Knowledge

Fluorescence microscope

Source 📝

607: 620: 709: 669: 739: 724: 656: 697: 295: 755: 681: 33: 168: 1763: 619: 1864: 256: 191:. Since most of the excitation light is transmitted through the specimen, only reflected excitatory light reaches the objective together with the emitted light and the epifluorescence method therefore gives a high signal-to-noise ratio. The dichroic beamsplitter acts as a wavelength specific filter, transmitting fluoresced light through to the eyepiece or detector, but reflecting any remaining excitation light back towards the source. 41: 1876: 1057: 492:. Photobleaching occurs as the fluorescent molecules accumulate chemical damage from the electrons excited during fluorescence. Photobleaching can severely limit the time over which a sample can be observed by fluorescence microscopy. Several techniques exist to reduce photobleaching such as the use of more robust fluorophores, by minimizing illumination, or by using photoprotective 147:(see figure below). The filters and the dichroic beamsplitter are chosen to match the spectral excitation and emission characteristics of the fluorophore used to label the specimen. In this manner, the distribution of a single fluorophore (color) is imaged at a time. Multi-color images of several types of fluorophores must be composed by combining several single-color images. 606: 723: 655: 539:
microscope as a confocal laser scanning fluorescence microscope where the light is focused ideally from all sides to a common focus which is used to scan the object by 'point-by-point' excitation combined with 'point-by-point' detection. However, the first experimental demonstration of the 4pi microscope took place in 1994.
258: 499:
Fluorescence microscopy with fluorescent reporter proteins has enabled analysis of live cells by fluorescence microscopy, however cells are susceptible to phototoxicity, particularly with short wavelength light. Furthermore, fluorescent molecules have a tendency to generate reactive chemical species
262: 261: 257: 503:
Unlike transmitted and reflected light microscopy techniques, fluorescence microscopy only allows observation of the specific structures which have been labeled for fluorescence. For example, observing a tissue sample prepared with a fluorescent DNA stain by fluorescence microscopy only reveals the
479:
and the techniques available for modifying DNA allow scientists to genetically modify proteins to also carry a fluorescent protein reporter. In biological samples this allows a scientist to directly make a protein of interest fluorescent. The protein location can then be directly tracked, including
507:
Computational techniques that propose to estimate the fluorescent signal from non-fluorescent images (such as brightfield) may reduce these concerns. In general, these approaches involve training a deep convolutional neural network on stained cells and then estimating the fluorescence on unstained
150:
Most fluorescence microscopes in use are epifluorescence microscopes, where excitation of the fluorophore and detection of the fluorescence are done through the same light path (i.e. through the objective). These microscopes are widely used in biology and are the basis for more advanced microscope
44: 538:
Several improvements in microscopy techniques have been invented in the 20th century and have resulted in increased resolution and contrast to some extent. However they did not overcome the diffraction limit. In 1978 first theoretical ideas have been developed to break this barrier by using a 4Pi
115:, causing them to emit light of longer wavelengths (i.e., of a different color than the absorbed light). The illumination light is separated from the much weaker emitted fluorescence through the use of a spectral emission filter. Typical components of a fluorescence microscope are a light source ( 594:
could achieve similar results by relying on blinking or switching of single molecules, where the fraction of fluorescing molecules is very small at each time. This stochastic response of molecules on the applied light corresponds also to a highly nonlinear interaction, leading to subdiffraction
43: 263: 48: 47: 42: 566:
concept rely on a strong non-linear interaction between light and fluorescing molecules. The molecules are driven strongly between distinguishable molecular states at each specific location, so that finally light can be emitted at only a small fraction of space, hence an increased resolution.
708: 49: 587:(GFP) can be achieved by using a further development of SPDM the so-called SPDMphymod technology which makes it possible to detect and count two different fluorescent molecule types at the molecular level (this technology is referred to as two-color localization microscopy or 2CLM). 260: 50: 46: 696: 574:
stained with a fluorescent marker was achieved by development of SPDM localization microscopy and the structured laser illumination (spatially modulated illumination, SMI). Combining the principle of SPDM with SMI resulted in the development of the
321:
In order for a sample to be suitable for fluorescence microscopy it must be fluorescent. There are several methods of creating a fluorescent sample; the main techniques are labelling with fluorescent stains or, in the case of biological samples,
661:
Endothelial cells under the microscope. Nuclei are stained blue with DAPI, microtubules are marked green by an antibody bound to FITC and actin filaments are labeled red with phalloidin bound to TRITC. Bovine pulmonary artery endothelial (BPAE)
668: 554:
combines a fluorescence microscope with an electron microscope. This allows one to visualize ultrastructure and contextual information with the electron microscope while using the data from the fluorescence microscope as a labelling tool.
