Knowledge

Gravity wave

Source 📝

83: 3908: 2983:. As the flow is turbulent, its mean profile is logarithmic, and its second derivative is thus negative. This is precisely the condition for the mean flow to impart its energy to the interface through the critical layer. This supply of energy to the interface is destabilizing and causes the amplitude of the wave on the interface to grow in time. As in other examples of linear instability, the growth rate of the disturbance in this phase is exponential in time. 4796: 4817: 3897: 4806: 71: 50: 38: 2970:
The air-water interface is now endowed with a surface roughness due to the capillary-gravity waves, and a second phase of wave growth takes place. A wave established on the surface either spontaneously as described above, or in laboratory conditions, interacts with the turbulent mean flow in a manner
3006:
By propagating surface gravity water waves, researchers were able to recreate the energy wave functions of an inverted harmonic oscillator, a system that serves as an analog for black hole physics. The experiment demonstrated how the free evolution of these classical waves in a controlled laboratory
3002:
Surface gravity waves have been recognized as a powerful tool for studying analog gravity models, providing experimental platforms for phenomena typically found in black hole physics. In an experiment, surface gravity waves were utilized to simulate phase space horizons, akin to event horizons of
2920:
wind blows over the surface. When a flow is turbulent, one observes a randomly fluctuating velocity field superimposed on a mean flow (contrast with a laminar flow, in which the fluid motion is ordered and smooth). The fluctuating velocity field gives rise to fluctuating
284:
cause the waves to break, transferring their momentum to the mean flow. This transfer of momentum is responsible for the forcing of the many large-scale dynamical features of the atmosphere. For example, this momentum transfer is partly responsible for the driving of the
1515: 2254: 740: 981: 1584: 2925:(both tangential and normal) that act on the air-water interface. The normal stress, or fluctuating pressure acts as a forcing term (much like pushing a swing introduces a forcing term). If the frequency and wavenumber 2478: 3003:
black holes. This experiment observed logarithmic phase singularities, which are central to phenomena like Hawking radiation, and the emergence of Fermi-Dirac distributions, which parallel quantum mechanical systems .
2812: 509:
The gravity wave represents a perturbation around a stationary state, in which there is no velocity. Thus, the perturbation introduced to the system is described by a velocity field of infinitesimally small amplitude,
1083: 2160: 2578: 489: 3226:"Inferring neutral winds in the ionospheric transition region from atmospheric-gravity-wave traveling-ionospheric-disturbance (AGW-TID) observations with the EISCAT VHF radar and the Nordic Meteor Radar Cluster" 2371: 1356: 1932: 2085: 1787: 1626: 1265: 1861: 1418: 833: 2961: 2302: 2990:
process can continue until an equilibrium is reached, or until the wind stops transferring energy to the waves (i.e., blowing them along) or when they run out of ocean distance, also known as
595: 188:
of the Earth's ponds, lakes, seas and oceans are predominantly between 0.3 and 30 seconds (corresponding to frequencies between 3 Hz and .03 Hz). Shorter waves are also affected by
2737: 2406: 1687: 1426: 1309: 2889: 2518: 2026: 423: 2618: 1120: 2676: 1179: 870: 3415:
Alexander, P., A. de la Torre, and P. Llamedo (2008), Interpretation of gravity wave signatures in GPS radio occultations, J. Geophys. Res., 113, D16117, doi:10.1029/2007JD009390.
1725: 1655: 1201: 1148: 783: 2175: 2638: 383: 360: 3007:
environment can reveal the formation of horizons and singularities, shedding light on fundamental aspects of gravitational theories and quantum mechanics.
885: 4536: 607: 2411: 4526: 3585: 3431: 2746: 996: 2095: 3344:
Rozenman, Georgi Gary; Ullinger, Freyja; Zimmermann, Matthias; Efremov, Maxim A.; Shemer, Lev; Schleich, Wolfgang P.; Arie, Ady (2024-07-16).
1526: 2525: 436: 2909:
play an essential role in this effect. There are two distinct mechanisms involved, called after their proponents, Phillips and Miles.
2312: 1314: 4442: 1872: 4809: 3857: 3625: 2816:
The group velocity is one half the phase velocity. A wave in which the group and phase velocities differ is called dispersive.
2905:
Wind waves, as their name suggests, are generated by wind transferring energy from the atmosphere to the ocean's surface, and
2042: 1737: 3454: 3407: 3107: 1209: 2165:
The perturbed pressures are evaluated in terms of streamfunctions, using the horizontal momentum equation of the linearised
1810: 1375: 4089: 3545: 3578: 3496: 2967:, and the wave grows in amplitude. As with other resonance effects, the amplitude of this wave grows linearly with time. 2928: 1592: 293:, it is thought to be the major driving force of the Semi-Annual Oscillation. Thus, this process plays a key role in the 3979: 4684: 4111: 3999: 796: 4531: 3802: 308:, and are sometimes confused with them, but the formation mechanism is different. Atmospheric gravity waves reaching 2828:: the phase and group velocities are identical and independent of wavelength and frequency. When the water depth is 3989: 3949: 2689: 2262: 1510:{\displaystyle {\frac {\partial \eta }{\partial t}}+u'{\frac {\partial \eta }{\partial x}}=w'\left(\eta \right).\,} 4719: 3705: 3065: 2963:
of this forcing term match a mode of vibration of the capillary-gravity wave (as derived above), then there is a
2379: 1660: 1273: 4799: 4392: 3571: 2838: 2485: 1943: 390: 2587: 1091: 789:-direction. Next, in an initially stationary incompressible fluid, there is no vorticity, and the fluid stays 17: 513: 141:. The restoration of the fluid to equilibrium will produce a movement of the fluid back and forth, called a 3847: 2645: 1153: 838: 1702: 3428:"Notes on Gravity Waves – Operational Forecasting and Detection of Gravity Waves Weather and Forecasting" 3060: 3035: 1631: 305: 3907: 3224:
GĂŒnzkofer, F.; Pokhotelov, D.; Stober, G.; Mann, I.; Vadas, S.L.; Becker, E.; et al. (2023-10-18).
2249:{\displaystyle {\frac {\partial u'}{\partial t}}=-{\frac {1}{\rho }}{\frac {\partial p'}{\partial x}}\,} 1184: 4044: 286: 194: 1125: 752: 217:
wave interaction with the wind waves, have periods longer than the accompanying wind-generated waves.
