Knowledge

Free molecular flow

Source šŸ“

499: 60:
In free molecular flow, the pressure of the remaining gas can be considered as effectively zero. Thus, boiling points do not depend on the residual pressure. The flow can be considered to be individual particles moving in straight lines. Practically, the "vapor" cannot move around bends or into other
131:
For a gas passing through small holes in a thin wall in the Knudsen-flow regime, the number of molecules that pass through a hole is proportional to the pressure of the gas and inversely proportional to its molecular mass. It is therefore possible to effect a partial separation of a mixture of gases
99:, the plasma is in a free molecular flow regime in scales less than 1 AU; thus, planets and moons are effectively under particle bombardment. However, on larger scales, fluid-like behavior is observed, because the probability of collisions between particles becomes significant. 187:
Yamamoto, K.; Pack, D. C.; Transient free molecular flow through a tube; Rarefied gas dynamics; Proceedings of the Eleventh International Symposium, Cannes, France, July 3-8, 1978. Volume 1. (A80-34876 14-77) Paris, Commissariat a l'Energie Atomique, 1979, p.
119:. Depending on the source there is a range mentioned of 0.1>Kn>10 for which Knudsen flow occurs. Other names for this flow regime are intermediate, transitional, or slip flow, since it represents a transition state between free molecular flow and 50:(Kn). If Kn > 10, the system is in free molecular flow, also known as Knudsen flow. Knudsen flow has been defined as the transitional range between viscous flow and molecular flow, which is significant in the medium vacuum range where Ī» ā‰ˆ d. 240: 61:
spaces behind obstacles, as they simply hit the tube wall. This implies conventional pumps cannot be used, as they rely on viscous flow and fluid pressure. Instead, special
261: 30:
of the molecules is larger than the size of the chamber or of the object under test. For tubes/objects of the size of several cm, this means pressures well below 10
285: 57:
are applicable, from 0.001<Kn<0.1, slip flow occurs, from 0.1ā‰¤Kn<10, transitional flow occurs and for Knā‰„10, free molecular flow occurs.
540: 469:
Kogan, A. (1998). "Direct solar thermal splitting of water and on-site separation of the products - II. Experimental feasibility study".
148:, as a technique for separating hydrogen from the gaseous product mixture created when water is heated at high temperatures using 351: 201: 123:. Thus the flow of fluids under Knudsen flow conditions is established both by molecular phenomena and by the viscosity. 46:
encountered at higher pressures. The presence of free molecular flow can be calculated, at least in estimation, with the
312: 533: 95:
The definition of a free molecular flow depends on the distance scale under consideration. For example, in the
559: 526: 54: 304: 401: 564: 375: 77: 246: 514: 112: 96: 85: 8: 145: 70: 270: 133: 66: 482: 421: 357: 347: 318: 308: 141: 81: 39: 478: 413: 161: 53:
Gas flow can be grouped in four regimes: For Knā‰¤0.001, flow is continuous, and the
498: 417: 144:
through porous membranes. It has also been successfully demonstrated for use in
510: 506: 264: 167: 116: 108: 47: 27: 23: 553: 425: 361: 62: 322: 132:
if the components have different molecular masses. The technique is used to
343: 149: 120: 43: 337: 298: 89: 402:"Phonon hydrodynamics and its applications in nanoscale heat transport" 170: ā€“ Dimensionless number relating to mean free path of a particle 137: 300:
Statistical thermodynamics : fundamentals and applications
35: 115:
in the flow space is of the same order of magnitude as the
31: 16:
Gas flow with a relatively large mean free molecular path
197:
The Knudsen number is a dimensionless number defined as:
76:
Free molecular flow occurs in various processes such as
441:
Vacuum Technology - third, updated and enlarged edition
412:. 4.1.1 Velocity slip boundary in microscale gas flow. 235:{\displaystyle \mathrm {Kn} \ ={\frac {\lambda }{L}},} 164: ā€“ Description of gas flow in free molecular flow 273: 249: 204: 107:
Knudsen flow describes the movement of fluids with a
