Knowledge

Field of definition

Source 📝

22: 1684:
The terminology in this article matches the terminology in the text of Fried and Jarden, who adopt Weil's nomenclature for varieties. The second edition reference here also contains a subsection providing a dictionary between this nomenclature and the more modern one of
1752:
Mumford only spends one section of the book on arithmetic concerns like the field of definition, but in it covers in full generality many scheme-theoretic results stated in this article.
1576:)), the variety consists of a single point and so the action of the absolute Galois group cannot distinguish whether the ideal of vanishing polynomials was generated by 1709:
Kunz deals strictly with affine and projective varieties and schemes but to some extent covers the relationship between Weil's definitions for varieties and
51: 1537:). In the affine case, this means the action of the absolute Galois group on the zero-locus is sufficient to recover the subset of 932: 530: 1518: 959: 594:
is itself a field of definition. This justifies saying that any variety possesses a unique, minimal field of definition.
1195: 936: 1743: 1700: 1675: 73: 309: 44: 1727: 1659: 973: 1247:. The reason for this discrepancy is that the scheme-theoretic definitions only keep track of the polynomial set 1767: 1180: 1157: 981: 1772: 234: 1506: 1364: 230: 358: 34: 1470: 1012: 678: 38: 30: 789: 1710: 427: 258: 55: 1348: 914: 808:
on the complex projective line swaps points with the same longitude but opposite latitudes.
801: 565: 133: 8: 885: 805: 102: 944: 753:
is a variety; it is absolutely irreducible because it consists of a single point. But
455: 152:
of a field is denoted by adding a superscript of "alg", e.g. the algebraic closure of
1739: 1696: 1671: 581: 545: 149: 95: 1731: 1663: 892:
interchanges opposite points of the sphere. The complex projective line cannot be
246: 182: 917:
is that such definitions are intrinsic and free of embeddings into ambient affine
297:-algebraic set that is irreducible, i.e. is not the union of two strictly smaller 940: 190: 1235:
are also discrepant, e.g. the (scheme-theoretic) minimal field of definition of
913:
One advantage of defining varieties over arbitrary fields through the theory of
1761: 1719: 1427: 1165: 270: 587: 553: 1161: 1114: 202: 194: 186: 1175:
One disadvantage of the scheme-theoretic definition is that a scheme over
804:
as being the equator on the Riemann sphere, the coordinate-wise action of
87: 106: 1148:
Analogously to the definitions for affine and projective varieties, a
884:
with the Riemann sphere using this map, the coordinate-wise action of
590:
proved that the intersection of all fields of definition of a variety
1667: 1735: 316:-algebraic sets whose defining polynomials' coefficients belong to 1251:. In this example, one way to avoid these problems is to use the 224: 904:, points fixed by complex conjugation, while the latter does not. 1461:) on the latter scheme: the sections of the structure sheaf of 1172:; furthermore, every variety has a minimal field of definition. 113:
can belong. Given polynomials, with coefficients in a field