4579: 3984: 3944: 3193: 3171:
Fritts, D.C.; Alexander, M.J. (2003), "Gravity wave dynamics and effects in the middle atmosphere",
4709: 4084: 4074: 4014: 3650: 3620: 2987: 2825: 312:
are responsible for the generation of traveling ionospheric disturbances and could be observed by
4746: 4729: 4566: 4059: 3924: 3862: 3852: 3745: 3530: 3481: 2824:
Gravity waves traveling in shallow water (where the depth is much less than the wavelength), are
4842: 4741: 4679: 4106: 3792: 3188: 138: 74: 4574: 4556: 4064: 3959: 3594: 2623: 238: 1203:
is small in magnitude. If no fluid is to leak out of the bottom, we must have the condition
82: 4761: 4594: 4297: 4154: 4019: 3730: 3311: 3266: 3180: 3135: 431:
is the acceleration due to gravity. When surface tension is important, this is modified to
294: 8: 4756: 4641: 4636: 4362: 4034: 3994: 3710: 3449:. Waltham, Massachusetts: Elsevier Academic Press (International Geophysics Volume 102). 3055: 2036: 746: 298: 3315: 3270: 3184: 3139: 3050: 4699: 4412: 4402: 4367: 4267: 4252: 4149: 3327: 3282: 3206: 3153: 3045: 2922: 368: 345: 107: 54: 28: 34:
Wave in or at the interface between fluids where gravity is the main equilibrium force
4781: 4771: 4714: 4694: 4377: 4342: 4277: 4257: 4247: 4129: 3817: 3675: 3450: 3403: 3367: 3345: 3331: 3286: 3210: 3103: 2991: 1728: 976:{\displaystyle \psi \left(x,z,t\right)=e^{ik\left(x-ct\right)}\Psi \left(z\right),\,} 206: 3157: 4736: 4704: 4674: 4483: 4468: 4337: 4272: 4164: 4079: 4009: 3934: 3715: 3685: 3615: 3610: 3357: 3319: 3274: 3237: 3198: 3143: 3025: 325: 226: 214: 211: 122:
tries to restore equilibrium. An example of such an interface is that between the
4541: 4437: 4387: 4352: 4312: 4204: 4174: 4024: 3974: 3884: 3842: 3775: 3700: 3660: 3095: 2166: 1696: 266: 265:. At first, waves propagate through the atmosphere without appreciable change in 189: 3515:
NASA Astronomy Picture of the Day: Airglow Ripples over Tibet (20 November 2022)
159:
the body of the water (such as between parts of different densities) are called
4651: 4646: 4551: 4546: 4382: 4322: 4317: 4049: 3939: 3760: 3695: 3670: 3549: 3362: 3030: 2972: 2906: 2681: 598: 340: 200: 178: 95: 3896: 3520: 3500: 3471: 3323: 3278: 3242: 3225: 735:{\displaystyle {\textbf {u}}'=(u'(x,z,t),w'(x,z,t))=(\psi _{z},-\psi _{x}),\,} 4836: 4821: 4669: 4589: 4478: 4397: 4372: 4307: 4237: 4144: 4039: 3916: 3837: 3797: 3770: 3680: 3630: 3371: 3299: 3020: 2912:
In the work of Phillips, the ocean surface is imagined to be initially flat (
258: 161: 3123: 2473:{\displaystyle \scriptstyle c^{2}\rho D\Psi =g\Psi \rho +\sigma k^{2}\Psi .} 1937:
However, this condition refers to the total pressure (base+perturbed), thus
1657:
Using the normal-mode and streamfunction representations, this condition is
4776: 4724: 4664: 4615: 4493: 4488: 4463: 4447: 4422: 4139: 4029: 3969: 3755: 3640: 3514: 3427: 3388: 2807:{\displaystyle c_{g}={\frac {1}{2}}{\sqrt {\frac {g}{k}}}={\frac {1}{2}}c.} 2640:
and the wavenumber, the gravity wave angular frequency can be expressed as
990:
is a spatial wavenumber. Thus, the problem reduces to solving the equation
790: 281: 250: 232: 185: 152: 2684:
of a wave (that is, the speed at which a wave packet travels) is given by
1078:{\displaystyle \left(D^{2}-k^{2}\right)\Psi =0,\,\,\,\ D={\frac {d}{dz}}.} 4766: 4498: 4427: 4292: 4232: 4199: 4189: 4184: 4069: 4004: 3964: 3954: 3929: 3812: 3785: 3765: 3725: 3690: 3202: 3148: 2155:{\displaystyle p=g\eta \rho -\sigma \eta _{xx},\qquad {\text{on }}z=0.\,} 597:
Because the fluid is assumed incompressible, this velocity field has the
329: 246: 3563: 3410: 3257:
Phillips, O. M. (1957), "On the generation of waves by turbulent wind",
1579:{\displaystyle {\frac {\partial \eta }{\partial t}}=w'\left(0\right),\,} 4584: 4432: 4407: 4302: 4282: 4209: 4194: 4179: 4169: 4134: 4054: 3874: 3869: 3832: 3827: 3822: 3720: 3346:"Observation of a phase space horizon with surface gravity water waves" 3070: 2031:(As usual, The perturbed quantities can be linearized onto the surface 363: 309: 290: 254: 123: 4816: 3122:
Bromirski, Peter D.; Sergienko, Olga V.; MacAyeal, Douglas R. (2010),
2971:
described by Miles. This is the so-called critical-layer mechanism. A
4656: 4518: 4503: 4417: 4262: 4101: 4096: 3879: 3807: 3735: 3655: 3645: 3602: 2964: 2917: 2900: 2573:{\displaystyle c={\sqrt {{\frac {g}{k}}+{\frac {\sigma k}{\rho }}}}.} 1801: 484:{\displaystyle c={\sqrt {{\frac {g}{k}}+{\frac {\sigma k}{\rho }}}},} 277: 166: 131: 87: 1088:
We work in a sea of infinite depth, so the boundary condition is at
42: 4751: 4473: 4332: 4224: 4214: 4159: 3635: 3075: 3040: 872:
Next, because of the translational invariance of the system in the
273: 269: 262: 242: 119: 2997: 137:
A gravity wave results when fluid is displaced from a position of
4620: 4610: 3780: 3750: 3525: 3476: 3343: 3124:"Transoceanic infragravity waves impacting Antarctic ice shelves" 1366:
are constants to be determined from conditions at the interface.
170: 115: 2408:
and using the normal-mode representation, this relation becomes
147:. Gravity waves on an air–sea interface of the ocean are called 4327: 3740: 877: 313: 49: 4689: 4508: 4287: 4242: 3302:(1957), "On the generation of surface waves by shear flows", 3223: 2366:{\displaystyle c\rho D\Psi =g\eta \rho -\sigma \eta _{xx}.\,} 1351:{\displaystyle \scriptstyle z\in \left(-\infty ,\eta \right)} 241:, gravity waves are a mechanism that produce the transfer of 127: 111: 103: 2306:
Putting this last equation and the jump condition together,
272:. But as the waves reach more rarefied (thin) air at higher 4121: 1927:{\displaystyle p\left(z=\eta \right)=-\sigma \eta _{xx}.\,} 749:. In this derivation it suffices to work in two dimensions 174: 169:
on the water surface are examples of gravity waves, as are
3121: 3402:(Berkeley Physics Course, Vol. 3), (McGraw-Hill, 1968) 75:
