelian genetics 6445: 6393: 6329: 6299: 6247: 6185: 5988: 5959: 5932: 5906: 5842: 5778: 5758: 5739: 5678: 5658: 5462: = 100, 5457: 5430: 5343: 5140:significance level 5121: 5119: 4889: 4887: 4641: 4639: 4559: 4557: 4255:Intermediate (Aa) 4243: 4222:scarlet tiger moth 4216:This data is from 4188:assumption of the 4162: 4140: 4115: 4064: 3915: 3852: 3832: 3799: 3766: 3727: 3681: 3642: 3609: 3581: 3535: 3500:binomial expansion 3476: 3393: 3377: 3318: 3226: 3090:binomial expansion 3082: 2818: 2816: 2647: 2576: 2509: 2430: 2297: 2282: 2206: 2191: 2176: 2021: 2006: 1695: 1514: 1512: 1414: 1252: 1092: 992: 858: 646: 637: 580: 557: 464: 441: 164:assortative mating 119: 104:allele frequencies 18:Hardy–Weinberg law 10970: 10969: 10920:Genetic genealogy 10915:Fitness landscape 10594:EvolutionSolution 10457:(2510): 137–138. 10426:(321–330): 1–66. 9927:Official web link 9773:10.1159/000091787 9504:Natural selection 9469:Genetic diversity 9326:natural selection 9272: 9237: 9211: 9158: 9119: 9064: 9043: 8962: 8574: 8389: 8359: 8318: 8227: 8202: 8171: 8144: 8109:Numerical example 6674:until 1943, when 6475:William E. Castle 6291: 6227: 6180: 6171: 6143: 6111: 6102: 6074: 6044: 5991:{\displaystyle F} 5781:{\displaystyle d} 5720: 5681:{\displaystyle p} 5640:Equivalence tests 5622: 5621: 5321: 5314: 5267: 5136:degree of freedom 5077: 5043: 5009: 4968: 4835: 4760: 4689: 4537: 4514: 4451: 4442: 4417: 4392: 4359: 4334: 4282: 4281: 4107: 4016: 3980: 3855:{\displaystyle c} 3835:{\displaystyle n} 3812: 3811: 2797: 2773: 2752: 2718: 2665: 2646: 2629: 2594: 2575: 2558: 2527: 2508: 2491: 2448: 2429: 2412: 2344: 2323: 2296: 2281: 2256: 2235: 2205: 2190: 2175: 2156: 2135: 2077: 2056: 2020: 2005: 1986: 1965: 1913: 1892: 1852: 1822: 1792: 1685: 1677: 1663: 1655: 1641: 1633: 1619: 1611: 1597: 1589: 1575: 1567: 1505: 1432: 1413: 1396: 1368: 1343: 1270: 1251: 1234: 1206: 1116: 1115: 1080: 1043: 1016: 1015: 987: 966: 909: 882: 881: 846: 809: 723: 722: 604: 603: 575: 556: 539: 515: 488: 487: 459: 440: 423: 399: 240:with frequencies 170:natural selection 92: 91: 84: 16:(Redirected from 11005: 10998:Sexual selection 10879:J. B. S. Haldane 10671: 10664: 10657: 10648: 10647: 10581: 10579: 10554: 10544: 10503: 10490: 10443: 10412: 10372: 10343: 10333: 10291: 10281: 10225: 10174: 10164: 10123: 10100: 10097: 10091: 10088: 10082: 10081: 10045: 10039: 10038: 10023: 10017: 10016: 10006: 9971: 9965: 9962: 9956: 9953: 9947: 9944: 9938: 9935: 9929: 9925: 9923: 9899: 9893: 9889: 9853: 9847: 9846: 9810: 9801: 9800: 9752: 9746: 9745: 9697: 9691: 9690: 9672: 9648: 9642: 9639: 9633: 9632: 9620: 9614: 9613: 9603: 9578:(3): 1143–1150. 9563: 9541: 9530: 9454: 9452: 9451: 9446: 9441: 9440: 9392: 9391: 9330:A. W. F. Edwards 9284: 9282: 9281: 9276: 9273: 9265: 9252: 9250: 9249: 9244: 9242: 9238: 9230: 9212: 9204: 9170: 9168: 9167: 9162: 9159: 9151: 9131: 9129: 9128: 9123: 9120: 9112: 9099: 9097: 9096: 9091: 9089: 9069: 9065: 9057: 9048: 9044: 9036: 9031: 9030: 9020: 9006: 9004: 9003: 8998: 8974: 8972: 8971: 8966: 8963: 8955: 8927: 8925: 8924: 8919: 8910: 8909: 8900: 8899: 8886: 8881: 8869: 8868: 8846: 8844: 8843: 8838: 8811: 8810: 8798: 8797: 8782: 8781: 8759: 8757: 8756: 8751: 8749: 8739: 8738: 8710: 8709: 8650: 8649: 8627: 8626: 8598: 8597: 8585: 8575: 8567: 8538: 8536: 8535: 8530: 8512: 8511: 8499: 8498: 8476: 8474: 8473: 8468: 8410: 8408: 8407: 8402: 8400: 8390: 8382: 8360: 8355: 8344: 8319: 8311: 8285: 8283: 8282: 8277: 8275: 8262: 8258: 8232: 8228: 8225: 8220: 8203: 8200: 8195: 8172: 8169: 8164: 8145: 8142: 8104: 8102: 8101: 8096: 8093: 8092: 8077: 8076: 8057: 8052: 8026: 8024: 8023: 8018: 8016: 8012: 8011: 7993: 7992: 7977: 7971: 7966: 7945: 7932: 7931: 7916: 7910: 7905: 7887: 7886: 7865: 7864: 7846: 7845: 7806: 7804: 7803: 7798: 7787: 7786: 7763: 7761: 7760: 7755: 7746: 7745: 7722: 7720: 7719: 7714: 7705: 7704: 7681: 7679: 7678: 7673: 7664: 7663: 7637: 7635: 7634: 7629: 7627: 7623: 7622: 7603: 7598: 7580: 7579: 7564: 7563: 7541: 7536: 7515: 7511: 7510: 7492: 7491: 7455: 7453: 7452: 7447: 7444: 7443: 7425: 7424: 7401: 7399: 7398: 7393: 7390: 7389: 7371: 7370: 7347: 7345: 7344: 7339: 7336: 7335: 7317: 7316: 7290: 7288: 7287: 7282: 7264: 7262: 7261: 7256: 7254: 7250: 7249: 7244: 7240: 7239: 7238: 7220: 7219: 7192: 7188: 7187: 7182: 7178: 7177: 7176: 7146: 7145: 7109: 7105: 7104: 7099: 7095: 7091: 7090: 7063: 7062: 7041: 7040: 7019: 7018: 6991: 6990: 6969: 6968: 6941: 6937: 6936: 6927: 6926: 6905: 6904: 6892: 6891: 6869: 6868: 6845: 6843: 6842: 6837: 6834: 6833: 6807: 6805: 6804: 6799: 6796: 6795: 6769: 6767: 6766: 6761: 6758: 6757: 6739: 6737: 6736: 6731: 6680:Wilhelm Weinberg 6495:Reginald Punnett 6454: 6452: 6451: 6446: 6444: 6443: 6420: 6419: 6402: 6400: 6399: 6394: 6383: 6382: 6359: 6358: 6338: 6336: 6335: 6330: 6309: 6308: 6306: 6305: 6300: 6292: 6284: 6256: 6254: 6253: 6248: 6228: 6225: 6195: 6194: 6192: 6191: 6186: 6181: 6179: 6172: 6169: 6151: 6144: 6141: 6123: 6112: 6110: 6103: 6100: 6082: 6075: 6072: 6052: 6045: 6042: 6023: 5997: 5995: 5994: 5989: 5968: 5966: 5965: 5960: 5958: 5957: 5941: 5939: 5938: 5933: 5915: 5913: 5912: 5907: 5893: 5892: 5868: 5867: 5851: 5849: 5848: 5843: 5829: 5828: 5804: 5803: 5787: 5785: 5784: 5779: 5767: 5765: 5764: 5759: 5738: 5737: 5736: 5713: 5712: 5687: 5685: 5684: 5679: 5667: 5665: 5664: 5659: 5657: 5656: 5468: 5456: 5439: 5437: 5436: 5431: 5429: 5428: 5416: 5415: 5400: 5399: 5352: 5350: 5349: 5344: 5339: 5338: 5337: 5336: 5322: 5320: 5319: 5313: 5312: 5311: 5299: 5298: 5288: 5279: 5273: 5272: 5266: 5265: 5264: 5252: 5251: 5239: 5238: 5224: 5218: 5210: 5209: 5197: 5196: 5130: 5128: 5127: 5122: 5120: 5107: 5082: 5078: 5073: 5072: 5071: 5049: 5044: 5039: 5038: 5037: 5015: 5010: 5005: 5004: 5003: 4981: 4973: 4969: 4964: 4963: 4962: 4940: 4928: 4927: 4898: 4896: 4895: 4890: 4888: 4872: 4871: 4856: 4855: 4836: 4833: 4828: 4761: 4758: 4753: 4726: 4725: 4710: 4709: 4690: 4687: 4682: 4650: 4648: 4647: 4642: 4640: 4627: 4608: 4568: 4566: 4565: 4560: 4558: 4545: 4542: 4538: 4530: 4522: 4519: 4515: 4513: 4484: 4467: 4459: 4456: 4452: 4450: 4443: 4440: 4435: 4418: 4415: 4410: 4393: 4390: 4385: 4364: 4360: 4357: 4352: 4335: 4332: 4327: 4309: 4246: 4242: 4224:, for which the 4171: 4169: 4168: 4163: 4160: 4159: 4158: 4148: 4135: 4134: 4133: 4123: 4114: 4113: 4112: 4106: 4105: 4104: 4086: 4085: 4071: 4063: 4056: 4055: 4037: 4036: 4024: 4014: 4013: 4012: 3994: 3993: 3976: 3975: 3966: 3965: 3947: 3946: 3924: 3922: 3921: 3916: 3914: 3913: 3904: 3903: 3885: 3884: 3861: 3859: 3858: 3853: 3841: 3839: 3838: 3833: 3808: 3806: 3805: 3800: 3798: 3797: 3775: 3773: 3772: 3767: 3765: 3764: 3736: 3734: 3733: 3728: 3726: 3725: 3716: 3715: 3690: 3688: 3687: 3682: 3677: 3676: 3651: 3649: 3648: 3643: 3641: 3640: 3612: 3608: 3590: 3588: 3587: 3582: 3579: 3578: 3544: 3542: 3541: 3536: 3533: 3532: 3485: 3483: 3482: 3477: 3474: 3473: 3464: 3463: 3445: 3444: 3435: 3434: 3402: 3400: 3399: 3394: 3390: 3385: 3370: 3369: 3360: 3359: 3327: 3325: 3324: 3319: 3316: 3315: 3306: 3305: 3287: 3286: 3235: 3233: 3232: 3227: 3188: 3187: 3175: 3174: 3162: 3161: 3149: 3148: 2917:mating is random 2891: 2880: 2850: 2843: 2837: 2827: 2825: 2824: 2819: 2817: 2813: 2809: 2808: 2807: 2798: 2795: 2790: 2789: 2774: 2771: 2766: 2765: 2753: 2750: 2745: 2744: 2729: 2728: 2719: 2716: 2711: 2710: 2689: 2685: 2681: 2680: 2679: 2674: 2670: 2666: 2663: 2658: 2657: 2648: 2639: 2630: 2627: 2622: 2621: 2603: 2599: 2595: 2592: 2587: 2586: 2577: 2568: 2559: 2556: 2551: 2550: 2536: 2532: 2528: 2525: 2520: 2519: 2510: 2501: 2492: 2489: 2484: 2483: 2463: 2462: 2457: 2453: 2449: 2446: 2441: 2440: 2431: 2422: 2413: 2410: 2405: 2404: 2377: 2373: 2369: 2345: 2342: 2337: 2336: 2324: 2321: 2316: 2315: 2303: 2299: 2298: 2289: 2283: 2274: 