448:
in order to label specific proteins or other molecules within the cell. A sample is treated with a primary antibody specific for the molecule of interest. A fluorophore can be directly conjugated to the primary antibody. Alternatively a
534:
and "limits an optical microscope's resolution to approximately half of the wavelength of the light used." Fluorescence microscopy is central to many techniques which aim to reach past this limit by specialized optical configurations.
612:
A z-projection of an osteosarcoma cell, stained with phalloidin to visualise actin filaments. The image was taken on a confocal microscope, and the subsequent deconvolution was done using an experimentally derived point spread
680: 346:
Many fluorescent stains have been designed for a range of biological molecules. Some of these are small molecules which are intrinsically fluorescent and bind a biological molecule of interest. Major examples of these are
90:
substances. "Fluorescence microscope" refers to any microscope that uses fluorescence to generate an image, whether it is a simple set up like an epifluorescence microscope or a more complicated design such as a
1037:
Colin, S., Coelho, L.P., Sunagawa, S., Bowler, C., Karsenti, E., Bork, P., Pepperkok, R. and De Vargas, C. (2017) "Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes".
738: 45: 367:
of cells. Others are drugs, toxins, or peptides which bind specific cellular structures and have been derivatised with a fluorescent reporter. A major example of this class of fluorescent stain is
754: 259: 1387: 729:
Super-resolution microscopy: Co-localization microscopy (2CLM) with GFP and RFP fusion proteins (nucleus of a bone cancer cell) 120.000 localized molecules in a wide-field area (470 μm)
1335: 334:) can be used. In the life sciences fluorescence microscopy is a powerful tool which allows the specific and sensitive staining of a specimen in order to detect the distribution of 1245:
S.W. Hell, E.H.K. Stelzer, S. Lindek, C. Cremer; Stelzer; Lindek; Cremer (1994). "Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy".
187:
emitted by the specimen is focused to the detector by the same objective that is used for the excitation which for greater resolution will need objective lens with higher
702:
Yeast cell membrane visualized by some membrane proteins fused with RFP and GFP fluorescent markers. Imposition of light from both of markers results in yellow color.
570:
As well in the 1990s another super resolution microscopy method based on wide field microscopy has been developed. Substantially improved size resolution of cellular
1117:
Kandel, Mikhail E.; He, Yuchen R.; Lee, Young Jae; Chen, Taylor Hsuan-Yu; Sullivan, Kathryn Michele; Aydin, Onur; Saif, M. Taher A.; Kong, Hyunjoon; Sobh, Nahil;
508:
samples. Thus by decoupling the cells under investigation from the cells used to train the network, imaging can performed quicker and with reduced phototoxicity.
1197: 453:, conjugated to a fluorophore, which binds specifically to the first antibody can be used. For example, a primary antibody raised in a mouse which recognises 1428: 1806: 232: 156: 144: 36:
An upright fluorescence microscope (Olympus BX61) with the fluorescence filter cube turret above the objective lenses, coupled with a digital camera.
1298: 1504: 645:
is imaged separately using a different combination of excitation and emission filters, and the images are captured sequentially using a digital
1362: 1717: 288:
The animation starts by overlaying all available fluorescent channels, and then clarifies the visualisation by switching channels on and off
1645: 1388:"High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy" 714:
Super-resolution microscopy: Single YFP molecule detection in a human cancer cell. Typical distance measurements in the 15 nm range
1074:
Bidhendi, AJ; Chebli, Y; Geitmann, A (May 2020). "Fluorescence Visualization of Cellulose and Pectin in the Primary Plant Cell Wall".
338:
or other molecules of interest. As a result, there is a diverse range of techniques for fluorescent staining of biological samples.