Detailed animation of water wave motion (CC-BY-NC-ND 4.0)
2080:{\displaystyle \scriptstyle P=-\rho gz+{\text{Const.}},} 1782:{\displaystyle p\left(z=\eta \right)=-\sigma \kappa ,\,} 37: 3447:
An Introduction to Atmospheric Gravity Waves, Second Ed
1260:{\displaystyle u=D\Psi =0,\,\,{\text{on}}\,z=-\infty .} 3472:"Time Lapse of Gravity Wave Courtesy The Weather Nutz" 2932: 2591: 2489: 2415: 2383: 2266: 2046: 1856:{\displaystyle \kappa =\nabla ^{2}\eta =\eta _{xx}.\,} 1706: 1664: 1635: 1596: 1413:{\displaystyle \scriptstyle z=\eta \left(x,t\right)\,} 1379: 1318: 1277: 1188: 1157: 1129: 1095: 3395:. American Meteorological Society (15 December 2014). 2931: 2841: 2749: 2692: 2648: 2626: 2620:
is the phase speed in terms of the angular frequency
2590: 2528: 2488: 2414: 2382: 2315: 2265: 2178: 2098: 2045: 1946: 1875: 1813: 1804:
of the interface, which in a linear approximation is
1740: 1705: 1663: 1634: 1595: 1529: 1429: 1378: 1317: 1276: 1212: 1187: 1156: 1128: 1094: 999: 888: 841: 799: 755: 610: 516: 439: 393: 371: 348: 2894: 304:
The effect of gravity waves in clouds can look like
257:. Gravity waves are generated in the troposphere by 41:
Surface gravity wave, breaking on an ocean beach in
2956:{\displaystyle \scriptstyle \left(\omega ,k\right)} 1621:{\displaystyle \scriptstyle w'\left(\eta \right)\,} 2955: 2883: 2806: 2731: 2670: 2632: 2612: 2572: 2512: 2472: 2400: 2365: 2296: 2248: 2154: 2079: 2020: 1926: 1855: 1781: 1719: 1681: 1649: 1620: 1578: 1509: 1412: 1350: 1303: 1259: 1195: 1173: 1142: 1114: 1077: 975: 864: 827: 777: 734: 589: 483: 417: 377: 354: 184:The period of wind-generated gravity waves on the 4537:North West Shelf Operational Oceanographic System 3426:Koch, Steven; Cobb, Hugh D. III; Stuart, Neil A. 828:{\displaystyle \nabla \times {\textbf {u}}'=0.\,} 64:Nonfree image: detailed animation of a water wave 4834: 1699:, the pressure difference over the interface at 4527:Deep-ocean Assessment and Reporting of Tsunamis 3170: 2998:Analog Gravity Models and Surface Gravity Waves 220: 2376:Substituting the second interfacial condition 27:For the phenomenon of general relativity, see 3579: 3521:"Time-lapse video of gravity waves over Iowa" 2732:{\displaystyle c_{g}={\frac {d\omega }{dk}},} 2297:{\displaystyle \scriptstyle p'=\rho cD\Psi .} 3102:, Cambridge University Press, p. 205, 2401:{\displaystyle \scriptstyle c\eta =\Psi \,} 1682:{\displaystyle \scriptstyle c\eta =\Psi \,} 319: 3586: 3572: 3497:"Gallery of cloud gravity waves over Iowa" 3425: 1304:{\displaystyle \scriptstyle \Psi =Ae^{kz}} 1150:, and the disturbed or wavy surface is at 3593: 3361: 3241: 3192: 3147: 3094: 2884:{\displaystyle c_{p}=c_{g}={\sqrt {gh}}.} 2513:{\displaystyle \scriptstyle \Psi =e^{kz}} 2396: 2362: 2245: 2151: 2021:{\displaystyle \left=-\sigma \eta _{xx}.} 1923: 1852: 1778: 1677: 1645: 1616: 1575: 1506: 1408: 1241: 1235: 1234: 1047: 1046: 1045: 972: 861: 824: 731: 418:{\displaystyle c={\sqrt {\frac {g}{k}}},} 3256: 2613:{\displaystyle \scriptstyle c=\omega /k} 1115:{\displaystyle \scriptstyle z=-\infty .} 81: 48: 36: 2975:forms at a height where the wave speed 876:-direction, it is possible to make the 785:, where gravity points in the negative 497:is the surface tension coefficient and 90:, Western Australia, as seen from space 14: 4835: 3858:one-dimensional Saint-Venant equations 1693:Pressure relation across the interface 835:In the streamfunction representation, 590:{\displaystyle (u'(x,z,t),w'(x,z,t)).} 198:and (if hardly influenced by gravity) 3567: 3444: 3298: 2671:{\displaystyle \omega ={\sqrt {gk}}.} 1174:{\displaystyle \scriptstyle z=\eta ,} 865:{\displaystyle \nabla ^{2}\psi =0.\,} 505:Details of the phase-speed derivation 4805: 1720:{\displaystyle \scriptstyle z=\eta } 1689:, the second interfacial condition. 1650:{\displaystyle \scriptstyle z=0.\,} 809: 614: 24: 4685:National Oceanographic Data Center 4112:World Ocean Circulation Experiment 4000:Global Ocean Data Analysis Project 3419: 3398:Crawford, Frank S., Jr. (1968). 2490: 2463: 2441: 2432: 2393: 2325: 2287: 2236: 2223: 2195: 2182: 1821: 1674: 1541: 1533: 1472: 1464: 1441: 1433: 1333: 1278: 1251: 1222: 1196:{\displaystyle \scriptstyle \eta } 1105: 1033: 955: 843: 800: 25: 4854: 4532:Global Sea Level Observing System 3464: 2895:Generation of ocean waves by wind 1420:, the kinematic condition holds: 86:Wind-driven gravity waves in the 4815: 4804: 4795: 4794: 3990:Geochemical Ocean Sections Study 3906: 3895: 2819: 1628:is linearized on to the surface 1143:{\displaystyle \scriptstyle z=0} 778:{\displaystyle \left(x,z\right)} 155:), while gravity waves that are 69: 4720:Ocean thermal energy conversion 4443:Vine–Matthews–Morley hypothesis 3533:from the original on 2021-12-11 3484:from the original on 2021-12-11 2979:equals the mean turbulent flow 2136: 3337: 3292: 3250: 3217: 3164: 3115: 3088: 1122:The undisturbed surface is at 745:where the subscripts indicate 725: 696: 690: 687: 669: 655: 637: 626: 581: 578: 560: 546: 528: 517: 362:of a linear gravity wave with 13: 1: 3381: 2741:and thus for a gravity wave, 334: 3980:El Niño–Southern Oscillation 3950:Craik–Leibovich vortex force 3706:Luke's variational principle 3128:Geophysical Research Letters 1520:Linearizing, this is simply 306:altostratus undulatus clouds 221:Atmosphere dynamics on Earth 7: 3066:Rayleigh–Taylor instability 3051:Mesosphere#Dynamic features 3036:Horizontal convective rolls 3013: 1796:is the surface tension and 1370:The free-surface condition: 204:. Alternatively, so-called 110:between two media when the 10: 4859: 4045:Ocean dynamical thermostat 3893: 3363:10.1038/s42005-024-01616-7 2898: 323: 287:Quasi-Biennial Oscillation 230: 224: 26: 4790: 4629: 4603: 4580:Ocean acoustic tomography 4565: 4517: 4456: 4393:Mohorovičić discontinuity 4351: 4223: 4120: 3985:General circulation model 3915: 3621:Benjamin–Feir instability 3601: 3445:Nappo, Carmen J. (2012). 