Knowledge

Ground-penetrating radar

Source 📝

176: 312: 416: 184: 321: 595:
material composition. While it can identify items such as pipes, voids, and soil, it cannot identify the specific materials, such as gold and precious gems. It can, however, be useful in providing subsurface mapping of potential gem-bearing pockets, or "vugs". The readings can be confused by moisture in the ground and they can't separate gem-bearing pockets from non-gem-bearing ones.
112:, and the radiated power all may limit the effective depth range of GPR investigation. Increases in electrical conductivity attenuate the introduced electromagnetic wave, and thus the penetration depth decreases. Because of frequency-dependent attenuation mechanisms, higher frequencies do not penetrate as far as lower frequencies. However, higher frequencies may provide improved 20: 361:, Lawrence Conyers, one of the first archaeological specialists in GPR, described the process. Conyers published research using GPR in El Salvador in 1996, in the Four Corners region Chaco period in southern Arizona in 1997, and in a medieval site in Ireland in 2018. Informed by Conyer's research, the Institute of Prairie and Indigenous Archaeology at the 284:
demonstrated in 2012 for autonomous vehicle steering and fielded for military operation in 2013. Highway speed centimeter-level localization during a night-time snow-storm was demonstrated in 2016. This technology was exclusively licensed and commercialized for vehicle safety in ADAS and Autonomous Vehicle positioning and lane-keeping systems by
85:, and detects the reflected signals from subsurface structures. GPR can have applications in a variety of media, including rock, soil, ice, fresh water, pavements and structures. In the right conditions, practitioners can use GPR to detect subsurface objects, changes in material properties, and voids and cracks. 116:. Thus operating frequency is always a trade-off between resolution and penetration. Optimal depth of subsurface penetration is achieved in ice where the depth of penetration can achieve several thousand metres (to bedrock in Greenland) at low GPR frequencies. Dry sandy soils or massive dry materials such as 546:
for over half a century. Its most widespread uses have been the measurement of ice thickness, subglacial topography, and ice sheet stratigraphy. It has also been used to observe the subglacial and conditions of ice sheets and glaciers, including hydrology, thermal state, accumulation, flow history,
283:
A recent novel approach to vehicle localization using prior map based images from ground penetrating radar has been demonstrated. Termed "Localizing Ground Penetrating Radar" (LGPR), centimeter level accuracies at speeds up to 100 km/h (60 mph) have been demonstrated. Closed-loop operation was first
155:
The first patent for a system designed to use continuous-wave radar to locate buried objects was submitted by Gotthelf Leimbach and Heinrich Löwy in 1910, six years after the first patent for radar itself (patent DE 237 944). A patent for a system using radar pulses rather than a continuous wave was
635:
A special kind of GPR uses unmodulated continuous-wave signals. This holographic subsurface radar differs from other GPR types in that it records plan-view subsurface holograms. Depth penetration of this kind of radar is rather small (20–30 cm), but lateral resolution is enough to discriminate
2690:
Jaufer, Rakeeb M., Amine Ihamouten, Yann Goyat, Shreedhar S. Todkar, David Guilbert, Ali Assaf, and Xavier Dérobert. 2022. "A Preliminary Numerical Study to Compare the Physical Method and Machine Learning Methods Applied to GPR Data for Underground Utility Network Characterization" Remote Sensing
328:
The concept of radar is familiar to most people. With ground penetrating radar, the radar signal – an electromagnetic pulse – is directed into the ground. Subsurface objects and stratigraphy (layering) will cause reflections that are picked up by a receiver. The travel time of the reflected signal
315:
GPR depth slices showing a crypt in a historic cemetery. These planview maps show subsurface structures at different depths. Sixty lines of data – individually representing vertical profiles – were collected and assembled as a 3-dimensional data array that can be horizontally "sliced" at different
237:
One of the other main applications for ground-penetrating radars is for locating underground utilities. Standard electromagnetic induction utility locating tools require utilities to be conductive. These tools are ineffective for locating plastic conduits or concrete storm and sanitary sewers.
598:
When determining depth capabilities, the frequency range of the antenna dictates the size of the antenna and the depth capability. The grid spacing which is scanned is based on the size of the targets that need to be identified and the results required. Typical grid spacings can be 1 meter,
344:
The principal disadvantage of GPR is that it is severely limited by less-than-ideal environmental conditions. Fine-grained sediments (clays and silts) are often problematic because their high electrical conductivity causes loss of signal strength; rocky or heterogeneous sediments scatter the GPR
602:
The speed at which a radar signal travels is dependent upon the composition of the material being penetrated. The depth to a target is determined based on the amount of time it takes for the radar signal to reflect back to the unit’s antenna. Radar signals travel at different velocities through
594:
is sensitive to changes in material composition; detecting changes requires movement. When looking through stationary items using surface-penetrating or ground-penetrating radar, the equipment needs to be moved in order for the radar to examine the specified area by looking for differences in
88:
GPR uses high-frequency (usually polarized) radio waves, usually in the range 10 MHz to 2.6 GHz. A GPR transmitter and antenna emits electromagnetic energy into the ground. When the energy encounters a buried object or a boundary between materials having different
259:
Military applications of ground-penetrating radar include detection of unexploded ordnance and detecting tunnels. In military applications and other common GPR applications, practitioners often use GPR in conjunction with other available geophysical techniques such as
615:
introduced legislation to regulate GPR equipment and GPR operators to control excess emissions of electromagnetic radiation. The European GPR association (EuroGPR) was formed as a trade association to represent and protect the legitimate use of GPR in Europe.
560:
images. Data may be presented as three-dimensional blocks, or as horizontal or vertical slices. Horizontal slices (known as "depth slices" or "time slices") are essentially planview maps isolating specific depths. Time-slicing has become standard practice in
661:
SewerVUE Technology, an advanced pipe condition assessment company utilizes Pipe Penetrating Radar (PPR) as an in pipe GPR application to see remaining wall thickness, rebar cover, delamination, and detect the presence of voids developing outside the pipe.
373:. By June 2021, the Institute had used GPR to locate suspected unmarked graves in areas near historic cemeteries and Indian Residential Schools. On May 27, 2021, it was reported that the remains of 215 children were found using GPR at a burial site at the 128:
tend to be resistive rather than conductive, and the depth of penetration could be up to 15 metres (49 ft). However, in moist or clay-laden soils and materials with high electrical conductivity, penetration may be as little as a few centimetres.
642:
In Pipe-Penetrating Radar (IPPR) and In Sewer GPR (ISGPR) are applications of GPR technologies applied in non-metallic-pipes where the signals are directed through pipe and conduit walls to detect pipe wall thickness and voids behind the pipe walls.
392:
Advancements in GPR technology integrated with various 3D software modelling platforms generate three-dimensional reconstructions of subsurface "shapes and their spatial relationships". By 2021, this has been "emerging as the new standard".
233:
Borehole radars utilizing GPR are used to map the structures from a borehole in underground mining applications. Modern directional borehole radar systems are able to produce three-dimensional images from measurements in a single borehole.
573:
The most significant performance limitation of GPR is in high-conductivity materials such as clay soils and soils that are salt contaminated. Performance is also limited by signal scattering in heterogeneous conditions (e.g. rocky soils).
