Knowledge

Fission-fragment rocket

Source 📝

199: 251: 2120: 1752: 25: 238:. Several such wheels were stacked on a common shaft to produce a single large cylinder. The entire cylinder was rotated so that some fibres were always in a reactor core where surrounding moderator made fibres go critical. The fission fragments at the surface of the fibres would break free and be channeled for thrust. The fibre then rotates out of the reaction zone to cool, avoiding melting. 161:
and used to heat a working fluid to generate thrust. This limits the designs to temperatures that allow the reactor to remain whole, although clever design can increase this critical temperature into the tens of thousands of degrees. A rocket engine's efficiency is strongly related to the temperature
375:
in 1988, who suggested propulsion based on the direct heating of a propellant gas by fission fragments generated by a fissile material. Ronen et al. demonstrate that Am can maintain sustained nuclear fission as an extremely thin metallic film, less than a micrometer thick. Am requires only 1% of the
304:
as fission occurs, the dust becomes suspended within the chamber. The incredibly high surface area of the particles makes radiative cooling simple. The axial magnetic field is too weak to affect the motions of the dust particles but strong enough to channel the fragments into a beam which can be
465:
by using direct conversion of the kinetic energy of fission fragments into increasing of enthalpy of a propellant gas. Project 242 studied the application of this propulsion system to a crewed mission to Mars. Preliminary results were very satisfactory and it has been observed that a propulsion
173:
The temperature of a conventional reactor design is the average temperature of the fuel, the vast majority of which is not reacting at any given instant. The atoms undergoing fission are at a temperature of millions of degrees, which is then spread out into the surrounding fuel, resulting in an
241:
The efficiency of the system is surprising; specific impulses of greater than 100,000 s are possible using existing materials. This is high performance, although the weight of the reactor core and other elements would make the overall performance of the fission-fragment system lower.
478:
matrix to achieve a critical mass assembly. The aerogel matrix (and a strong magnetic field) would allow fission fragments to escape the core, while increasing conductive and radiative heat loss from the individual fuel particles.
280:
A newer design proposal by Rodney L. Clark and Robert B. Sheldon theoretically increases efficiency and decreases complexity of a fission fragment rocket at the same time over the rotating fibre wheel proposal. Their design uses
942:
Kessler, G. (2008). "Proliferation resistance of americium originating from spent irradiated reactor fuel of pressurized water reactors, fast reactors, and accelerator-driven systems with different fuel cycle options".
321:
setup, the resulting heating and interaction can result in a higher, tunable thrust and specific impulse. For realistic designs, some calculations estimate thrusts on the range of 4.5 kN at around 32,000 seconds
403:
for fission, and is destroyed relatively quickly in a nuclear reactor. Another report claims that Am can sustain a chain reaction even as a thin film, and could be used for a novel type of
560:. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson, Arizona: American Institute of Aeronautics and Astronautics (published 15 April 2007). AIAA Paper 2005-4460. 973:
Augelli, M.; Bignami, G. F.; Genta, G. (2013). "Project 242: Fission fragments direct heating for space propulsion—Programme synthesis and applications to space exploration".
474:
On 9 January 2023, NASA announced funding the study of an "Aerogel Core Fission Fragment Rocket Engine", where fissile fuel particles will be embedded in an ultra-low density
285:
of fissionable fuel (or even fuel that will naturally radioactively decay) of less than 100 nm diameter. The nanoparticles are kept in a vacuum chamber subject to an
177:
By physically arranging the fuel into very thin layers or particles, the fragments of a nuclear reaction can escape from the surface. Since they will be
466:
system with these characteristics could make the mission feasible. Another study focused on production of Am in conventional thermal nuclear reactors.
439: 461:
on fission-fragment rocket using Am as a fuel. Project 242 based on Rubbia design studied a concept of Am based Thin-Film Fission Fragment Heated
1086: 1482: 1815: 1600: 807: 1788: 1221: 89: 1046: 61: 1498: 962:
Rubbia, Carlo (2000). Fission fragments heating for space propulsion (Report). No. SL-Note-2000-036-EET. CERN-SL-Note-2000-036-EET.