1313: 902: 674:
3D dual-color super-resolution microscopy with Her2 and Her3 in breast cells, standard dyes: Alexa 488, Alexa 568. LIMON microscopy
179:, are of the epifluorescence design shown in the diagram. Light of the excitation wavelength illuminates the specimen through the 17: 1912: 1849: 1844: 1712: 809: 591: 83: 912: 772: 551: 521: 1454: 1880: 1811: 359:(excited by UV wavelength light) and DRAQ5 and DRAQ7 (optimally excited by red light) which all bind the minor groove of 1747: 1727: 1336:"High-precision distance microscopy of 3D nanostructures by a spatially modulated excitation fluorescence microscope" 788: 687: 199:
Fluorescence microscopy requires intense, near-monochromatic, illumination which some widespread light sources, like
313:
illuminated by blue light in an epifluorescence microscope. The SYBR green in the sample binds to the herring sperm
1791: 1787: 1638: 1220: 544: 403:. The quest for fluorescent probes with a high specificity that also allow live imaging of plant cells is ongoing. 1589: 1570: 1123:"Phase imaging with computational specificity (PICS) for measuring dry mass changes in sub-cellular compartments" 686:
Human lymphocyte nucleus stained with DAPI with chromosome 13 (green) and 21 (red) centromere probes hybridized (
243:
arrays into the illumination path of a widefield epifluorescence microscope, highly uniform illumination with a
1816: 426:, which can be chemically linked to a different molecule which binds the target of interest within the sample. 872: 380: 1618:
animations and explanations on various types of microscopes including fluorescent and confocal microscopes
1608: 1386:
Reymann, J; Baddeley, D; Gunkel, M; Lemmer, P; Stadter, W; Jegou, T; Rippe, K; Cremer, C; Birk, U (2008).
847: 1868: 1631: 1118: 760:
Fluorescence microscopy images of sun flares pathology in a blood cell showing the affected areas in red.
517: 1834: 580: 1801: 1707: 1543: 793: 584: 294: 457:
combined with a secondary anti-mouse antibody derivatised with a fluorophore could be used to label
1267: 780:, pioneer of fluorescence microscopy techniques for visualization of bacterial subcellular proteins 244: 1503:
Gunkel, M; Erdel, F; Rippe, K; Lemmer, P; Kaufmann, R; Hörmann, C; Amberger, R; Cremer, C (2009).
1244: 1795: 1692: 543:
maximizes the amount of available focusing directions by using two opposing objective lenses or
1737: 1262: 504:
organization of the DNA within the cells and reveals nothing else about the cell morphologies.
1697: 526:
The wave nature of light limits the size of the spot to which light can be focused due to the
239:
excitation filter are commonly used for widefield epifluorescence microscopes. By placing two
1907: 1902: 1702: 1292: 957: 493: 323: 1584: 1917: 1254: 1144: 991:"Flat-top illumination profile in an epi-fluorescence microscope by dual micro lens arrays" 880: 783: 75: 8: 1782: 1722: 488:
Fluorophores lose their ability to fluoresce as they are illuminated in a process called
470: 327: 228: 152: 92: 1258: 1148: 918: 1673: 1535: 1485: 1420: 1354: 1198:"Considerations on a laser-scanning-microscope with high resolution and depth of field" 1178: 1165: 1134: 1122: 1099: 1020: 966: 941: 799: 450: 435: 227:. Lasers are most widely used for more complex fluorescence microscopy techniques like 208: 188: 180: 120: 96: 63: 32: 1527: 1477: 1412: 1334:
Hausmann, Michael; Schneider, Bernhard; Bradl, Joachim; Cremer, Christoph G. (1997),
1280: 1212: 1182: 1170: 1103: 1091: 1012: 971: 908: 527: 212: 132: 1539: 1489: 1424: 1358: 1024: 1752: 1519: 1469: 1402: 1346: 1272: 1160: 1152: 1083: 1047: 1002: 961: 953: 331: 744:
Fluorescence microscopy of DNA Expression in the Human Wild-Type and P239S Mutant
317:
and, once bound, fluoresces giving off green light when illuminated by blue light.
1839: 1612: 1341:, in Bigio, Irving J; Schneckenburger, Herbert; Slavik, Jan; et al. (eds.), 777: 559: 167: 140: 136: 625:
Epifluorescent imaging of the three components in a dividing human cancer cell.