1038:-algebraic set is an irreducible scheme; in this case, the 1693:
Introduction to Commutative Algebra and Algebraic Geometry
1544:
In general, this information is not sufficient to recover
117:, it may not be obvious whether there is a smaller field 1342: 1034:-variety is absolutely irreducible if the associated 1243:, while in the first definition it would have been 840:is also a variety with minimal field of definition 800:as its minimal field of definition.) Viewing the 132:The issue of field of definition is of concern in 1653: 848:-isomorphism from the complex projective line to 1759: 431:, i.e. is not the union of two strictly smaller 43:but its sources remain unclear because it lacks 908: 390:) can be identical; in fact, the zero-locus in 225:Definitions for affine and projective varieties 478:-algebraic set for infinitely many subfields 323:One reason for considering the zero-locus in 625:-algebraic set but neither a variety nor a 257:, and by insisting that all polynomials be 796:-variety. (In fact, it is a variety with 229:Results and definitions stated below, for 74:Learn how and when to remove this message 1654:Fried, Michael D.; Moshe Jarden (2005). 1549: 1231:)-valued point. The two definitions of 1117:in the category of reduced schemes over 1718: 1061:-algebraic set is a reduced scheme. A 629:-variety, since it is the union of the 1760: 1198:(1,1,1) is a solution to the equation 819:defined by the homogeneous polynomial 633:-varieties defined by the polynomials 181:represent, respectively, the field of 1724:The Red Book of Varieties and Schemes 1541:consisting of vanishing polynomials. 1375:) of a subset of the polynomial ring 1003:-algebraic set associated to a given 576:. In other words those extensions of 282:) of a subset of the polynomial ring 121:, and other polynomials defined over 1690: 980:-algebraic sets regarded as schemes 15: 1343:Action of the absolute Galois group 1310:-algebraic set is the union of the 1152:-variety is a variety defined over 13: 1647: 1453:) together with the action of Gal( 572:is also linearly independent over 14: 1784: 1437:can be recovered from the scheme 105:to which the coefficients of the 712:)  in the polynomial ring ( 20: 844:. The following map defines a 1609:raised to some other power of 1339:)) and its complex conjugate. 1: 1046:. An absolutely irreducible 991:To every algebraic extension 556:. That means every subset of 414:is not algebraically closed. 1426:is a variety defined over a 909:Scheme-theoretic definitions 435:-algebraic sets. A variety 339:) is that, for two distinct 101:is essentially the smallest 7: 1713:'s definitions for schemes. 1695:. Birkhäuser. p. 256. 597: 139: 10: 1789: 1473:of the structure sheaf of 1168:is a regular extension of 774:is also the zero-locus of 525:is a variety defined over 474:-algebraic set is also an 253: − 1 over 1509:are constant on each Gal( 1415:) via its action on Spec( 1077:such that there exists a 144:Throughout this article, 1640:isomorphically onto a σ( 1013:fiber product of schemes 679:transcendental extension 29:This article includes a 1632:, an automorphism σ of 1190:is not an extension of 900:because the former has 790:complex projective line 446:if every polynomial in 402:is the zero-locus of a 233:, can be translated to 58:more precise citations. 