3324:10.1017/S0022112057000567 3279:10.1017/S0022112057000233 3243:10.5194/angeo-41-409-2023 102:are waves generated in a 68: 63: 4710:Ocean surface topography 4085:Thermohaline circulation 4075:Subsurface ocean current 4015:Hydrothermal circulation 3848:Wave–current interaction 3626:Boussinesq approximation 3082: 2988:Miles–Phillips Mechanism 385:is given by the formula 320:Quantitative description 4747:Sea surface temperature 4730:Outline of oceanography 3925:Atmospheric circulation 3863:shallow water equations 3853:Waves and shallow water 3746:Significant wave height 3393:Glossary of Meteorology 3061:Orr–Sommerfeld equation 2907:capillary-gravity waves 2633:{\displaystyle \omega } 2169:for the perturbations, 195:gravity–capillary waves 4742:Sea surface microlayer 4107:Wind generated current 3350:Communications Physics 2957: 2885: 2808: 2733: 2672: 2634: 2614: 2574: 2514: 2474: 2402: 2367: 2298: 2250: 2156: 2081: 2022: 1928: 1857: 1783: 1721: 1683: 1651: 1622: 1580: 1511: 1414: 1352: 1305: 1261: 1197: 1175: 1144: 1116: 1079: 977: 866: 829: 779: 736: 591: 485: 419: 379: 356: 130:, which gives rise to 91: 58: 46: 4575:Deep scattering layer 4557:World Geodetic System 4065:Princeton Ocean Model 3945:Coriolis–Stokes force 3595:Physical oceanography 3173:Reviews of Geophysics 2958: 2886: 2809: 2734: 2673: 2635: 2615: 2575: 2515: 2475: 2403: 2368: 2299: 2251: 2157: 2082: 2023: 1929: 1858: 1784: 1722: 1684: 1652: 1623: 1581: 1512: 1415: 1353: 1306: 1262: 1198: 1176: 1145: 1117: 1080: 978: 867: 830: 780: 737: 592: 486: 420: 380: 357: 324:Further information: 225:Further information: 149:surface gravity waves 85: 52: 40: 4595:Underwater acoustics 4155:Perigean spring tide 4020:Langmuir circulation 3731:Rossby-gravity waves 3203:10.1029/2001RG000106 3149:10.1029/2009GL041488 2929: 2839: 2747: 2690: 2646: 2624: 2588: 2526: 2486: 2412: 2380: 2313: 2263: 2176: 2096: 2043: 1944: 1873: 1811: 1738: 1703: 1695:: For the case with 1661: 1632: 1593: 1527: 1427: 1376: 1372:At the free surface 1315: 1274: 1210: 1185: 1154: 1126: 1092: 997: 886: 839: 797: 753: 608: 514: 437: 391: 369: 346: 181:of surface vessels. 167:Wind-generated waves 4757:Science On a Sphere 4363:Convergent boundary 4035:Modular Ocean Model 3995:Geostrophic current 3711:Mild-slope equation 3411:Free online version 3316:1957JFM.....3..185M 3271:1957JFM.....2..417P 3230:Annales Geophysicae 3185:2003RvGeo..41.1003F 3140:2010GeoRL..37.2502B 3056:Morning Glory cloud 2482:Using the solution 2037:hydrostatic balance 1589:where the velocity 1362:and the wave speed 747:partial derivatives 261:or by airflow over 210:, which are due to 4413:Seafloor spreading 4403:Outer trench swell 4368:Divergent boundary 4268:Continental margin 4253:Carbonate platform 4150:Lunitidal interval 3546:"Water Waves Wiki" 3046:Lunitidal interval 2953: 2952: 2881: 2804: 2729: 2668: 2630: 2610: 2609: 2570: 2510: 2509: 2470: 2469: 2398: 2397: 2363: 2294: 2293: 2246: 2152: 2077: 2076: 2018: 1924: 1853: 1779: 1717: 1716: 1679: 1678: 1647: 1646: 1618: 1617: 1576: 1507: 1410: 1409: 1348: 1347: 1301: 1300: 1257: 1193: 1192: 1171: 1170: 1140: 1139: 1112: 1111: 1075: 973: 862: 825: 775: 732: 587: 481: 415: 375: 352: 239:Earth's atmosphere 207:infragravity waves 92: 59: 55:Theresa, Wisconsin 47: 29:Gravitational wave 4830: 4829: 4822:Oceans portal 4782:World Ocean Atlas 4772:Underwater glider 4715:Ocean temperature 4378:Hydrothermal vent 4343:Submarine volcano 4278:Continental shelf 4258:Coastal geography 4248:Bathymetric chart 4130:Amphidromic point 3818:Wave nonlinearity 3676:Infragravity wave 3456:978-0-12-385223-6 3408:978-0-07-004860-7 3109:978-0-521-01045-0 2876: 2796: 2783: 2782: 2771: 2724: 2663: 2565: 2563: 2545: 2243: 2218: 2202: 2140: 2071: 1548: 1479: 1448: 1239: 1070: 1050: 811: 616: 476: 474: 456: 410: 409: 378:{\displaystyle k} 355:{\displaystyle c} 282:nonlinear effects 106:medium or at the 80: 79: 53:Wave clouds over 16:(Redirected from 4850: 4820: 4819: 4808: 4807: 4798: 4797: 4737:Pelagic sediment 4675:Marine pollution 4469:Deep ocean water 4338:Submarine canyon 4273:Continental rise 4165:Rule of twelfths 4080:Sverdrup balance 4010:Humboldt Current 3935:Boundary current 3910: 3899: 3716:Radiation stress 3686:Iribarren number 3661:Equatorial waves 3616:Ballantine scale 3611:Airy wave theory 3588: 3581: 3574: 3565: 3564: 3560: 3558: 3557: 3548:. Archived from 3541: 3539: 3538: 3511: 3509: 3508: 3499:. Archived from 3492: 3490: 3489: 3460: 3441: 3439: 3438: 3376: 3375: 3365: 3341: 3335: 3334: 3296: 3290: 3289: 3254: 3248: 3247: 3245: 3221: 3215: 3214: 3196: 3168: 3162: 3161: 3151: 3119: 3113: 3112: 3096:Lighthill, James 3092: 3026:Asteroseismology 2962: 2960: 2959: 2954: 2951: 2947: 2890: 2888: 2887: 2882: 2877: 2869: 2864: 2863: 2851: 2850: 2813: 2811: 2810: 2805: 2797: 2789: 2784: 2775: 2774: 2772: 2764: 2759: 2758: 2738: 2736: 2735: 2730: 2725: 2723: 2715: 2707: 2702: 2701: 2677: 2675: 2674: 2669: 2664: 2656: 2639: 2637: 2636: 2631: 2619: 2617: 2616: 2611: 2605: 2579: 2577: 2576: 2571: 2566: 2564: 2559: 2551: 2546: 2538: 2536: 2519: 2517: 2516: 2511: 2508: 2507: 2479: 2477: 2476: 2471: 2462: 2461: 2425: 2424: 2407: 2405: 2404: 2399: 2372: 2370: 2369: 2364: 2358: 2357: 2303: 2301: 2300: 2295: 2274: 2255: 2253: 2252: 2247: 2244: 2242: 2234: 2233: 2221: 2219: 2211: 2203: 2201: 2193: 2192: 2180: 2161: 2159: 2158: 2153: 2141: 2138: 2132: 2131: 2086: 2084: 2083: 2078: 2072: 2069: 2027: 2025: 2024: 2019: 2014: 2013: 1992: 1988: 1987: 1976: 1965: 1933: 1931: 1930: 1925: 1919: 1918: 1897: 1893: 1862: 1860: 1859: 1854: 1848: 1847: 1829: 1828: 1788: 1786: 1785: 1780: 1762: 1758: 1727:is given by the 1726: 1724: 1723: 1718: 1688: 1686: 1685: 1680: 1656: 1654: 1653: 1648: 1627: 1625: 1624: 1619: 1615: 1604: 1585: 1583: 1582: 1577: 1571: 1560: 1549: 1547: 1539: 1531: 1516: 1514: 1513: 1508: 1502: 1491: 1480: 1478: 1470: 1462: 1460: 1449: 1447: 1439: 1431: 1419: 1417: 1416: 1411: 1407: 1403: 1357: 1355: 1354: 1349: 1346: 1342: 1310: 1308: 1307: 1302: 1299: 1298: 1266: 1264: 1263: 1258: 1240: 1237: 1202: 1200: 1199: 1194: 1180: 1178: 1177: 1172: 1149: 1147: 1146: 1141: 1121: 1119: 1118: 1113: 1084: 1082: 1081: 1076: 1071: 1069: 1058: 1048: 1032: 1028: 1027: 1026: 1014: 1013: 982: 980: 979: 974: 968: 954: 953: 952: 948: 916: 912: 871: 869: 868: 863: 851: 850: 834: 832: 831: 826: 817: 813: 812: 784: 782: 781: 776: 774: 770: 741: 739: 738: 733: 724: 723: 708: 707: 668: 636: 622: 618: 617: 596: 594: 593: 588: 559: 527: 501:is the density. 