2257: 2254: 2249: 2248: 2236: 2233: 2228: 2227: 2212: 2208: 2207: 2198: 2192: 2183: 2177: 2168: 2157: 2154: 2149: 2148: 2136: 2133: 2128: 2127: 2110: 2106: 2102: 2078: 2075: 2070: 2069: 2057: 2054: 2049: 2048: 2033: 2029: 2022: 2013: 2007: 1998: 1987: 1984: 1979: 1978: 1966: 1963: 1958: 1957: 1942: 1938: 1914: 1911: 1906: 1905: 1893: 1890: 1885: 1884: 1868: 1861: 1857: 1853: 1850: 1845: 1844: 1823: 1820: 1815: 1814: 1793: 1790: 1785: 1784: 1763: 1749: 1745: 1723: 1719: 1704: 1702: 1701: 1696: 1694: 1690: 1686: 1683: 1678: 1675: 1664: 1661: 1656: 1653: 1642: 1639: 1634: 1631: 1620: 1617: 1612: 1609: 1598: 1595: 1590: 1587: 1576: 1573: 1568: 1565: 1523: 1521: 1520: 1515: 1513: 1506: 1503: 1498: 1497: 1449: 1448: 1433: 1430: 1425: 1424: 1415: 1406: 1397: 1394: 1389: 1388: 1369: 1366: 1361: 1360: 1344: 1341: 1336: 1335: 1287: 1286: 1271: 1268: 1263: 1262: 1253: 1244: 1235: 1232: 1227: 1226: 1207: 1204: 1199: 1198: 1163: 1156: 1135: 1110: 1101: 1099: 1098: 1093: 1091: 1090: 1081: 1078: 1073: 1072: 1060: 1059: 1044: 1041: 1036: 1035: 1018: 1010: 1001: 999: 998: 993: 988: 985: 980: 979: 967: 964: 959: 958: 910: 907: 902: 901: 884: 876: 867: 865: 864: 859: 857: 856: 847: 844: 839: 838: 826: 825: 810: 807: 802: 801: 784: 777: 753: 739: 649: 645: 634: 630: 619: 598: 589: 587: 586: 581: 576: 573: 568: 567: 558: 549: 540: 537: 532: 531: 516: 513: 508: 507: 490: 482: 473: 471: 470: 465: 460: 457: 452: 451: 442: 433: 424: 421: 416: 415: 400: 397: 392: 391: 374: 366: 353: 315:Wilhelm Weinberg 293: 283: 269: 259: 249: 176:sexual selection 87: 80: 76: 73: 67: 62:this article by 53:inline citations 40: 39: 32: 21: 11013: 11012: 11008: 11007: 11006: 11004: 11003: 11002: 10973: 10972: 10971: 10966: 10953: 10888: 10862: 10824: 10808: 10806: 10799: 10766: 10697:Genetic linkage 10680: 10675: 10637:Wayback Machine 10589: 10584: 10289: 10254:10.2307/2532296 10206:10.2307/2556115 10109: 10104: 10103: 10098: 10094: 10089: 10085: 10046: 10042: 10024: 10020: 9972: 9968: 9963: 9959: 9954: 9950: 9945: 9941: 9936: 9932: 9900: 9896: 9854: 9850: 9827:10.2307/2556115 9811: 9804: 9753: 9749: 9718:10.1038/nrg1707 9712:(11): 847–859. 9698: 9694: 9649: 9645: 9640: 9636: 9621: 9617: 9564: 9560: 9555: 9550: 9545: 9544: 9531: 9527: 9522: 9436: 9432: 9387: 9383: 9378: 9375: 9374: 9342: 9294: 9264: 9261: 9258: 9257: 9240: 9239: 9229: 9214: 9213: 9203: 9181: 9179: 9176: 9175: 9150: 9141: 9138: 9137: 9111: 9108: 9105: 9104: 9087: 9086: 9067: 9066: 9056: 9046: 9045: 9035: 9026: 9022: 9017: 9015: 9012: 9011: 8984: 8981: 8980: 8977:cystic fibrosis 8954: 8951: 8948: 8947: 8937: 8905: 8901: 8895: 8891: 8882: 8877: 8864: 8860: 8858: 8855: 8854: 8806: 8802: 8793: 8789: 8777: 8773: 8771: 8768: 8767: 8747: 8746: 8734: 8730: 8711: 8705: 8701: 8698: 8697: 8651: 8645: 8641: 8635: 8634: 8622: 8618: 8599: 8593: 8589: 8586: 8583: 8582: 8566: 8559: 8552: 8550: 8547: 8546: 8507: 8503: 8494: 8490: 8488: 8485: 8484: 8422: 8419: 8418: 8398: 8397: 8381: 8374: 8368: 8367: 8345: 8343: 8336: 8327: 8326: 8310: 8303: 8296: 8294: 8291: 8290: 8273: 8272: 8260: 8259: 8236: 8224: 8210: 8199: 8185: 8168: 8154: 8153: 8146: 8141: 8137: 8135: 8132: 8131: 8116: 8111: 8082: 8078: 8066: 8062: 8053: 8042: 8035: 8032: 8031: 8014: 8013: 8001: 7997: 7982: 7978: 7973: 7967: 7956: 7943: 7942: 7921: 7917: 7912: 7906: 7895: 7876: 7872: 7854: 7850: 7835: 7831: 7824: 7817: 7815: 7812: 7811: 7776: 7772: 7769: 7766: 7765: 7735: 7731: 7728: 7725: 7724: 7694: 7690: 7687: 7684: 7683: 7653: 7649: 7646: 7643: 7642: 7625: 7624: 7612: 7608: 7599: 7588: 7569: 7565: 7553: 7549: 7537: 7526: 7513: 7512: 7500: 7496: 7487: 7483: 7476: 7469: 7467: 7464: 7463: 7433: 7429: 7420: 7416: 7407: 7404: 7403: 7379: 7375: 7366: 7362: 7353: 7350: 7349: 7325: 7321: 7312: 7308: 7299: 7296: 7295: 7274: 7271: 7270: 7252: 7251: 7245: 7228: 7224: 7209: 7205: 7204: 7200: 7199: 7190: 7189: 7183: 7166: 7162: 7135: 7131: 7121: 7117: 7116: 7107: 7106: 7100: 7080: 7076: 7052: 7048: 7036: 7032: 7008: 7004: 6980: 6976: 6964: 6960: 6953: 6949: 6948: 6939: 6938: 6932: 6928: 6922: 6918: 6900: 6896: 6887: 6883: 6870: 6864: 6860: 6856: 6854: 6851: 6850: 6823: 6819: 6813: 6810: 6809: 6785: 6781: 6775: 6772: 6771: 6753: 6749: 6746: 6743: 6742: 6723: 6720: 6719: 6692: 6641: 6635: 6628: 6603: 6596: 6589: 6512:. Hardy was a 6461: 6421: 6415: 6414: 6413: 6408: 6405: 6404: 6360: 6354: 6353: 6352: 6347: 6344: 6343: 6318: 6315: 6314: 6283: 6269: 6266: 6265: 6264: 6224: 6207: 6204: 6203: 6168: 6152: 6140: 6124: 6122: 6099: 6083: 6071: 6041: 6031: 6024: 6022: 6014: 6011: 6010: 6009: 5983: 5980: 5979: 5976: 5953: 5949: 5947: 5944: 5943: 5921: 5918: 5917: 5888: 5887: 5863: 5859: 5857: 5854: 5853: 5824: 5823: 5799: 5795: 5793: 5790: 5789: 5773: 5770: 5769: 5732: 5731: 5724: 5708: 5707: 5693: 5690: 5689: 5673: 5670: 5669: 5652: 5651: 5649: 5646: 5645: 5642: 5424: 5420: 5411: 5407: 5395: 5391: 5389: 5386: 5385: 5383: 5376: 5369: 5362: 5332: 5328: 5327: 5323: 5315: 5307: 5303: 5294: 5290: 5289: 5281: 5275: 5274: 5268: 5260: 5256: 5247: 5243: 5234: 5230: 5229: 5220: 5219: 5217: 5205: 5201: 5192: 5188: 5177: 5174: 5173: 5156: 5144:null hypothesis 5118: 5117: 5105: 5104: 5080: 5079: 5067: 5063: 5050: 5048: 5033: 5029: 5016: 5014: 4999: 4995: 4982: 4980: 4971: 4970: 4958: 4954: 4941: 4939: 4929: 4923: 4919: 4915: 4913: 4910: 4909: 4886: 4885: 4867: 4863: 4851: 4847: 4840: 4832: 4818: 4815: 4814: 4765: 4757: 4743: 4740: 4739: 4721: 4717: 4705: 4701: 4694: 4686: 4672: 4668: 4666: 4663: 4662: 4638: 4637: 4625: 4624: 4606: 4605: 4589: 4582: 4580: 4577: 4576: 4556: 4555: 4543: 4540: 4539: 4529: 4520: 4517: 4516: 4485: 4468: 4466: 4457: 4454: 4453: 4439: 4425: 4414: 4400: 4389: 4375: 4365: 4356: 4342: 4331: 4317: 4310: 4308: 4301: 4294: 4292: 4289: 4288: 4234:null hypothesis 4214: 4178: 4154: 4150: 4149: 4144: 4129: 4125: 4124: 4119: 4108: 4100: 4096: 4081: 4077: 4076: 4067: 4066: 4065: 4051: 4047: 4032: 4028: 4020: 4008: 4004: 3989: 3985: 3984: 3971: 3967: 3961: 3957: 3942: 3938: 3933: 3930: 3929: 3909: 3905: 3899: 3895: 3880: 3876: 3871: 3868: 3867: 3847: 3844: 3843: 3827: 3824: 3823: 3820: 3793: 3789: 3787: 3784: 3783: 3760: 3756: 3748: 3745: 3744: 3721: 3717: 3711: 3707: 3702: 3699: 3698: 3672: 3668: 3663: 3660: 3659: 3636: 3632: 3630: 3627: 3626: 3574: 3570: 3556: 3553: 3552: 3528: 3524: 3510: 3507: 3506: 3492: 3469: 3465: 3459: 3455: 3440: 3436: 3430: 3426: 3418: 3415: 3414: 3386: 3381: 3365: 3361: 3355: 3351: 3343: 3340: 3339: 3331:giving for all 3311: 3307: 3301: 3297: 3282: 3278: 3273: 3270: 3269: 3264: 3255: 3248: 3242: 3183: 3179: 3170: 3166: 3157: 3153: 3144: 3140: 3120: 3117: 3116: 3074: 3062: 3060:Generalizations 2999: 2902: 2889: 2886: 2878: 2875: 2845: 2839: 2832: 2815: 2814: 2803: 2799: 2794: 2785: 2781: 2770: 2761: 2757: 2749: 2740: 2736: 2724: 2720: 2715: 2706: 2702: 2701: 2697: 2687: 2686: 2675: 2662: 2653: 2649: 2637: 2626: 2617: 2613: 2612: 2608: 2607: 2591: 2582: 2578: 2566: 2555: 2546: 2542: 2541: 2537: 2524: 2515: 2511: 2499: 2488: 2479: 2475: 2474: 2470: 2458: 2445: 2436: 2432: 2420: 2409: 2400: 2396: 2395: 2391: 2390: 2389: 2385: 2375: 2374: 2353: 2349: 2341: 2332: 2328: 2320: 2311: 2307: 2287: 2272: 2265: 2261: 2253: 2244: 2240: 2232: 2223: 2219: 2196: 2181: 2166: 2165: 2161: 2153: 2144: 2140: 2132: 2123: 2119: 2108: 2107: 2086: 2082: 2074: 2065: 2061: 2053: 2044: 2040: 2011: 1996: 1995: 1991: 1983: 1974: 1970: 1962: 1953: 1949: 1922: 1918: 1910: 1901: 1897: 1889: 1880: 1876: 1866: 1865: 1849: 1834: 1830: 1819: 1804: 1800: 1789: 1774: 1770: 1769: 1765: 1760: 1758: 1755: 1754: 1747: 1743: 1734: 1725: 1721: 1714: 1682: 1674: 1660: 1652: 1638: 1630: 1616: 1608: 1594: 1586: 1572: 1564: 1560: 1556: 1554: 1551: 1550: 1511: 1510: 1502: 1493: 1489: 1444: 1440: 1429: 1420: 1416: 1404: 