1306:)), whose associated 1219:but the corresponding 1141:-variety defined over 510:-variety defined over 428:absolutely irreducible 148:denotes a field. The 1552:of the zero-locus of 1391:-algebraic set), Gal( 1367:on the zero-locus in 1349:absolute Galois group 1249:up to change of basis 1042:-variety is called a 421:-variety is called a 274:is the zero-locus in 125:, which still define 1768:Diophantine geometry 1730:. pp. 198–203. 1691:Kunz, Ernst (1985). 1399:) naturally acts on 1194:. For example, the 802:real projective line 757:is not defined over 566:linearly independent 462:) of polynomials in 301:-algebraic sets. A 235:projective varieties 134:diophantine geometry 1233:field of definition 1109:) is isomorphic to 1063:field of definition 965:-algebraic set. A 886:complex conjugation 806:complex conjugation 529:if and only if the 488:field of definition 398:) of any subset of 92:field of definition 1773:Algebraic geometry 1465:on an open subset 1379:. In general, if 1332: - (1+i) 1212: - (1+i) 1057:if the associated 603:The zero-locus of 552:, in the sense of 456:linear combination 31:list of references 1616:For any subfield 1598:, or, indeed, by 1383:is a scheme over 880:)). Identifying 690:, the polynomial 582:linearly disjoint 546:regular extension 450:that vanishes on 150:algebraic closure 96:algebraic variety 84: 83: 76: 1780: 1749: 1706: 1681: 1656:Field Arithmetic 1469:are exactly the 860:) → (2 792:is a projective 738:)-algebraic set 517:Equivalently, a 343:-algebraic sets 310:regular function 247:projective space 231:affine varieties 183:rational numbers 79: 72: 68: 65: 59: 54:this article by 45:inline citations 24: 23: 16: 1788: 1787: 1783: 1782: 1781: 1779: 1778: 1777: 1758: 1757: 1746: 1703: 1678: 1668:10.1007/b138352 1662:. p. 780. 1650: 1648:Further reading 1604: 1593: 1582: 1571: 1558: 1532: 1500: 1484: 1448: 1410: 1345: 1338: 1331: 1324: 1305: 1299: 1292: 1286: 1279: 1272: 1265: 1218: 1211: 1204: 1179:cannot have an 1162:structure sheaf 1132: 1104: 1025: 1007:-algebraic set 911: 896:-isomorphic to 839: 832: 825: 811:The projective 780: 765: 748: 733: 720: 707: 696: 689: 672: 660: 653: 646: 639: 621:-variety and a 616: 609: 600: 466:that vanish on 381: 366: 356: 349: 237:, by replacing 227: 191:complex numbers 189:, the field of 185:, the field of 180: 160:. The symbols 142: 80: 69: 63: 60: 49: 35:related reading 25: 21: 12: 11: 5: 1786: 1776: 1775: 1770: 1756: 1755: 1754: 1753: 1744: 1736:10.1007/b62130 1720:Mumford, David 1716: 1715: 1714: 1701: 1688: 1687: 1686: 1676: 1649: 1646: 1602: 1591: 1580: 1567: 1556: 1526: 1494: 1478: 1442: 1404: 1344: 1341: 1336: 1329: 1325: + i 1322: 1314:-variety Spec( 1303: 1297: 1293: - 2 1290: 1284: 1277: 1270: 1263: 1255:-variety Spec( 1216: 1209: 1205: + i 1202: 1196:rational point 1122: 1094: 1069:is a subfield 1019: 929:-algebraic set 910: 907: 906: 905: 837: 830: 823: 809: 