490: 488: 487: 482: 477: 475: 470: 462: 457: 449: 447: 424: 422: 421: 416: 411: 402: 401: 384: 382: 381: 376: 361: 359: 358: 353: 326:Airy wave theory 227:Atmospheric wave 73: 72: 61: 60: 21: 4858: 4857: 4853: 4852: 4851: 4849: 4848: 4847: 4833: 4832: 4831: 4826: 4814: 4786: 4625: 4599: 4561: 4542:Sea-level curve 4513: 4452: 4438:Transform fault 4388:Mid-ocean ridge 4354: 4347: 4313:Oceanic plateau 4219: 4205:Tidal resonance 4175:Theory of tides 4116: 4025:Longshore drift 3975:Ekman transport 3911: 3905: 3904: 3903: 3902: 3901: 3900: 3891: 3843:Wave turbulence 3776:Trochoidal wave 3701:Longshore drift 3597: 3592: 3555: 3553: 3544: 3536: 3534: 3519: 3506: 3504: 3495: 3487: 3485: 3470: 3467: 3457: 3436: 3434: 3422: 3420:Further reading 3384: 3379: 3342: 3338: 3297: 3293: 3255: 3251: 3222: 3218: 3194:10.1.1.470.3839 3169: 3165: 3134:(L02502): n/a, 3120: 3116: 3110: 3100:Waves in fluids 3093: 3089: 3085: 3080: 3016: 3010: 3000: 2937: 2933: 2930: 2927: 2926: 2903: 2897: 2868: 2859: 2855: 2846: 2842: 2840: 2837: 2836: 2822: 2788: 2773: 2763: 2754: 2750: 2748: 2745: 2744: 2716: 2708: 2706: 2697: 2693: 2691: 2688: 2687: 2655: 2647: 2644: 2643: 2625: 2622: 2621: 2601: 2589: 2586: 2585: 2582: 2581: 2552: 2550: 2537: 2535: 2527: 2524: 2523: 2500: 2496: 2487: 2484: 2483: 2457: 2453: 2420: 2416: 2413: 2410: 2409: 2381: 2378: 2377: 2350: 2346: 2314: 2311: 2310: 2267: 2264: 2261: 2260: 2235: 2226: 2222: 2220: 2210: 2194: 2185: 2181: 2179: 2177: 2174: 2173: 2167:Euler equations 2137: 2124: 2120: 2097: 2094: 2093: 2068: 2044: 2041: 2040: 2006: 2002: 1977: 1969: 1955: 1951: 1947: 1945: 1942: 1941: 1911: 1907: 1883: 1879: 1874: 1871: 1870: 1840: 1836: 1824: 1820: 1812: 1809: 1808: 1748: 1744: 1739: 1736: 1735: 1704: 1701: 1700: 1697:surface tension 1662: 1659: 1658: 1633: 1630: 1629: 1605: 1597: 1594: 1591: 1590: 1561: 1553: 1540: 1532: 1530: 1528: 1525: 1524: 1492: 1484: 1471: 1463: 1461: 1453: 1440: 1432: 1430: 1428: 1425: 1424: 1393: 1389: 1377: 1374: 1373: 1329: 1325: 1316: 1313: 1312: 1291: 1287: 1275: 1272: 1271: 1236: 1211: 1208: 1207: 1186: 1183: 1182: 1155: 1152: 1151: 1127: 1124: 1123: 1093: 1090: 1089: 1062: 1057: 1022: 1018: 1009: 1005: 1004: 1000: 998: 995: 994: 958: 935: 931: 924: 920: 896: 892: 887: 884: 883: 846: 842: 840: 837: 836: 808: 807: 806: 798: 795: 794: 760: 756: 754: 751: 750: 719: 715: 703: 699: 661: 629: 613: 612: 611: 609: 606: 605: 601:representation 552: 520: 515: 512: 511: 506: 463: 461: 448: 446: 438: 435: 434: 400: 392: 389: 388: 370: 367: 366: 347: 344: 343: 337: 332: 322: 280:increases, and 259:frontal systems 235: 229: 223: 201:capillary waves 192:and are called 190:surface tension 70: 57:, United States 35: 32: 23: 22: 15: 12: 11: 5: 4856: 4846: 4845: 4828: 4827: 4825: 4824: 4812: 4802: 4791: 4788: 4787: 4785: 4784: 4779: 4774: 4769: 4764: 4762:Stratification 4759: 4754: 4749: 4744: 4739: 4734: 4733: 4732: 4722: 4717: 4712: 4707: 4702: 4697: 4692: 4687: 4682: 4677: 4672: 4667: 4662: 4654: 4652:Color of water 4649: 4647:Benthic lander 4644: 4639: 4633: 4631: 4627: 4626: 4624: 4623: 4618: 4613: 4607: 4605: 4601: 4600: 4598: 4597: 4592: 4587: 4582: 4577: 4571: 4569: 4563: 4562: 4560: 4559: 4554: 4552:Sea level rise 4549: 4547:Sea level drop 4544: 4539: 4534: 4529: 4523: 4521: 4515: 4514: 4512: 4511: 4506: 4501: 4496: 4491: 4486: 4481: 4476: 4471: 4466: 4460: 4458: 4454: 4453: 4451: 4450: 4445: 4440: 4435: 4430: 4425: 4420: 4415: 4410: 4405: 4400: 4395: 4390: 4385: 4383:Marine geology 4380: 4375: 4370: 4365: 4359: 4357: 4349: 4348: 4346: 4345: 4340: 4335: 4330: 4325: 4323:Passive margin 4320: 4318:Oceanic trench 4315: 4310: 4305: 4300: 4295: 4290: 4285: 4280: 4275: 4270: 4265: 4260: 4255: 4250: 4245: 4240: 4235: 4229: 4227: 4221: 4220: 4218: 4217: 4212: 4207: 4202: 4197: 4192: 4187: 4182: 4177: 4172: 4167: 4162: 4157: 4152: 4147: 4142: 4137: 4132: 4126: 4124: 4118: 4117: 4115: 4114: 4109: 4104: 4099: 4094: 4093: 4092: 4082: 4077: 4072: 4067: 4062: 4057: 4052: 4050:Ocean dynamics 4047: 4042: 4037: 4032: 4027: 4022: 4017: 4012: 4007: 4002: 3997: 3992: 3987: 3982: 3977: 3972: 3967: 3962: 3957: 3952: 3947: 3942: 3940:Coriolis force 3937: 3932: 3927: 3921: 3919: 3913: 3912: 3894: 3892: 3890: 3889: 3888: 3887: 3877: 3872: 3867: 3866: 3865: 3860: 3850: 3845: 3840: 3835: 3830: 3825: 3820: 3815: 3810: 3805: 3800: 3795: 3790: 3789: 3788: 3778: 3773: 3768: 3763: 3761:Stokes problem 3758: 3753: 3748: 3743: 3738: 3733: 3728: 3723: 3718: 3713: 3708: 3703: 3698: 3696:Kinematic wave 3693: 3688: 3683: 3678: 3673: 3668: 3663: 3658: 3653: 3648: 3643: 3638: 3633: 3628: 3623: 3618: 3613: 3607: 3605: 3599: 3598: 3591: 3590: 3583: 3576: 3568: 3562: 3561: 3542: 3517: 3512: 3493: 3466: 3465:External links 3463: 3462: 3461: 3455: 3442: 3421: 3418: 3417: 3416: 3413: 3396: 3387:Gill, A. E., " 3383: 3380: 3378: 3377: 3336: 3310:(2): 185–204, 3304:J. Fluid Mech. 3291: 3265:(5): 417–445, 3259:J. Fluid Mech. 3249: 3236:(2): 409–428. 