340:
without any risk of damaging them. Among methods used in archaeological geophysics, it is unique both in its ability to detect some small objects at relatively great depths, and in its ability to distinguish the depth of anomaly sources.
1097:
Lowe, Kelsey M; Wallis, Lynley A.; Pardoe, Colin; Marwick, Benjamin; Clarkson, Christopher J; Manne, Tiina; Smith, M.A.; Fullagar, Richard (2014). "Ground-penetrating radar and burial practices in western Arnhem Land, Australia".
207:. It is of some utility in prospecting for gold nuggets and for diamonds in alluvial gravel beds, by finding natural traps in buried stream beds that have the potential for accumulating heavier particles. The Chinese lunar rover 547:
ice fabric, and bed geology. In planetary science, ice penetrating radar has also been used to explore the subsurface of the Polar Ice Caps on Mars and comets. Missions are planned to explore the icy moons of Jupiter.
2272:
Seu, Roberto; Phillips, Roger J.; Biccari, Daniela; Orosei, Roberto; Masdea, Arturo; Picardi, Giovanni; Safaeinili, Ali; Campbell, Bruce A.; Plaut, Jeffrey J.; Marinangeli, Lucia; Smrekar, Suzanne E. (18 May 2007).
159:
Further developments in the field remained sparse until the 1970s, when military applications began driving research. Commercial applications followed and the first affordable consumer equipment was sold in 1975.
658:. Police showed how to watch people up to two rooms away laterally and through floors vertically, could see metal lumps that might be weapons; GPR can even act as a motion sensor for military guards and police. 1566:
Schroeder, Dustin M.; Bingham, Robert G.; Blankenship, Donald D.; Christianson, Knut; Eisen, Olaf; Flowers, Gwenn E.; Karlsson, Nanna B.; Koutnik, Michelle R.; Paden, John D.; Siegert, Martin J. (April 2020).
167:(Apollo Lunar Sounder Experiment) in orbit around the Moon. It was able to record depth information up to 1.3 km and recorded the results on film due to the lack of suitable computer storage at the time. 538:. This allows echoes from the base of the ice sheet to be detected through ice thicknesses greater than 4 km. The subsurface observation of ice masses using radio waves has been an integral and evolving 348:
In the field of cultural heritage GPR with high frequency antenna is also used for investigating historical masonry structures, detecting cracks and decay patterns of columns and detachment of frescoes.
665:
EU Detect Force Technology, an advanced soil research company, design utilizes X6 Plus Grounding Radar (XGR) as an hybrid GPR application for military mine detection and also police bomb detection.
556:
Individual lines of GPR data represent a sectional (profile) view of the subsurface. Multiple lines of data systematically collected over an area may be used to construct three-dimensional or
324:
GPR depth section (profile) showing a single line of data from the survey of the historic crypt shown above. The domed roof of the crypt can be seen between 1 and 2.5 meters below surface.
35:
arrivals (arrows) indicate the presence of diffractors buried beneath the surface, possibly associated with human burials. Reflections from soil layering are also present (dashed lines).
93:, it may be reflected or refracted or scattered back to the surface. A receiving antenna can then record the variations in the return signal. The principles involved are similar to 1736:
Bamber, J. L.; Griggs, J. A.; Hurkmans, R. T. W. L.; Dowdeswell, J. A.; Gogineni, S. P.; Howat, I.; Mouginot, J.; Paden, J.; Palmer, S.; Rignot, E.; Steinhage, D. (22 March 2013).
101:
energy, and energy may be reflected at boundaries where subsurface electrical properties change rather than subsurface mechanical properties as is the case with seismic energy.
58:
the subsurface. It is a non-intrusive method of surveying the sub-surface to investigate underground utilities such as concrete, asphalt, metals, pipes, cables or masonry. This
230:
and cemeteries. GPR is used in law enforcement for locating clandestine graves and buried evidence. Military uses include detection of mines, unexploded ordnance, and tunnels.
332:
GPR can be a powerful tool in favorable conditions (uniform sandy soils are ideal). Like other geophysical methods used in archaeology (and unlike excavation) it can locate
1067: 156:
filed in 1926 by Dr. Hülsenbeck (DE 489 434), leading to improved depth resolution. A glacier's depth was measured using ground penetrating radar in 1929 by W. Stern.
2215:
Kofman, W.; Herique, A.; Barbin, Y.; Barriot, J.-P.; Ciarletti, V.; Clifford, S.; Edenhofer, P.; Elachi, C.; Eyraud, C.; Goutail, J.-P.; Heggy, E. (31 July 2015).
624:
Ground-penetrating radar uses a variety of technologies to generate the radar signal: these are impulse, stepped frequency, frequency-modulated continuous-wave (
1480: 603:
different types of materials. It is possible to use the depth to a known object to determine a specific velocity and then calibrate the depth calculations.
247:
which used the technology to determine a suitable area for examination by means of excavations. GPR was also used to recover £150,000 in cash ransom that
1618:"Automated monitoring of subglacial hydrological processes with ground-penetrating radar (GPR) at high temporal resolution: scope and potential pitfalls" 1455: 2417:. Code of Practice in respect of the control, use and application of Ground Probing Radar (GPR) and Wall Probing Radar (WPR) systems and equipment. 636:
different types of landmines in the soil, or cavities, defects, bugging devices, or other hidden objects in walls, floors, and structural elements.
900: 809: 2418: 612: 1508:"A novel approach to 3D modelling ground-penetrating radar (GPR) data – a case study of a cemetery and applications for criminal investigation" 1224: 136:
are generally in contact with the ground for the strongest signal strength; however, GPR air-launched antennas can be used above the ground.
366: 238:
Since GPR detects variations in dielectric properties in the subsurface, it can be highly effective for locating non-conductive utilities.
2592: 2392: 2823: 271:
In May 2020, the U.S. military ordered ground-penetrating radar system from Chemring Sensors and Electronics Systems (CSES), to detect
1278: 1068:"MIT Lincoln Laboratory: News: Lincoln Laboratory demonstrates highly accurate vehicle localization under adverse weather conditions" 370: 700: 977: 329:
indicates the depth. Data may be plotted as profiles, as planview maps isolating specific depths, or as three-dimensional models.
2749: 2631: 2488: 1709: 1403: 1358: 1075: 786: 2045: 1045: 1257:
Conyers, Lawrence (1 October 1996). "Archaeological evidence for dating the Loma Caldera eruption, Ceren, El Salvador".
925:
Hofinghoff, Jan-Florian (2013). "Resistive Loaded Antenna for Ground Penetrating Radar Inside a Bottom Hole Assembly".
386: 374: 2559: 2494: 1234: 218:(NDT) of structures and pavements, locating buried structures and utility lines, and studying soils and bedrock. In 875: 297: 2681: 639:
GPR is used on vehicles for close-in high-speed road survey and landmine detection as well as in stand-off mode.
599:
3 ft, 5 ft, 10 ft, 20 ft for ground surveys, and for walls and floors 1 inch–1 ft.
378: 2439: 1795:
Fretwell, P.; Pritchard, H. D.; Vaughan, D. G.; Bamber, J. L.; Barrand, N. E.; et al. (28 February 2013).