786: 778: 761: 746: 729: 716: 705: 694: 685: 668: 662: 658: 654: - i 651: 644: 640: + i 637: 614: 607: 599: 596: 531:function field 494:is a subfield 379: 364: 354: 347: 226: 223: 213:is denoted by 176: 141: 138: 82: 81: 39:external links 28: 26: 19: 9: 6: 4: 3: 2: 1785: 1774: 1771: 1769: 1766: 1765: 1763: 1751: 1750: 1747: 1745:3-540-63293-X 1741: 1737: 1733: 1729: 1725: 1721: 1717: 1712: 1708: 1707: 1704: 1702:0-8176-3065-1 1698: 1694: 1689: 1683: 1682: 1679: 1677:3-540-22811-X 1673: 1669: 1665: 1661: 1657: 1652: 1651: 1645: 1643: 1639: 1635: 1631: 1627: 1623: 1619: 1614: 1612: 1608: 1605: -  1601: 1597: 1590: 1586: 1583: -  1579: 1575: 1570: 1566: 1562: 1555: 1551: 1547: 1542: 1540: 1536: 1530: 1524: 1520: 1516: 1512: 1508: 1504: 1498: 1492: 1488: 1482: 1476: 1472: 1468: 1464: 1460: 1456: 1452: 1446: 1440: 1436: 1433:, the scheme 1432: 1429: 1428:perfect field 1425: 1420: 1418: 1414: 1408: 1402: 1398: 1394: 1390: 1386: 1382: 1378: 1374: 1370: 1366: 1362: 1358: 1354: 1350: 1340: 1335: 1328: 1321: 1317: 1313: 1309: 1302: 1296: 1289: 1283: 1276: 1269: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1215: 1208: 1201: 1197: 1193: 1189: 1185: 1184:-valued point 1183: 1178: 1173: 1171: 1167: 1166:generic point 1163: 1159: 1155: 1151: 1146: 1144: 1140: 1136: 1130: 1126: 1120: 1116: 1112: 1108: 1102: 1098: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1065:of a variety 1064: 1060: 1056: 1055: 1052:defined over 1049: 1045: 1041: 1037: 1033: 1029: 1023: 1017: 1014: 1010: 1006: 1002: 998: 994: 989: 987: 983: 979: 975: 971: 969: 964: 961: 957: 955: 950: 948: 942: 938: 934: 930: 928: 922: 920: 916: 903: 899: 895: 891: 887: 883: 879: 875: 871: 867: 863: 859: 855: 851: 847: 843: 836: 829: 822: 818: 814: 810: 807: 803: 799: 795: 791: 787: 784: 781: -  777: 773: 769: 764: 760: 756: 752: 745: 741: 737: 732: 728: 724: 719: 715: 711: 708: -  704: 700: 693: 688: 684: 680: 676: 671: 667: 663: 657: 650: 643: 636: 632: 628: 624: 620: 613: 606: 602: 601: 595: 593: 589: 585: 583: 579: 575: 571: 567: 563: 559: 555: 551: 547: 543: 539: 535: 532: 528: 524: 520: 515: 513: 509: 505: 501: 497: 493: 490:of a variety 489: 485: 481: 477: 473: 469: 465: 461: 457: 453: 449: 445: 444: 441:defined over 438: 434: 430: 429: 424: 420: 415: 413: 409: 405: 401: 397: 393: 389: 385: 378: 374: 370: 363: 360: 359:intersections 353: 346: 342: 338: 334: 330: 326: 321: 319: 315: 311: 307: 305: 300: 296: 292: 290: 285: 281: 277: 273: 272: 271:algebraic set 268: 262: 260: 256: 252: 249:of dimension 248: 244: 240: 236: 232: 222: 220: 216: 212: 209:over a field 208: 206: 200: 196: 192: 188: 184: 179: 175: 171: 167: 163: 159: 155: 151: 147: 137: 135: 130: 128: 124: 120: 116: 112: 108: 104: 100: 97: 93: 89: 78: 75: 67: 64:November 2021 57: 53: 47: 46: 40: 36: 32: 27: 18: 17: 1723: 1711:Grothendieck 1692: 1655: 1641: 1637: 1633: 1629: 1625: 1621: 1617: 1615: 1610: 1606: 1599: 1595: 1588: 1584: 1577: 1573: 1568: 1564: 1560: 1553: 1545: 1543: 1538: 1534: 1528: 1522: 1514: 1510: 1502: 1496: 1490: 1486: 1480: 1474: 1466: 1462: 1458: 1454: 1450: 1444: 1438: 1434: 1430: 1423: 1421: 1416: 1412: 1406: 1400: 1396: 1392: 