42: 923:
Golyand, Leonid; Ronen, Yigal; Shwageraus, Eugene (2011). "Detailed Design of 242 m Am Breeding in Pressurized Water Reactors".
2149: 372: 227: 68: 1028:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
860:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
717:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
639: 223: 885:
Ronen, Yigal; Aboudy, Menashe; Regev, Dror (2000). "A Novel Method for Energy Production Using 242 m Am as a Nuclear Fuel".
242:
Nonetheless, the system provides the sort of performance levels that would make an interstellar precursor mission possible.
1983: 655:
Ronen, Yigal; Leibson, Melvin J. (1987). "An example for the potential applications of americium-242m as a nuclear fuel".
308:
With exhaust velocities of 3% - 5% the speed of light and efficiencies up to 90%, the rocket should be able to achieve an
1079: 383:
Am's potential as a nuclear fuel comes from the fact that it has the highest thermal fission cross section (thousands of
75: 1886: 1403: 377: 380:
further showed that nuclear fuel based on Am could speed space vehicles from Earth to Mars in as little as two weeks.
1477: 839:
Ludewig, H.; et al. (1996). "Design of particle bed reactors for the space nuclear thermal propulsion program".
443: 108: 57: 1781: 1503: 1368: 1072: 46: 1607: 1462: 1431: 1426: 498: 317:
of over 1,000,000 seconds. By further injecting the fission fragment exhaust with a neutral gas akin to an
1007:
Cesana, Alessandra; et al. (2004). "Some Considerations on 242 m Am Production in Thermal Reactors".
2123: 2019: 1774: 1973: 1860: 1562: 1421: 493: 435: 82: 419: 2003: 1953: 1855: 1595: 1354: 1328: 1270: 1254: 1244: 503: 411: 360:. Nuclear systems powered by Am require less fuel by a factor of 2 to 100 compared to conventional 1527: 814: 1850: 1845: 1840: 1651: 1579: 1567: 1547: 1313: 1275: 1249: 788: 235: 35: 524: 1865: 1702: 1552: 1452: 1194: 677:
Ronen, Yigal; Leibson, Melvin J. (1988). "Potential applications of 242mAm as a nuclear fuel".
462: 349: 154: 415: 1943: 1287: 1280: 1095: 400: 353: 753:
Ronen, Yigal; Shwageraus, E. (2000). "Ultra-thin 241mAm fuel elements in nuclear reactors".
2100: 1398: 1393: 1297: 1211: 762: 724: 686: 431: 427: 345: 185:
and channeled to produce thrust. Numerous technological challenges still remain, however.
858:
Ronen, Y.; Raitses, G. (2004). "Ultra-thin 242mAm fuel elements in nuclear reactors. II".
8: 1870: 1557: 1542: 1457: 1344: 1323: 1292: 458: 368: 766: 728: 690: 2144: 1906: 1797: 1756: 1722: 1687: 904:
Ronen, Y.; Fridman, E.; Shwageraus, E. (2006). "The smallest thermal nuclear reactor".
584: 305:
decelerated for power, allowed to be emitted for thrust, or a combination of the two.
774: 2065: 1751: 1717: 1672: 1572: 1472: 1174: 1148: 736: 635: 604: 533: 163: 2060: 2055: 1922: 1896: 1737: 1727: 1677: 1383: 1136: 867: 813:. Aldermaston, Reading, Berkshire: Atomic Weapons Establishment plc. Archived from 770: 732: 694: 627: 594: 309: 286: 167: 142: 1349: 1153: 1119: 293: 158: 130: 2024: 1820: 1682: 1617: 1318: 1158: 871: 599: 572: 404: 357: 297: 289: 387:), about 10x the next highest cross section across all known isotopes. Am is 198: 2138: 2090: 2085: 2034: 1901: 1835: 1692: 1612: 1467: 1436: 1216: 1206: 1201: 1124: 1114: 608: 423: 396: 392: 126: 993: 2105: 2095: 1978: 1830: 1697: 1656: 1629: 1388: 1184: 1179: 789:"Extremely Efficient Nuclear Fuel Could Take Man To Mars In Just Two Weeks" 488: 450: 361: 282: 250: 138: 698: 552: 434:
are not readily available. Detailed analysis of Am production in existing
344:
In 1987, Ronen & Leibson published a study on applications of Am (an
2029: 1712: 1707: 1513: 384: 318: 1064: 631: 532:. International reactor physics conference. Jackson Hole, Wyoming, USA. 1732: 1189: 301: 537: 1766: 157:
and related designs, the nuclear energy is generated in some form of
145:
while still being well within the abilities of current technologies.
