Knowledge

Geometric genus

Source đź“ť

504: 302: 353: 378: 589: 219: 319: 658: 608: 639: 236: 200: 677: 223: 627: 334: 215: 85: 541: 58: 140: 327: 28: 8: 579: 132: 42: 365: 20: 654: 635: 623: 107: 96: 584: 196: 148: 62: 46: 514:
The definition of geometric genus is carried over classically to singular curves
499:{\displaystyle {\mathcal {K}}_{C}=\left_{\vert C}={\mathcal {O}}(d-3)_{\vert C}} 195:
In the case of complex varieties, (the complex loci of) non-singular curves are
144: 671: 81: 66: 184: 567: 226:. By the Riemann-Roch theorem, an irreducible plane curve of degree 648: 214:
The notion of genus features prominently in the statement of the
203:. On a nonsingular curve, the canonical line bundle has degree 634:. Wiley Classics Library. Wiley Interscience. p. 494. 570:, the definition is extended by birational invariance. 311:
is the number of singularities when properly counted.
622: 381: 337: 239: 102:
it is the number of linearly independent holomorphic
199:. The algebraic definition of genus agrees with the 61:
complex projective varieties and more generally for
318:is an irreducible (and smooth) hypersurface in the 651:Algebraic curves, algebraic manifolds, and schemes 498: 347: 296: 669: 649:V. I. Danilov; Vyacheslav V. Shokurov (1998). 509: 488: 453: 297:{\displaystyle g={\frac {(d-1)(d-2)}{2}}-s,} 322:cut out by a polynomial equation of degree 154:The geometric genus is the first invariant 416: 220:Riemann–Roch theorem for algebraic curves 114:. This definition, as the dimension of 57:The geometric genus can be defined for 670: 326:, then its normal line bundle is the 13: 466: 433: 408: 385: 340: 14: 689: 190: 84:), that is, the dimension of the 632:Principles of Algebraic Geometry 607:Danilov & Shokurov (1998), 368:, the canonical line bundle of 601: 540:is the geometric genus of the 484: 471: 444: 438: 348:{\displaystyle {\mathcal {O}}} 276: 264: 261: 249: 131:then carries over to any base 91:In other words, for a variety 1: 616: 550:. That is, since the mapping 52: 172:of a sequence of invariants 139:is taken to be the sheaf of 7: 573: 510:Genus of singular varieties 143:and the power is the (top) 10: 694: 16:Basic birational invariant 595: 224:Riemann–Hurwitz formula 86:canonical linear system 590:Invariants of surfaces 500: 349: 298: 501: 350: 299: 149:canonical line bundle 518:, by decreeing that 379: 335: 328:Serre twisting sheaf 237: 230:has geometric genus 216:Riemann–Roch theorem 209: − 2 141:Kähler differentials 29:birational invariant 678:Algebraic varieties 580:Genus (mathematics) 43:algebraic varieties 496: 366:adjunction formula 345: 294: 201:topological notion 21:algebraic geometry 660:978-3-540-63705-9 283: 97:complex dimension 63:complex manifolds 47:complex manifolds 685: 664: 645: 611: 605: 585:Arithmetic genus 562: 558:′ → 549: 536: 517: 505: 503: 502: 497: 495: 494: 470: 469: 460: 459: 451: 447: 437: 436: 427: 426: 425: 424: 419: 412: 411: 395: 394: 389: 388: 371: 363: 356: 354: 352: 351: 346: 344: 343: 325: 320:projective plane 317: 303: 301: 300: 295: 284: 279: 247: 210: 197:Riemann surfaces 182: 171: 138: 127: 113: 105: 101: 94: 79: 73: 40: 693: 692: 688: 687: 686: 684: 683: 682: 668: 667: 661: 642: 619: 614: 606: 602: 598: 576: 554: 544: 