3216: 3163: 3114: 3108: 3086: 3084: 3081: 3079: 3078: 3073: 3068: 3063: 3058: 3053: 3048: 3043: 3038: 3033: 3028: 3023: 3017: 3015: 3012: 2999: 2996: 2973:critical layer 2950: 2946: 2943: 2940: 2936: 2899:Main article: 2896: 2893: 2892: 2891: 2880: 2875: 2872: 2867: 2862: 2858: 2854: 2849: 2845: 2821: 2818: 2803: 2800: 2795: 2792: 2787: 2781: 2778: 2770: 2767: 2762: 2757: 2753: 2728: 2722: 2719: 2714: 2711: 2705: 2700: 2696: 2682:group velocity 2667: 2662: 2659: 2654: 2651: 2629: 2608: 2604: 2600: 2597: 2594: 2569: 2562: 2558: 2555: 2549: 2544: 2541: 2534: 2531: 2506: 2503: 2499: 2495: 2492: 2468: 2465: 2460: 2456: 2452: 2449: 2446: 2443: 2440: 2437: 2434: 2431: 2428: 2423: 2419: 2395: 2392: 2389: 2386: 2374: 2373: 2361: 2356: 2353: 2349: 2345: 2342: 2339: 2336: 2333: 2330: 2327: 2324: 2321: 2318: 2292: 2289: 2286: 2283: 2280: 2277: 2273: 2270: 2257: 2256: 2241: 2238: 2232: 2229: 2225: 2217: 2214: 2209: 2206: 2200: 2197: 2191: 2188: 2184: 2163: 2162: 2150: 2147: 2144: 2135: 2130: 2127: 2123: 2119: 2116: 2113: 2110: 2107: 2104: 2101: 2075: 2067: 2064: 2061: 2058: 2055: 2052: 2049: 2039:, in the form 2029: 2028: 2017: 2012: 2009: 2005: 2001: 1998: 1995: 1991: 1986: 1983: 1980: 1975: 1972: 1968: 1964: 1961: 1958: 1954: 1950: 1935: 1934: 1922: 1917: 1914: 1910: 1906: 1903: 1900: 1896: 1892: 1889: 1886: 1882: 1878: 1864: 1863: 1851: 1846: 1843: 1839: 1835: 1832: 1827: 1823: 1819: 1816: 1790: 1789: 1777: 1774: 1771: 1768: 1765: 1761: 1757: 1754: 1751: 1747: 1743: 1715: 1712: 1709: 1676: 1673: 1670: 1667: 1644: 1641: 1638: 1614: 1611: 1608: 1603: 1600: 1587: 1586: 1574: 1570: 1567: 1564: 1559: 1556: 1552: 1546: 1543: 1538: 1535: 1518: 1517: 1505: 1501: 1498: 1495: 1490: 1487: 1483: 1477: 1474: 1469: 1466: 1459: 1456: 1452: 1446: 1443: 1438: 1435: 1406: 1402: 1399: 1396: 1392: 1388: 1385: 1382: 1345: 1341: 1338: 1335: 1332: 1328: 1324: 1321: 1297: 1294: 1290: 1286: 1283: 1280: 1268: 1267: 1256: 1253: 1250: 1247: 1244: 1233: 1230: 1227: 1224: 1221: 1218: 1215: 1191: 1169: 1166: 1163: 1160: 1138: 1135: 1132: 1110: 1107: 1104: 1101: 1098: 1086: 1085: 1074: 1068: 1065: 1061: 1056: 1053: 1044: 1041: 1038: 1035: 1031: 1025: 1021: 1017: 1012: 1008: 1003: 984: 983: 971: 967: 964: 961: 957: 951: 947: 944: 941: 938: 934: 930: 927: 923: 919: 915: 911: 908: 905: 902: 899: 895: 891: 860: 857: 854: 849: 845: 823: 820: 816: 805: 802: 773: 769: 766: 763: 759: 743: 742: 730: 727: 722: 718: 714: 711: 706: 702: 698: 695: 692: 689: 686: 683: 680: 677: 674: 671: 667: 664: 660: 657: 654: 651: 648: 645: 642: 639: 635: 632: 628: 625: 621: 599:streamfunction 586: 583: 580: 577: 574: 571: 568: 565: 562: 558: 555: 551: 548: 545: 542: 539: 536: 533: 530: 526: 523: 519: 507: 504: 503: 480: 473: 469: 466: 460: 455: 452: 445: 442: 414: 408: 405: 399: 396: 374: 351: 341:phase velocity 336: 333: 321: 318: 297:of the middle 222: 219: 162:internal waves 158: 96:fluid dynamics 78: 77: 66: 65: 33: 9: 6: 4: 3: 2: 4855: 4844: 4843:Gravity waves 4841: 4840: 4838: 4823: 4818: 4813: 4811: 4803: 4801: 4793: 4792: 4789: 4783: 4780: 4778: 4775: 4773: 4770: 4768: 4765: 4763: 4760: 4758: 4755: 4753: 4750: 4748: 4745: 4743: 4740: 4738: 4735: 4731: 4728: 4727: 4726: 4723: 4721: 4718: 4716: 4713: 4711: 4708: 4706: 4703: 4701: 4698: 4696: 4693: 4691: 4688: 4686: 4683: 4681: 4678: 4676: 4673: 4671: 4670:Marine energy 4668: 4666: 4663: 4661: 4660: 4655: 4653: 4650: 4648: 4645: 4643: 4640: 4638: 4637:Acidification 4635: 4634: 4632: 4628: 4622: 4619: 4617: 4614: 4612: 4609: 4608: 4606: 4602: 4596: 4593: 4591: 4590:SOFAR channel 4588: 4586: 4583: 4581: 4578: 4576: 4573: 4572: 4570: 4568: 4564: 4558: 4555: 4553: 4550: 4548: 4545: 4543: 4540: 4538: 4535: 4533: 4530: 4528: 4525: 4524: 4522: 4520: 4516: 4510: 4507: 4505: 4502: 4500: 4497: 4495: 4492: 4490: 4487: 4485: 4482: 4480: 4477: 4475: 4472: 4470: 4467: 4465: 4462: 4461: 4459: 4455: 4449: 4446: 4444: 4441: 4439: 4436: 4434: 4431: 4429: 4426: 4424: 4421: 4419: 4416: 4414: 4411: 4409: 4406: 4404: 4401: 4399: 4398:Oceanic crust 4396: 4394: 4391: 4389: 4386: 4384: 4381: 4379: 4376: 4374: 4373:Fracture zone 4371: 4369: 4366: 4364: 4361: 4360: 4358: 4356: 4350: 4344: 4341: 4339: 4336: 4334: 4331: 4329: 4326: 4324: 4321: 4319: 4316: 4314: 4311: 4309: 4308:Oceanic basin 4306: 4304: 4301: 4299: 4296: 4294: 4291: 4289: 4286: 4284: 4281: 4279: 4276: 4274: 4271: 4269: 4266: 4264: 4261: 4259: 4256: 4254: 4251: 4249: 4246: 4244: 4241: 4239: 4238:Abyssal plain 4236: 4234: 4231: 4230: 4228: 4226: 4222: 4216: 4213: 4211: 4208: 4206: 4203: 4201: 4198: 4196: 4193: 4191: 4188: 4186: 4183: 4181: 4178: 4176: 4173: 4171: 4168: 4166: 4163: 4161: 4158: 4156: 4153: 4151: 4148: 4146: 4145:Internal tide 4143: 4141: 4138: 4136: 4133: 4131: 4128: 4127: 4125: 4123: 4119: 4113: 4110: 4108: 4105: 4103: 4100: 4098: 4095: 4091: 4088: 4087: 4086: 4083: 4081: 4078: 4076: 4073: 4071: 4068: 4066: 4063: 4061: 4058: 4056: 4053: 4051: 4048: 4046: 4043: 4041: 4040:Ocean current 4038: 4036: 4033: 4031: 4028: 4026: 4023: 4021: 4018: 4016: 4013: 4011: 4008: 4006: 4003: 4001: 3998: 3996: 3993: 3991: 3988: 3986: 3983: 3981: 3978: 3976: 3973: 3971: 3968: 3966: 3963: 3961: 3958: 3956: 3953: 3951: 3948: 3946: 3943: 3941: 3938: 3936: 3933: 3931: 3928: 3926: 3923: 3922: 3920: 3918: 3914: 3909: 3898: 3886: 3883: 3882: 3881: 3878: 3876: 3873: 3871: 3868: 3864: 3861: 3859: 3856: 3855: 3854: 3851: 3849: 3846: 3844: 3841: 3839: 3838:Wave shoaling 3836: 3834: 3831: 3829: 3826: 3824: 3821: 3819: 3816: 3814: 3811: 3809: 3806: 3804: 3801: 3799: 3798:Ursell number 3796: 3794: 3791: 3787: 3784: 3783: 3782: 3779: 3777: 3774: 3772: 3769: 3767: 3764: 3762: 3759: 3757: 3754: 3752: 3749: 3747: 3744: 3742: 3739: 3737: 3734: 3732: 3729: 3727: 3724: 3722: 3719: 3717: 3714: 3712: 3709: 3707: 3704: 3702: 3699: 3697: 3694: 3692: 3689: 3687: 3684: 3682: 3681:Internal wave 3679: 3677: 3674: 3672: 3669: 3667: 3664: 3662: 3659: 3657: 3654: 3652: 3649: 3647: 3644: 3642: 3639: 3637: 3634: 3632: 3631:Breaking wave 3629: 3627: 3624: 3622: 3619: 3617: 3614: 3612: 3609: 3608: 3606: 3604: 3600: 3596: 3589: 3584: 3582: 3577: 3575: 3570: 3569: 3566: 3552:on 2010-11-13 3551: 3547: 3543: 3532: 3528: 3527: 3522: 3518: 3516: 3513: 3503:on 2011-05-24 3502: 3498: 