508:. This technique is also commonly referred to as "Ice Penetrating Radar (IPR)" or "Radio Echo Sounding (RES)". 840: 2867: 2655: 519: 272: 357:
GPR is used by criminologists, historians, and archaeologists to search burial sites. In his publication,
1847: 978:"Army orders ground-penetrating radar system from CSES for detecting hidden IEDs in $ 200.2 million deal" 655: 2519:
Ivashov, S. I.; Razevig, V. V.; Vasiliev, I. A.; Zhuravlev, A. V.; Bechtel, T. D.; Capineri, L. (2011).
1430: 867: 805: 646:
Wall-penetrating radar can read through non-metallic structures as demonstrated for the first time by
629: 562: 265: 223: 219: 63: 868:"A review of the alluvial diamond industry and the gravels of the North West Province, South Africa" 1481:"Saskatchewan First Nation discovers hundreds of unmarked graves at former residential school site" 676: 1506:
Kelly, T. B.; Angel, M. N.; O’Connor, D. E.; Huff, C. C.; Morris, L.; Wach, G. D. (22 June 2021).
1383: 1000:"Localizing ground penetrating RADAR: A step toward robust autonomous ground vehicle localization" 433: 2815: 2803: 1865: 1168:"Application of Neural Network Enhanced Ground-Penetrating Radar to Localization of Burial Sites" 511: 105: 1693:
Remote Sensing of Glaciers: Techniques for Topographic, Spatial and Thematic Mapping of Glaciers
2584: 2464:
Zhuravlev, A.V.; Ivashov, S.I.; Razevig, V.V.; Vasiliev, I.A.; Türk, A.S.; Kizilay, A. (2013).
2388: 382: 333: 301: 261: 215: 59: 2726:
A general overview of geophysical methods in archaeology can be found in the following works:
2102: 584:
Considerable expertise is necessary to effectively design, conduct, and interpret GPR surveys.
565:, because horizontal patterning is often the most important indicator of cultural activities. 2827: 1796: 362: 337: 305: 227: 222:, GPR is used to define landfills, contaminant plumes, and other remediation sites, while in 2535: 2286: 2228: 2171: 2114: 1877: 1811: 1749: 1629: 1580: 1266: 1138: 934: 884: 743: 501: 74: 2046:"Accidents and opportunities: a history of the radio echo-sounding of Antarctica, 1958–79" 1866:"Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding" 1041:
Enabling autonomous vehicles to drive in the snow with localizing ground penetrating radar
8: 708: 497: 55: 2539: 2290: 2232: 2175: 2118: 1881: 1815: 1753: 1633: 1584: 1390:. SpringerBriefs in Geography. Cham: Springer International Publishing. pp. 75–90. 1270: 1166:
Mazurkiewicz, Ewelina; Tadeusiewicz, Ryszard; Tomecka-Suchoń, Sylwia (20 October 2016).
1142: 938: 888: 747: 2637: 2551: 2370: 2083: 1955: 1901: 1715: 1545: 1321: 1195: 950: 759: 527: 113: 2031:
Principles, methods and results of electrodynamic thickness measurement of glacier ice
1889: 998:
Cornick, Matthew; Koechling, Jeffrey; Stanley, Byron; Zhang, Beijia (1 January 2016).
381:
First Nation land in British Columbia. In June 2021, GPR technology was used by the
2755: 2745: 2627: 2484: 2362: 2304: 2254: 2246: 2197: 2189: 2140: 2075: 1996: 1905: 1893: 1777: 1719: 1705: 1657: 1598: 1549: 1537: 1529: 1399: 1364: 1354: 1313: 1230: 1187: 1021: 782: 763: 651: 2641: 2555: 2374: 2087: 1691: 1524: 1507: 1325: 1199: 1151: 1126: 954: 730:
Srivastav, A.; Nguyen, P.; McConnell, M.; Loparo, K. N.; Mandal, S. (October 2020).
2619: 2543: 2476: 2354: 2294: 2236: 2179: 2130: 2122: 2065: 2057: 2044:
Turchetti, Simone; Dean, Katrina; Naylor, Simon; Siegert, Martin (September 2008).
1986: 1947: 1885: 1819: 1767: 1757: 1697: 1647: 1637: 1588: 1519: 1391: 1305: 1274: 1179: 1146: 1107: 1011: 942: 892: 751: 489: 426: 389:
site, which had been in operation for a century until it was closed down in 1996.
1183: 781:(2nd ed.). Knoval (Institution of Engineering and Technology). pp. 1–4. 587:
Relatively high energy consumption can be problematic for extensive field surveys.
175: 1737: 523: 505: 457: 403: 204: 140: 133: 2719:
Introduction to ground penetrating radar: inverse scattering and data processing
2547: 2528:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
2341:
Bruzzone, L; Alberti, G; Catallo, C; Ferro, A; Kofman, W; Orosei, R (May 2011).
2217:"Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar" 1395: 1167: 2862: 2623: 2358: 2342: 673: 493: 82: 2811: 2799: 2061: 1991: 1974: 1039: 2856: 2366: 2308: 2250: 2193: 2144: 2079: 2000: 1897: 1781: 1661: 1602: 1533: 1317: 1191: 1025: 946: 896: 755: 192: 28: 2759: 2616:
Proceedings of the 15th International Conference on Ground Penetrating Radar
2466:"Holographic subsurface imaging radar for applications in civil engineering" 2274: 2241: 2216: 2184: 2159: 1368: 1127:"Some examples of GPR prospecting for monitoring of the monumental heritage" 830:"The Apollo Lunar Sounder Radar System" - Proceedings of the IEEE, June 1974 510:
Glaciers are particularly well suited to investigation by radar because the
2258: 2201: 1541: 731: 515: 248: 208: 90: 70: 2800:"Short movie showing acquisition, processing and accuracy of GPR readings" 2656:"International No-Dig Meets in Singapore - Trenchless Technology Magazine" 2521:"Holographic Subsurface Radar of RASCAN Type: Development and Application" 2520: 2465: 1824: 1797:"Bedmap2: improved ice bed, surface and thickness datasets for Antarctica" 1762: 211:
has a GPR on its underside to investigate the soil and crust of the Moon.
2480: 2299: 1642: 1617: 1616:
Kulessa, B.; Booth, A. D.; Hobbs, A.; Hubbard, A. L. (18 December 2008).
1294:"Ground-Penetrating Radar Techniques to Discover and Map Historic Graves" 535: 531: 251:
had buried in a field, following his 1992 kidnapping of an estate agent.
200: 163:
In 1972, the Apollo 17 mission carried a ground penetrating radar called
144: 2703:
An overview of scientific and engineering applications can be found in:
2682:"Receiver Design for a Directional Borehole Radar System (dissertation)" 2126: 1593: 1568: 1279:
10.1002/(SICI)1520-6548(199610)11:5<377::AID-GEA1>3.0.CO;2-5
2475:. IET International Radar Conference. Xi'an, China: IET. p. 0065. 1959: 1935: 1565: 1388:
Ground-penetrating Radar and Magnetometry for Buried Landscape Analysis
1309: 668:
The "Mineseeker Project" seeks to design a system to determine whether
581:
Interpretation of radar-grams is generally non-intuitive to the novice.