530: 522: 515: 512: 487: 483: 465: 464: 452: 432: 431: 420: 415: 414: 413: 407: 406: 405: 404: 400: 399: 390: 384: 383: 382: 380: 377: 376: 369: 357: 339: 338: 336: 333: 332: 330: 323: 315: 248: 246: 238: 235: 234: 204: 193: 181: 173: 170: 163: 155: 136: 118: 111: 110:to be found on 103: 99: 92: 75: 69: 55: 39: 31: 25:geometric genus 17: 12: 11: 5: 691: 681: 680: 666: 665: 659: 646: 640: 618: 615: 613: 612: 599: 597: 594: 593: 592: 587: 582: 575: 572: 564: 563: 538: 537: 526: 511: 508: 507: 506: 493: 490: 486: 482: 479: 476: 473: 468: 463: 458: 455: 450: 446: 443: 440: 435: 430: 423: 418: 410: 403: 398: 393: 387: 342: 305: 304: 293: 290: 287: 282: 278: 275: 272: 269: 266: 263: 260: 257: 254: 251: 245: 242: 192: 191:Case of curves 189: 177: 168: 159: 145:exterior power 129: 128: 54: 51: 35: 15: 9: 6: 4: 3: 2: 690: 679: 676: 675: 673: 662: 656: 652: 647: 643: 641:0-471-05059-8 637: 633: 629: 625: 621: 620: 610: 604: 600: 591: 588: 586: 583: 581: 578: 577: 571: 569: 561: 557: 553: 552: 551: 547: 543: 542:normalization 534: 529: 525: 521: 520: 519: 491: 480: 477: 474: 461: 456: 448: 441: 428: 421: 401: 396: 391: 375: 374: 373: 367: 361: 329: 321: 312: 310: 291: 288: 285: 280: 273: 270: 267: 258: 255: 252: 243: 240: 233: 232: 231: 229: 225: 222:) and of the 221: 217: 212: 208: 202: 198: 188: 186: 180: 176: 167: 162: 158: 152: 150: 146: 142: 134: 125: 121: 117: 116: 115: 109: 98: 89: 87: 83: 82:Serre duality 78: 72: 68: 64: 60: 50: 48: 44: 38: 34: 30: 26: 22: 653:. Springer. 650: 631: 624:P. Griffiths 603: 565: 559: 555: 545: 539: 532: 527: 523: 513: 372:is given by 364:, so by the 359: 313: 308: 306: 227: 213: 206: 194: 178: 174: 165: 160: 156: 153: 130: 123: 119: 90: 76: 70: 67:Hodge number 59:non-singular 56: 36: 32: 24: 18: 185:plurigenera 183:called the 27:is a basic 617:References 568:birational 218:(see also 88:plus one. 74:(equal to 53:Definition 628:J. Harris 478:− 286:− 271:− 256:− 672:Category 630:(1994). 574:See also 126:,Ω) 548:′ 355:⁠ 331:⁠ 135:, when 65:as the 657:  638:  307:where 147:, the 137:Ω 23:, the 609:p. 53 596:Notes 133:field 108:forms 655:ISBN 636:ISBN 45:and 566:is 314:If 95:of 80:by 41:of 19:In 674:: 626:; 211:. 187:. 164:= 151:. 49:. 663:. 644:. 560:C 556:C 546:C 535:) 533:C 531:( 528:g 524:p 516:C 492:C 489:| 485:) 481:3 475:d 472:( 467:O 462:= 457:C 454:| 449:] 445:) 442:d 439:( 434:O 429:+ 422:2 417:P 409:K 402:[ 397:= 392:C 386:K 370:C 362:) 360:d 358:( 341:O 324:d 316:C 309:s 292:, 289:s 281:2 277:) 274:2 268:d 265:( 262:) 259:1 253:d 250:( 244:= 241:g 228:d 207:g 205:2 179:n 175:P 169:1 166:P 161:g 157:p 124:V 122:( 120:H 112:V 106:- 104:n 100:n 93:V 77:h 71:h 37:g 33:p

Index

algebraic geometry
birational invariant
algebraic varieties
complex manifolds
non-singular
complex manifolds
Hodge number
Serre duality
canonical linear system
complex dimension
forms
field
Kähler differentials
exterior power
canonical line bundle
plurigenera
Riemann surfaces
topological notion
Riemann–Roch theorem
Riemann–Roch theorem for algebraic curves
Riemann–Hurwitz formula
projective plane
Serre twisting sheaf
adjunction formula
normalization
birational
Genus (mathematics)
Arithmetic genus
Invariants of surfaces
p. 53

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