Knowledge

Enzyme catalysis

Source 📝

262:
concentration" of the reagents. This is understood when considering how increases in concentration leads to increases in reaction rate: essentially when the reactants are more concentrated, they collide more often and so react more often. In enzyme catalysis, the binding of the reagents to the enzyme restricts the conformational space of the reactants, holding them in the 'proper orientation' and close to each other, so that they collide more frequently, and with the correct geometry, to facilitate the desired reaction. The "effective concentration" is the concentration the reactant would have to be, free in solution, to experiences the same collisional frequency. Often such theoretical effective concentrations are unphysical and impossible to realize in reality – which is a testament to the great catalytic power of many enzymes, with massive rate increases over the uncatalyzed state.
145: 335:
lowering the barrier. A key feature of enzyme catalysis over many non-biological catalysis, is that both acid and base catalysis can be combined in the same reaction. In many abiotic systems, acids (large ) or bases ( large concentration H+ sinks, or species with electron pairs) can increase the rate of the reaction; but of course the environment can only have one overall pH (measure of acidity or basicity (alkalinity)). However, since enzymes are large molecules, they can position both acid groups and basic groups in their active site to interact with their substrates, and employ both modes independent of the bulk pH.
185: 2321: 1480: 1389: 22: 3140: 3076: 124:) increases the fraction of reactant molecules that can overcome this barrier and form the product. An important principle is that since they only reduce energy barriers between products and reactants, enzymes always catalyze reactions in both directions, and cannot drive a reaction forward or affect the equilibrium position – only the speed with which is it achieved. As with other catalysts, the enzyme is not consumed or changed by the reaction (as a substrate is) but is recycled such that a single enzyme performs many rounds of catalysis. 204:
effect of uniform binding increases both substrate and transition state binding affinity, while differential binding increases only transition state binding affinity. Both are used by enzymes and have been evolutionarily chosen to minimize the activation energy of the reaction. Enzymes that are saturated, that is, have a high affinity substrate binding, require differential binding to reduce the energy of activation, whereas small substrate unbound enzymes may use either differential or uniform binding.
996:) due to the changes in the free energy content of every molecule, whether S or P, in water solution. This approach is in accordance with the following mechanism of muscle contraction. The final step of ATP hydrolysis in skeletal muscle is the product release caused by the association of myosin heads with actin. The closing of the actin-binding cleft during the association reaction is structurally coupled with the opening of the nucleotide-binding pocket on the myosin active site. 624:(TPP) to form covalent intermediates with reactant molecules. Such covalent intermediates function to reduce the energy of later transition states, similar to how covalent intermediates formed with active site amino acid residues allow stabilization, but the capabilities of cofactors allow enzymes to carryout reactions that amino acid side residues alone could not. Enzymes utilizing such cofactors include the PLP-dependent enzyme 3272: 24: 28: 27: 23: 29: 523:
distributions about the active sites are arranged so as to stabilize the transition states of the catalyzed reactions. In several enzymes, these charge distributions apparently serve to guide polar substrates toward their binding sites so that the rates of these enzymatic reactions are greater than their apparent diffusion-controlled limits.
516:
that the ionic transition states are stabilized by fixed dipoles. This is very different from transition state stabilization in water, where the water molecules must pay with "reorganization energy". In order to stabilize ionic and charged states. Thus, the catalysis is associated with the fact that the enzyme polar groups are preorganized
464:
catalyzed significantly, since it is not the rate determining barrier. Note that in the example shown, the histidine conjugate acid acts as a general acid catalyst for the subsequent loss of the amine from a tetrahedral intermediate.  Evidence supporting this proposed mechanism (Figure 4 in Ref. 13) has, however been controverted.