3494: 3483: 3479: 3478: 3473: 3469: 3468: 3458: 3452: 3448: 3443: 3433: 3429: 3424: 3423: 3414: 3412: 3409: 3405: 3401: 3397: 3394: 3390: 3386: 3385: 3373: 3369: 3364: 3359: 3355: 3351: 3347: 3340: 3333: 3329: 3325: 3321: 3317: 3313: 3309: 3305: 3301: 3295: 3288: 3284: 3280: 3276: 3272: 3268: 3264: 3260: 3253: 3244: 3239: 3235: 3231: 3227: 3220: 3212: 3208: 3204: 3200: 3195: 3190: 3186: 3182: 3178: 3174: 3167: 3159: 3155: 3150: 3145: 3141: 3137: 3133: 3129: 3125: 3118: 3111: 3105: 3101: 3097: 3091: 3087: 3077: 3074: 3072: 3069: 3067: 3064: 3062: 3059: 3057: 3054: 3052: 3049: 3047: 3044: 3042: 3039: 3037: 3034: 3032: 3029: 3027: 3024: 3022: 3021:Acoustic wave 3019: 3018: 3011: 3008: 3004: 2995: 2993: 2989: 2984: 2982: 2978: 2974: 2968: 2966: 2948: 2944: 2941: 2938: 2934: 2924: 2919: 2915: 2910: 2908: 2902: 2878: 2873: 2870: 2865: 2860: 2856: 2852: 2847: 2843: 2835: 2834: 2833: 2831: 2827: 2826:nondispersive 2820:Shallow water 2817: 2814: 2801: 2798: 2793: 2790: 2785: 2779: 2776: 2768: 2765: 2760: 2755: 2751: 2742: 2739: 2726: 2720: 2717: 2712: 2709: 2703: 2698: 2694: 2685: 2683: 2678: 2665: 2660: 2657: 2652: 2649: 2641: 2627: 2606: 2602: 2598: 2595: 2592: 2580: 2567: 2560: 2556: 2553: 2547: 2542: 2539: 2532: 2529: 2521: 2520:, this gives 2504: 2501: 2497: 2493: 2480: 2466: 2458: 2454: 2450: 2447: 2444: 2438: 2435: 2429: 2426: 2421: 2417: 2390: 2387: 2384: 2359: 2354: 2351: 2347: 2343: 2340: 2337: 2334: 2331: 2328: 2322: 2319: 2316: 2309: 2308: 2307: 2304: 2290: 2284: 2281: 2278: 2275: 2271: 2268: 2239: 2230: 2227: 2215: 2212: 2207: 2204: 2198: 2189: 2186: 2172: 2171: 2170: 2168: 2148: 2145: 2142: 2133: 2128: 2125: 2121: 2117: 2114: 2111: 2108: 2105: 2102: 2099: 2092: 2091: 2090: 2089:this becomes 2087: 2073: 2065: 2062: 2059: 2056: 2053: 2050: 2047: 2038: 2034: 2015: 2010: 2007: 2003: 1999: 1996: 1993: 1989: 1984: 1981: 1978: 1973: 1970: 1966: 1962: 1959: 1956: 1952: 1948: 1940: 1939: 1938: 1920: 1915: 1912: 1908: 1904: 1901: 1898: 1894: 1890: 1887: 1884: 1880: 1876: 1869: 1868: 1867: 1849: 1844: 1841: 1837: 1833: 1830: 1825: 1817: 1814: 1807: 1806: 1805: 1803: 1799: 1795: 1775: 1772: 1769: 1766: 1763: 1759: 1755: 1752: 1749: 1745: 1741: 1734: 1733: 1732: 1730: 1729:Young–Laplace 1713: 1710: 1707: 1698: 1694: 1690: 1671: 1668: 1665: 1642: 1639: 1636: 1612: 1609: 1606: 1601: 1598: 1572: 1568: 1565: 1562: 1557: 1554: 1550: 1544: 1536: 1523: 1522: 1521: 1503: 1499: 1496: 1493: 1488: 1485: 1481: 1475: 1467: 1457: 1454: 1450: 1444: 1436: 1423: 1422: 1421: 1404: 1400: 1397: 1394: 1390: 1386: 1383: 1380: 1371: 1367: 1365: 1361: 1343: 1339: 1336: 1330: 1326: 1322: 1319: 1295: 1292: 1288: 1284: 1281: 1254: 1248: 1245: 1242: 1231: 1228: 1225: 1219: 1216: 1213: 1206: 1205: 1204: 1189: 1167: 1164: 1161: 1158: 1136: 1133: 1130: 1108: 1102: 1099: 1096: 1072: 1066: 1063: 1059: 1054: 1051: 1042: 1039: 1036: 1029: 1023: 1019: 1015: 1010: 1006: 1001: 993: 992: 991: 989: 969: 965: 962: 959: 949: 945: 942: 939: 936: 932: 928: 925: 921: 917: 913: 909: 906: 903: 900: 897: 893: 889: 882: 881: 880: 879: 875: 858: 855: 852: 847: 821: 818: 814: 803: 792: 788: 771: 767: 764: 761: 757: 748: 728: 720: 716: 712: 709: 704: 700: 693: 684: 681: 678: 675: 672: 665: 662: 658: 652: 649: 646: 643: 640: 633: 630: 623: 619: 604: 603: 602: 600: 584: 575: 572: 569: 566: 563: 556: 553: 549: 543: 540: 537: 534: 531: 524: 521: 502: 500: 496: 491: 478: 471: 467: 464: 458: 453: 450: 443: 440: 432: 430: 425: 412: 406: 403: 397: 394: 386: 372: 365: 349: 342: 331: 327: 317: 315: 311: 307: 302: 300: 296: 292: 289:, and in the 288: 283: 279: 275: 271: 268: 264: 260: 256: 252: 248: 244: 240: 234: 228: 218: 216: 213: 209: 208: 203: 202: 197: 196: 191: 187: 182: 180: 176: 172: 168: 164: 163: 156: 154: 150: 146: 145: 140: 135: 133: 129: 125: 121: 117: 113: 109: 105: 101: 100:gravity waves 97: 89: 84: 76: 67: 62: 56: 51: 44: 39: 30: 19: 18:Gravity waves 4777:Water column 4725:Oceanography 4700:Observations 4695:Explorations 4665:Marginal sea 4658: 4616:OSTM/Jason-2 4448:Volcanic arc 4423:Slab suction 4140:Head of tide 4030:Loop Current 3970:Ekman spiral 3756:Stokes drift 3666:Gravity wave 3665: 3641:Cnoidal wave 3554:. Retrieved 3550:the original 3535:. Retrieved 3524: 3505:. Retrieved 3501:the original 3486:. Retrieved 3475: 3446: 3435:. Retrieved 3399: 3392: 3389:Gravity wave 3353: 3349: 3339: 3307: 3303: 3300:Miles, J. W. 3294: 3262: 3258: 3252: 3233: 3229: 3219: 3176: 3172: 3166: 3131: 3127: 3117: 3099: 3090: 3009: 3005: 3001: 2985: 2980: 2976: 2969: 2913: 2911: 2904: 2829: 2823: 2815: 2743: 2740: 2686: 2679: 2642: 2583: 2522: 2481: 2375: 2305: 2258: 2164: 2088: 2032: 2030: 1936: 1865: 1797: 1793: 1791: 1692: 1691: 1588: 1519: 1369: 1368: 1363: 1359: 1269: 1087: 987: 985: 873: 791:irrotational 786: 744: 508: 498: 494: 492: 433: 428: 426: 387: 338: 303: 251:stratosphere 236: 233:Undular bore 205: 199: 193: 186:free surface 183: 160: 153:surface wave 148: 143: 142: 136: 99: 93: 4767:Thermocline 4484:Mesopelagic 4457:Ocean zones 4428:Slab window 4293:Hydrography 4233:Abyssal fan 4200:Tidal range 4190:Tidal power 4185:Tidal force 4070:Rip current 4005:Gulf Stream 3965:Ekman layer 3955:Downwelling 3930:Baroclinity 3917:Circulation 3813:Wave height 3803:Wave action 3786:megatsunami 3766:Stokes wave 3726:Rossby wave 3691:Kelvin wave 3671:Green's law 3179:(1): 1003, 3031:Green's law 330:Stokes wave 247:troposphere 212:subharmonic 151:(a type of 139:equilibrium 4705:Reanalysis 4604:Satellites 4585:Sofar bomb 4433:Subduction 4408:Ridge push 4303:Ocean bank 4283:Contourite 4210:Tide gauge 4195:Tidal race 4180:Tidal bore 4170:Slack tide 4135:Earth tide 4055:Ocean gyre 3875:Wind setup 3870:Wind fetch 3833:Wave setup 3828:Wave radar 3823:Wave power 3721:Rogue wave 3651:Dispersion 3556:2010-11-11 3537:2010-11-11 3507:2010-11-11 3488:2018-12-13 3437:2010-11-11 3382:References 3356:(1): 165. 