16:
Type of nuclear propulsion method with an ultra high specific-inpulse
795:(Press release). Ben-Gurion University of the Negev. 3 January 2001. 24: 589: 414:
of Am is very high, the best way to obtain Am is by the capture of
1938: 1508: 1141: 571:
Gahl, J.; Gillespie, A. K.; Duncan, R. V.; Lin, C. (2023-10-13).
475: 388: 234:
fibres, arranged radially in wheels. The wheels are normally sub-
181:
due to the high energy of the reaction, they can then be handled
178: 2039: 1131: 1109: 523:
Chapline, G.; Dickson, P.; Schnitzler, B. (18 September 1988).
231: 182: 134: 376:
mass of U or Pu to reach its critical state. Ronen's group at
1891: 715:
Chapline, George (1988). "Fission fragment rocket concept".
162:
of the exhausted working fluid, and in the case of the most
454: 573:"The fission fragment rocket engine for Mars fast transit" 1948: 1026:
Benetti, P.; et al. (2006). "Production of 242mAm".
522: 230:
uses fuel placed on the surface of a number of very thin
922: 903: 626:. American Institute of Aeronautics and Astronautics. 570: 755:
Nuclear Instruments and Methods in Physics Research A
264:
C. fission fragments decelerated for power generation
972: 624:
Dusty Plasma Based Fission Fragment Nuclear Reactor
554:
Dusty Plasma Based Fission Fragment Nuclear Reactor
49:. Unsourced material may be challenged and removed. 526:Fission fragment rockets: A potential breakthrough 367:Fission-fragment rocket using Am was proposed by 2136: 884: 806:Dias, Hemanth; Tancock, Nigel; Angela, Clayton. 752: 141:. The design can, in theory, produce very high 808:"Critical Mass Calculations for Am, Am and Am" 710: 708: 1816:Antimatter-catalyzed nuclear pulse propulsion 1782: 1080: 1047:"Aerogel Core Fission Fragment Rocket Engine" 805: 622:Clark, Rodney; Sheldon, Robert (2005-07-10). 857: 676: 654: 621: 550: 705: 672: 670: 258:A. fission fragments ejected for propulsion 129:design that directly harnesses hot nuclear 1789: 1775: 1087: 1073: 1045:Hall, Loura; Weed, Ryan (9 January 2023). 955: 551:Clark, R.; Sheldon, R. (10–13 July 2005). 339: 137:, as opposed to using a separate fluid as 1094: 897: 878: 657:Transactions – the Israel Nuclear Society 598: 588: 109:Learn how and when to remove this message 1499:Atmosphere-breathing electric propulsion 1044: 714: 667: 648: 249: 197: 193: 148: 1025: 941: 838: 748: 746: 457:further extended the work by Ronen and 206:fissionable filaments arranged in disks 174:overall temperature of a few thousand. 2137: 1796: 1006: 961: 851: 373:Lawrence Livermore National Laboratory 228:Lawrence Livermore National Laboratory 1770: 1068: 991: 224:Idaho National Engineering Laboratory 1984:Status-6 Oceanic Multipurpose System 743: 47:adding citations to reliable sources 18: 2020:Aircraft Nuclear Propulsion program 615: 564: 202:Fission-fragment propulsion concept 13: 1404:Field-emission electric propulsion 378:Ben-Gurion University of the Negev 14: 2161: 1478:Microwave electrothermal thruster 444:Karlsruhe