26: 261:
of the reactants and thus makes addition or transfer reactions less unfavorable, since a reduction in the overall entropy when two reactants become a single product. However this is a general effect and is seen in non-addition or transfer reactions where it occurs due to an increase in the "effective
207:
These effects have led to most proteins using the differential binding mechanism to reduce the energy of activation, so most substrates have high affinity for the enzyme while in the transition state. Differential binding is carried out by the induced fit mechanism – the substrate first binds weakly,
648:
A metal ion in the active site participates in catalysis by coordinating charge stabilization and shielding. Because of a metal's positive charge, only negative charges can be stabilized through metal ions. However, metal ions are advantageous in biological catalysis because they are not affected by
455:
The initial step of the serine protease catalytic mechanism involves the histidine of the active site accepting a proton from the serine residue. This prepares the serine as a nucleophile to attack the amide bond of the substrate. This mechanism includes donation of a proton from serine (a base, pKa
203:
The advantages of the induced fit mechanism arise due to the stabilizing effect of strong enzyme binding. There are two different mechanisms of substrate binding: uniform binding, which has strong substrate binding, and differential binding, which has strong transition state binding. The stabilizing
640:
proposal of a covalent catalysis (where the barrier is lower than the corresponding barrier in solution) would require, for example, a partial covalent bond to the transition state by an enzyme group (e.g., a very strong hydrogen bond), and such effects do not contribute significantly to catalysis.
639:
for the reaction (via to the covalent intermediate) and so is distinct from true catalysis. For example, the energetics of the covalent bond to the serine molecule in chymotrypsin should be compared to the well-understood covalent bond to the nucleophile in the uncatalyzed solution reaction. A true
346:
groups, or to stabilize leaving groups. Many amino acids with acidic or basic groups are this employed in the active site, such as the glutamic and aspartic acid, histidine, cystine, tyrosine, lysine and arginine, as well as serine and threonine. In addition, the peptide backbone, with carbonyl and
661:
This is the principal effect of induced fit binding, where the affinity of the enzyme to the transition state is greater than to the substrate itself. This induces structural rearrangements which strain substrate bonds into a position closer to the conformation of the transition state, so lowering
522:
Binding of substrate usually excludes water from the active site, thereby lowering the local dielectric constant to that of an organic solvent. This strengthens the electrostatic interactions between the charged/polar substrates and the active sites. In addition, studies have shown that the charge
515:
Systematic computer simulation studies established that electrostatic effects give, by far, the largest contribution to catalysis. It can increase the rate of reaction by a factor of up to 10. In particular, it has been found that enzyme provides an environment which is more polar than water, and
463:
The modification of the pKa's is a pure part of the electrostatic mechanism. The catalytic effect of the above example is mainly associated with the reduction of the pKa of the oxyanion and the increase in the pKa of the histidine, while the proton transfer from the serine to the histidine is not
1011:
leads to transformation of a significant part of the free energy of ATP hydrolysis into the kinetic energy of the solvated phosphate, producing active streaming. This assumption of a local mechano-chemical transduction is in accord with Tirosh's mechanism of muscle contraction, where the muscle
729:
Quantum tunneling does not appear to provide a major catalytic advantage, since the tunneling contributions are similar in the catalyzed and the uncatalyzed reactions in solution. However, the tunneling contribution (typically enhancing rate constants by a factor of ~1000 compared to the rate of
572:
with residues in the enzyme active site or with a cofactor. This adds an additional covalent intermediate to the reaction, and helps to reduce the energy of later transition states of the reaction. The covalent bond must, at a later stage in the reaction, be broken to regenerate the enzyme. This
334:
may donate and accept protons in order to stabilize developing charges in the transition state. This is related to the overall principle of catalysis, that of reducing energy barriers, since in general transition states are high energy states, and by stabilizing them this high energy is reduced,
94:
is vital since many but not all metabolically essential reactions have very low rates when uncatalysed. One driver of protein evolution is the optimization of such catalytic activities, although only the most crucial enzymes operate near catalytic efficiency limits, and many enzymes are far from
870:
The crucial point for the verification of the present approach is that the catalyst must be a complex of the enzyme with the transfer group of the reaction. This chemical aspect is supported by the well-studied mechanisms of the several enzymatic reactions. Consider the reaction of peptide bond
311:
However, the situation might be more complex, since modern computational studies have established that traditional examples of proximity effects cannot be related directly to enzyme entropic effects. Also, the original entropic proposal has been found to largely overestimate the contribution of
702:
The substrate, on binding, is distorted from the half chair conformation of the hexose ring (because of the steric hindrance with amino acids of the protein forcing the equatorial c6 to be in the axial position) into the chair conformation, which is similar in shape to the transition state.
999:
Notably, the final steps of ATP hydrolysis include the fast release of phosphate and the slow release of ADP. The release of a phosphate anion from bound ADP anion into water solution may be considered as an exergonic reaction because the phosphate anion has low molecular mass.