279: 255: 234: 477:(2). Great Britain: Elsevier Science Ltd: 89ā€“98. 551: 534: 458:. Hinsdale, Ill.: American Nuclear Society. 541: 527: 296: 34:. This is also called the regime of high 471:International Journal of Hydrogen Energy 335: 287:= representative physical length scale . 453: 399: 380:Leybold Vacuum Academy Knowledge Center 339:Heat Transfer in Aerospace Applications 126: 552: 468: 493: 438: 13: 209: 206: 14: 576: 400:Guo, Yangyu; Wang, Moran (2015). 69:and momentum transfer pumps i.e. 497: 336:SundĆ©n, Bengt; Fu, Juan (2016). 297:Laurendeau, Normand M. (2005). 111:near unity, that is, where the 102: 462: 447: 432: 393: 368: 329: 290: 191: 181: 1: 483:10.1016/S0360-3199(97)00038-4 418:10.1016/j.physrep.2015.07.003 174: 513:. You can help Knowledge by 7: 443:. Elsevier. pp. 62ā€“64. 155: 10: 581: 492: 305:Cambridge University Press 134:separate isotopic mixtures 152:or other energy sources. 256:{\displaystyle \lambda } 376:"What is Knudsen flow?" 55:Navierā€“Stokes equations 509:ā€“related article is a 281: 257: 236: 78:molecular distillation 282: 258: 237: 113:characteristic length 97:interplanetary medium 86:particle accelerators 42:. This is opposed to 560:Fluid dynamics stubs 454:Villani, S. (1976). 271: 247: 202: 127:Separation processes 71:turbomolecular pumps 146:hydrogen production 88:, and naturally in 20:Free molecular flow 456:Isotope Separation 277: 253: 232: 84:equipment such as 522: 521: 439:Roth, A. (1990). 353:978-0-12-809761-8 280:{\displaystyle L} 227: 215: 142:gaseous diffusion 82:ultra-high vacuum 40:ultra-high vacuum 26:of gas where the 572: 543: 536: 529: 501: 494: 487: 486: 466: 460: 459: 451: 445: 444: 436: 430: 429: 397: 391: 390: 388: 386: 372: 366: 365: 333: 327: 326: 294: 288: 286: 284: 283: 278: 262: 260: 259: 254: 241: 239: 238: 233: 228: 220: 213: 212: 195: 189: 185: 162:Knudsen equation 580: 579: 575: 574: 573: 571: 570: 569: 550: 549: 548: 547: 491: 490: 467: 463: 452: 448: 437: 433: 406:Physics Reports 398: 394: 384: 382: 374: 373: 369: 354: 334: 330: 315: 307:. p. 434. 295: 291: 272: 269: 268: 248: 245: 244: 242: 219: 205: 203: 200: 199: 198: 196: 192: 186: 182: 177: 158: 129: 105: 17: 12: 11: 5: 578: 568: 567: 565:Fluid dynamics 562: 546: 545: 538: 531: 523: 520: 519: 507:fluid dynamics 502: 489: 488: 461: 446: 431: 392: 367: 352: 346:. p. 61. 328: 313: 289: 276: 265:mean free path 252: 231: 226: 223: 218: 211: 208: 190: 179: 178: 176: 173: 172: 171: 168:Knudsen number 165: 157: 154: 128: 125: 117:mean free path 109:Knudsen number 104: 101: 63:sorption pumps 48:Knudsen number 28:mean free path 24:fluid dynamics 22:describes the 15: 9: 6: 4: 3: 2: 577: 566: 563: 561: 558: 557: 555: 544: 539: 537: 532: 530: 525: 524: 518: 516: 512: 508: 503: 500: 496: 495: 484: 480: 476: 472: 465: 457: 450: 442: 435: 427: 423: 419: 415: 411: 407: 403: 396: 381: 377: 371: 363: 359: 355: 349: 345: 341: 340: 332: 324: 320: 316: 314:0-521-84635-8 310: 306: 302: 301: 293: 274: 266: 250: 229: 224: 221: 216: 194: 184: 180: 169: 166: 163: 160: 159: 153: 151: 147: 143: 139: 135: 124: 122: 118: 114: 110: 100: 98: 93: 91: 87: 83: 79: 74: 72: 68: 64: 58: 56: 51: 49: 45: 41: 37: 33: 29: 25: 21: 515:expanding it 504: 474: 470: 464: 455: 449: 440: 434: 409: 405: 395: 383:. Retrieved 379: 370: 344:Elsevier Ltd 338: 331: 303:. New York: 299: 292: 193: 183: 130: 121:viscous flow 106: 103:Knudsen flow 94: 75: 59: 52: 44:viscous flow 19: 18: 90:outer space 554:Categories 175:References 136:, such as 73:are used. 38:, or even 426:0370-1573 385:19 August 362:961337485 251:λ 222:λ 67:ion pumps 323:71819273 188:207-218. 156:See also 140:, using 138:uranium 424:  360:  350:  321:  311:  243:where 214:  36:vacuum 505:This 150:solar 511:stub 422:ISSN 387:2024 358:OCLC 348:ISBN 319:OCLC 309:ISBN 32:mbar 479:doi 414:doi 410:595 556:: 475:23 473:. 420:. 408:. 404:. 378:. 356:. 342:. 317:. 267:, 263:= 92:. 80:, 65:, 542:e 535:t 528:v 517:. 485:. 481:: 428:. 416:: 389:. 364:. 325:. 275:L 230:, 225:L 217:= 210:n 207:K

Index

fluid dynamics
mean free path
mbar
vacuum
ultra-high vacuum
viscous flow
Knudsen number
Navierā€“Stokes equations
sorption pumps
ion pumps
turbomolecular pumps
molecular distillation
ultra-high vacuum
particle accelerators
outer space
interplanetary medium
Knudsen number
characteristic length
mean free path
viscous flow
separate isotopic mixtures
uranium
gaseous diffusion
hydrogen production
solar
Knudsen equation
Knudsen number
mean free path
Statistical thermodynamics : fundamentals and applications
Cambridge University Press

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