557: 543: 539: 481: 437: 345:
signal, weakening the useful signal while increasing extraneous noise.
311: 94: 47: 2208: 2135: 1772: 1431:"Geophysics and Unmarked Graves: a Short Introduction for Communities" 1165: 1111: 1016: 999: 179:
Ground penetrating radar in use near Stillwater, Oklahoma, USA in 2010
2692: 2070: 1975:"Radio-Echo Sounding: Glaciological Interpretations and Applications" 1652: 1293: 669: 485: 484:
method similar to ground-penetrating radar and typically operates at
465: 243: 121: 109: 98: 67: 32: 2432: 1951: 1923:. University of Cambridge, Scott Polar Research Institute Cambridge. 1456:"Remains of 215 children found at former residential school in B.C." 1701: 632:(DSP) to process the data during survey work rather than off-line. 473: 187:
Ground penetrating radar survey of an archaeological site in Jordan
125: 23:
A ground-penetrating radargram collected on a historic cemetery in
320: 97:, except GPR methods implement electromagnetic energy rather than 469: 461: 196: 117: 24: 16:
Geophysical method that uses radar pulses to image the subsurface
577:
Other disadvantages of currently available GPR systems include:
415: 2843: 2518: 2463: 732:"A Highly Digital Multiantenna Ground-Penetrating Radar System" 143:
to be a valuable means of assessing the presence and amount of
2415:
Electromagnetic compatibility and Radio spectrum Matters (ERM)
1794: 1735: 729: 300:. GPR can be used to detect and map subsurface archaeological 241:
GPR was often used on the Channel 4 television programme
183: 680: 591: 477: 51: 2742:
Ground-penetrating radar: an introduction for archaeologists
1351:
Ground-penetrating radar: an introduction for archaeologists
997: 2792:"GprMax – GPR numerical simulator based on the FDTD method" 2733:
Seeing Beneath the Soil. Prospecting Methods in Archaeology
2340: 1690:
Pellikka, Petri; Rees, W. Gareth, eds. (16 December 2009).
1674: 1218: 1216: 1124: 647: 625: 164: 2818:
from the original on 22 December 2021 – via YouTube.
2806:
from the original on 22 December 2021 – via YouTube.
2275:"SHARAD sounding radar on the Mars Reconnaissance Orbiter" 2214: 2043: 2783: 1936:"Airborne Radio Echo Sounding of the Greenland Ice Sheet" 385:
in Saskatchewan to locate 751 unmarked gravesites on the
78: 19: 2791: 2769:
Revealing the Buried Past: Geophysics for Archaeologists
2271: 1615: 1213: 191:
GPR has many applications in a number of fields. In the
2585:"Ground Penetrating Radar(GPR) Systems – Murphysurveys" 2433:"An impulse generator for the ground penetrating radar" 2343:"Subsurface Radar Sounding of the Jovian Moon Ganymede" 1921:
Antarctica: Glaciological and Geophysical Folio, Vol. 2
1788: 1096: 1505: 296:
Ground penetrating radar survey is one method used in
2107:
Journal of Environmental & Engineering Geophysics
1859: 1857: 1731: 1729: 1561: 1559: 1424: 1422: 1226:
Interpreting Ground-penetrating Radar for Archaeology
1159: 866:
Wilson, M. G. C.; Henry, G.; Marshall, T. R. (2006).
628:), and noise. Systems on the market in 2009 also use 359:
Interpreting Ground-penetrating Radar for Archaeology
139:
Cross borehole GPR has developed within the field of
1675:
Bogorodsky, VV; Bentley, CR; Gudmandsen, PE (1985).
736:
IEEE Transactions on Instrumentation and Measurement
275:(IEDs) buried in roadways, in $ 200.2 million deal. 865: 2824:"GPR Electromagnetic Emissions Safety Information" 2315: 1854: 1726: 1556: 1419: 285: 2766: 2613: 1848:"A Brief History Of Radio – Echo Sounding Of Ice" 2854: 2710:Ground Penetrating Radar Theory and Applications 806:"History of Ground Penetrating Radar Technology" 2419:European Telecommunications Standards Institute 2101:Bingham, R. G.; Siegert, M. J. (1 March 2007). 1863: 1344: 1342: 1285: 1044:(video). MIT Lincoln Laboratory. 24 June 2016. 613:European Telecommunications Standards Institute 2739: 2679: 2322:Blankenship, DD (2018). "Reasons for Europa". 2100: 2050:The British Journal for the History of Science 1348: 288:and marketed as Ground Positioning Radar(tm). 2016:Radar Methods for the Exploration of Glaciers 927:IEEE Transactions on Antennas and Propagation 2784:"EUROGPR – The European GPR regulatory body" 2735:. London, United Kingdom: B.T. Batsford Ltd. 1864:Dowdeswell, J A; Evans, S (1 October 2004). 1689: 1473: 1375: 1339: 1250: 551: 367:National Centre for Truth and Reconciliation 2740:Conyers, Lawrence B; Goodman, Dean (1997). 2321: 2160:"Radar Soundings of the Subsurface of Mars" 2103:"Radio-Echo Sounding Over Polar Ice Masses" 1738:"A new bed elevation dataset for Greenland" 1349:Conyers, Lawrence B; Goodman, Dean (1997). 833: 440:to it so that it can be better illustrated. 2812:"FDTD Animation of sample GPR propagation" 2614:Ékes, C.; Neducza, B.; Takacs, P. (2014). 2389:"Gems and Technology – Vision Underground" 2018:(PhD). California Institute of Technology. 1933: 1499: 1229:. Routledge & CRC Press. p. 220. 924: 776: 2421:. September 2009. ETSI EG 202 730 V1.1.1. 2298: 2240: 2183: 2134: 2069: 1990: 1823: 1771: 1761: 1651: 1641: 1592: 1523: 1429:Wadsworth, William T. D. (22 July 2020). 1428: 1292:Conyers, Lawrence B. (1 September 2006). 