856:
of the active enzyme appears in the product due to possibility of the exchange reaction inside enzyme to avoid both electrostatic inhibition and repulsion of atoms. So we represent the active enzyme as a powerful reactant of the enzymatic reaction. The reaction
127:
Enzymes are often highly specific and act on only certain substrates. Some enzymes are absolutely specific meaning that they act on only one substrate, while others show group specificity and can act on similar but not identical chemical groups such as the
718:). Some enzymes operate with kinetics which are faster than what would be predicted by the classical ΔG. In "through the barrier" models, a proton or an electron can tunnel through activation barriers. Quantum tunneling for protons has been observed in 963:) is the deacylation step. It is important to note that the group H+, initially found on the enzyme, but not in water, appears in the product before the step of hydrolysis, therefore it may be considered as an additional group of the enzymatic reaction. 972:) shows that the enzyme acts as a powerful reactant of the reaction. According to the proposed concept, the H transport from the enzyme promotes the first reactant conversion, breakdown of the first initial chemical bond (between groups P 983:
The proposed chemical mechanism does not depend on the concentration of the substrates or products in the medium. However, a shift in their concentration mainly causes free energy changes in the first and final steps of the reactions
25: 741:
The binding energy of the enzyme-substrate complex cannot be considered as an external energy which is necessary for the substrate activation. The enzyme of high energy content may firstly transfer some specific energetic group
1520:
Kuhn B, Kollman PA (2000). "QM-FE and Molecular Dynamics Calculations on Catechol O-Methyltransferase: Free Energy of Activation in the Enzyme and in Aqueous Solution and Regioselectivity of the Enzyme-Catalyzed Reaction".
2929:
White HD, Belknap B, Webb MR (September 1997). "Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate".
225:
in the uncatalyzed reaction in water (without the enzyme). The induced fit only suggests that the barrier is lower in the closed form of the enzyme but does not tell us what the reason for the barrier reduction is.
665:
However, the strain effect is, in fact, a ground state destabilization effect, rather than transition state stabilization effect. Furthermore, enzymes are very flexible and they cannot apply large strain effect.
284: 1493:
Stanton RV, Peräkylä M, Bakowies D, Kollman PA (1998). "Combined ab initio and Free Energy Calculations To Study Reactions in Enzymes and Solution: Amide Hydrolysis in Trypsin and Aqueous Solution".
548: 2965:
Tirosh R, Low WZ, Oplatka A (March 1990). "Translational motion of actin filaments in the presence of heavy meromyosin and MgATP as measured by Doppler broadening of laser light scattering".
447: 695: 730:
reaction for the classical 'over the barrier' route) is likely crucial to the viability of biological organisms. This emphasizes the general importance of tunneling reactions in biology.
196:
interaction is the induced fit model. This model proposes that the initial interaction between enzyme and substrate is relatively weak, but that these weak interactions rapidly induce
750:
from the second bound reactant (or from the second group of the single reactant) must be transferred to active site to finish substrate conversion to product and enzyme regeneration.
2186:
Fife TH, Przystas TJ (1 February 1985). "Divalent metal ion catalysis in the hydrolysis of esters of picolinic acid. Metal ion promoted hydroxide ion and water catalyzed reactions".
245:
close to the chemical bonds in the substrate that will be altered in the reaction. After binding takes place, one or more mechanisms of catalysis lowers the energy of the reaction's
2292:
Warshel A, Levitt M (May 1976). "Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme".
257:
Enzyme-substrate interactions align the reactive chemical groups and hold them close together in an optimal geometry, which increases the rate of the reaction. This reduces the
249:, by providing an alternative chemical pathway for the reaction. There are six possible mechanisms of "over the barrier" catalysis as well as a "through the barrier" mechanism: 2413:
Olsson MH, Siegbahn PE, Warshel A (March 2004). "Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase".
2451:
Masgrau L, Roujeinikova A, Johannissen LO, Hothi P, Basran J, Ranaghan KE, et al. (April 2006). "Atomic description of an enzyme reaction dominated by proton tunneling".
1754:
Fersht AR, Requena Y (December 1971). "Mechanism of the -chymotrypsin-catalyzed hydrolysis of amides. pH dependence of k c and K m . Kinetic detection of an intermediate".
366:
Many reaction mechanisms involving acid/base catalysis assume a substantially altered pKa. This alteration of pKa is possible through the local environment of the residue.
419:
pKa can also be influenced significantly by the surrounding environment, to the extent that residues which are basic in solution may act as proton donors, and vice versa.