1393: 1384: 1380: 1373: 1365: 1356: 1352: 1349: 1348: 1340: 1331: 1327: 1282: 1278: 1267: 1258: 1254: 1242: 1231: 1222: 1218: 1211: 1203: 1194: 1190: 1186: 1184: 1181: 1180: 1158: 1154: 1146: 1141: 1133: 1126: 1120: 1086: 1082: 1077: 1068: 1064: 1055: 1051: 1040: 1031: 1027: 1025: 1022: 1021: 984: 975: 971: 963: 954: 950: 906: 897: 893: 891: 888: 887: 852: 848: 843: 834: 830: 821: 817: 806: 797: 793: 791: 788: 787: 755: 744: 726: 632: 621: 611: 572: 563: 559: 547: 536: 527: 523: 512: 503: 499: 497: 494: 493: 456: 447: 443: 431: 420: 411: 407: 396: 387: 383: 381: 378: 377: 361: 355: 348: 342: 332: 288: 285: 278: 275: 264: 261: 254: 251: 244: 241: 88: 77: 71: 68: 58:Please help to 57: 41: 37: 28: 23: 22: 15: 12: 11: 5: 11011: 11001: 11000: 10995: 10990: 10985: 10968: 10967: 10965: 10964: 10958: 10955: 10954: 10952: 10951: 10946: 10944:Phylogeography 10941: 10936: 10934:Microevolution 10931: 10922: 10917: 10912: 10907: 10902: 10896: 10894: 10893:Related topics 10890: 10889: 10887: 10886: 10881: 10876: 10870: 10868: 10864: 10863: 10861: 10860: 10855: 10850: 10848:Founder effect 10845: 10840: 10834: 10832: 10826: 10825: 10823: 10822: 10817: 10811: 10809: 10804: 10801: 10800: 10798: 10797: 10792: 10787: 10782: 10776: 10774: 10768: 10767: 10765: 10764: 10759: 10754: 10749: 10744: 10739: 10734: 10729: 10727:Price equation 10724: 10719: 10717:Neutral theory 10714: 10709: 10704: 10699: 10694: 10688: 10686: 10682: 10681: 10674: 10673: 10666: 10659: 10651: 10645: 10644: 10639: 10627: 10622: 10613: 10608: 10603: 10598: 10588: 10587:External links 10585: 10583: 10582: 10555: 10525:10.1086/429864 10504: 10491: 10444: 10413: 10373: 10344: 10300:(706): 49–50. 10282: 10233: 10226: 10200:(4): 627–642. 10189: 10175: 10124: 10110: 10108: 10105: 10102: 10101: 10092: 10083: 10056:(4): 421–428. 10040: 10018: 9989:(3): 821–825. 9975:Crow, James F. 9966: 9957: 9948: 9939: 9930: 9894: 9864:(3): 694–703. 9848: 9821:(4): 627–642. 9802: 9761:Human Heredity 9747: 9692: 9663:(5): 395–399. 9643: 9634: 9615: 9557: 9556: 9554: 9551: 9549: 9546: 9543: 9542: 9524: 9523: 9521: 9518: 9517: 9516: 9511: 9506: 9501: 9496: 9491: 9486: 9481: 9476: 9474:Founder effect 9471: 9466: 9461: 9456: 9444: 9439: 9435: 9431: 9428: 9425: 9422: 9419: 9416: 9413: 9410: 9407: 9404: 9401: 9398: 9395: 9390: 9386: 9382: 9368: 9363: 9361:Wahlund effect 9358: 9356:QST_(genetics) 9353: 9351:Fixation index 9348: 9341: 9338: 9293: 9290: 9271: 9268: 9254: 9253: 9236: 9233: 9228: 9225: 9222: 9219: 9216: 9215: 9210: 9207: 9202: 9199: 9196: 9193: 9190: 9187: 9184: 9183: 9157: 9154: 9149: 9146: 9118: 9115: 9101: 9100: 9085: 9082: 9079: 9076: 9073: 9070: 9068: 9063: 9060: 9055: 9052: 9049: 9047: 9042: 9039: 9034: 9029: 9025: 9021: 9019: 8995: 8992: 8989: 8961: 8958: 8936: 8933: 8929: 8928: 8916: 8913: 8908: 8904: 8898: 8894: 8890: 8885: 8880: 8876: 8872: 8867: 8863: 8848: 8847: 8835: 8832: 8829: 8826: 8823: 8820: 8817: 8814: 8809: 8805: 8801: 8796: 8792: 8788: 8785: 8780: 8776: 8761: 8760: 8745: 8742: 8737: 8733: 8729: 8726: 8723: 8720: 8717: 8714: 8712: 8708: 8704: 8700: 8699: 8696: 8693: 8690: 8687: 8684: 8681: 8678: 8675: 8672: 8669: 8666: 8663: 8660: 8657: 8654: 8652: 8648: 8644: 8640: 8637: 8636: 8633: 8630: 8625: 8621: 8617: 8614: 8611: 8608: 8605: 8602: 8600: 8596: 8592: 8588: 8587: 8584: 8581: 8578: 8573: 8570: 8565: 8562: 8560: 8558: 8555: 8554: 8540: 8539: 8527: 8524: 8521: 8518: 8515: 8510: 8506: 8502: 8497: 8493: 8478: 8477: 8465: 8462: 8459: 8456: 8453: 8450: 8447: 8444: 8441: 8438: 8435: 8432: 8429: 8426: 8412: 8411: 8396: 8393: 8388: 8385: 8380: 8377: 8375: 8373: 8370: 8369: 8366: 8363: 8358: 8354: 8351: 8348: 8342: 8339: 8337: 8335: 8332: 8329: 8328: 8325: 8322: 8317: 8314: 8309: 8306: 8304: 8302: 8299: 8298: 8287: 8286: 8271: 8268: 8265: 8263: 8261: 8257: 8254: 8251: 8248: 8245: 8242: 8239: 8235: 8231: 8223: 8219: 8216: 8213: 8209: 8206: 8198: 8194: 8191: 8188: 8184: 8181: 8178: 8175: 8167: 8163: 8160: 8157: 8152: 8149: 8147: 8140: 8139: 8115: 8112: 8110: 8107: 8091: 8088: 8085: 8081: 8075: 8072: 8069: 8065: 8061: 8056: 8051: 8048: 8045: 8041: 8028: 8027: 8010: 8007: 8004: 8000: 7996: 7991: 7988: 7985: 7981: 7976: 7970: 7965: 7962: 7959: 7955: 7951: 7948: 7946: 7944: 7941: 7938: 7935: 7930: 7927: 7924: 7920: 7915: 7909: 7904: 7901: 7898: 7894: 7890: 7885: 7882: 7879: 7875: 7871: 7868: 7863: 7860: 7857: 7853: 7849: 7844: 7841: 7838: 7834: 7830: 7827: 7825: 7823: 7820: 7819: 7794: 7790: 7785: 7782: 7779: 7775: 7752: 7749: 7744: 7741: 7738: 7734: 7711: 7708: 7703: 7700: 7697: 7693: 7670: 7667: 7662: 7659: 7656: 7652: 7639: 7638: 7621: 7618: 7615: 7611: 7607: 7602: 7597: 7594: 7591: 7587: 7583: 7578: 7575: 7572: 7568: 7562: 7559: 7556: 7552: 7548: 7545: 7540: 7535: 7532: 7529: 7525: 7521: 7518: 7516: 7514: 7509: 7506: 7503: 7499: 7495: 7490: 7486: 7482: 7479: 7477: 7475: 7472: 7471: 7457: 7456: 7442: 7439: 7436: 7432: 7428: 7423: 7419: 7415: 7412: 7388: 7385: 7382: 7378: 7374: 7369: 7365: 7361: 7358: 7334: 7331: 7328: 7324: 7320: 7315: 7311: 7307: 7304: 7279: 7266: 7265: 7248: 7243: 7237: 7234: 7231: 7227: 7223: 7218: 7215: 7212: 7208: 7203: 7198: 7195: 7193: 7191: 7186: 7181: 7175: 7172: 7169: 7165: 7161: 7158: 7155: 7152: 7149: 7144: 7141: 7138: 7134: 7130: 7127: 7124: 7120: 7115: 7112: 7110: 7108: 7103: 7098: 7094: 7089: 7086: 7083: 7079: 7075: 7072: 7069: 7066: 7061: 7058: 7055: 7051: 7047: 7044: 7039: 7035: 7031: 7028: 7025: 7022: 7017: 7014: 7011: 7007: 7003: 7000: 6997: 6994: 6989: 6986: 6983: 6979: 6975: 6972: 6967: 6963: 6959: 6956: 6952: 6947: 6944: 6942: 6940: 6935: 6931: 6925: 6921: 6917: 6914: 6911: 6908: 6903: 6899: 6895: 6890: 6886: 6882: 6879: 6876: 6873: 6871: 6867: 6863: 6859: 6858: 6832: 6829: 6826: 6822: 6818: 6794: 6791: 6788: 6784: 6780: 6756: 6752: 6728: 6691: 6688: 6684:William Castle 6664: 6663: 6639: 6633: 6626: 6609: 6608: 6601: 6594: 6587: 6529: 6528: 6460: 6457: 6455:is undefined. 6442: 6439: 6436: 6433: 6430: 6427: 6424: 6418: 6412: 6392: 6389: 6386: 6381: 6378: 6375: 6372: 6369: 6366: 6363: 6357: 6351: 6328: 6325: 6322: 6311: 6310: 6298: 6295: 6290: 6287: 6282: 6279: 6276: 6273: 6258: 6257: 6246: 6243: 6240: 6237: 6234: 6231: 6223: 6220: 6217: 6214: 6211: 6197: 6196: 6184: 6178: 6175: 6167: 6164: 6161: 6158: 6155: 6150: 6147: 6139: 6136: 6133: 6130: 6127: 6121: 6118: 6115: 6109: 6106: 6098: 6095: 6092: 6089: 6086: 6081: 6078: 6070: 6067: 6064: 6061: 6058: 6055: 6051: 6048: 6040: 6037: 6034: 6030: 6027: 6021: 6018: 5987: 5975: 5972: 5956: 5952: 5931: 5928: 5925: 5905: 5902: 5899: 5896: 5891: 5886: 5883: 5880: 5877: 5874: 5871: 5866: 5862: 5841: 5838: 5835: 5832: 5827: 5822: 5819: 5816: 5813: 5810: 5807: 5802: 5798: 5777: 5757: 5754: 5751: 5748: 5745: 5742: 5735: 5730: 5727: 5723: 5719: 5716: 5711: 5706: 5703: 5700: 5697: 5677: 5655: 5641: 5638: 5620: 5619: 5616: 5612: 5611: 5608: 5604: 5603: 5600: 5596: 5595: 5592: 5588: 5587: 5584: 5580: 5579: 5576: 5572: 5571: 5568: 5564: 5563: 5560: 5556: 5555: 5552: 5548: 5547: 5544: 5540: 5539: 5536: 5532: 5531: 5528: 5524: 5523: 5520: 5516: 5515: 5512: 5508: 5507: 5504: 5500: 5499: 5496: 5492: 5491: 5488: 5484: 5483: 5480: 5476: 5475: 5472: 5427: 5423: 5419: 5414: 5410: 5406: 5403: 5398: 5394: 5381: 5374: 5367: 5360: 5354: 5353: 5342: 5335: 5331: 5326: 5318: 5310: 5306: 5302: 5297: 5293: 5287: 5284: 5278: 5271: 5263: 5259: 5255: 5250: 5246: 5242: 5237: 5233: 5228: 5223: 5216: 5213: 5208: 5204: 5200: 5195: 5191: 5187: 5184: 5181: 5155: 5152: 5132: 5131: 5116: 5113: 5110: 5108: 5106: 5103: 5100: 5097: 5094: 5091: 5088: 5085: 5083: 5081: 5076: 5070: 5066: 5062: 5059: 5056: 5053: 5047: 5042: 5036: 5032: 5028: 5025: 5022: 5019: 5013: 5008: 5002: 4998: 4994: 4991: 4988: 4985: 4979: 4976: 4974: 4972: 4967: 4961: 4957: 4953: 4950: 4947: 4944: 