1150: 1015: 369:, have been using GPR in their survey of 2381: 2033:. Zeitschrift für Gletscherkunde 18, 24. 2013: 1846:Allen, Christopher (26 September 2008). 1125:Masini, N; Persico, R; Rizzo, E (2010). 800: 798: 319: 310: 182: 174: 18: 2716: 2473:IET International Radar Conference 2013 2157: 1381: 1291: 1256: 1222: 619: 278: 2855: 2595:from the original on 10 September 2017 2565:from the original on 29 September 2013 2500:from the original on 29 September 2013 1918: 1223:Conyers, Lawrence B. (1 April 2014) . 108:of the ground, the transmitted center 2730: 2395:from the original on 22 February 2014 2028: 1972: 1845: 1131:Journal of Geophysics and Engineering 993: 991: 795: 2744:. Walnut Creek, CA: AltaMira Press. 1353:. Walnut Creek, CA: AltaMira Press. 1048:from the original on 19 January 2017 982:Military & Aerospace Electronics 812:from the original on 2 February 2017 701:"How Ground Penetrating Radar Works" 409: 371:Indian Residential Schools in Canada 2767:Gaffney, Chris; John Gater (2003). 2707: 845:Lunar and Planetary Institute (LPI) 606: 13: 2698: 2693:https://doi.org/10.3390/rs14041047 2445:from the original on 18 April 2015 988: 425:needs additional or more specific 387:Marieval Indian Residential School 375:Kamloops Indian Residential School 14: 2879: 2776: 2771:. Stroud, United Kingdom: Tempus. 1569:"Five decades of radioglaciology" 214:Engineering applications include 2158:Picardi, G. (23 December 2005). 1934:Gudmandsen, P. (December 1969). 1459:The Canadian Press via APTN News 906:from the original on 5 July 2013 876:South African Journal of Geology 414: 402:This section is an excerpt from 2648: 2607: 2577: 2512: 2457: 2425: 2407: 2334: 2324:42nd COSPAR Scientific Assembly 2279:Journal of Geophysical Research 2265: 2151: 2094: 2037: 2022: 2007: 1966: 1927: 1912: 1839: 1683: 1668: 1609: 1525:10.1016/j.forsciint.2021.110882 1448: 1172:Applied Artificial Intelligence 1118: 1090: 1060: 1032: 970: 352: 170: 2660:Trenchless Technology Magazine 1870:Reports on Progress in Physics 1512:Forensic Science International 961: 918: 859: 824: 770: 723: 693: 654:in 1984 while surveying an ex 568: 291: 1: 2844:"Utility mapping with 3D GPR" 2826:. 17 May 2016. Archived from 1382:Conyers, Lawrence B. (2018). 1184:10.1080/08839514.2016.1274250 686: 396: 1622:Geophysical Research Letters 365:, in collaboration with the 273:improvised explosive devices 7: 2548:10.1109/JSTARS.2011.2161755 1890:10.1088/0034-4885/67/10/R03 1396:10.1007/978-3-319-70890-4_7 672:are present in areas using 656:Russian Embassy in Canberra 563:archaeological applications 254: 10: 2884: 2731:Clark, Anthony J. (1996). 2717:Persico, Raffaele (2014). 2684:. University of Wuppertal. 2624:10.1109/ICGPR.2014.6970448 2359:10.1109/JPROC.2011.2108990 1384:"Medieval Site in Ireland" 841:"Lunar Sounder Experiment" 401: 150: 2062:10.1017/S0007087408000903 1992:10.3189/S0022143000034262 1696:(0 ed.). CRC Press. 1152:10.1088/1742-2132/7/2/S05 1004:Journal of Field Robotics 630:Digital signal processing 552:Three-dimensional imaging 298:archaeological geophysics 266:electromagnetic induction 220:environmental remediation 132:Ground-penetrating radar 64:electromagnetic radiation 2721:. John Wiley & Sons. 2708:Jol, H. M., ed. (2008). 2391:. The Ganoksin Project. 1973:Robin, G. de Q. (1975). 1940:The Geographical Journal 947:10.1109/TAP.2013.2283604 897:10.2113/gssajg.109.3.301 808:. Ingenieurbüro obonic. 779:Ground Penetrating Radar 756:10.1109/TIM.2020.2984415 677:synthetic aperture radar 514:, imaginary part of the 40:Ground-penetrating radar 2680:Borchert, Olaf (2008). 2589:www.murphysurveys.co.uk 2347:Proceedings of the IEEE 2242:10.1126/science.aab0639 2185:10.1126/science.1122165 1679:. D. Reidel Publishing. 847:. Apollo 17 Experiments 228:archaeological features 226:it is used for mapping 106:electrical conductivity 1298:Historical Archaeology 1100:Archaeology in Oceania 526:resulting in low loss 383:Cowessess First Nation 379:Tk’emlúps te Secwépemc 325: 317: 262:electrical resistivity 216:nondestructive testing 188: 180: 36: 2014:Steenson, BO (1951). 1979:Journal of Glaciology 1825:10.5194/tc-7-375-2013 1763:10.5194/tc-7-499-2013 520:dielectric absorption 478:ice penetrating radar 363:University of Alberta 323: 314: 186: 178: 22: 2830:on 13 September 2018 2814:. 22 November 2011. 2618:. pp. 368–371. 2481:10.1049/cp.2013.0111 2300:10.1029/2006JE002745 1643:10.1029/2008GL035855 1573:Annals of Glaciology 1056:– via YouTube. 620:Similar technologies 522:of ice are small at 279:Vehicle localization 195:it is used to study 81:frequencies) of the 2868:Geophysical imaging 2540:2011IJSTA...4..763I 2291:2007JGRE..112.5S05S 2233:2015Sci...349b0639K 2176:2005Sci...310.1925P 2170:(5756): 1925–1928. 2127:10.2113/JEEG12.1.47 2119:2007JEEG...12...47B 1919:Drewry, DJ (1983). 1882:2004RPPh...67.1821D 1816:2013TCry....7..375F 1754:2013TCry....7..499B 1634:2008GeoRL..3524502K 1594:10.1017/aog.2020.11 1585:2020AnGla..61....1S 1271:1996Gearc..11..377C 1143:2010JGE.....7..190M 939:2013ITAP...61.6201H 889:2006SAJG..109..301W 777:Daniels DJ (2004). 