Institute of Technology 442:resistance of Am was reported by 329:, or even 40 kN at 5,000 seconds 2119: 2118: 1750: 23: 1038: 1019: 1000: 985: 966: 945:Nuclear Science and Engineering 935: 925:Nuclear Science and Engineering 916: 906:Nuclear science and engineering 832: 799: 679:Nuclear Science and Engineering 577:Frontiers in Space Technologies 469: 245: 34:needs additional citations for 1608:Pulsed nuclear thermal rocket‎ 1504:High Power Electric Propulsion 781: 544: 516: 270:e. containment field generator 1: 2150:Nuclear spacecraft propulsion 1463:Helicon double-layer thruster 1432:Electrodeless plasma thruster 1427:Magnetoplasmadynamic thruster 996:(Report). Warp Drive Metrics. 775:10.1016/s0168-9002(00)00506-4 509: 499:Pulsed nuclear thermal rocket 737:10.1016/0168-9002(88)91148-5 352:, noting its extremely high 7: 482: 188: 10: 2166: 872:10.1016/j.nima.2003.11.421 841:Progress in Nuclear Energy 600:10.3389/frspt.2023.1191300 2114: 2078: 2056:Tupolev Tu-95LAL / Tu-119 2048: 2012: 1999: 1992: 1974:Nuclear marine propulsion 1966: 1931: 1915: 1879: 1861:Nuclear salt-water rocket 1811: 1804: 1748: 1665: 1644: 1588: 1535: 1526: 1491: 1445: 1422:Pulsed inductive thruster 1414: 1376: 1367: 1337: 1306: 1263: 1237: 1230: 1167: 1102: 994:Advanced propulsion study 494:Nuclear salt-water rocket 267:d. moderator (BeO or LiH) 164:advanced gas-core engines 58:"Fission-fragment rocket" 2004:Nuclear-powered aircraft 1856:Nuclear pulse propulsion 1596:Nuclear pulse propulsion 1355:Electric-pump-fed engine 1255:Hybrid-propellant rocket 1245:Liquid-propellant rocket 504:Fission fragment reactor 412:absorption cross section 300:. As the nanoparticles 254:Dusty plasma bed reactor 1851:Nuclear photonic rocket 1846:Nuclear electric rocket 1841:Gas core reactor rocket 1826:Fission-fragment rocket 1652:Beam-powered propulsion 1625:Fission-fragment rocket 1580:Nuclear photonic rocket 1548:Nuclear electric rocket 1314:Staged combustion cycle 1250:Solid-propellant rocket 992:Davis, Eric W. (2004). 340:Am-242m as nuclear fuel 123:fission-fragment rocket 1866:Nuclear thermal rocket 1703:Non-rocket spacelaunch 1553:Nuclear thermal rocket 1453:Pulsed plasma thruster 350:space nuclear reactors 277: 219: 170:of about 7000 s. 166:, it corresponds to a 155:nuclear thermal rocket 1944:TOPAZ nuclear reactor 1369:Electrical propulsion 1096:Spacecraft propulsion 699:10.13182/NSE88-A28998 432:fast neutron reactors 399:. It has a very high 354:thermal cross section 348:) as nuclear fuel to 253: 201: 194:Rotating fuel reactor 149:Design considerations 2101:Ford Seattle-ite XXI 1601:Antimatter-catalyzed 1399:Hall-effect thruster 1212:Solar thermal rocket 346:isotope of americium 273:f. RF induction coil 43:improve this article 1871:Radioisotope rocket 1543:Direct Fusion Drive 1458:Vacuum arc thruster 1345:Pressure-fed engine 1324:Gas-generator cycle 1231:Chemical propulsion 1168:Physical propulsion 767:2000NIMPA.455..442R 729:1988NIMPA.271..207C 