4938: 4935: 4932: 4930: 4926: 4922: 4918: 4917: 4900: 4899: 4884: 4881: 4878: 4875: 4870: 4866: 4862: 4859: 4854: 4850: 4846: 4843: 4841: 4839: 4831: 4827: 4824: 4821: 4817: 4816: 4813: 4810: 4807: 4804: 4801: 4798: 4795: 4792: 4789: 4786: 4783: 4780: 4777: 4774: 4771: 4768: 4766: 4764: 4756: 4752: 4749: 4746: 4742: 4741: 4738: 4735: 4732: 4729: 4724: 4720: 4716: 4713: 4708: 4704: 4700: 4697: 4695: 4693: 4685: 4681: 4678: 4675: 4671: 4670: 4652: 4651: 4636: 4633: 4630: 4628: 4626: 4623: 4620: 4617: 4614: 4611: 4609: 4607: 4604: 4601: 4598: 4595: 4592: 4590: 4588: 4585: 4584: 4570: 4569: 4554: 4551: 4548: 4546: 4544: 4541: 4536: 4533: 4528: 4525: 4523: 4521: 4518: 4512: 4509: 4506: 4503: 4500: 4497: 4494: 4491: 4488: 4483: 4480: 4477: 4474: 4471: 4465: 4462: 4460: 4458: 4455: 4449: 4446: 4438: 4434: 4431: 4428: 4424: 4421: 4413: 4409: 4406: 4403: 4399: 4396: 4388: 4384: 4381: 4378: 4374: 4371: 4368: 4363: 4355: 4351: 4348: 4345: 4341: 4338: 4330: 4326: 4323: 4320: 4316: 4313: 4307: 4304: 4302: 4300: 4297: 4296: 4280: 4279: 4276: 4273: 4270: 4267: 4263: 4262: 4259: 4256: 4253: 4250: 4220:(1971) on the 4213: 4210: 4177: 4174: 4173: 4172: 4157: 4153: 4147: 4143: 4139: 4132: 4128: 4122: 4118: 4111: 4103: 4099: 4095: 4092: 4089: 4084: 4080: 4075: 4070: 4062: 4059: 4054: 4050: 4046: 4043: 4040: 4035: 4031: 4027: 4023: 4019: 4011: 4007: 4003: 4000: 3997: 3992: 3988: 3983: 3979: 3974: 3970: 3964: 3960: 3956: 3953: 3950: 3945: 3941: 3937: 3912: 3908: 3902: 3898: 3894: 3891: 3888: 3883: 3879: 3875: 3851: 3831: 3819: 3816: 3810: 3809: 3796: 3792: 3781: 3777: 3776: 3763: 3759: 3755: 3752: 3742: 3738: 3737: 3724: 3720: 3714: 3710: 3706: 3696: 3692: 3691: 3680: 3675: 3671: 3667: 3657: 3653: 3652: 3639: 3635: 3624: 3620: 3619: 3616: 3592: 3591: 3577: 3573: 3569: 3566: 3563: 3560: 3546: 3545: 3531: 3527: 3523: 3520: 3517: 3514: 3491: 3488: 3487: 3486: 3472: 3468: 3462: 3458: 3454: 3451: 3448: 3443: 3439: 3433: 3429: 3425: 3422: 3404: 3403: 3389: 3384: 3380: 3376: 3373: 3368: 3364: 3358: 3354: 3350: 3347: 3329: 3328: 3314: 3310: 3304: 3300: 3296: 3293: 3290: 3285: 3281: 3277: 3260: 3253: 3244: 3240: 3237: 3236: 3224: 3221: 3218: 3215: 3212: 3209: 3206: 3203: 3200: 3197: 3194: 3191: 3186: 3182: 3178: 3173: 3169: 3165: 3160: 3156: 3152: 3147: 3143: 3139: 3136: 3133: 3130: 3127: 3124: 3073: 3070: 3061: 3058: 2998: 2995: 2991: 2990: 2980: 2977:Wahlund effect 2972: 2965: 2947: 2946: 2945:for all genes. 2928: 2927: 2924: 2921: 2918: 2915: 2912: 2909: 2901: 2898: 2887: 2876: 2866:organisms are 2849: = 1 2829: 2828: 2812: 2806: 2802: 2793: 2788: 2784: 2780: 2777: 2769: 2764: 2760: 2756: 2748: 2743: 2739: 2735: 2732: 2727: 2723: 2714: 2709: 2705: 2700: 2696: 2692: 2690: 2688: 2684: 2678: 2673: 2669: 2661: 2656: 2652: 2645: 2642: 2636: 2633: 2625: 2620: 2616: 2611: 2606: 2602: 2598: 2590: 2585: 2581: 2574: 2571: 2565: 2562: 2554: 2549: 2545: 2540: 2535: 2531: 2523: 2518: 2514: 2507: 2504: 2498: 2495: 2487: 2482: 2478: 2473: 2469: 2466: 2461: 2456: 2452: 2444: 2439: 2435: 2428: 2425: 2419: 2416: 2408: 2403: 2399: 2394: 2388: 2384: 2380: 2378: 2376: 2372: 2368: 2365: 2362: 2359: 2356: 2352: 2348: 2340: 2335: 2331: 2327: 2319: 2314: 2310: 2306: 2302: 2295: 2292: 2286: 2280: 2277: 2271: 2268: 2264: 2260: 2252: 2247: 2243: 2239: 2231: 2226: 2222: 2218: 2215: 2211: 2204: 2201: 2195: 2189: 2186: 2180: 2174: 2171: 2164: 2160: 2152: 2147: 2143: 2139: 2131: 2126: 2122: 2118: 2113: 2111: 2109: 2105: 2101: 2098: 2095: 2092: 2089: 2085: 2081: 2073: 2068: 2064: 2060: 2052: 2047: 2043: 2039: 2036: 2032: 2028: 2025: 2019: 2016: 2010: 2004: 2001: 1994: 1990: 1982: 1977: 1973: 1969: 1961: 1956: 1952: 1948: 1945: 1941: 1937: 1934: 1931: 1928: 1925: 1921: 1917: 1909: 1904: 1900: 1896: 1888: 1883: 1879: 1875: 1871: 1869: 1867: 1864: 1860: 1856: 1848: 1843: 1840: 1837: 1833: 1829: 1826: 1818: 1813: 1810: 1807: 1803: 1799: 1796: 1788: 1783: 1780: 1777: 1773: 1768: 1764: 1762: 1739: 1730: 1706: 1705: 1693: 1689: 1681: 1673: 1670: 1667: 1659: 1651: 1648: 1645: 1637: 1629: 1626: 1623: 1615: 1607: 1604: 1601: 1593: 1585: 1582: 1579: 1571: 1563: 1559: 1525: 1524: 1509: 1501: 1496: 1492: 1488: 1485: 1482: 1479: 1476: 1473: 1470: 1467: 1464: 1461: 1458: 1455: 1452: 1447: 1443: 1439: 1436: 1428: 1423: 1419: 1412: 1409: 1403: 1400: 1392: 1387: 1383: 1379: 1376: 1374: 1372: 1364: 1359: 1355: 1351: 1350: 1347: 1339: 1334: 1330: 1326: 1323: 1320: 1317: 1314: 1311: 1308: 1305: 1302: 1299: 1296: 1293: 1290: 1285: 1281: 1277: 1274: 1266: 1261: 1257: 1250: 1247: 1241: 1238: 1230: 1225: 1221: 1217: 1214: 1212: 1210: 1202: 1197: 1193: 1189: 1188: 1152: 1144: 1131: 1124: 1114: 1113: 1104: 1102: 1089: 1085: 1076: 1071: 1067: 1063: 1058: 1054: 1050: 1047: 1039: 1034: 1030: 1014: 1013: 1004: 1002: 991: 983: 978: 974: 970: 962: 957: 953: 949: 946: 943: 940: 937: 934: 931: 928: 925: 922: 919: 916: 913: 905: 900: 896: 880: 879: 870: 868: 855: 851: 842: 837: 833: 829: 824: 820: 816: 813: 805: 800: 796: 721: 720: 713: 706: 698: 697: 690: 683: 676: 672: 671: 664: 656: 655: 652: 641:Punnett square 602: 601: 592: 590: 579: 571: 566: 562: 555: 552: 546: 543: 535: 530: 526: 522: 519: 511: 506: 502: 486: 485: 476: 474: 463: 455: 450: 446: 439: 436: 430: 427: 419: 414: 410: 406: 403: 395: 390: 386: 359: 346: 331: 328: 286: 276: 262: 252: 242: 212:founder effect 145:, states that 90: 89: 44: 42: 35: 26: 9: 6: 4: 3: 2: 11010: 10999: 10996: 10994: 10991: 10989: 10986: 10984: 10981: 10980: 10978: 10963: 10960: 10959: 10956: 10950: 10947: 10945: 10942: 10940: 10937: 10935: 10932: 10930: 10926: 10923: 10921: 10918: 10916: 10913: 10911: 10908: 10906: 10903: 10901: 10898: 10897: 10895: 10891: 10885: 10884:Sewall Wright 10882: 10880: 10877: 10875: 10872: 10871: 10869: 10865: 10859: 10856: 10854: 10851: 10849: 10846: 10844: 10841: 10839: 10836: 10835: 10833: 10831: 10830:Genetic drift 10827: 10821: 10818: 10816: 10813: 10812: 10810: 10802: 10796: 10793: 10791: 10788: 10786: 10783: 10781: 10778: 10777: 10775: 10773: 10769: 10763: 10760: 10758: 10755: 10753: 10750: 10748: 10745: 10743: 10740: 10738: 10735: 10733: 10730: 10728: 10725: 10723: 10720: 10718: 10715: 10713: 10710: 10708: 10705: 10703: 10700: 10698: 10695: 10693: 10690: 10689: 10687: 10683: 10679: 10672: 10667: 10665: 10660: 10658: 10653: 10652: 10649: 10643: 10640: 10638: 10634: 10631: 10628: 10626: 10623: 10621: 10619: 10614: 10612: 10609: 10607: 10604: 10602: 10599: 10597: 10595: 10591: 10590: 10578: 10573: 10569: 10565: 10561: 10556: 10552: 10548: 10543: 10538: 10534: 10530: 10526: 10522: 10519:(5): 887–93. 10518: 10514: 10510: 10505: 10501: 10497: 10492: 10488: 10484: 10480: 10476: 10472: 10468: 10464: 10460: 10456: 10452: 10451: 10445: 10441: 10437: 10433: 10429: 10425: 10421: 10420: 10414: 10410: 10406: 10402: 10398: 10394: 10390: 10387:(8): 701–10. 10386: 10382: 10378: 10377:Masel, Joanna 10374: 10370: 10366: 10362: 10358: 10354: 10350: 10345: 10341: 10337: 10332: 10327: 10323: 10319: 10315: 10311: 10307: 10303: 10299: 10295: 10288: 10283: 10279: 10275: 10271: 10267: 10263: 10259: 10255: 10251: 10248:(2): 361–72. 