1732: 1156: 1061: 988: 819: 540: 489: 440:
Immunofluorescence is a technique which uses the highly specific binding of an
364: 220: 204: 116: 1407: 1896: 1762: 900: 571: 423: 356: 176: 1617: 1314:"Correlative microscopy: Opening up worlds of information with fluorescence" 1051: 1531: 1523: 1481: 1473: 1416: 1284: 1174: 1095: 1016: 975: 814: 419: 411: 348: 200: 184: 67: 1455:"Nanostructure analysis using spatially modulated illumination microscopy" 280:(b) Cyan: - generic counterstain for visualising eukaryotic cell surfaces 1276: 1216: 1007: 990: 642: 638: 576: 458: 415: 407: 384: 112: 79: 1666: 1654: 804: 646: 558:
The first technique to really achieve a sub-diffraction resolution was
531: 368: 306: 278:(a) Green: - stains cellular membranes indicating the core cell bodies 175:
The majority of fluorescence microscopes, especially those used in the
108: 71: 1350: 1087: 1623: 396: 392: 240: 87: 203:
cannot provide. Four main types of light source are used, including
1139: 745: 476: 441: 236: 1060:
Material was copied from this source, which is available under a
630: 563: 562:, proposed in 1994. This method and all techniques following the 454: 445: 335: 310: 299: 1453:
Baddeley, D; Batram, C; Weiland, Y; Cremer, C; Birk, UJ (2003).
1742: 1605: 1599: 1505:"Dual color localization microscopy of cellular nanostructures" 634: 400: 376: 500:
when under illumination which enhances the phototoxic effect.
330:. Alternatively the intrinsic fluorescence of a sample (i.e., 1056: 372: 302: 216: 128: 27:
Optical microscope that uses fluorescence and phosphorescence
1333: 989:
F.A.W. Coumans; E. van der Pol; L.W.M.M. Terstappen (2012).
1452: 1385: 352: 626: 360: 314: 224: 124: 54:
Fluorescence and confocal microscopes operating principle
1807:
Total internal reflection fluorescence microscopy (TIRF)
810:
Scanning electron microscope § Cathodoluminescence
530:. This limitation was described in the 19th century by 1502: 1073: 1062:
Creative Commons Attribution 4.0 International License
901:
Juan Carlos Stockert, Alfonso Blázquez-Castro (2017).
235:
while xenon lamps, and mercury lamps, and LEDs with a
107:
The specimen is illuminated with light of a specific
1845:
Photo-activated localization microscopy (PALM/STORM)
547:
using redshifted light and multi-photon excitation.
99:
to get better resolution of the fluorescence image.
598: 877:Microscopes—Help Scientists Explore Hidden Worlds 731:measured with a Vertico-SMI/SPDMphymod microscope 716:measured with a Vertico-SMI/SPDMphymod microscope 233:total internal reflection fluorescence microscopy 157:total internal reflection fluorescence microscope 1894: 579:microscope. Single molecule detection of normal 341: 276:Displays overlays from four fluorescent channels 1116: 123:are common; more advanced forms are high-power 1343:Optical Biopsies and Microscopic Techniques II 1748:Interference reflection microscopy (IRM/RICM) 1639: 649:, then superimposed to give a complete image. 511: 162: 1297:: CS1 maint: multiple names: authors list ( 1195: 406:There are many fluorescent molecules called 395:is performed using stains or dyes that bind 1067: 1646: 1632: 942:"Super resolution fluorescence microscopy" 845: 282:(c) Blue: - stains DNA, identifies nuclei 111:(or wavelengths) which is absorbed by the 1406: 1266: 1164: 1138: 1006: 965: 848:"Introduction to Fluorescence Microscopy" 1718:Differential interference contrast (DIC) 1189: 1031: 958:10.1146/annurev.biochem.77.061906.092014 904:Fluorescence Microscopy in Life Sciences 841: 839: 837: 835: 293: 284:(d) Red: - resolves chloroplasts  254: 166: 86:, to study the properties of organic or 39: 31: 464: 391:collagen fibers. Staining of the plant 171:Schematic of a fluorescence microscope. 