3071:Rogue wave 1731:equation: 364:wavenumber 335:Deep water 310:ionosphere 299:atmosphere 291:mesosphere 255:mesosphere 231:See also: 177:, and the 144:wave orbit 132:wind waves 124:atmosphere 4567:Acoustics 4519:Sea level 4418:Slab pull 4355:tectonics 4263:Cold seep 4225:Landforms 4102:Whirlpool 4097:Upwelling 3880:Wind wave 3808:Wave base 3736:Sea state 3656:Edge wave 3646:Cross sea 3372:2399-3650 3332:119795395 3287:116675962 3211:122701606 3189:CiteSeerX 2965:resonance 2939:ω 2918:turbulent 2916:), and a 2901:Wind wave 2713:ω 2650:ω 2628:ω 2599:ω 2561:ρ 2554:σ 2491:Ψ 2464:Ψ 2451:σ 2445:ρ 2442:Ψ 2433:Ψ 2427:ρ 2394:Ψ 2388:η 2348:η 2344:σ 2341:− 2338:ρ 2335:η 2326:Ψ 2320:ρ 2288:Ψ 2279:ρ 2259:to yield 2237:∂ 2224:∂ 2216:ρ 2208:− 2196:∂ 2183:∂ 2122:η 2118:σ 2115:− 2112:ρ 2109:η 2057:ρ 2054:− 2035:.) Using 2004:η 2000:σ 1997:− 1960:η 1909:η 1905:σ 1902:− 1891:η 1838:η 1831:η 1822:∇ 1815:κ 1802:curvature 1773:κ 1770:σ 1767:− 1756:η 1714:η 1675:Ψ 1669:η 1610:η 1542:∂ 1537:η 1534:∂ 1497:η 1473:∂ 1468:η 1465:∂ 1442:∂ 1437:η 1434:∂ 1387:η 1340:η 1334:∞ 1331:− 1323:∈ 1279:Ψ 1252:∞ 1249:− 1223:Ψ 1190:η 1165:η 1106:∞ 1103:− 1034:Ψ 1016:− 956:Ψ 940:− 890:ψ 853:ψ 844:∇ 804:× 801:∇ 717:ψ 713:− 701:ψ 472:ρ 465:σ 278:amplitude 274:altitudes 263:mountains 245:from the 215:nonlinear 108:interface 88:Timor Sea 45:, Croatia 4837:Category 4800:Category 4752:Seawater 4479:Littoral 4474:Deep sea 4333:Seamount 4215:Tideline 4160:Rip tide 4090:shutdown 4060:Overflow 3793:Undertow 3636:Clapotis 3531:Archived 3482:Archived 3158:38071443 3098:(2001), 3076:Skyquake 3041:Lee wave 3014:See also 2994:length. 2923:stresses 2272:′ 2231:′ 2190:′ 2139:on  1974:′ 1602:′ 1558:′ 1489:′ 1458:′ 1358:, where 815:′ 793:, hence 666:′ 634:′ 620:′ 557:′ 525:′ 295:dynamics 276:, their 270:velocity 243:momentum 173:, ocean 171:tsunamis 126:and the 120:buoyancy 4810:Commons 4680:Mooring 4630:Related 4621:Jason-3 4611:Jason-1 4494:Pelagic 4489:Oceanic 4464:Benthic 3781:Tsunami 3751:Soliton 3526:YouTube 3477:YouTube 3312:Bibcode 3267:Bibcode 3181:Bibcode 3136:Bibcode 1800:is the 1270:Hence, 249:to the 237:In the 116:gravity 4499:Photic 4328:Seabed 3741:Seiche 3453:  3406:  3370:  3330:  3285:  3209:  3191:  3156:  3106:  2914:glassy 2584:Since 2070:Const. 1866:Thus, 1792:where 1181:where 1049:  986:where 878:ansatz 493:where 427:where 314:radars 157:within 43:Tučepi 4690:Ocean 4659:Alvin 4509:Swash 4353:Plate 4298:Knoll 4288:Guyot 4243:Atoll 4122:Tides 3885:model 3771:Swell 3603:Waves 3400:Waves 3328:S2CID 3283:S2CID 3207:S2CID 3154:S2CID 3083:Notes 2992:fetch 2986:This 179:wakes 175:tides 128:ocean 112:force 104:fluid 4657:DSV 4642:Argo 4504:Surf 3960:Eddy 3451:ISBN 3432:NOAA 3404:ISBN 3368:ISSN 3104:ISBN 2680:The 339:The 328:and 267:mean 253:and 3391:". 3358:doi 3320:doi 3275:doi 3238:doi 3199:doi 3144:doi 2033:z=0 1311:on 316:. 118:or 114:of 94:In 4839:: 3529:. 3523:. 3480:. 3474:. 3430:. 3366:. 3352:. 3348:. 3326:, 3318:, 3306:, 3281:, 3273:, 3261:, 3234:41 3232:. 3228:. 3205:, 3197:, 3187:, 3177:41 3175:, 3152:, 3142:, 3132:37 3130:, 3126:, 2832:, 2149:0. 1643:0. 1238:on 859:0. 822:0. 301:. 165:. 134:. 98:, 3587:e 3580:t 3573:v 3559:. 3540:. 3510:. 3491:. 3459:. 3440:. 3374:. 3360:: 3354:7 3322:: 3314:: 3308:3 3277:: 3269:: 3263:2 3246:. 3240:: 3213:. 3201:: 3183:: 3160:. 3146:: 3138:: 2981:U 2977:c 2949:) 2945:k 2942:, 2935:( 2879:. 2874:h 2871:g 2866:= 2861:g 2857:c 2853:= 2848:p 2844:c 2830:h 2802:. 2799:c 2794:2 2791:1 2786:= 2780:k 2777:g 2769:2 2766:1 2761:= 2756:g 2752:c 2727:, 2721:k 2718:d 2710:d 2704:= 2699:g 2695:c 2666:. 2661:k 2658:g 2653:= 2607:k 2603:/ 2596:= 2593:c 2568:. 2557:k 2548:+ 2543:k 2540:g 2533:= 2530:c 2505:z 2502:k 2498:e 2494:= 2467:. 2459:2 2455:k 2448:+ 2439:g 2436:= 2430:D 2422:2 2418:c 2391:= 2385:c 2360:. 2355:x 2352:x 2332:g 2329:= 2323:D 2317:c 2291:. 2285:D 2282:c 2276:= 2269:p 2240:x 2228:p 2213:1 2205:= 2199:t 2187:u 2146:= 2143:z 2134:, 2129:x 2126:x 2106:g 2103:= 2100:p 2074:, 2066:+ 2063:z 2060:g 2051:= 2048:P 2016:. 2011:x 2008:x 1994:= 1990:] 1985:) 1982:0 1979:( 1971:p 1967:+ 1963:) 1957:( 1953:P 1949:[ 1921:. 1916:x 1913:x 1899:= 1895:) 1888:= 1885:z 1881:( 1877:p 1850:. 1845:x 1842:x 1834:= 1826:2 1818:= 1798:Îș 1794:σ 1776:, 1764:= 1760:) 1753:= 1750:z 1746:( 1742:p 1711:= 1708:z 1672:= 1666:c 1640:= 1637:z 1613:) 1607:( 1599:w 1573:, 1569:) 1566:0 1563:( 1555:w 1551:= 1545:t 1504:. 1500:) 1494:( 1486:w 1482:= 1476:x 1455:u 1451:+ 1445:t 1405:) 1401:t 1398:, 1395:x 1391:( 1384:= 1381:z 1364:c 1360:A 1344:) 1337:, 1327:( 1320:z 1296:z 1293:k 1289:e 1285:A 1282:= 1255:. 1246:= 1243:z 1232:, 1229:0 1226:= 1220:D 1217:= 1214:u 1168:, 1162:= 1159:z 1137:0 1134:= 1131:z 1109:. 1100:= 1097:z 1073:. 1067:z 1064:d 1060:d 1055:= 1052:D 1043:, 1040:0 1037:= 1030:) 1024:2 1020:k 1011:2 1007:D 1002:( 988:k 970:, 966:) 963:z 960:( 950:) 946:t 943:c 937:x 933:( 929:k 926:i 922:e 918:= 914:) 910:t 907:, 904:z 901:, 898:x 894:( 874:x 856:= 848:2 819:= 810:u 787:z 772:) 768:z 765:, 762:x 758:( 729:, 726:) 721:x 710:, 705:z 697:( 694:= 691:) 688:) 685:t 682:, 679:z 676:, 673:x 670:( 663:w 659:, 656:) 653:t 650:, 647:z 644:, 641:x 638:( 631:u 627:( 624:= 615:u 585:. 582:) 579:) 576:t 573:, 570:z 567:, 564:x 561:( 554:w 550:, 547:) 544:t 541:, 538:z 535:, 532:x 529:( 522:u 518:( 499:ρ 495:σ 479:, 468:k 459:+ 454:k 451:g 444:= 441:c 429:g 413:, 407:k 404:g 398:= 395:c 373:k 350:c 31:. 20:)

Index

Gravity waves
Gravitational wave

Tučepi

Theresa, Wisconsin
Detailed animation of water wave motion (CC-BY-NC-ND 4.0)
wave clouds observed over the ocean, seen from a satellite
Timor Sea
fluid dynamics
fluid
interface
force
gravity
buoyancy
atmosphere
ocean
wind waves
equilibrium
surface wave
internal waves
Wind-generated waves
tsunamis
tides
wakes
free surface
surface tension
gravity–capillary waves
capillary waves
infragravity waves

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