691:1988NSE....99..278R 632:10.2514/6.2005-4460 1907:Project Prometheus 1798:Nuclear propulsion 1757:Spaceflight portal 1723:Reactionless drive 1688:Aerogravity assist 1528:Nuclear propulsion 1009:Nuclear Technology 887:Nuclear Technology 410:Since the thermal 296:) and an external 278: 220: 2132: 2131: 2074: 2073: 2066:9M730 Burevestnik 1962: 1961: 1764: 1763: 1718:Atmospheric entry 1673:Orbital mechanics 1640: 1639: 1522: 1521: 1473:Resistojet rocket 1363: 1362: 1338:Intake mechanisms 1271:Liquid propellant 1175:Cold gas thruster 975:Acta Astronautica 641:978-1-62410-063-5 438:was provided in. 215:fragments exhaust 119: 118: 111: 93: 2157: 2122: 2121: 2061:Myasishchev M-60 1997: 1996: 1923:Project Daedalus 1897:Project Longshot 1809: 1808: 1791: 1784: 1777: 1768: 1767: 1754: 1738:Alcubierre drive 1728:Field propulsion 1678:Orbital maneuver 1666:Related concepts 1533: 1532: 1384:Colloid thruster 1374: 1373: 1235: 1234: 1137:Specific impulse 1089: 1082: 1075: 1066: 1065: 1059: 1058: 1056: 1054: 1042: 1036: 1035: 1023: 1017: 1016: 1004: 998: 997: 989: 983: 982: 970: 964: 963: 959: 953: 952: 939: 933: 932: 920: 914: 913: 901: 895: 894: 882: 876: 875: 855: 849: 848: 836: 830: 829: 827: 825: 819: 812: 803: 797: 796: 785: 779: 778: 750: 741: 740: 712: 703: 702: 674: 665: 664: 652: 646: 645: 619: 613: 612: 602: 592: 568: 562: 561: 559: 548: 542: 541: 531: 520: 426:irradiated in a 395:, comparable to 222:A design by the 168:specific impulse 143:specific impulse 131:fission products 114: 107: 103: 100: 94: 92: 51: 27: 19: 2165: 2164: 2160: 2159: 2158: 2156: 2155: 2154: 2135: 2134: 2133: 2128: 2110: 2070: 2044: 2008: 1988: 1958: 1927: 1911: 1875: 1800: 1795: 1765: 1760: 1744: 1661: 1636: 1584: 1518: 1487: 1441: 1415:Electromagnetic 1410: 1359: 1350:Pump-fed engine 1333: 1302: 1259: 1226: 1163: 1154:Rocket equation 1120:Reaction engine 1098: 1093: 1063: 1062: 1052: 1050: 1043: 1039: 1024: 1020: 1005: 1001: 990: 986: 971: 967: 960: 956: 940: 936: 921: 917: 902: 898: 883: 879: 856: 852: 837: 833: 823: 821: 820:on 22 July 2011 817: 810: 804: 800: 787: 786: 782: 751: 744: 713: 706: 675: 668: 653: 649: 642: 620: 616: 569: 565: 557: 549: 545: 529: 521: 517: 512: 485: 472: 369:George Chapline 342: 335: 328: 315: 294:magnetic mirror 276: 248: 218: 209:revolving shaft 196: 191: 153:In traditional 151: 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 2163: 2153: 2152: 2147: 2130: 2129: 2127: 2126: 2115: 2112: 2111: 2109: 2108: 2103: 2098: 2093: 2088: 2082: 2080: 2076: 2075: 2072: 2071: 2069: 2068: 2063: 2058: 2052: 2050: 2046: 2045: 2043: 2042: 2037: 2032: 2027: 2025:Convair NB-36H 2022: 2016: 2014: 2010: 2009: 2007: 2006: 2000: 1994: 1990: 1989: 1987: 1986: 1981: 1976: 1970: 1968: 1964: 1963: 1960: 1959: 1957: 1956: 1951: 1946: 1941: 1935: 1933: 1929: 1928: 1926: 1925: 1919: 1917: 1913: 1912: 1910: 1909: 1904: 1899: 1894: 1889: 1883: 1881: 1877: 1876: 1874: 1873: 1868: 1863: 1858: 1853: 1848: 1843: 1838: 1833: 1828: 1823: 1821:Bussard ramjet 