748:2020ITIM...69.7422S 711:on 23 November 2021 2802:. 24 August 2009. 2662:. 30 December 2010 1310:10.1007/BF03376733 536:attenuation values 326: 318: 308:, and patterning. 189: 181: 37: 2751:978-0-7619-8927-1 2691:14, no. 4: 1047. 2633:978-1-4799-6789-6 2490:978-1-84919-603-1 2227:(6247): aab0639. 2029:Stern, W (1930). 1876:(10): 1821–1861. 1711:978-0-429-20642-9 1405:978-3-319-70890-4 1360:978-0-7619-8927-1 1112:10.1002/arco.5039 1017:10.1002/rob.21605 933:(12): 6201–6205. 788:978-0-86341-360-5 742:(10): 7422–7436. 679:units mounted on 652:Australian Police 524:radio frequencies 455: 454: 50:method that uses 2875: 2847: 2846:. 28 April 2021. 2839: 2837: 2835: 2819: 2807: 2795: 2787: 2772: 2763: 2736: 2722: 2713: 2685: 2672: 2671: 2669: 2667: 2652: 2646: 2645: 2611: 2605: 2604: 2602: 2600: 2581: 2575: 2574: 2572: 2570: 2564: 2525: 2516: 2510: 2509: 2507: 2505: 2499: 2470: 2461: 2455: 2454: 2452: 2450: 2444: 2437: 2429: 2423: 2422: 2411: 2405: 2404: 2402: 2400: 2385: 2379: 2378: 2338: 2332: 2331: 2319: 2313: 2312: 2302: 2269: 2263: 2262: 2244: 2212: 2206: 2205: 2187: 2155: 2149: 2148: 2138: 2098: 2092: 2091: 2073: 2041: 2035: 2034: 2026: 2020: 2019: 2011: 2005: 2004: 1994: 1970: 1964: 1963: 1931: 1925: 1924: 1916: 1910: 1909: 1861: 1852: 1851: 1843: 1837: 1836: 1834: 1832: 1827: 1801: 1792: 1786: 1785: 1775: 1765: 1733: 1724: 1723: 1687: 1681: 1680: 1672: 1666: 1665: 1655: 1645: 1613: 1607: 1606: 1596: 1563: 1554: 1553: 1527: 1503: 1497: 1496: 1494: 1492: 1477: 1471: 1470: 1468: 1466: 1452: 1446: 1445: 1443: 1441: 1435:ArcGIS StoryMaps 1426: 1417: 1416: 1414: 1412: 1379: 1373: 1372: 1346: 1337: 1336: 1334: 1332: 1289: 1283: 1282: 1254: 1248: 1247: 1245: 1243: 1220: 1211: 1210: 1208: 1206: 1163: 1157: 1156: 1154: 1122: 1116: 1115: 1094: 1088: 1087: 1085: 1083: 1074:. Archived from 1064: 1058: 1057: 1055: 1053: 1036: 1030: 1029: 1019: 995: 986: 985: 974: 968: 965: 959: 958: 922: 916: 915: 913: 911: 905: 872: 863: 857: 856: 854: 852: 837: 831: 828: 822: 821: 819: 817: 802: 793: 792: 774: 768: 767: 727: 721: 720: 718: 716: 707:. Archived from 697: 607:Power regulation 504:portions of the 480:. It employs a 460:is the study of 450: 447: 441: 418: 410: 2883: 2882: 2878: 2877: 2876: 2874: 2873: 2872: 2853: 2852: 2842: 2833: 2831: 2822: 2810: 2798: 2790: 2782: 2779: 2752: 2701: 2699:Further reading 2676: 2675: 2665: 2663: 2654: 2653: 2649: 2634: 2612: 2608: 2598: 2596: 2583: 2582: 2578: 2568: 2566: 2562: 2523: 2517: 2513: 2503: 2501: 2497: 2491: 2468: 2462: 2458: 2448: 2446: 2442: 2435: 2431: 2430: 2426: 2413: 2412: 2408: 2398: 2396: 2387: 2386: 2382: 2339: 2335: 2330:. and 5 others. 2320: 2316: 2270: 2266: 2213: 2209: 2156: 2152: 2099: 2095: 2042: 2038: 2027: 2023: 2012: 2008: 1971: 1967: 1952:10.2307/1795099 1932: 1928: 1917: 1913: 1862: 1855: 1844: 1840: 1830: 1828: 1799: 1793: 1789: 1734: 1727: 1712: 1688: 1684: 1677:Radioglaciology 1673: 1669: 1614: 1610: 1564: 1557: 1504: 1500: 1490: 1488: 1479: 1478: 1474: 1464: 1462: 1454: 1453: 1449: 1439: 1437: 1427: 1420: 1410: 1408: 1406: 1380: 1376: 1361: 1347: 1340: 1330: 1328: 1290: 1286: 1255: 1251: 1241: 1239: 1237: 1221: 1214: 1204: 1202: 1164: 1160: 1123: 1119: 1095: 1091: 1081: 1079: 1066: 1065: 1061: 1051: 1049: 1038: 1037: 1033: 996: 989: 976: 975: 971: 967:Birmingham Mail 966: 962: 923: 919: 909: 907: 903: 870: 864: 860: 850: 848: 839: 838: 834: 829: 825: 815: 813: 804: 803: 796: 789: 775: 771: 728: 724: 714: 712: 699: 698: 694: 689: 622: 609: 571: 554: 549: 548: 458:Radioglaciology 451: 445: 442: 431: 419: 407: 404:Radioglaciology 399: 355: 294: 281: 257: 173: 153: 141:hydrogeophysics 17: 12: 11: 5: 2881: 2871: 2870: 2865: 2849: 2848: 2840: 2820: 2808: 2796: 2788: 2778: 2777:External links 2775: 2774: 2773: 2764: 2750: 2737: 2724: 2723: 2714: 2700: 2697: 2696: 2695: 2687: 2686: 2674: 2673: 2647: 2632: 2606: 2576: 2534:(4): 763–778. 2511: 2489: 2456: 2424: 2406: 2380: 2353:(5): 837–857. 2333: 2314: 2285:(E5): E05S05. 2264: 2207: 2150: 2093: 2056:(3): 417–444. 2036: 2021: 2006: 1965: 1946:(4): 548–551. 1926: 1911: 1853: 1838: 1804:The Cryosphere 1787: 1748:(2): 499–510. 1742:The Cryosphere 1725: 1710: 1702:10.1201/b10155 1682: 1667: 1628:(24): L24502. 1608: 1555: 1498: 1487:. 23 June 2021 1472: 1447: 1418: 1404: 1374: 1359: 1338: 1284: 1265:(5): 377–391. 1259:Geoarchaeology 1249: 1235: 1212: 1178:(9): 844–860. 1158: 1117: 1106:(3): 148–157. 1089: 1078:on 31 May 2017 1072:www.ll.mit.edu 1059: 1031: 987: 984:. 13 May 2020. 969: 960: 917: 883:(3): 301–314. 