211:
It is important to clarify, however, that the induced fit concept cannot be used to rationalize catalysis. That is, the chemical catalysis is defined as the reduction of
867:
remains inside enzyme. This approach as idea had formerly proposed relying on the hypothetical extremely high enzymatic conversions (catalytically perfect enzyme).
3438: 2749:
Hengge AC, Stein RL (January 2004). "Role of protein conformational mobility in enzyme catalysis: acylation of alpha-chymotrypsin by specific peptide substrates".
871:
hydrolysis catalyzed by a pure protein α-chymotrypsin (an enzyme acting without a cofactor), which is a well-studied member of the serine proteases family, see.
519:
The magnitude of the electrostatic field exerted by an enzyme's active site has been shown to be highly correlated with the enzyme's catalytic rate enhancement.
2819:
Holmes KC, Angert I, Kull FJ, Jahn W, Schröder RR (September 2003). "Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide".
3443: 59:. Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the 208:
then the enzyme changes conformation increasing the affinity to the transition state and stabilizing it, so reducing the activation energy to reach it.
82:). Many cofactors are vitamins, and their role as vitamins is directly linked to their use in the catalysis of biological process within metabolism. 2648:
Volkenshtein MV, Dogonadze RR, Madumarov AK, Urushadze ZD, Kharkats Yu I (1973). "Electronic and Conformational Interactions in Enzyme Catalysis.".
714:
These traditional "over the barrier" mechanisms have been challenged in some cases by models and observations of "through the barrier" mechanisms (
3304: 669:
In addition to bond strain in the substrate, bond strain may also be induced within the enzyme itself to activate residues in the active site.
1145:
in the 2010s led to the observation that the movement of untethered enzymes increases with increasing substrate concentration and increasing
2359:
Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (January 2004). "How enzymes work: analysis by modern rate theory and computer simulations".
1548:
Bruice TC, Lightstone FC (1999). "Ground State and Transition State Contributions to the Rates of Intramolecular and Enzymatic Reactions".
2014: 2872:"ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle" 2586:
Olsson MH, Parson WW, Warshel A (May 2006). "Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis".
99:, orbital steering, entropic restriction, orientation effects (i.e. lock and key catalysis), as well as motional effects involving 1789:
Zeeberg B, Caswell M, Caplow M (April 1973). "Concerning a reported change in rate-determining step in chymotrypsin catalysis".
1634:
Warshel A, Parson WW (November 2001). "Dynamics of biochemical and biophysical reactions: insight from computer simulations".
3216: 2343: 2276: 2170: 2086: 2055: 1411: 1317: 1173: 556:
The tetrahedral intermediate is stabilised by a partial ionic bond between the Zn ion and the negative charge on the oxygen.
2102:
Piccirilli JA, Vyle JS, Caruthers MH, Cech TR (January 1993). "Metal ion catalysis in the Tetrahymena ribozyme reaction".
229:
Induced fit may be beneficial to the fidelity of molecular recognition in the presence of competition and noise via the
3297: 74:. Enzymes often also incorporate non-protein components, such as metal ions or specialized organic molecules known as 3550: 3276: 2004:
Toney, M. D. "Reaction specificity in pyridoxal enzymes." Archives of biochemistry and biophysics (2005) 433: 279-287
512:. Metal ions are particularly effective and can reduce the pKa of water enough to make it an effective nucleophile. 3476: 1684:
Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MH (August 2006). "Electrostatic basis for enzyme catalysis".
2621:
Vol'kenshtein MV, Dogonadze RR, Madumarov AK, Urushadze ZD, Kharkats YI (1972). "The theory of enzyme catalysis".
1429:"Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition" 635:
Rather than lowering the activation energy for a reaction pathway, covalent catalysis provides an alternative
3706: 3461: 3290: 2706:
Fogel AG (August 1982). "Cooperativity of enzymatic reactions and molecular aspects of energy transduction".
1849:"On the Theory of Electron-Transfer Reactions. VI. Unified Treatment for Homogeneous and Electrode Reactions" 1577:"Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect" 1239: 1146: 3471: 980:). The step of hydrolysis leads to a breakdown of the second chemical bond and regeneration of the enzyme. 723: 230: 2502:
Hwang JK, Warshel A (1996). "How important are quantum mechanical nuclear motions in enzyme catalysis".