1818: 1812: 1806: 1802: 1801: 1794: 1793: 1786: 1779: 1771: 1762: 1761: 1749: 1746: 1745: 1743: 1742: 1741: 1740: 1735: 1725: 1720: 1715: 1710: 1705: 1700: 1695: 1690: 1685: 1683:Gravity assist 1680: 1675: 1669: 1667: 1663: 1662: 1660: 1659: 1654: 1648: 1646: 1645:External power 1642: 1641: 1638: 1637: 1635: 1634: 1633: 1632: 1622: 1621: 1620: 1618:Bussard ramjet 1610: 1605: 1604: 1603: 1592: 1590: 1586: 1585: 1583: 1582: 1577: 1576: 1575: 1570: 1565: 1560: 1550: 1545: 1539: 1537: 1530: 1524: 1523: 1520: 1519: 1517: 1516: 1511: 1506: 1501: 1495: 1493: 1489: 1488: 1486: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1449: 1447: 1446:Electrothermal 1443: 1442: 1440: 1439: 1434: 1429: 1424: 1418: 1416: 1412: 1411: 1409: 1408: 1407: 1406: 1401: 1396: 1386: 1380: 1378: 1371: 1365: 1364: 1361: 1360: 1358: 1357: 1352: 1347: 1341: 1339: 1335: 1334: 1332: 1331: 1326: 1321: 1319:Expander cycle 1316: 1310: 1308: 1304: 1303: 1301: 1300: 1295: 1290: 1288:Monopropellant 1285: 1284: 1283: 1278: 1267: 1265: 1261: 1260: 1258: 1257: 1252: 1247: 1241: 1239: 1232: 1228: 1227: 1225: 1224: 1219: 1214: 1209: 1204: 1199: 1198: 1197: 1187: 1182: 1177: 1171: 1169: 1165: 1164: 1162: 1161: 1159:Thermal rocket 1156: 1151: 1146: 1145: 1144: 1139: 1129: 1128: 1127: 1122: 1112: 1106: 1104: 1100: 1099: 1092: 1091: 1084: 1077: 1069: 1061: 1060: 1037: 1018: 999: 984: 965: 954: 934: 915: 896: 877: 866:(3): 558–567. 850: 831: 798: 780: 761:(2): 442–451. 742: 723:(1): 207–208. 704: 685:(3): 278–284. 666: 647: 640: 614: 563: 543: 514: 513: 511: 508: 507: 506: 501: 496: 491: 484: 481: 471: 468: 405:nuclear rocket 391:and has a low 358:energy density 341: 338: 333: 326: 313: 298:electric field 290:magnetic field 275: 274: 271: 268: 265: 262: 259: 255: 247: 244: 217: 216: 213: 210: 207: 203: 195: 192: 190: 187: 150: 147: 117: 116: 31: 29: 22: 15: 9: 6: 4: 3: 2: 2162: 2151: 2148: 2146: 2143: 2142: 2140: 2125: 2117: 2116: 2113: 2107: 2104: 2102: 2099: 2097: 2094: 2092: 2091:Ford FX-Atmos 2089: 2087: 2086:Chrysler TV-8 2084: 2083: 2081: 2077: 2067: 2064: 2062: 2059: 2057: 2054: 2053: 2051: 2047: 2041: 2038: 2036: 2035:Project Pluto 2033: 2031: 2028: 2026: 2023: 2021: 2018: 2017: 2015: 2011: 2005: 2002: 2001: 1998: 1995: 1991: 1985: 1982: 1980: 1977: 1975: 1972: 1971: 1969: 1965: 1955: 1952: 1950: 1947: 1945: 1942: 1940: 1937: 1936: 1934: 1930: 1924: 1921: 1920: 1918: 1914: 1908: 1905: 1903: 1902:Project Rover 1900: 1898: 1895: 1893: 1890: 1888: 1887:Project Orion 1885: 1884: 1882: 1878: 1872: 1869: 1867: 1864: 1862: 1859: 1857: 1854: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1836:Fusion rocket 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1813: 1810: 1807: 1803: 1799: 1792: 1787: 1785: 1780: 1778: 1773: 1772: 1769: 1759: 1758: 1753: 1747: 1739: 1736: 1734: 1731: 1730: 1729: 1726: 1724: 1721: 1719: 1716: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1696: 1694: 1693:Oberth effect 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1670: 