858: 832: 823: 794: 787: 769: 722: 691: 690: 688: 685: 674:ultra wideband 621: 618: 608: 605: 589: 588: 585: 582: 570: 567: 553: 550: 506:radio spectrum 453: 452: 422: 420: 413: 408: 400: 398: 395: 354: 351: 293: 290: 280: 277: 256: 253: 193:Earth sciences 172: 169: 152: 149: 91:permittivities 83:radio spectrum 60:nondestructive 15: 9: 6: 4: 3: 2: 2880: 2869: 2866: 2864: 2861: 2860: 2858: 2851: 2845: 2841: 2829: 2825: 2821: 2817: 2813: 2809: 2805: 2801: 2797: 2793: 2789: 2785: 2781: 2780: 2770: 2765: 2761: 2757: 2753: 2747: 2743: 2738: 2734: 2729: 2728: 2727: 2720: 2715: 2711: 2706: 2705: 2704: 2694: 2689: 2688: 2683: 2678: 2677: 2661: 2657: 2651: 2643: 2639: 2635: 2629: 2625: 2621: 2617: 2610: 2594: 2590: 2586: 2580: 2561: 2557: 2553: 2549: 2545: 2541: 2537: 2533: 2529: 2522: 2515: 2496: 2492: 2486: 2482: 2478: 2474: 2467: 2460: 2441: 2434: 2428: 2420: 2416: 2410: 2394: 2390: 2384: 2376: 2372: 2368: 2364: 2360: 2356: 2352: 2348: 2344: 2337: 2329: 2325: 2318: 2310: 2306: 2301: 2296: 2292: 2288: 2284: 2280: 2276: 2268: 2260: 2256: 2252: 2248: 2243: 2238: 2234: 2230: 2226: 2222: 2218: 2211: 2203: 2199: 2195: 2191: 2186: 2181: 2177: 2173: 2169: 2165: 2161: 2154: 2146: 2142: 2137: 2132: 2128: 2124: 2120: 2116: 2112: 2108: 2104: 2097: 2089: 2085: 2081: 2077: 2072: 2067: 2063: 2059: 2055: 2051: 2047: 2040: 2032: 2025: 2017: 2010: 2002: 1998: 1993: 1988: 1985:(73): 49–64. 1984: 1980: 1976: 1969: 1961: 1957: 1953: 1949: 1945: 1941: 1937: 1930: 1922: 1915: 1907: 1903: 1899: 1895: 1891: 1887: 1883: 1879: 1875: 1871: 1867: 1860: 1858: 1849: 1842: 1826: 1821: 1817: 1813: 1809: 1805: 1798: 1791: 1783: 1779: 1774: 1769: 1764: 1759: 1755: 1751: 1747: 1743: 1739: 1732: 1730: 1721: 1717: 1713: 1707: 1703: 1699: 1695: 1694: 1686: 1678: 1671: 1663: 1659: 1654: 1649: 1644: 1639: 1635: 1631: 1627: 1623: 1619: 1612: 1604: 1600: 1595: 1590: 1586: 1582: 1578: 1574: 1570: 1562: 1560: 1551: 1547: 1543: 1539: 1535: 1531: 1526: 1521: 1517: 1513: 1509: 1502: 1486: 1482: 1476: 1461:. 28 May 2021 1460: 1457: 1451: 1436: 1432: 1425: 1423: 1407: 1401: 1397: 1393: 1389: 1385: 1378: 1370: 1366: 1362: 1356: 1352: 1345: 1343: 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1288: 1280: 1276: 1272: 1268: 1264: 1260: 1253: 1238: 1236:9781611322170 1232: 1228: 1227: 1219: 1217: 1201: 1197: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1162: 1153: 1148: 1144: 1140: 1136: 1132: 1128: 1121: 1113: 1109: 1105: 1101: 1093: 1077: 1073: 1069: 1063: 1047: 1043: 1042: 1035: 1027: 1023: 1018: 1013: 1010:(1): 82–102. 1009: 1005: 1001: 994: 992: 983: 979: 973: 964: 956: 952: 948: 944: 940: 936: 932: 928: 921: 902: 898: 894: 890: 886: 882: 878: 877: 869: 862: 846: 842: 836: 827: 811: 807: 801: 799: 790: 784: 780: 773: 765: 761: 757: 753: 749: 745: 741: 737: 733: 726: 710: 706: 702: 696: 692: 684: 682: 678: 675: 671: 666: 663: 659: 657: 653: 649: 644: 640: 637: 633: 631: 627: 617: 614: 611:In 2005, the 604: 600: 596: 593: 586: 583: 580: 579: 578: 575: 566: 564: 559: 545: 542:technique in 541: 537: 533: 529: 525: 521: 517: 513: 509: 507: 503: 499: 495: 491: 487: 483: 479: 475: 471: 467: 463: 459: 449: 439: 438:adding images 435: 429: 428: 423:This article 421: 417: 412: 411: 405: 394: 390: 388: 384: 380: 376: 372: 368: 364: 360: 350: 346: 342: 339: 335: 330: 322: 313: 309: 307: 303: 299: 289: 287: 276: 274: 269: 267: 263: 252: 250: 246: 245: 239: 235: 231: 229: 225: 221: 217: 212: 210: 206: 202: 198: 194: 185: 177: 168: 166: 161: 157: 148: 146: 142: 137: 135: 130: 127: 123: 119: 115: 111: 107: 102: 100: 96: 92: 86: 84: 80: 76: 72: 69: 65: 61: 57: 53: 49: 45: 41: 34: 30: 26: 21: 2850: 2832:. Retrieved 2828:the original 2768: 2741: 2732: 2725: 2718: 2709: 2702: 2666:10 September 2664:. Retrieved 2659: 2650: 2615: 2609: 2599:10 September 2597:. Retrieved 2588: 2579: 2569:26 September 2567:. Retrieved 2531: 2527: 2514: 2504:26 September 2502:. Retrieved 2472: 2459: 2447:. Retrieved 2427: 2414: 2409: 2397:. Retrieved 2383: 2350: 2346: 2336: 2327: 2323: 2317: 2282: 2278: 2267: 2224: 2220: 2210: 2167: 2163: 2153: 2113:(1): 47–62. 2110: 2106: 2096: 2053: 2049: 2039: 2030: 2024: 2015: 2009: 1982: 1978: 1968: 1943: 1939: 1929: 1920: 1914: 1873: 1869: 1841: 1829:. Retrieved 1807: 1803: 1790: 1745: 1741: 1692: 1685: 1676: 1670: 1625: 1621: 1611: 1579:(81): 1–13. 1576: 1572: 1515: 1511: 1501: 1489:. Retrieved 1484: 1475: 1463:. Retrieved 1458: 1450: 1438:. Retrieved 1434: 1409:. Retrieved 1387: 1377: 1350: 1329:. Retrieved 1304:(3): 64–73. 1301: 1297: 1287: 1262: 1258: 1252: 1240:. Retrieved 1225: 1203:. Retrieved 1175: 1171: 1161: 1134: 1130: 1120: 1103: 1099: 1092: 1080:. Retrieved 1076:the original 1071: 1062: 1050:. Retrieved 1040: 1034: 1007: 1003: 981: 972: 963: 930: 926: 920: 908:. Retrieved 880: 874: 861: 849:. Retrieved 844: 835: 826: 814:. Retrieved 778: 772: 739: 735: 725: 715:24 September 713:. Retrieved 709:the original 704: 695: 667: 664: 660: 645: 641: 638: 634: 623: 610: 601: 597: 590: 576: 572: 555: 516:permittivity 512:conductivity 456: 443: 424: 391: 358: 356: 353:Burial sites 347: 343: 331: 327: 295: 282: 270: 258: 249:Michael Sams 242: 240: 236: 232: 213: 190: 171:Applications 162: 158: 154: 138: 131: 103: 87: 62:method uses 43: 39: 38: 2834:15 February 2712:. Elsevier. 816:13 February 569:Limitations 558:tomographic 540:geophysical 486:frequencies 482:geophysical 292:Archaeology 224:archaeology 201:groundwater 48:geophysical 2857:Categories 2399:5 February 2136:2164/11013 1810:(1): 390. 1773:1808/18762 1518:: 110882. 1137:(2): 190. 