14: 1895: 1713:Quantitative phase-contrast microscopy 1653: 592:photoactivated localization microscopy 1627: 939: 832: 773:Correlative light-electron microscopy 522:Correlative Light-Electron Microscopy 429: 250: 1875: 1840:Stimulated emission depletion (STED) 379:cells. A new peptide, known as the 24: 1602:, the database of fluorescent dyes 1311: 25: 1929: 1812:Lightsheet microscopy (LSFM/SPIM) 1564: 789:Fluorescence in the life sciences 688:Fluorescent in situ hybridization 1874: 1863: 1862: 1761: 1055: 753: 737: 722: 707: 695: 679: 667: 654: 618: 605: 545:two-photon excitation microscopy 194: 1496: 1446: 1379: 1345:, vol. 3197, p. 217, 1327: 1305: 1238: 599:Fluorescence micrograph gallery 70:instead of, or in addition to, 1817:Lattice light-sheet microscopy 1728:Second harmonic imaging (SHIM) 1110: 982: 933: 907:. Bentham Science Publishers. 894: 865: 483: 383:, can also be conjugated with 13: 1: 1913:Optical microscopy techniques 1196:Cremer, C; Cremer, T (1978). 946:Annual Review of Biochemistry 873:"The Fluorescence Microscope" 826: 590:Alternatively, the advent of 342:Biological fluorescent stains 1590:Resources in other libraries 475:The modern understanding of 381:Collagen Hybridizing Peptide 102: 7: 765: 518:Super resolution microscopy 269:3D-animation of the diatom 10: 1934: 1606:Microscopy Resource Center 1157:10.1038/s41467-020-20062-x 515: 512:Sub-diffraction techniques 468: 433: 163:Epifluorescence microscopy 1858: 1825: 1770: 1759: 1683: 1661: 1585:Resources in your library 1408:10.1007/s10577-008-1238-2 794:Green fluorescent protein 585:green fluorescent protein 371:, which is used to stain 247:of 1-2% can be achieved. 846:Spring KR, Davidson MW. 245:coefficient of variation 223:sources, and high-power 1778:Fluorescence microscopy 1738:Structured illumination 1693:Bright-field microscopy 1611:22 October 2014 at the 1576:Fluorescence microscopy 1052:10.7554/eLife.26066.002 60:fluorescence microscope 18:Fluorescence microscopy 1850:Near-field (NSOM/SNOM) 1788:Multiphoton microscopy 1620:(Université Paris Sud) 1524:10.1002/biot.200900005 1474:10.1038/nprot.2007.399 940:Huang B (March 2010). 583:fluorescent dyes like 552:correlative microscopy 318: 291: 172: 55: 37: 1703:Dark-field microscopy 1512:Biotechnology Journal 1312:Baarle, Kaitlin van. 1127:Nature Communications 1076:Journal of Microscopy 297: 266: 170: 151:designs, such as the 141:dichroic beamsplitter 53: 35: 1771:Fluorescence methods 1277:10.1364/OL.19.000222 1008:10.1002/cyto.a.22029 881:The Nobel Foundation 784:Fluorescence imaging 465:Fluorescent proteins 363:, thus labeling the 1802:Image deconvolution 1783:Confocal microscopy 1723:Dispersion staining 1698:Köhler illumination 1395:Chromosome Research 1259:1994OptL...19..222H 1149:2020NatCo..11.6256K 629:is stained blue, a 471:Fluorescent protein 328:fluorescent protein 229:confocal microscopy 209:mercury-vapor lamps 153:confocal microscope 93:confocal microscope 1674:Optical microscopy 1655:Optical microscopy 800:Mercury-vapor lamp 637:is green, and the 451:secondary antibody 436:Immunofluorescence 430:Immunofluorescence 387:and used to stain 319: 292: 251:Sample preparation 189:numerical aperture 173: 