1388: 1384: 1380: 1376: 1372: 1368: 1360: 1356: 1352: 1346: 1333: 1326: 1319: 1315: 1311: 1307: 1300: 1294: 1287: 1281: 1274: 1267: 1260: 1256: 1252: 1248: 1244: 1240: 1236: 1232: 1228: 1227:has no Spec( 1224: 1220: 1213: 1206: 1199: 1191: 1187: 1181: 1176: 1174: 1169: 1153: 1149: 1147: 1142: 1138: 1134: 1128: 1124: 1118: 1115:final object 1110: 1106: 1100: 1096: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1053: 1051: 1050:-variety is 1047: 1043: 1039: 1035: 1031: 1027: 1021: 1015: 1008: 1004: 1000: 996: 992: 990: 985: 977: 967: 966: 962: 953: 952: 946: 926: 925: 923: 918: 912: 901: 897: 893: 889: 881: 877: 873: 869: 865: 861: 857: 853: 849: 845: 841: 834: 827: 820: 816: 812: 797: 793: 782: 775: 771: 767: 762: 758: 754: 750: 743: 739: 735: 730: 726: 722: 717: 713: 709: 702: 698: 691: 686: 682: 674: 669: 665: 655: 648: 641: 634: 630: 626: 622: 618: 611: 604: 591: 586: 577: 573: 569: 561: 557: 549: 541: 537: 533: 526: 522: 518: 516: 511: 507: 503: 499: 495: 491: 487: 483: 479: 475: 471: 467: 463: 459: 451: 447: 442: 440: 436: 432: 426: 422: 418: 416: 411: 407: 403: 399: 395: 391: 387: 383: 376: 372: 368: 361: 351: 344: 340: 336: 332: 328: 324: 322: 317: 313: 303: 302: 298: 294: 288: 287: 283: 279: 275: 266: 265: 263: 254: 250: 242: 238: 228: 218: 214: 210: 204: 198: 195:finite field 187:real numbers 177: 173: 169: 165: 161: 157: 153: 145: 143: 131: 126: 122: 118: 114: 110: 98: 91: 85: 70: 61: 50:Please help 42: 1644:)-variety. 1533: Spec( 1501: Spec( 1485: Spec( 1449: Spec( 1411: Spec( 1026: Spec( 960:irreducible 941:finite type 902:real points 742:defined by 406:element of 259:homogeneous 201:elements. 197:containing 107:polynomials 88:mathematics 56:introducing 1762:Categories 1548:. In the 1363:naturally 1089:such that 939:scheme of 872:, -i( 617:is both a 588:André Weil 564:) that is 502:such that 331:) and not 193:, and the 1636:will map 1628:-variety 1223:-variety 1085:-variety 970:-morphism 933:separated 815:-variety 770:), since 725:)). The 521:-variety 425:if it is 306:-morphism 109:defining 1728:Springer 1722:(1999). 1685:schemes. 1660:Springer 1624:and any 1507:residues 1505:) whose 1471:sections 1387:(e.g. a 1280:- 2 1273:+ 2 1137:) is an 1113:and the 976:between 974:morphism 956:-variety 921:-space. 701:equals ( 598:Examples 312:between 291:-variety 140:Notation 1594:-  1559:-  1550:example 1525: × 1493: × 1477: × 1441: × 1403: × 1266:+  1164:at the 1160:of the 1156:if the 1044:variety 1018: × 1011:is the 937:reduced 915:schemes 864:,  833:+  826:+  749:-  697:-  610:+  454:is the 423:variety 245:) with 203:Affine 52:improve 1742:  1699:  1674:  1030:). A 999:, the 958:is an 506:is an 458:(over 404:single 375:) and 357:, the 207:-space 172:, and 94:of an 90:, the 1587:, by 1527:Spec( 1519:orbit 1495:Spec( 1489:) on 1479:Spec( 1443:Spec( 1422:When 1405:Spec( 1359:) of 1158:stalk 1133:Spec( 1123:Spec( 1105:Spec( 1095:Spec( 1020:Spec( 984:Spec( 972:is a 951:. A 945:Spec( 943:over 931:is a 664:With 568:over 544:is a 540:) of 486:. A 470:. A 308:is a 293:is a 286:. A 103:field 37:, or 1740:ISBN 1697:ISBN 1672:ISBN 1563:in ( 1365:acts 1351:Gal( 1347:The 982:over 935:and 788:The 677:) a 647:and 580:are 554:Weil 350:and 1732:doi 1664:doi 1620:of 1521:in 1419:). 