10247: 10243: 10239: 10234: 10231: 10227: 10223: 10219: 10215: 10211: 10207: 10203: 10199: 10195: 10190: 10188: 10187:0-521-77544-2 10184: 10180: 10176: 10172: 10168: 10163: 10158: 10154: 10150: 10146: 10142: 10138: 10134: 10130: 10125: 10121: 10117: 10112: 10111: 10099:Edwards, 1977 10096: 10087: 10079: 10075: 10071: 10067: 10063: 10059: 10055: 10051: 10044: 10036: 10032: 10028: 10022: 10014: 10010: 10005: 10000: 9996: 9992: 9988: 9984: 9980: 9976: 9970: 9961: 9955:Pearson, 1903 9952: 9943: 9934: 9928: 9922: 9917: 9913: 9909: 9905: 9898: 9892: 9887: 9883: 9879: 9875: 9871: 9867: 9863: 9859: 9852: 9844: 9840: 9836: 9832: 9828: 9824: 9820: 9816: 9809: 9807: 9798: 9794: 9790: 9786: 9782: 9778: 9774: 9770: 9766: 9762: 9758: 9751: 9743: 9739: 9735: 9731: 9727: 9723: 9719: 9715: 9711: 9707: 9703: 9696: 9688: 9684: 9680: 9676: 9671: 9666: 9662: 9658: 9654: 9647: 9638: 9630: 9626: 9619: 9611: 9607: 9602: 9597: 9593: 9589: 9585: 9581: 9577: 9573: 9569: 9562: 9558: 9539: 9535: 9529: 9525: 9515: 9512: 9510: 9507: 9505: 9502: 9500: 9497: 9495: 9492: 9490: 9487: 9485: 9484:Genetic drift 9482: 9480: 9477: 9475: 9472: 9470: 9467: 9465: 9462: 9460: 9457: 9437: 9429: 9426: 9423: 9417: 9411: 9408: 9405: 9399: 9396: 9393: 9388: 9384: 9372: 9369: 9367: 9364: 9362: 9359: 9357: 9354: 9352: 9349: 9347: 9344: 9343: 9337: 9335: 9331: 9327: 9323: 9319: 9315: 9311: 9303: 9298: 9289: 9286: 9269: 9266: 9234: 9231: 9226: 9223: 9220: 9217: 9208: 9205: 9200: 9197: 9194: 9191: 9188: 9185: 9174: 9173: 9172: 9155: 9152: 9147: 9144: 9135: 9116: 9113: 9083: 9080: 9077: 9074: 9071: 9061: 9058: 9053: 9050: 9040: 9037: 9032: 9027: 9023: 9010: 9009: 9008: 8993: 8990: 8987: 8978: 8959: 8956: 8944: 8942: 8932: 8914: 8911: 8906: 8902: 8896: 8892: 8888: 8883: 8878: 8874: 8870: 8865: 8861: 8853: 8852: 8851: 8833: 8830: 8827: 8824: 8821: 8818: 8815: 8812: 8807: 8803: 8799: 8794: 8790: 8786: 8783: 8778: 8774: 8766: 8765: 8764: 8743: 8740: 8735: 8727: 8724: 8721: 8715: 8713: 8706: 8702: 8694: 8691: 8685: 8682: 8679: 8670: 8667: 8664: 8658: 8655: 8653: 8646: 8642: 8638: 8631: 8628: 8623: 8615: 8612: 8609: 8603: 8601: 8594: 8590: 8579: 8576: 8571: 8568: 8563: 8561: 8556: 8545: 8544: 8543: 8525: 8522: 8519: 8516: 8513: 8508: 8504: 8500: 8495: 8491: 8483: 8482: 8481: 8463: 8460: 8457: 8454: 8451: 8448: 8445: 8442: 8439: 8436: 8433: 8430: 8427: 8424: 8417: 8416: 8415: 8394: 8391: 8386: 8383: 8378: 8376: 8371: 8364: 8361: 8356: 8352: 8349: 8346: 8340: 8338: 8333: 8330: 8323: 8320: 8315: 8312: 8307: 8305: 8300: 8289: 8288: 8269: 8266: 8264: 8255: 8252: 8249: 8246: 8243: 8240: 8237: 8233: 8207: 8182: 8179: 8176: 8150: 8148: 8130: 8129: 8128: 8126: 8122: 8106: 8089: 8086: 8083: 8079: 8073: 8070: 8067: 8063: 8059: 8054: 8049: 8046: 8043: 8039: 8008: 8005: 8002: 7998: 7994: 7989: 7986: 7983: 7979: 7974: 7968: 7963: 7960: 7957: 7953: 7949: 7947: 7936: 7933: 7928: 7925: 7922: 7918: 7913: 7907: 7902: 7899: 7896: 7892: 7888: 7883: 7880: 7877: 7873: 7869: 7866: 7861: 7858: 7855: 7851: 7842: 7839: 7836: 7832: 7828: 7826: 7821: 7810: 7809: 7808: 7792: 7788: 7783: 7780: 7777: 7773: 7750: 7747: 7742: 7739: 7736: 7732: 7709: 7706: 7701: 7698: 7695: 7691: 7668: 7665: 7660: 7657: 7654: 7650: 7619: 7616: 7613: 7609: 7605: 7600: 7595: 7592: 7589: 7585: 7581: 7576: 7573: 7570: 7566: 7560: 7557: 7554: 7550: 7546: 7543: 7538: 7533: 7530: 7527: 7523: 7519: 7517: 7507: 7504: 7501: 7497: 7493: 7488: 7484: 7480: 7478: 7473: 7462: 7461: 7460: 7440: 7437: 7434: 7430: 7426: 7421: 7417: 7413: 7410: 7386: 7383: 7380: 7376: 7372: 7367: 7363: 7359: 7356: 7332: 7329: 7326: 7322: 7318: 7313: 7309: 7305: 7302: 7294: 7293: 7292: 7277: 7246: 7241: 7235: 7232: 7229: 7225: 7221: 7216: 7213: 7210: 7206: 7201: 7196: 7194: 7184: 7179: 7173: 7170: 7167: 7163: 7159: 7153: 7147: 7142: 7139: 7136: 7132: 7125: 7118: 7113: 7111: 7101: 7096: 7087: 7084: 7081: 7077: 7073: 7067: 7059: 7056: 7053: 7049: 7045: 7042: 7037: 7033: 7026: 7023: 7015: 7012: 7009: 7005: 7001: 6995: 6987: 6984: 6981: 6977: 6973: 6970: 6965: 6961: 6954: 6950: 6945: 6943: 6933: 6923: 6919: 6912: 6909: 6901: 6897: 6893: 6888: 6884: 6877: 6874: 6872: 6865: 6861: 6849: 6848: 6847: 6830: 6827: 6824: 6820: 6816: 6792: 6789: 6786: 6782: 6778: 6754: 6750: 6726: 6717: 6713: 6709: 6705: 6701: 6697: 6687: 6685: 6681: 6677: 6673: 6669: 6662: 6659: 6656: 6652: 6648: 6645: 6638: 6632: 6629: =  6625: 6621: 6618: =  6617: 6614: 6611: 6610: 6607: 6600: 6593: 6586: 6582: 6579: +  6578: 6574: 6571: +  6570: 6566: 6563: +  6562: 6558: 6555: +  6554: 6550: 6545: 6541: 6537: 6534: 6531: 6530: 6527: 6523: 6522: 6521: 6519: 6515: 6511: 6507: 6506:mathematician 6504: 6500: 6496: 6492: 6489: =  6488: 6484: 6480: 6476: 6473: 6469: 6465: 6456: 6440: 6437: 6434: 6431: 6428: 6425: 6422: 6410: 6387: 6384: 6379: 6376: 6373: 6370: 6367: 6364: 6361: 6349: 6340: 6326: 6323: 6320: 6296: 6293: 6288: 6285: 6280: 6277: 6274: 6271: 6263: 6262: 6261: 6244: 6241: 6238: 6235: 6218: 6212: 6202: 6201: 6200: 6182: 6162: 6156: 6134: 6128: 6119: 6116: 6113: 6093: 6087: 6065: 6059: 6053: 6035: 6028: 6019: 6016: 6008: 6007: 6006: 6004: 6002: 5985: 5971: 5954: 5950: 5929: 5926: 5923: 5900: 5897: 5884: 5881: 5875: 5869: 5864: 5860: 5836: 5833: 5820: 5817: 5811: 5805: 5800: 5796: 5775: 5752: 5749: 5746: 5740: 5728: 5725: 5717: 5704: 5701: 5695: 5675: 5637: 5635: 5631: 5626: 5617: 5614: 5613: 5609: 5606: 5605: 5601: 5598: 5597: 5593: 5590: 5589: 5585: 5582: 5581: 5577: 5574: 5573: 5569: 5566: 5565: 5561: 5558: 5557: 5553: 5550: 5549: 5545: 5542: 5541: 5537: 5534: 5533: 5529: 5526: 5525: 5521: 5518: 5517: 5513: 5510: 5509: 5505: 5502: 5501: 5497: 5494: 5493: 5489: 5486: 5485: 5481: 5478: 5477: 5473: 5470: 5469: 5465: 5461: 5455: 5453: 5449: 5445: 5441: 5425: 5421: 5417: 5412: 5408: 5404: 5401: 5396: 5392: 5380: 5373: 5366: 5359: 5340: 5333: 5329: 5324: 5308: 5304: 5300: 5295: 5291: 5285: 5282: 5261: 5257: 5253: 5248: 5244: 5240: 5235: 5231: 5226: 5214: 5206: 5202: 5198: 5193: 5189: 5182: 5179: 5172: 5171: 5170: 5168: 5164: 5160: 5151: 5149: 5145: 5141: 5137: 5114: 5111: 5109: 5101: 5098: 5095: 5092: 5089: 5086: 5084: 5074: 5068: 5060: 5057: 5054: 5045: 5040: 5034: 5026: 5023: 5020: 5011: 5006: 5000: 4992: 4989: 4986: 4977: 4975: 4965: 4959: 4951: 4948: 4945: 4936: 4933: 4931: 4924: 4920: 4908: 4907: 4906: 4904: 4882: 4879: 4876: 4873: 4868: 4864: 4860: 4857: 4852: 4848: 4844: 4842: 4811: 4808: 4805: 4802: 4799: 4796: 4793: 4790: 4787: 4784: 4781: 4778: 4775: 4772: 4769: 4767: 4736: 4733: 4730: 4727: 4722: 4718: 4714: 4711: 4706: 4702: 4698: 4696: 4661: 4660: 4659: 4657: 4634: 4631: 4629: 4621: 4618: 4615: 4612: 4610: 4602: 4599: 4596: 4593: 4591: 4586: 4575: 4574: 4573: 4552: 4549: 4547: 4534: 4531: 4526: 4524: 4507: 4504: 4501: 4498: 4495: 4489: 4486: 4481: 4478: 4475: 4472: 4469: 4463: 4461: 4422: 4397: 4369: 4366: 4339: 4314: 4311: 4305: 4303: 4298: 4287: 4286: 4285: 4277: 4274: 4271: 4268: 4265: 4264: 4260: 4257: 4254: 4251: 4248: 4247: 4241: 4239: 4235: 4231: 4227: 4223: 4219: 4209: 4207: 4203: 4199: 4195: 4191: 4187: 4183: 4155: 4151: 4145: 4141: 4137: 4130: 4126: 4120: 4116: 4101: 4097: 4093: 4090: 4087: 4082: 4078: 4073: 4060: 4057: 4052: 4048: 4044: 4041: 4038: 4033: 4029: 4025: 4017: 4009: 4005: 4001: 3998: 3995: 3990: 3986: 3981: 3977: 3972: 3962: 3958: 3954: 3951: 3948: 3943: 3939: 3928: 3927: 3926: 3910: 3900: 3896: 3892: 3889: 3886: 3881: 3877: 3865: 3849: 3829: 3815: 3794: 3790: 3782: 3779: 3778: 3761: 3757: 3753: 3750: 3743: 3740: 3739: 3722: 3718: 3712: 3708: 3704: 3697: 3694: 3693: 3678: 3673: 3669: 3665: 3658: 3655: 3654: 3637: 3633: 3625: 3622: 3621: 3617: 3614: 3613: 3607: 3605: 3601: 3597: 3575: 3567: 3564: 3561: 3551: 3550: 3549: 3529: 3521: 3518: 3515: 3505: 3504: 3503: 3501: 3497: 3470: 3466: 3460: 3456: 3452: 3449: 3441: 3437: 3431: 3427: 3420: 3413: 3412: 3411: 3409: 3408:heterozygotes 3387: 3382: 3378: 3374: 3366: 3362: 3356: 3352: 3345: 3338: 3337: 3336: 3334: 3312: 3302: 3298: 3294: 3291: 3288: 3283: 3279: 3268: 3267: 3266: 3263: 3259: 3252: 3247: 3222: 3219: 3216: 3213: 3210: 3207: 3204: 3201: 3198: 3195: 3192: 3189: 3184: 3180: 3176: 3171: 3167: 3163: 3158: 3154: 3150: 3145: 3137: 3134: 3131: 3128: 3125: 3115: 3114: 3113: 3111: 3108: +  3107: 3104: +  3103: 3099: 3096: +  3095: 3091: 3087: 3078: 3069: 3067: 3057: 3053: 3051: 3047: 3043: 3038: 3036: 3032: 3028: 3024: 3020: 3016: 3012: 3008: 3004: 2994: 2988: 2987:genetic drift 2984: 2981: 2978: 2973: 