121:mercury-vapor lamp 97:optical sectioning 64:optical microscope 56: 38: 1890: 1889: 1835:Diffraction limit 1571:Library resources 1351:10.1117/12.297969 1205:Microscopica Acta 1088:10.1111/jmi.12895 914:978-1-68108-519-7 852:Nikon MicroscopyU 732: 717: 528:diffraction limit 290: 264: 213:excitation filter 133:excitation filter 51: 16:(Redirected from 1925: 1878: 1877: 1866: 1865: 1828:limit techniques 1765: 1686:contrast methods 1684:Illumination and 1648: 1641: 1634: 1625: 1624: 1600:Fluorophores.org 1559: 1558: 1556: 1554: 1548: 1542:. Archived from 1509: 1500: 1494: 1493: 1462:Nature Protocols 1459: 1450: 1444: 1443: 1441: 1439: 1433: 1427:. Archived from 1410: 1392: 1383: 1377: 1376: 1375: 1373: 1367: 1361:, archived from 1340: 1331: 1325: 1324: 1322: 1320: 1309: 1303: 1302: 1296: 1288: 1270: 1242: 1236: 1235: 1233: 1231: 1225: 1219:. Archived from 1202: 1193: 1187: 1186: 1168: 1142: 1119:Popescu, Gabriel 1114: 1108: 1107: 1071: 1065: 1059: 1035: 1029: 1028: 1010: 995:Cytometry Part A 986: 980: 979: 969: 937: 931: 930: 928: 926: 917:. Archived from 898: 892: 891: 889: 887: 869: 863: 862: 860: 858: 843: 757: 741: 730: 726: 715: 711: 699: 683: 671: 658: 622: 609: 332:autofluorescence 286: 265: 52: 21: 1933: 1932: 1928: 1927: 1926: 1924: 1923: 1922: 1893: 1892: 1891: 1886: 1854: 1827: 1826:Sub-diffraction 1821: 1766: 1757: 1685: 1679: 1657: 1652: 1613:Wayback Machine 1596: 1595: 1594: 1579: 1578: 1574: 1567: 1562: 1552: 1550: 1549:on 4 March 2016 1546: 1507: 1501: 1497: 1457: 1451: 1447: 1437: 1435: 1434:on 4 March 2016 1431: 1390: 1384: 1380: 1371: 1369: 1368:on 4 March 2016 1365: 1338: 1332: 1328: 1318: 1316: 1310: 1306: 1290: 1289: 1243: 1239: 1229: 1227: 1226:on 4 March 2016 1223: 1200: 1194: 1190: 1115: 1111: 1072: 1068: 1036: 1032: 987: 983: 938: 934: 924: 922: 915: 899: 895: 885: 883: 871: 870: 866: 856: 854: 844: 833: 829: 824: 778:Elizabeth Harry 768: 761: 758: 749: 742: 733: 727: 718: 712: 703: 700: 691: 684: 675: 672: 663: 659: 650: 623: 614: 610: 601: 560:STED microscopy 524: 514: 486: 480:in live cells. 473: 467: 438: 432: 351:stains such as 344: 289: 285: 283: 281: 279: 277: 275: 255: 253: 205:xenon arc lamps 197: 165: 145:emission filter 137:dichroic mirror 105: 40: 28: 23: 22: 15: 12: 11: 5: 1931: 1921: 1920: 1915: 1910: 1905: 1888: 1887: 1885: 1884: 1872: 1859: 1856: 1855: 1853: 1852: 1847: 1842: 1837: 1831: 1829: 1823: 1822: 1820: 1819: 1814: 1809: 1804: 1799: 1785: 1780: 1774: 1772: 1768: 1767: 1760: 1758: 1756: 1755: 1750: 1745: 1740: 1735: 1733:4Pi microscope 1730: 1725: 1720: 1715: 1710: 1708:Phase contrast 1705: 1700: 1695: 1689: 1687: 1681: 1680: 1678: 1677: 1670: 1662: 1659: 1658: 1651: 1650: 1643: 1636: 1628: 1622: 1621: 1615: 1603: 1593: 1592: 1587: 1581: 1580: 1569: 1568: 1566: 1565:External links 1563: 1561: 1560: 1495: 1468:(10): 2640–6. 1445: 1378: 1326: 1304: 1268:10.1.1.501.598 1253:(3): 222–224. 1247:Optics Letters 1237: 1188: 1109: 1082:(3): 164–181. 1066: 1030: 1001:(4): 324–331. 