1239:is 1186:if 1073:of 995:of 988:). 888:on 852:: ( 681:of 548:of 498:of 482:of 439:is 410:if 221:). 156:is 86:In 1764:: 1738:. 1726:. 1670:. 1658:. 1613:. 1517:)- 1318:/( 1259:/( 1145:. 924:A 862:ab 584:. 514:. 417:A 320:. 264:A 261:. 168:, 164:, 136:. 129:. 41:, 33:, 1748:. 1734:: 1705:. 1680:. 1666:: 1642:L 1638:V 1634:k 1630:V 1626:L 1622:k 1618:L 1611:p 1607:t 1603:1 1600:x 1596:t 1592:1 1589:x 1585:t 1581:1 1578:x 1574:t 1572:( 1569:p 1565:F 1561:t 1557:1 1554:x 1546:V 1539:k 1535:k 1531:) 1529:k 1523:U 1515:k 1513:/ 1511:k 1503:k 1499:) 1497:k 1491:U 1487:k 1483:) 1481:k 1475:V 1467:U 1463:V 1459:k 1457:/ 1455:k 1451:k 1447:) 1445:k 1439:V 1435:V 1431:k 1424:V 1417:k 1413:k 1409:) 1407:k 1401:V 1397:k 1395:/ 1393:k 1389:k 1385:k 1381:V 1377:k 1373:k 1371:( 1369:A 1361:k 1357:k 1355:/ 1353:k 1337:3 1334:x 1330:2 1327:x 1323:1 1320:x 1316:Q 1312:Q 1308:Q 1304:3 1301:x 1298:2 1295:x 1291:3 1288:x 1285:1 1282:x 1278:3 1275:x 1271:2 1268:x 1264:1 1261:x 1257:Q 1253:Q 1245:Q 1241:Q 1237:V 1229:Q 1225:V 1221:Q 1217:3 1214:x 1210:2 1207:x 1203:1 1200:x 1192:k 1188:L 1182:L 1177:k 1170:k 1154:k 1150:k 1143:L 1139:L 1135:L 1131:) 1129:L 1127:∩ 1125:k 1121:× 1119:W 1111:V 1107:k 1103:) 1101:L 1099:∩ 1097:k 1093:× 1091:W 1087:W 1083:L 1081:∩ 1079:k 1075:k 1071:L 1067:V 1059:k 1054:k 1048:k 1040:k 1036:k 1032:k 1028:L 1024:) 1022:k 1016:V 1009:V 1005:k 1001:L 997:k 993:L 986:k 978:k 968:k 963:k 954:k 949:) 947:k 927:k 919:n 898:W 894:R 890:W 882:W 878:b 876:+ 874:a 870:b 868:- 866:a 858:b 856:, 854:a 850:W 846:C 842:Q 838:3 835:x 831:2 828:x 824:1 821:x 817:W 813:R 798:Q 794:R 785:. 783:t 779:1 776:x 772:V 768:t 766:( 763:p 759:F 755:V 751:t 747:1 744:x 740:V 736:t 734:( 731:p 727:F 723:t 721:( 718:p 714:F 710:t 706:1 703:x 699:t 695:1 692:x 687:p 683:F 675:t 673:( 670:p 666:F 661:. 659:2 656:x 652:1 649:x 645:2 642:x 638:1 635:x 631:Q 627:Q 623:Q 619:Q 615:2 612:x 608:1 605:x 592:V 578:k 574:k 570:k 562:V 560:( 558:k 550:k 542:V 538:V 536:( 534:k 527:k 523:V 519:k 512:L 508:L 504:V 500:k 496:L 492:V 484:k 480:L 476:L 472:k 468:V 464:k 460:k 452:V 448:k 443:k 437:V 433:k 419:k 412:k 408:k 400:k 396:k 394:( 392:A 388:k 386:( 384:A 382:∩ 380:2 377:X 373:k 371:( 369:A 367:∩ 365:1 362:X 355:2 352:X 348:1 345:X 341:k 337:k 335:( 333:A 329:k 327:( 325:A 318:k 314:k 304:k 299:k 295:k 289:k 284:k 280:k 278:( 276:A 269:- 267:k 255:k 251:n 243:k 241:( 239:A 219:F 217:( 215:A 211:F 205:n 199:p 178:p 174:F 170:C 166:R 162:Q 158:k 154:k 146:k 127:V 123:k 119:k 115:K 111:V 99:V 77:) 71:( 66:) 62:( 48:.

Index

list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message
mathematics
algebraic variety
field
polynomials
diophantine geometry
algebraic closure
rational numbers
real numbers
complex numbers
finite field
Affine n-space
affine varieties
projective varieties
projective space
homogeneous
algebraic set
regular function
intersections
absolutely irreducible
linear combination
function field
regular extension
Weil

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.