2969: 2966: 2963: 2959: 2955: 2952: 2951: 2950: 2944: 2940: 2936: 2935:Random mating 2933: 2932: 2931: 2925: 2922: 2919: 2916: 2913: 2910: 2907: 2906: 2905: 2897: 2895: 2885:sex 'chases' 2884: 2883:heterogametic 2873: 2869: 2868:heterogametic 2865: 2861: 2857: 2854:If in either 2852: 2848: 2842: 2835: 2810: 2804: 2786: 2782: 2778: 2762: 2758: 2741: 2737: 2733: 2730: 2725: 2707: 2703: 2698: 2694: 2691: 2682: 2676: 2671: 2654: 2650: 2643: 2640: 2634: 2618: 2614: 2609: 2604: 2600: 2583: 2579: 2572: 2569: 2563: 2547: 2543: 2538: 2533: 2516: 2512: 2505: 2502: 2496: 2480: 2476: 2471: 2467: 2464: 2459: 2454: 2437: 2433: 2426: 2423: 2417: 2401: 2397: 2392: 2386: 2382: 2379: 2370: 2366: 2363: 2360: 2357: 2354: 2350: 2333: 2329: 2312: 2308: 2304: 2300: 2293: 2290: 2284: 2278: 2275: 2269: 2266: 2262: 2245: 2241: 2224: 2220: 2216: 2213: 2209: 2202: 2199: 2193: 2187: 2184: 2178: 2172: 2169: 2162: 2145: 2141: 2124: 2120: 2116: 2112: 2103: 2099: 2096: 2093: 2090: 2087: 2083: 2066: 2062: 2045: 2041: 2037: 2034: 2030: 2026: 2023: 2017: 2014: 2008: 2002: 1999: 1992: 1975: 1971: 1954: 1950: 1946: 1943: 1939: 1935: 1932: 1929: 1926: 1923: 1919: 1902: 1898: 1881: 1877: 1873: 1870: 1862: 1858: 1841: 1838: 1835: 1831: 1827: 1811: 1808: 1805: 1801: 1797: 1781: 1778: 1775: 1771: 1766: 1753: 1752: 1751: 1742: 1738: 1733: 1729: 1717: 1712: 1691: 1679: 1668: 1657: 1646: 1635: 1624: 1613: 1602: 1591: 1580: 1569: 1557: 1549: 1548: 1547: 1545: 1541: 1537: 1533: 1530: 1494: 1490: 1486: 1483: 1480: 1474: 1471: 1468: 1462: 1459: 1456: 1453: 1450: 1445: 1441: 1437: 1421: 1417: 1410: 1407: 1401: 1385: 1381: 1377: 1375: 1357: 1353: 1332: 1328: 1324: 1321: 1318: 1312: 1309: 1306: 1300: 1297: 1294: 1291: 1288: 1283: 1279: 1275: 1259: 1255: 1248: 1245: 1239: 1223: 1219: 1215: 1213: 1195: 1191: 1179: 1178: 1177: 1175: 1174: 1169: 1168: 1161: 1151: 1147: 1139: 1130: 1123: 1112: 1105: 1103: 1087: 1069: 1065: 1061: 1056: 1052: 1048: 1032: 1028: 1020: 1019: 1012: 1005: 1003: 976: 972: 955: 951: 947: 944: 941: 938: 935: 932: 929: 926: 923: 920: 917: 914: 898: 894: 886: 885: 878: 871: 869: 853: 835: 831: 827: 822: 818: 814: 798: 794: 786: 785: 782: 779: 775: 771: 767: 763: 759: 751: 747: 741: 737: 733: 729: 718: 714: 711: 707: 704: 700: 699: 695: 691: 688: 684: 681: 677: 673: 669: 665: 662: 658: 657: 650: 644: 642: 628: 624: 618: 614: 608: 600: 593: 591: 564: 560: 553: 550: 544: 528: 524: 520: 504: 500: 492: 491: 484: 477: 475: 448: 444: 437: 434: 428: 412: 408: 404: 388: 384: 376: 375: 372: 370: 365: 358: 352: 345: 340: 337: 327: 325: 320: 316: 312: 307: 305: 301: 297: 296:heterozygotes 292: 282: 273: 268: 258: 248: 239: 235: 231: 226: 224: 223: 219: 215: 213: 208: 207: 202: 201: 196: 195: 194:meiotic drive 190: 189: 184: 183: 178: 177: 172: 171: 166: 165: 160: 159: 154: 153: 152:genetic drift 148: 144: 140: 136: 132: 128: 124: 116: 112: 108: 105: 101: 96: 86: 83: 75: 65: 61: 55: 54: 48: 43: 34: 33: 30: 19: 10900:Biogeography 10874:R. A. Fisher 10752:Heritability 10691: 10685:Key concepts 10617: 10593: 10567: 10563: 10516: 10512: 10499: 10495: 10454: 10448: 10423: 10417: 10384: 10380: 10352: 10348: 10297: 10293: 10245: 10241: 10229: 10197: 10193: 10178: 10139:(3): 821–5. 10136: 10132: 10119: 10115: 10095: 10086: 10053: 10049: 10043: 10034: 10030: 10021: 9986: 9982: 9969: 9960: 9951: 9946:Castle, 1903 9942: 9933: 9911: 9907: 9897: 9861: 9857: 9851: 9818: 9814: 9767:(1): 10–14. 9764: 9760: 9750: 9709: 9705: 9695: 9660: 9656: 9646: 9637: 9628: 9618: 9575: 9571: 9561: 9537: 9533: 9528: 9514:Genetic load 9346:F-statistics 9333: 9332:in his book 9314:ternary plot 9307: 9287: 9255: 9133: 9102: 8945: 8938: 8930: 8849: 8762: 8541: 8479: 8413: 8124: 8120: 8117: 8029: 7640: 7458: 7267: 6712:independence 6707: 6703: 6699: 6693: 6667: 6665: 6660: 6657: 6654: 6650: 6646: 6643: 6636: 6630: 6623: 6622:. And since 6619: 6615: 6612: 6605: 6598: 6591: 6584: 6580: 6576: 6572: 6568: 6564: 6560: 6556: 6552: 6547: 6543: 6539: 6535: 6532: 6524: 6490: 6486: 6483:Karl Pearson 6462: 6341: 6312: 6259: 6198: 6000: 5977: 5643: 5633: 5629: 5627: 5623: 5463: 5459: 5451: 5447: 5443: 5442: 5378: 5371: 5364: 5357: 5355: 5166: 5162: 5157: 5147: 5133: 4901: 4653: 4571: 4283: 4215: 4205: 4179: 3821: 3813: 3603: 3595: 3593: 3547: 3493: 3406:and for all 3405: 3330: 3261: 3257: 3250: 3245: 3238: 3109: 3105: 3101: 3097: 3093: 3085: 3083: 3063: 3054: 3049: 3045: 3039: 3034: 3030: 3026: 3022: 3018: 3010: 3006: 3000: 2992: 2948: 2943:homozygosity 2929: 2903: 2872:X chromosome 2853: 2846: 2840: 2833: 2830: 1740: 1736: 1731: 1727: 1715: 1707: 1543: 1539: 1535: 1526: 1171: 1165: 1159: 1149: 1142: 1137: 1128: 1121: 1117: 1106: 1006: 872: 780: 773: 769: 765: 761: 757: 749: 745: 742: 735: 731: 727: 724: 716: 709: 702: 693: 686: 679: 667: 660: 638: 626: 622: 616: 612: 594: 478: 363: 356: 350: 343: 333: 308: 303: 299: 290: 280: 266: 256: 246: 237: 233: 227: 216: 210: 204: 198: 192: 186: 180: 174: 168: 162: 156: 150: 142: 138: 134: 130: 126: 120: 110: 106: 78: 69: 50: 29: 10853:Coalescence 10027:Stern, Curt 9964:Hardy, 1908 9538:probability 9171:, to be 1. 6668:Hardy's law 6499:G. H. Hardy 6003:-statistics 5134:There is 1 4656:expectation 3333:homozygotes 2997:Sex linkage 2894:homogametic 311:G. H. Hardy 272:homozygotes 270:for the AA 158:mate choice 64:introducing 10977:Categories 10795:Ecological 10785:Artificial 10564:New Phytol 10502:: 368–382. 10242:Biometrics 10194:Biometrics 10122:: 233–242. 9937:Yule, 1902 9858:Biometrics 9815:Biometrics 9629:www.mun.ca 9548:References 6676:Curt Stern 5998:(see also 5444:An example 5150:rejected. 4249:Phenotype 4226:phenotypes 4218:E. B. Ford 4186:asymptotic 3618:Frequency 3066:polyploidy 3003:sex linked 2939:inbreeding 2856:monoecious 610:Length of 336:monoecious 330:Derivation 218:inbreeding 72:April 2020 47:references 10905:Evolution 10772:Selection 10533:0002-9297 10381:BioEssays 10369:123415153 10355:: 33–39. 10322:0036-8075 10262:0006-341X 10236:Guo, Sw; 10232:, London. 10153:0016-6731 9914:: 34–39. 9781:0001-5652 9726:1471-0064 9679:1018-4813 9592:0016-6731 9553:Citations 9534:frequency 9532:The term 9430:θ 9427:− 9412:θ 9409:− 9400:θ 9385:θ 9201:⋅ 9148:− 9081:− 8889:− 8514:− 8350:× 8247:× 8183:× 8087:− 8071:− 8047:− 8006:− 7995:− 7987:− 7961:− 7934:− 7926:− 7900:− 7881:− 7859:− 7840:− 7789:≠ 7781:− 7740:− 7699:− 7658:− 7617:− 7606:− 7593:− 7574:− 7558:− 7531:− 7505:− 7494:− 7438:− 7427:− 7384:− 7373:− 7330:− 7319:− 7233:− 7214:− 7171:− 7140:− 7085:− 7057:− 7043:∣ 7013:− 6985:− 6971:∣ 6828:− 6790:− 6583:), or as 6516:and held 6479:selection 6468:Udny Yule 6391:∞ 6388:− 6281:− 6213:⁡ 6157:⁡ 6129:⁡ 6120:− 6088:⁡ 6060:⁡ 6054:− 6029:⁡ 5924:ε 5901:ε 5837:ε 5834:≥ 5729:∈ 5199:∣ 5183:⁡ 5058:− 5024:− 4990:− 4949:− 4937:∑ 4921:χ 4874:× 4803:× 4797:× 4791:× 4728:× 4619:− 4600:− 4490:× 4473:× 4370:× 4315:× 4138:⋯ 4091:… 4042:⋯ 4018:∈ 3999:… 3982:∑ 3952:⋯ 3890:⋯ 3615:Genotype 3496:polyploid 3292:⋯ 2954:Selection 2864:dioecious 2860:dioecious 1529:dioecious 188:gene flow 10929:genomics 10867:Founders 10633:Archived 10551:15789306 10487:17788516 10409:28513167 10401:22576789 10340:17779291 10222:25856832 10171:10388804 10133:Genetics 10031:Genetics 10013:10388804 9983:Genetics 9977:(1999). 9886:12028776 9878:15339292 9843:25856832 9797:37599930 9789:16514241 9742:14031116 9734:16304600 9687:14872201 9610:18645201 9572:Genetics 9340:See also 9318:parabola 8744:0.00668. 8526:0.00382. 