981: 932: 921:on 14 May 2019 913: 893: 864: 830: 828: 825: 823: 822: 820:Xenon arc lamp 817: 812: 807: 802: 797: 791: 786: 781: 775: 769: 767: 764: 763: 762: 759: 752: 750: 743: 736: 734: 728: 721: 719: 713: 706: 704: 701: 694: 692: 685: 678: 676: 673: 666: 664: 660: 653: 651: 641:are red. Each 624: 617: 615: 611: 604: 600: 597: 572:nanostructures 541:4Pi microscopy 513: 510: 490:photobleaching 485: 482: 466: 463: 434:Main article: 431: 428: 343: 340: 287: 267: 252: 249: 221:supercontinuum 196: 193: 164: 161: 117:xenon arc lamp 104: 101: 26: 9: 6: 4: 3: 2: 1930: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1900: 1898: 1883: 1882: 1873: 1871: 1870: 1861: 1860: 1857: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1833: 1832: 1830: 1824: 1818: 1815: 1813: 1810: 1808: 1805: 1803: 1800: 1797: 1793: 1789: 1786: 1784: 1781: 1779: 1776: 1775: 1773: 1769: 1764: 1754: 1751: 1749: 1746: 1744: 1741: 1739: 1736: 1734: 1731: 1729: 1726: 1724: 1721: 1719: 1716: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1696: 1694: 1691: 1690: 1688: 1682: 1676: 1675: 1671: 1669: 1668: 1664: 1663: 1660: 1656: 1649: 1644: 1642: 1637: 1635: 1630: 1629: 1626: 1619: 1616: 1614: 1610: 1607: 1604: 1601: 1598: 1597: 1591: 1588: 1586: 1583: 1582: 1577: 1572: 1545: 1541: 1537: 1533: 1529: 1525: 1521: 1518:(6): 927–38. 1517: 1513: 1506: 1499: 1491: 1487: 1483: 1479: 1475: 1471: 1467: 1463: 1456: 1449: 1430: 1426: 1422: 1418: 1414: 1409: 1404: 1401:(3): 367–82. 1400: 1396: 1389: 1382: 1364: 1360: 1356: 1352: 1348: 1344: 1337: 1330: 1315: 1308: 1300: 1294: 1286: 1282: 1278: 1274: 1269: 1264: 1260: 1256: 1252: 1248: 1241: 1222: 1218: 1214: 1210: 1206: 1199: 1192: 1184: 1180: 1176: 1172: 1167: 1162: 1158: 1154: 1150: 1146: 1141: 1136: 1132: 1128: 1124: 1120: 1113: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1070: 1063: 1058: 1053: 1049: 1045: 1041: 1034: 1026: 1022: 1018: 1014: 1009: 1004: 1000: 996: 992: 985: 977: 973: 968: 963: 959: 955: 951: 947: 943: 936: 920: 916: 910: 906: 905: 897: 882: 878: 874: 868: 853: 849: 842: 840: 838: 836: 831: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 795: 792: 790: 787: 785: 782: 779: 776: 774: 771: 770: 756: 751: 747: 740: 735: 725: 720: 710: 705: 698: 693: 689: 682: 677: 670: 665: 657: 652: 648: 644: 640: 636: 632: 628: 621: 616: 608: 603: 602: 596: 593: 588: 586: 582: 578: 573: 568: 565: 561: 556: 553: 548: 546: 542: 536: 533: 529: 523: 519: 509: 505: 501: 497: 495: 491: 481: 478: 472: 462: 460: 456: 452: 447: 443: 437: 427: 425: 421: 417: 413: 412:fluorochromes 409: 404: 402: 398: 394: 390: 386: 382: 378: 374: 370: 366: 362: 358: 354: 350: 339: 337: 333: 329: 325: 316: 312: 308: 305:stained with 304: 301: 296: 274: 272: 248: 246: 242: 238: 234: 230: 226: 222: 218: 214: 210: 206: 202: 201:halogen lamps 195:Light sources 192: 190: 186: 182: 178: 177:life sciences 169: 160: 158: 154: 148: 146: 142: 138: 134: 130: 126: 122: 118: 114: 110: 100: 98: 95:, which uses 94: 89: 85: 81: 77: 73: 69: 65: 61: 34: 30: 19: 1908:Cell imaging 1903:Fluorescence 1879: 1867: 1796:Three-photon 1777: 1672: 1665: 1575: 1551:. Retrieved 1544:the original 1515: 1511: 1498: 1465: 1461: 1448: 1436:. Retrieved 1429:the original 1398: 1394: 1381: 1370:, retrieved 1363:the original 1342: 1329: 1317:. Retrieved 1307: 1293:cite journal 1250: 1246: 1240: 1228:. Retrieved 1221:the original 1211:(1): 31–44. 1208: 1204: 1191: 1130: 1126: 1112: 1079: 1075: 1069: 1043: 1039: 1033: 998: 994: 984: 952:: 993–1016. 949: 945: 935: 923:. Retrieved 919:the original 903: 896: 886:28 September 884:. Retrieved 876: 867: 857:28 September 855:. Retrieved 851: 815:Stokes shift 639:microtubules 595:resolution. 589: 569: 557: 549: 537: 525: 506: 502: 498: 487: 474: 459:microtubules 439: 420:Alexa Fluors 408:fluorophores 405: 388: 385:fluorophores 349:nucleic acid 345: 320: 298:A sample of 270: 268: 198: 185:fluorescence 174: 149: 113:fluorophores 106: 68:fluorescence 59: 57: 29: 1918:Microscopes 1319:16 February 1133:(1): 6256. 