1668: 1664: 1658: 1655: 1653: 1650: 1649: 1647: 1643: 1631: 1628: 1627: 1626: 1623: 1619: 1616: 1615: 1614: 1613:Fusion rocket 1611: 1609: 1606: 1602: 1599: 1598: 1597: 1594: 1593: 1591: 1587: 1581: 1578: 1574: 1571: 1569: 1566: 1564: 1561: 1559: 1556: 1555: 1554: 1551: 1549: 1546: 1544: 1541: 1540: 1538: 1536:Closed system 1534: 1531: 1529: 1525: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1496: 1494: 1490: 1484: 1481: 1479: 1476: 1474: 1471: 1469: 1468:Arcjet rocket 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1450: 1448: 1444: 1438: 1437:Plasma magnet 1435: 1433: 1430: 1428: 1425: 1423: 1420: 1419: 1417: 1413: 1405: 1402: 1400: 1397: 1395: 1392: 1391: 1390: 1387: 1385: 1382: 1381: 1379: 1377:Electrostatic 1375: 1372: 1370: 1366: 1356: 1353: 1351: 1348: 1346: 1343: 1342: 1340: 1336: 1330: 1329:Tap-off cycle 1327: 1325: 1322: 1320: 1317: 1315: 1312: 1311: 1309: 1305: 1299: 1298:Tripropellant 1296: 1294: 1291: 1289: 1286: 1282: 1279: 1277: 1274: 1273: 1272: 1269: 1268: 1266: 1262: 1256: 1253: 1251: 1248: 1246: 1243: 1242: 1240: 1236: 1233: 1229: 1223: 1220: 1218: 1217:Photon rocket 1215: 1213: 1210: 1208: 1207:Magnetic sail 1205: 1203: 1202:Electric sail 1200: 1196: 1193: 1192: 1191: 1188: 1186: 1183: 1181: 1178: 1176: 1173: 1172: 1170: 1166: 1160: 1157: 1155: 1152: 1150: 1147: 1143: 1140: 1138: 1135: 1134: 1133: 1130: 1126: 1125:Reaction mass 1123: 1121: 1118: 1117: 1116: 1115:Rocket engine 1113: 1111: 1108: 1107: 1105: 1101: 1097: 1090: 1085: 1083: 1078: 1076: 1071: 1070: 1067: 1048: 1041: 1033: 1029: 1022: 1014: 1010: 1003: 995: 988: 981:(2): 153–158. 980: 976: 969: 958: 950: 946: 938: 930: 926: 919: 911: 907: 900: 893:(3): 407–417. 892: 888: 881: 873: 869: 865: 861: 854: 846: 842: 835: 816: 809: 802: 794: 793:Science Daily 790: 784: 776: 772: 768: 764: 760: 756: 749: 747: 738: 734: 730: 726: 722: 718: 711: 709: 700: 696: 692: 688: 684: 680: 673: 671: 662: 658: 651: 643: 637: 633: 629: 625: 618: 610: 606: 601: 596: 591: 586: 582: 578: 574: 567: 556: 555: 547: 539: 535: 528: 527: 519: 515: 505: 502: 500: 497: 495: 492: 490: 487: 486: 480: 477: 467: 464: 460: 456: 452: 447: 445: 441: 440:Proliferation 437: 433: 429: 425: 424:Americium-241 421: 417: 413: 408: 406: 402: 401:cross section 398: 394: 393:critical mass 390: 386: 381: 379: 374: 370: 365: 363: 362:nuclear fuels 359: 355: 351: 347: 337: 332: 325: 320: 316: 312: 306: 303: 299: 295: 292:(acting as a 291: 288: 284: 283:nanoparticles 272: 269: 266: 263: 260: 257: 256: 252: 243: 239: 237: 233: 229: 225: 214: 211: 208: 205: 204: 200: 186: 184: 180: 175: 171: 169: 165: 160: 156: 146: 144: 140: 136: 132: 128: 127:rocket engine 124: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 2106:Simca Fulgur 2096:Ford Nucleon 1979:Nuclear navy 1831:Fission sail 1825: 1755: 1698:Space launch 1630:Fission sail 1624: 1558:Radioisotope 1389:Ion thruster 1307:Power cycles 1293:Bipropellant 1185:Steam rocket 1180:Water rocket 1051:. Retrieved 1040: 1034:(1): 48–485. 