6472:American 5916:, where 5768:, where 4905:states: 4198:computer 3243:, ..., A 2968:Mutation 1532:diploids 654:Females 369:genotype 339:diploids 319:dominant 294:for the 289:(Aa) = 2 232:denoted 182:mutation 10780:Natural 10747:Fitness 10542:1199378 10479:1670409 10459:Bibcode 10450:Science 10428:Bibcode 10331:2582692 10302:Bibcode 10294:Science 10278:1637966 10270:2532296 10214:2556115 10162:1460671 10107:Sources 10078:8863631 10070:5673165 10004:1460671 9835:2556115 9601:2475721 9509:Fitness 9322:alleles 8915:0.00000 8834:1.00000 8828:0.00668 8822:0.15007 8816:0.84325 8695:0.15007 8632:0.84325 8580:0.07886 8569:0.15771 8464:1.00000 8458:0.00286 8452:0.15771 8446:0.83943 8395:0.00286 8365:0.15771 8324:0.83943 6670:in the 6510:cricket 6503:British 6459:History 4266:Number 3598:is the 2892:in the 2881:in the 1722:(AA,aa) 1170:) and ( 1148:(AA) = 1127:(AA) ≠ 625:= 0.6, 279:(aa) = 265:(AA) = 230:alleles 139:theorem 100:alleles 60:improve 10790:Sexual 10618:et al. 10549:  10539:  10531:  10485:  10477:  10407:  10399:  10367:  10338:  10328:  10320:  10276:  10268:  10260:  10220:  10212:  10185:  10169:  10159:  10151:  10076:  10068:  10037:: 1–5. 10011:  10001:  9884:  9876:  9841:  9833:  9795:  9787:  9779:  9740:  9732:  9724:  9685:  9677:  9608:  9598:  9590:  7402:, and 6714:, and 6706:, and 6297:0.023. 5618:1.000 5610:0.730 5602:0.474 5594:0.291 5586:0.151 5578:0.067 5570:0.034 5562:0.007 5554:0.001 5546:0.000 5538:0.000 5530:0.000 5522:0.000 5514:0.000 5506:0.000 5498:0.000 5490:0.000 5482:0.000 5356:where 5007:1467.4 4993:1467.4 4737:1467.4 4261:Total 4208:2005) 4206:et al. 4015:  3606:= 4): 3600:ploidy 3594:where 1542:, and 1162:> 1 1138:future 675:Males 362:(a) = 349:(A) = 255:(a) = 245:(A) = 147:allele 125:, the 49:, but 10475:JSTOR 10405:S2CID 10365:S2CID 10290:(PDF) 10266:JSTOR 10210:JSTOR 10074:S2CID 9908:Stats 9882:S2CID 9831:JSTOR 9793:S2CID 9738:S2CID 9520:Notes 7291:when 6289:141.2 5102:0.756 5096:0.073 5090:0.001 5041:141.2 5027:141.2 4865:0.046 4812:141.2 4800:0.046 4794:0.954 4719:0.954 4635:0.046 4622:0.954 4553:0.954 4278:1612 4269:1469 3780:aaaa 3741:Aaaa 3695:AAaa 3656:AAAa 3623:AAAA 3015:human 1713:with 629:= 0.4 141:, or 135:model 10927:and 10620:2005 10547:PMID 10529:ISSN 10483:PMID 10397:PMID 10336:PMID 10318:ISSN 10274:PMID 10258:ISSN 10218:PMID 10183:ISBN 10167:PMID 10149:ISSN 10066:PMID 10009:PMID 9874:PMID 9839:PMID 9785:PMID 9777:ISSN 9730:PMID 9722:ISSN 9683:PMID 9675:ISSN 9606:PMID 9588:ISSN 9041:2500 8960:2500 8850:and 8480:and 8387:1750 8357:1750 8316:1750 8313:1469 8270:1750 8238:1469 8123:and 7723:and 6808:and 6606:say. 6559:):2( 6501:, a 6438:> 5927:> 5898:< 5852:and 5632:and 5180:prob 5165:and 5115:0.83 4987:1469 4877:1612 4806:1612 4731:1612 4658:is: 4572:and 4535:3224 4532:3076 4496:1469 4476:1469 4272:138 4202:MCMC 3822:For 3502:of: 3092:of ( 3033:and 3021:and 3011:e.g. 3007:e.g. 2879:′(a) 1744:(aa) 1735:(AA) 1157:for 1155:(AA) 1134:(AA) 764:) = 715:aa ( 708:Aa ( 692:Aa ( 685:AA ( 354:and 313:and 302:and 250:and 236:and 220:and 109:and 10572:doi 10537:PMC 10521:doi 10467:doi 10436:doi 10424:200 10389:doi 10357:doi 10326:PMC 10310:doi 10250:doi 10202:doi 10157:PMC 10141:doi 10137:152 10058:doi 9999:PMC 9991:doi 9987:152 9916:doi 9866:doi 9823:doi 9769:doi 9714:doi 9665:doi 9596:PMC 9580:doi 9576:179 9103:As 8353:138 8250:138 8143:sum 7154:0.5 6702:, 2 6655:and 6575:):( 6286:138 5722:min 5615:28 5607:30 5599:26 5591:32 5583:24 5575:34 5567:22 5559:20 5551:18 5543:16 5535:14 5527:12 5519:10 5148:not 5075:3.4 5061:3.4 5021:138 4883:3.4 4502:138 4482:138 3866:of 3256:to 3112:). 3029:, 2 2890:(a) 2858:or 2836:+ 1 1724:is 1718:= 3 776:= 1 768:+ 2 752:= 1 738:= 1 730:+ 2 701:a ( 678:A ( 666:a ( 659:A ( 143:law 121:In 10979:: 10566:. 10562:. 10545:. 10535:. 10527:. 10517:76 10515:. 10511:. 10500:64 10498:. 10481:. 10473:. 10465:. 10455:97 10453:. 10434:. 10422:. 10403:. 10395:. 10385:34 10383:. 10363:. 10351:. 10334:. 10324:. 10316:. 10308:. 10298:28 10296:. 10292:. 10272:. 10264:. 10256:. 10246:48 10244:. 10216:. 10208:. 10198:36 10196:. 10165:. 10155:. 10147:. 10135:. 10131:. 10120:35 10118:. 10072:. 10064:. 10054:31 10052:. 10035:47 10033:. 10007:. 9997:. 9985:. 9981:. 9910:. 9906:. 9880:. 9872:. 9862:60 9860:. 9837:. 9829:. 9819:36 9817:. 9805:^ 9791:. 9783:. 9775:. 9765:61 9763:. 9759:. 9736:. 9728:. 9720:. 9708:. 9704:. 9681:. 9673:. 9661:12 9659:. 9655:. 9627:. 9604:. 9594:. 9586:. 9574:. 9570:. 9336:. 9300:A 9270:25 9235:25 9209:50 9156:50 9136:, 9117:50 9062:50 9007:. 8226:aa 8201:Aa 8170:AA 7807:: 7348:, 6682:. 6653:, 6649:, 6642:, 6620:pr 6604:, 6590::2 6567:)( 6546:. 6538::2 6403:; 6339:. 6226:Aa 6170:Aa 6142:Aa 6101:Aa 6073:Aa 6043:Aa 5636:. 5511:8 5503:6 5495:4 5487:2 5479:0 5440:. 5426:12 5413:11 5375:22 5370:, 5368:12 5363:, 5361:11 5334:12 5262:22 5249:12 5236:11 5194:12 4834:aa 4759:Aa 4688:AA 4441:aa 4416:Aa 4391:AA 4358:Aa 4333:AA 4275:5 3925:: 3410:: 3335:: 3265:; 3068:. 3031:pq 3013:, 2664:Aa 2628:aa 2593:Aa 2557:aa 2526:Aa 2490:AA 2447:Aa 2411:AA 2343:aa 2322:aa 2255:aa 2234:Aa 2155:Aa 2134:Aa 2076:aa 2055:AA 1985:Aa 1964:AA 1912:AA 1891:AA 1851:aa 1821:Aa 1791:AA 1748:Aa 1726:2 1684:aa 1676:aa 1662:aa 1654:Aa 1640:Aa 1632:Aa 1618:aa 1610:AA 1596:Aa 1588:AA 1574:AA 1566:AA 1544:aa 1540:Aa 1538:, 1536:AA 1431:Aa 1395:aa 1269:Aa 1233:AA 1042:aa 908:Aa 808:AA 772:+ 770:pq 760:+ 748:+ 734:+ 732:pq 719:) 712:) 710:qp 705:) 696:) 694:pq 689:) 682:) 670:) 663:) 635:). 615:, 574:Aa 538:aa 458:Aa 422:AA 291:pq 274:, 225:. 209:, 203:, 197:, 191:, 185:, 179:, 173:, 167:, 161:, 155:, 137:, 133:, 10670:e 10663:t 10656:v 10580:. 10574:: 10568:1 10553:. 10523:: 10489:. 10469:: 10461:: 10442:. 10438:: 10430:: 10411:. 10391:: 10371:. 10359:: 10353:2 10342:. 10312:: 10304:: 10280:. 10252:: 10224:. 10204:: 10173:. 10143:: 10080:. 10060:: 10015:. 9993:: 9924:. 9918:: 9912:3 9888:. 9868:: 9845:. 9825:: 9799:. 9771:: 9744:. 9716:: 9710:6 9689:. 9667:: 9631:. 9612:. 9582:: 9540:. 9455:) 9443:) 9438:2 9434:) 9424:1 9421:( 9418:, 9415:) 9406:1 9403:( 9397:2 9394:, 9389:2 9381:( 9267:1 9232:1 9227:= 9224:q 9221:p 9218:2 9206:1 9198:2 9195:= 9192:q 9189:p 9186:2 9153:1 9145:1 9134:p 9114:1 9084:q 9078:1 9075:= 9072:p 9059:1 9054:= 9051:q 9038:1 9033:= 9028:2 9024:q 8994:q 8991:p 8988:2 8957:1 8912:= 8907:1 8903:r 8897:1 8893:p 8884:2 8879:1 8875:q 8871:= 8866:1 8862:E 8831:= 8825:+ 8819:+ 8813:= 8808:1 8804:r 8800:+ 8795:1 8791:q 8787:2 8784:+ 8779:1 8775:p 8741:= 8736:2 8732:) 8728:r 8725:+ 8722:q 8719:( 8716:= 8707:1 8703:r 8692:= 8689:) 8686:r 8683:+ 8680:q 8677:( 8674:) 8671:q 8668:+ 8665:p 8662:( 8659:2 8656:= 8647:1 8643:q 8639:2 8629:= 8624:2 8620:) 8616:q 8613:+ 8610:p 8607:( 8604:= 8595:1 8591:p 8577:= 8572:2 8564:= 8557:q 8523:= 8520:r 8517:p 8509:2 8505:q 8501:= 8496:0 8492:E 8461:= 8455:+ 8449:+ 8443:= 8440:r 8437:+ 8434:q 8431:2 8428:+ 8425:p 8392:= 8384:5 8379:= 8372:r 8362:= 8347:2 8341:= 8334:q 8331:2 8321:= 8308:= 8301:p 8267:= 8256:5 8253:+ 8244:2 8241:+ 8234:= 8230:) 8222:( 8218:s 8215:b 8212:o 8208:+ 8205:) 8197:( 8193:s 8190:b 8187:o 8180:2 8177:+ 8174:) 8166:( 8162:s 8159:b 8156:o 8151:= 8125:q 8121:p 8090:1 8084:t 8080:r 8074:1 8068:t 8064:p 8060:= 8055:2 8050:1 8044:t 8040:q 8009:1 8003:t 7999:r 7990:1 7984:t 7980:p 7975:/ 7969:2 7964:1 7958:t 7954:q 7950:= 7940:) 7937:1 7929:1 7923:t 7919:p 7914:/ 7908:2 7903:1 7897:t 7893:q 7889:+ 7884:1 7878:t 7874:q 7870:2 7867:+ 7862:1 7856:t 7852:p 7848:( 7843:1 7837:t 7833:p 7829:= 7822:0 7793:0 7784:1 7778:t 7774:p 7751:1 7748:= 7743:1 7737:t 7733:r 7710:0 7707:= 7702:1 7696:t 7692:q 7669:0 7666:= 7661:1 7655:t 7651:p 7620:1 7614:t 7610:p 7601:2 7596:1 7590:t 7586:q 7582:+ 7577:1 7571:t 7567:q 7561:1 7555:t 7551:p 7547:2 7544:+ 7539:2 7534:1 7528:t 7524:p 7520:= 7508:1 7502:t 7498:p 7489:t 7485:p 7481:= 7474:0 7441:1 7435:t 7431:r 7422:t 7418:r 7414:= 7411:0 7387:1 7381:t 7377:q 7368:t 7364:q 7360:= 7357:0 7333:1 7327:t 7323:p 7314:t 7310:p 7306:= 7303:0 7278:t 7247:2 7242:) 7236:1 7230:t 7226:q 7222:+ 7217:1 7211:t 7207:p 7202:( 7197:= 7185:2 7180:) 7174:1 7168:t 