925:17 December 643:fluorophore 577:Vertico SMI 550:Integrated 496:chemicals. 484:Limitations 461:in a cell. 424:DyLight 488 416:fluorescein 143:), and the 80:attenuation 1897:Categories 1792:Two-photon 1667:Microscope 1140:2002.08361 1046:: e26066. 827:References 805:Microscope 647:CCD camera 532:Ernst Abbe 516:See also: 469:See also: 393:cell walls 375:fibers in 369:phalloidin 324:expression 307:SYBR green 183:lens. The 109:wavelength 84:absorption 76:reflection 72:scattering 66:that uses 1553:12 August 1438:12 August 1372:12 August 1263:CiteSeerX 1230:12 August 1183:212725023 1104:215619998 613:function. 494:scavenger 397:cellulose 389:denatured 377:mammalian 271:Corethron 241:microlens 181:objective 103:Principle 88:inorganic 1869:Category 1609:Archived 1540:18162278 1532:19548231 1490:22042676 1482:17948007 1425:22811346 1417:18461478 1359:49339042 1285:19829598 1175:33288761 1121:(2020). 1096:32270489 1025:13812696 1017:22392641 976:19489737 766:See also 746:Palladin 581:blinking 477:genetics 442:antibody 414:such as 336:proteins 237:dichroic 211:with an 159:(TIRF). 155:and the 1881:Commons 1255:Bibcode 1166:7721808 1145:Bibcode 967:2835776 690:(FISH)) 633:called 631:protein 564:RESOLFT 455:tubulin 446:antigen 444:to its 357:Hoechst 311:cuvette 300:herring 131:), the 1743:Sarfus 1573:about 1538:  1530:  1488:  1480:  1423:  1415:  1357:  1283:  1265:  1217:713859 1215:  1181:  1173:  1163:  1102:  1094:  1023:  1015:  974:  964:  911:  635:INCENP 401:pectin 365:nuclei 217:lasers 135:, the 129:lasers 78:, and 62:is an 1753:Raman 1547:(PDF) 1536:S2CID 1508:(PDF) 1486:S2CID 1458:(PDF) 1432:(PDF) 1421:S2CID 1391:(PDF) 1366:(PDF) 1355:S2CID 1339:(PDF) 1224:(PDF) 1201:(PDF) 1179:S2CID 1135:arXiv 1100:S2CID 1040:eLife 1021:S2CID 796:(GFP) 662:cells 422:, or 373:actin 326:of a 309:in a 303:sperm 1555:2013 1528:PMID 1478:PMID 1440:2013 1413:PMID 1374:2013 1321:2017 1299:link 1281:PMID 1232:2013 1213:PMID 1171:PMID 1092:PMID 1013:PMID 972:PMID 927:2017 909:ISBN 888:2008 859:2008 520:and 355:and 353:DAPI 231:and 225:LEDs 139:(or 127:and 125:LEDs 1520:doi 1470:doi 1403:doi 1347:doi 1273:doi 1161:PMC 1153:doi 1084:doi 1080:278 1048:doi 1003:doi 962:PMC 954:doi 627:DNA 410:or 399:or 361:DNA 315:DNA 273:sp. 207:or 119:or 82:or 1899:: 1794:, 1534:. 1526:. 1514:. 1510:. 1484:. 1476:. 1464:. 1460:. 1419:. 1411:. 1399:16 1397:. 1393:. 1353:, 1295:}} 1291:{{ 1279:. 1271:. 1261:. 1251:19 1249:. 1209:81 1207:. 1203:. 1177:. 1169:. 1159:. 1151:. 1143:. 1131:11 1129:. 1125:. 1098:. 1090:. 1078:. 1054:. 1042:, 1019:. 1011:. 999:81 997:. 993:. 970:. 960:. 950:78 948:. 944:. 879:. 875:. 850:. 834:^ 418:, 219:, 215:, 74:, 58:A 1798:) 1790:( 1647:e 1640:t 1633:v 1557:. 1522:: 1516:4 1492:. 1472:: 1466:2 1442:. 1405:: 1349:: 1323:. 1301:) 1287:. 1275:: 1257:: 1234:. 1185:. 1155:: 1147:: 1137:: 1106:. 1086:: 1064:. 1050:: 1044:6 1027:. 1005:: 978:. 956:: 929:. 890:. 861:. 748:. 20:)

Index

Fluorescence microscopy

optical microscope
fluorescence
scattering
reflection
attenuation
absorption
inorganic
confocal microscope
optical sectioning
wavelength
fluorophores
xenon arc lamp
mercury-vapor lamp
LEDs
lasers
excitation filter
dichroic mirror
dichroic beamsplitter
emission filter
confocal microscope
total internal reflection fluorescence microscope

life sciences
objective
fluorescence
numerical aperture
halogen lamps
xenon arc lamps

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.