910:9 December 687:References 544:glaciology 532:skin depth 518:, and the 466:ice sheets 397:Glaciology 145:soil water 114:resolution 95:seismology 54:pulses to 33:Hyperbolic 2367:0018-9219 2309:0148-0227 2251:0036-8075 2194:0036-8075 2145:1083-1363 2080:0007-0874 2071:1842/2975 2001:0022-1430 1906:250845954 1898:0034-4885 1831:6 January 1782:1994-0424 1720:129205832 1662:0094-8276 1653:2160/7032 1603:0260-3055 1550:235673352 1534:0379-0738 1318:2328-1103 1192:0883-9514 1026:1556-4967 764:216338273 670:landmines 474:icy moons 334:artifacts 302:artifacts 268:methods. 244:Time Team 199:, soils, 122:limestone 110:frequency 68:microwave 2816:Archived 2804:Archived 2760:36817059 2642:22956188 2593:Archived 2560:Archived 2556:12663279 2495:Archived 2449:25 March 2440:Archived 2393:Archived 2375:12738030 2259:26228153 2202:16319122 2088:55339188 1542:34182205 1485:CTV News 1369:36817059 1326:31432686 1200:36779388 1046:Archived 955:43083872 901:Archived 810:Archived 470:ice caps 462:glaciers 446:May 2023 434:help out 338:features 336:and map 316:depths.) 306:features 286:GPR Inc. 255:Military 134:antennas 126:concrete 99:acoustic 2536:Bibcode 2287:Bibcode 2229:Bibcode 2221:Science 2172:Bibcode 2164:Science 2115:Bibcode 1960:1795099 1878:Bibcode 1812:Bibcode 1750:Bibcode 1630:Bibcode 1581:Bibcode 1491:24 June 1440:24 June 1411:24 June 1331:24 June 1267:Bibcode 1242:24 June 1205:24 June 1139:Bibcode 935:Bibcode 885:Bibcode 851:24 June 744:Bibcode 528:tangent 488:in the 432:Please 197:bedrock 151:History 118:granite 66:in the 46:) is a 25:Alabama 2758:  2748:  2640:  2630:  2554:  2487:  2373:  2365:  2307:  2257:  2249:  2200:  2192:  2143:  2086:  2078:  1999:  1958:  1904:  1896:  1780:  1718:  1708:  1660:  1601:  1548:  1540:  1532:  1465:4 June 1402:  1367:  1357:  1324:  1316:  1233:  1198:  1190:  1082:31 May 1052:31 May 1024:  953:  785:  762:  705:Tech27 681:blimps 534:, and 476:using 427:images 203:, and 124:, and 2863:Radar 2638:S2CID 2563:(PDF) 2552:S2CID 2524:(PDF) 2498:(PDF) 2469:(PDF) 2443:(PDF) 2436:(PDF) 2371:S2CID 2084:S2CID 1956:JSTOR 1902:S2CID 1800:(PDF) 1716:S2CID 1546:S2CID 1322:S2CID 1196:S2CID 951:S2CID 904:(PDF) 871:(PDF) 760:S2CID 592:Radar 56:image 52:radar 2836:2017 2756:OCLC 2746:ISBN 2668:2017 2628:ISBN 2601:2017 2571:2013 2506:2013 2485:ISBN 2451:2013 2401:2014 2363:ISSN 2305:ISSN 2255:PMID 2247:ISSN 2198:PMID 2190:ISSN 2141:ISSN 2076:ISSN 1997:ISSN 1894:ISSN 1833:2014 1778:ISSN 1706:ISBN 1658:ISSN 1599:ISSN 1538:PMID 1530:ISSN 1493:2021 1467:2021 1442:2021 1413:2021 1400:ISBN 1365:OCLC 1355:ISBN 1333:2021 1314:ISSN 1244:2021 1231:ISBN 1207:2021 1188:ISSN 1084:2017 1054:2017 1022:ISSN 912:2012 853:2021 818:2016 783:ISBN 717:2020 650:and 648:ASIO 626:FMCW 500:and 472:and 264:and 209:Yutu 165:ALSE 104:The 71:band 2620:doi 2544:doi 2477:doi 2355:doi 2295:doi 2283:112 2237:doi 2225:349 2180:doi 2168:310 2131:hdl 2123:doi 2066:hdl 2058:doi 1987:doi 1948:doi 1944:135 1886:doi 1820:doi 1768:hdl 1758:doi 1698:doi 1648:hdl 1638:doi 1589:doi 1520:doi 1516:325 1392:doi 1306:doi 1275:doi 1180:doi 1147:doi 1108:doi 1012:doi 943:doi 893:doi 881:109 752:doi 502:UHF 498:VHF 436:by 377:on 205:ice 79:VHF 75:UHF 44:GPR 2859:: 2754:. 2658:. 2636:. 2626:. 2591:. 2587:. 2558:. 2550:. 2542:. 2530:. 2526:. 2493:. 2483:. 2471:. 2438:. 2369:. 2361:. 2351:99 2349:. 2345:. 2328:42 2326:. 2303:. 2293:. 2281:. 2277:. 2253:. 2245:. 2235:. 2223:. 2219:. 2196:. 2188:. 2178:. 2166:. 2162:. 2139:. 2129:. 2121:. 2111:12 2109:. 2105:. 2082:. 2074:. 2064:. 2054:41 2052:. 2048:. 1995:. 1983:15 1981:. 1977:. 1954:. 1942:. 1938:. 1900:. 1892:. 1884:. 1874:67 1872:. 1868:. 1856:^ 1818:. 1806:. 1802:. 1776:. 1766:. 1756:. 1744:. 1740:. 1728:^ 1714:. 1704:. 1656:. 1646:. 1636:. 1626:35 1624:. 1620:. 1597:. 1587:. 1577:61 1575:. 1571:. 1558:^ 1544:. 1536:. 1528:. 1514:. 1510:. 1483:. 1433:. 1421:^ 1398:. 1386:. 1363:. 1341:^ 1320:. 1312:. 1302:40 1300:. 1296:. 1273:. 1263:11 1261:. 1215:^ 1194:. 1186:. 1176:30 1174:. 1170:. 1145:. 1133:. 1129:. 1104:49 1102:. 1070:. 1020:. 1008:33 1006:. 1002:. 990:^ 980:. 949:. 941:. 931:61 929:. 899:. 891:. 879:. 873:. 843:. 797:^ 758:. 750:. 740:69 738:. 734:. 703:. 683:. 530:, 496:, 494:HF 492:, 490:MF 468:, 464:, 304:, 147:. 120:, 31:. 29:US 27:, 2838:. 2794:. 2786:. 2762:. 2670:. 2644:. 2622:: 2603:. 2573:. 2546:: 2538:: 2532:4 2508:. 2479:: 2453:. 2403:. 2377:. 2357:: 2311:. 2297:: 2289:: 2261:. 2239:: 2231:: 2204:. 2182:: 2174:: 2147:. 2133:: 2125:: 2117:: 2090:. 2068:: 2060:: 2003:. 1989:: 1962:. 1950:: 1908:. 1888:: 1880:: 1850:. 1835:. 1822:: 1814:: 1808:7 1784:. 1770:: 1760:: 1752:: 1746:7 1722:. 1700:: 1664:. 1650:: 1640:: 1632:: 1605:. 1591:: 1583:: 1552:. 1522:: 1495:. 1469:. 1444:. 1415:. 1394:: 1371:. 1335:. 1308:: 1281:. 1277:: 1269:: 1246:. 1209:. 1182:: 1155:. 1149:: 1141:: 1135:7 1114:. 1110:: 1086:. 1028:. 1014:: 957:. 945:: 937:: 914:. 895:: 887:: 855:. 820:. 791:. 766:. 754:: 746:: 719:. 448:) 444:( 430:. 406:. 77:/ 73:( 42:(

Index


Alabama
US
Hyperbolic
geophysical
radar
image
nondestructive
electromagnetic radiation
microwave
band
UHF
VHF
radio spectrum
permittivities
seismology
acoustic
electrical conductivity
frequency
resolution
granite
limestone
concrete
antennas
hydrogeophysics
soil water
ALSE


Earth sciences

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.