7164:q 7160:2 7157:) 7151:( 7148:+ 7143:1 7137:t 7133:p 7129:) 7126:1 7123:( 7119:( 7114:= 7102:2 7097:) 7093:) 7088:1 7082:t 7078:a 7074:A 7071:( 7068:P 7065:) 7060:1 7054:t 7050:a 7046:A 7038:t 7034:A 7030:( 7027:P 7024:+ 7021:) 7016:1 7010:t 7006:A 7002:A 6999:( 6996:P 6993:) 6988:1 6982:t 6978:A 6974:A 6966:t 6962:A 6958:( 6955:P 6951:( 6946:= 6934:2 6930:) 6924:t 6920:A 6916:( 6913:P 6910:= 6907:) 6902:t 6898:A 6894:, 6889:t 6885:A 6881:( 6878:P 6875:= 6866:t 6862:p 6831:1 6825:t 6821:a 6817:A 6793:1 6787:t 6783:A 6779:A 6755:t 6751:A 6727:t 6708:r 6704:q 6700:p 6658:r 6651:q 6647:p 6640:1 6637:r 6634:1 6631:p 6627:1 6624:q 6616:q 6602:1 6599:r 6597:: 6595:1 6592:q 6588:1 6585:p 6581:r 6577:q 6573:r 6569:q 6565:q 6561:p 6557:q 6553:p 6551:( 6544:r 6542:: 6540:q 6536:p 6491:q 6487:p 6441:0 6435:O 6432:, 6429:0 6426:= 6423:E 6417:| 6411:F 6385:= 6380:0 6377:= 6374:O 6371:, 6368:0 6365:= 6362:E 6356:| 6350:F 6327:0 6324:= 6321:F 6294:= 6278:1 6275:= 6272:F 6245:q 6242:p 6239:2 6236:= 6233:) 6230:) 6222:( 6219:f 6216:( 6210:E 6183:, 6177:) 6174:) 6166:( 6163:f 6160:( 6154:E 6149:) 6146:) 6138:( 6135:f 6132:( 6126:O 6117:1 6114:= 6108:) 6105:) 6097:( 6094:f 6091:( 6085:E 6080:) 6077:) 6069:( 6066:f 6063:( 6057:O 6050:) 6047:) 6039:( 6036:f 6033:( 6026:E 6020:= 6017:F 6001:F 5986:F 5955:0 5951:H 5930:0 5904:} 5895:) 5890:M 5885:, 5882:p 5879:( 5876:d 5873:{ 5870:= 5865:1 5861:H 5840:} 5831:) 5826:M 5821:, 5818:p 5815:( 5812:d 5809:{ 5806:= 5801:0 5797:H 5776:d 5756:) 5753:q 5750:, 5747:p 5744:( 5741:d 5734:M 5726:q 5718:= 5715:) 5710:M 5705:, 5702:p 5699:( 5696:d 5676:p 5654:M 5634:p 5630:n 5464:p 5460:n 5452:p 5448:n 5422:n 5418:+ 5409:n 5405:2 5402:= 5397:1 5393:n 5382:1 5379:n 5372:n 5365:n 5358:n 5341:, 5330:n 5325:2 5317:) 5309:2 5305:n 5301:, 5296:1 5292:n 5286:n 5283:2 5277:( 5270:) 5258:n 5254:, 5245:n 5241:, 5232:n 5227:n 5222:( 5215:= 5212:] 5207:1 5203:n 5190:n 5186:[ 5167:q 5163:p 5112:= 5099:+ 5093:+ 5087:= 5069:2 5065:) 5055:5 5052:( 5046:+ 5035:2 5031:) 5018:( 5012:+ 5001:2 4997:) 4984:( 4978:= 4966:E 4960:2 4956:) 4952:E 4946:O 4943:( 4934:= 4925:2 4880:= 4869:2 4861:= 4858:n 4853:2 4849:q 4845:= 4838:) 4830:( 4826:p 4823:x 4820:E 4809:= 4788:2 4785:= 4782:n 4779:q 4776:p 4773:2 4770:= 4763:) 4755:( 4751:p 4748:x 4745:E 4734:= 4723:2 4715:= 4712:n 4707:2 4703:p 4699:= 4692:) 4684:( 4680:p 4677:x 4674:E 4632:= 4616:1 4613:= 4603:p 4597:1 4594:= 4587:q 4550:= 4527:= 4511:) 4508:5 4505:+ 4499:+ 4493:( 4487:2 4479:+ 4470:2 4464:= 4448:) 4445:) 4437:( 4433:s 4430:b 4427:o 4423:+ 4420:) 4412:( 4408:s 4405:b 4402:o 4398:+ 4395:) 4387:( 4383:s 4380:b 4377:o 4373:( 4367:2 4362:) 4354:( 4350:s 4347:b 4344:o 4340:+ 4337:) 4329:( 4325:s 4322:b 4319:o 4312:2 4306:= 4299:p 4156:n 4152:k 4146:n 4142:p 4131:1 4127:k 4121:1 4117:p 4110:) 4102:n 4098:k 4094:, 4088:, 4083:1 4079:k 4074:c 4069:( 4061:c 4058:= 4053:n 4049:k 4045:+ 4039:+ 4034:1 4030:k 4026:: 4022:N 4010:n 4006:k 4002:, 3996:, 3991:1 3987:k 3978:= 3973:c 3969:) 3963:n 3959:p 3955:+ 3949:+ 3944:1 3940:p 3936:( 3911:c 3907:) 3901:n 3897:p 3893:+ 3887:+ 3882:1 3878:p 3874:( 3850:c 3830:n 3795:4 3791:q 3762:3 3758:q 3754:p 3751:4 3723:2 3719:q 3713:2 3709:p 3705:6 3679:q 3674:3 3670:p 3666:4 3638:4 3634:p 3604:c 3596:c 3576:c 3572:) 3568:q 3565:+ 3562:p 3559:( 3530:2 3526:) 3522:q 3519:+ 3516:p 3513:( 3471:j 3467:p 3461:i 3457:p 3453:2 3450:= 3447:) 3442:j 3438:A 3432:i 3428:A 3424:( 3421:f 3388:2 3383:i 3379:p 3375:= 3372:) 3367:i 3363:A 3357:i 3353:A 3349:( 3346:f 3313:2 3309:) 3303:n 3299:p 3295:+ 3289:+ 3284:1 3280:p 3276:( 3262:n 3258:p 3254:1 3251:p 3246:n 3241:1 3223:r 3220:q 3217:2 3214:+ 3211:r 3208:p 3205:2 3202:+ 3199:q 3196:p 3193:2 3190:+ 3185:2 3181:r 3177:+ 3172:2 3168:q 3164:+ 3159:2 3155:p 3151:= 3146:2 3142:) 3138:r 3135:+ 3132:q 3129:+ 3126:p 3123:( 3110:r 3106:q 3102:p 3098:q 3094:p 3086:r 3050:q 3046:q 3035:q 3027:p 3023:q 3019:p 2975:( 2888:f 2877:f 2847:t 2841:t 2834:t 2811:] 2805:2 2801:) 2796:a 2792:( 2787:t 2783:f 2779:, 2776:) 2772:a 2768:( 2763:t 2759:f 2755:) 2751:A 2747:( 2742:t 2738:f 2734:2 2731:, 2726:2 2722:) 2717:A 2713:( 2708:t 2704:f 2699:[ 2695:= 2683:] 2677:2 2672:) 2668:) 2660:( 2655:t 2651:f 2644:2 2641:1 2635:+ 2632:) 2624:( 2619:t 2615:f 2610:( 2605:, 2601:) 2597:) 2589:( 2584:t 2580:f 2573:2 2570:1 2564:+ 2561:) 2553:( 2548:t 2544:f 2539:( 2534:) 2530:) 2522:( 2517:t 2513:f 2506:2 2503:1 2497:+ 2494:) 2486:( 2481:t 2477:f 2472:( 2468:2 2465:, 2460:2 2455:) 2451:) 2443:( 2438:t 2434:f 2427:2 2424:1 2418:+ 2415:) 2407:( 2402:t 2398:f 2393:( 2387:[ 2383:= 2371:] 2367:1 2364:, 2361:0 2358:, 2355:0 2351:[ 2347:) 2339:( 2334:t 2330:f 2326:) 2318:( 2313:t 2309:f 2305:+ 2301:] 2294:2 2291:1 2285:, 2279:2 2276:1 2270:, 2267:0 2263:[ 2259:) 2251:( 2246:t 2242:f 2238:) 2230:( 2225:t 2221:f 2217:2 2214:+ 2210:] 2203:4 2200:1 2194:, 2188:2 2185:1 2179:, 2173:4 2170:1 2163:[ 2159:) 2151:( 2146:t 2142:f 2138:) 2130:( 2125:t 2121:f 2117:+ 2104:] 2100:0 2097:, 2094:1 2091:, 2088:0 2084:[ 2080:) 2072:( 2067:t 2063:f 2059:) 2051:( 2046:t 2042:f 2038:2 2035:+ 2031:] 2027:0 2024:, 2018:2 2015:1 2009:, 2003:2 2000:1 1993:[ 1989:) 1981:( 1976:t 1972:f 1968:) 1960:( 1955:t 1951:f 1947:2 1944:+ 1940:] 1936:0 1933:, 1930:0 1927:, 1924:1 1920:[ 1916:) 1908:( 1903:t 1899:f 1895:) 1887:( 1882:t 1878:f 1874:= 1863:= 1859:] 1855:) 1847:( 1842:1 1839:+ 1836:t 1832:f 1828:, 1825:) 1817:( 1812:1 1809:+ 1806:t 1802:f 1798:, 1795:) 1787:( 1782:1 1779:+ 1776:t 1772:f 1767:[ 1741:t 1737:f 1732:t 1728:f 1716:k 1692:] 1688:) 1680:, 1672:( 1669:, 1666:) 1658:, 1650:( 1647:, 1644:) 1636:, 1628:( 1625:, 1622:) 1614:, 1606:( 1603:, 1600:) 1592:, 1584:( 1581:, 1578:) 1570:, 1562:( 1558:[ 1508:) 1504:a 1500:( 1495:0 1491:f 1487:= 1484:q 1481:= 1478:) 1475:q 1472:+ 1469:p 1466:( 1463:q 1460:= 1457:q 1454:p 1451:+ 1446:2 1442:q 1438:= 1435:) 1427:( 1422:1 1418:f 1411:2 1408:1 1402:+ 1399:) 1391:( 1386:1 1382:f 1378:= 1371:) 1367:a 1363:( 1358:1 1354:f 1346:) 1342:A 1338:( 1333:0 1329:f 1325:= 1322:p 1319:= 1316:) 1313:q 1310:+ 1307:p 1304:( 1301:p 1298:= 1295:q 1292:p 1289:+ 1284:2 1280:p 1276:= 1273:) 1265:( 1260:1 1256:f 1249:2 1246:1 1240:+ 1237:) 1229:( 1224:1 1220:f 1216:= 1209:) 1205:A 1201:( 1196:1 1192:f 1173:2 1167:1 1160:t 1153:1 1150:f 1145:t 1143:f 1132:0 1129:f 1125:1 1122:f 1111:) 1109:5 1107:( 1088:2 1084:) 1079:a 1075:( 1070:0 1066:f 1062:= 1057:2 1053:q 1049:= 1046:) 1038:( 1033:1 1029:f 1011:) 1009:4 1007:( 990:) 986:a 982:( 977:0 973:f 969:) 965:A 961:( 956:0 952:f 948:2 945:= 942:q 939:p 936:2 933:= 930:p 927:q 924:+ 921:q 918:p 915:= 912:) 904:( 899:1 895:f 877:) 875:3 873:( 854:2 850:) 845:A 841:( 836:0 832:f 828:= 823:2 819:p 815:= 812:) 804:( 799:1 795:f 774:q 766:p 762:q 758:p 756:( 750:q 746:p 736:q 728:p 717:q 703:q 687:p 680:p 668:q 661:p 627:q 623:p 617:q 613:p 599:) 597:2 595:( 578:) 570:( 565:t 561:f 554:2 551:1 545:+ 542:) 534:( 529:t 525:f 521:= 518:) 514:a 510:( 505:t 501:f 483:) 481:1 479:( 462:) 454:( 449:t 445:f 438:2 435:1 429:+ 426:) 418:( 413:t 409:f 405:= 402:) 398:A 394:( 389:t 385:f 364:q 360:0 357:f 351:p 347:0 344:f 304:q 300:p 287:f 281:q 277:f 267:p 263:f 257:q 253:f 247:p 243:f 238:a 234:A 214:, 111:q 107:p 85:) 79:( 74:) 70:( 56:. 20:)

Index

Hardy–Weinberg law
references
inline citations
improve
introducing
Learn how and when to remove this message

alleles
allele frequencies
genotype frequencies
population genetics
allele
genetic drift
mate choice
assortative mating
natural selection
sexual selection
mutation
gene flow
meiotic drive
genetic hitchhiking
population bottleneck
founder effect
inbreeding
outbreeding depression
alleles
homozygotes
heterozygotes
G. H. Hardy
Wilhelm Weinberg

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.