1031: 1027: 1021: 1015:(1): 97–101. 1012: 1008: 1002: 987: 978: 974: 968: 957: 948: 944: 937: 928: 924: 918: 909: 905: 899: 890: 886: 880: 863: 859: 853: 844: 840: 834: 822:. Retrieved 815:the original 801: 792: 783: 758: 754: 720: 716: 682: 678: 660: 656: 650: 623: 617: 580: 576: 566: 553: 546: 525: 518: 489:Fission sail 473: 470:Aerogel core 451:Carlo Rubbia 448: 446:2008 study. 428:fast reactor 422:neutrons in 409: 382: 366: 343: 330: 323: 310: 307: 279: 246:Dusty plasma 240: 221: 212:reactor core 183:magnetically 176: 172: 152: 139:working mass 122: 120: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 2049:USSR/Russia 2030:Convair X-6 1967:Sea vessels 1932:USSR/Russia 1713:Aerocapture 1708:Aerobraking 1589:Open system 1573:"Lightbulb" 1514:Mass driver 1264:Propellants 1195:Diffractive 951:(1): 56–82. 931:(1): 23–36. 912:(1): 90–92. 430:. However, 319:afterburner 2139:Categories 1805:Spacecraft 1733:Warp drive 1563:Salt-water 1281:Hypergolic 1190:Solar sail 847:(1): 1–65. 824:3 February 590:2308.01441 510:References 420:epithermal 261:B. reactor 69:newspapers 2145:Americium 1276:Cryogenic 609:2673-5075 449:In 2000, 2124:Category 1993:Aircraft 1568:Gas core 1103:Concepts 483:See also 459:Chapline 236:critical 189:Research 99:May 2011 1939:RD-0410 1657:Tethers 1509:MagBeam 1394:Gridded 1149:Staging 1142:Delta-v 1053:21 July 763:Bibcode 725:Bibcode 687:Bibcode 663:: V-42. 538:6868318 476:aerogel 389:fissile 179:ionized 159:reactor 83:scholar 2079:Ground 2040:WS-125 1483:VASIMR 1132:Thrust 1110:Rocket 1049:. NASA 638:  607:  536:  302:ionize 232:carbon 135:thrust 85:  78:  71:  64:  56:  1892:NERVA 1492:Other 1238:State 818:(PDF) 811:(PDF) 585:arXiv 558:(PDF) 530:(PDF) 385:barns 287:axial 125:is a 90:JSTOR 76:books 1222:WINE 1055:2024 826:2011 636:ISBN 605:ISSN 534:OSTI 455:CERN 436:PWRs 416:fast 356:and 226:and 133:for 121:The 62:news 1954:TEM 1949:TMK 1032:564 1013:148 949:159 929:168 910:153 891:129 868:doi 864:522 771:doi 759:455 733:doi 721:271 695:doi 628:doi 595:doi 463:NTR 453:at 418:or 371:at 45:by 2141:: 2013:US 1916:UK 1880:US 1030:. 1011:. 979:82 977:. 947:. 927:. 908:. 889:. 862:. 845:30 843:. 791:. 769:. 757:. 745:^ 731:. 719:. 707:^ 693:. 683:99 681:. 669:^ 661:14 659:. 634:. 603:. 593:. 583:. 579:. 575:. 407:. 397:Pu 364:. 336:. 334:sp 327:sp 314:sp 1790:e 1783:t 1776:v 1088:e 1081:t 1074:v 1057:. 874:. 870:: 828:. 777:. 773:: 765:: 739:. 735:: 727:: 701:. 697:: 689:: 644:. 630:: 611:. 597:: 587:: 581:4 540:. 331:I 324:I 311:I 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Fission-fragment rocket"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
rocket engine
fission products
thrust
working mass
specific impulse
nuclear thermal rocket
reactor
advanced gas-core engines
specific impulse
ionized
magnetically

Idaho National Engineering Laboratory
Lawrence Livermore National Laboratory
carbon
critical

nanoparticles
axial

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.