3314: 1142: 1126: 1122: 1050: 1046: 1028: 636: 356: 746:
from catalytic site of the enzyme to the final place of the first bound reactant, then another group X
3807: 3794: 3781: 3768: 3755: 3742: 3729: 3691: 3433: 1118: 3139: 3075: 3002:"Ballistic protons and microwave-induced water solutions (solitons) in bioenergetic transformations" 2784:
Lymn RW, Taylor EW (December 1971). "Mechanism of adenosine triphosphate hydrolysis by actomyosin".
2320: 1479: 1388: 662:
the energy difference between the substrate and transition state and helping catalyze the reaction.
3701: 3655: 3598: 3359: 1261:"At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis?" 1111: 1065: 1032: 321: 193: 1719:
Warshel A, Naray-Szabo G, Sussman F, Hwang JK (May 1989). "How do serine proteases really work?".
1020:
In reality, most enzyme mechanisms involve a combination of several different types of catalysis.
184: 3603: 3209:
Structure and Mechanism in Protein Science : A Guide to Enzyme Catalysis and Protein Folding
3089:
Riedel C, Gabizon R, Wilson CA, Hamadani K, Tsekouras K, Marqusee S, et al. (January 2015).
2153:
Bender ML (1 January 1962). "Metal Ion Catalysis of Nucleophilic Organic Reactions in Solution".
613: 505: 96: 75: 1333: 629: 625: 621: 476:(or partial ionic charge interactions) with the intermediate. These bonds can either come from 153: 79: 2223:"Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences" 472:
Stabilization of charged transition states can also be by residues in the active site forming
3624: 3543: 3497: 3411: 3328: 650: 197: 148:
Enzyme changes shape by induced fit upon substrate binding to form enzyme-substrate complex.
110: 2078: 2072: 2047: 2041: 109:
in that the crucial factor is a reduction of energy barrier(s) separating the reactants (or
3696: 3507: 3492: 3343: 3102: 2883: 2828: 2542: 2460: 2368: 2111: 1961: 1902: 1863: 1848: 1588: 1440: 1349: 456:
14) to histidine (an acid, pKa 6), made possible due to the local environment of the bases.
71: 70:
are made predominantly of proteins, either a single protein chain or many such chains in a
2018: 8: 3660: 3405: 3282: 2663:
Foigel AG (June 2011). "Is the enzyme a powerful reactant of the biochemical reaction?".
1234: 617: 283: 3106: 2887: 2832: 2546: 2464: 2372: 2115: 1965: 1906: 1867: 1592: 1444: 1353: 105:
Mechanisms of enzyme catalysis vary, but are all similar in principle to other types of
3834: 3593: 3466: 3364: 3254: 3227: 3179: 3154: 3123: 3090: 3059: 3034: 2852: 2731: 2688: 2568: 2484: 2392: 2268: 2135: 1982: 1949: 1659: 1463: 1428: 1285: 1260: 1229: 1209: 1012:
force derives from an integrated action of active streaming created by ATP hydrolysis.
1003:
Thus, we arrive at the conclusion that the primary release of the inorganic phosphate H
2906: 2871: 1925: 1890: 1611: 1576: 1372: 1337: 3453: 3212: 3184: 3128: 3064: 2982: 2978: 2947: 2911: 2844: 2801: 2766: 2723: 2680: 2630: 2603: 2560: 2476: 2430: 2384: 2339: 2309: 2305: 2272: 2242: 2238: 2203: 2166: 2127: 2082: 2051: 1987: 1950:"Extreme electric fields power catalysis in the active site of ketosteroid isomerase" 1930: 1829: 1806: 1771: 1736: 1701: 1651: 1616: 1468: 1407: 1377: 1313: 1290: 1169:) can be calculated by using bond changes, reaction centres or substructure metrics ( 715: 166: 114: 2735: 2692: 2488: 2396: 1663: 733:
In 1971-1972 the first quantum-mechanical model of enzyme catalysis was formulated.
132:
in different molecules. Many enzymes have stereochemical specificity and act on one
3829: 3639: 3634: 3536: 3502: 3428: 3338: 3249: 3239: 3174: 3166: 3118: 3110: 3054: 3046: 3013: 2974: 2939: 2901: 2891: 2856: 2836: 2793: 2758: 2715: 2672: 2595: 2550: 2511: 2468: 2422: 2376: 2301: 2234: 2195: 2158: 2139: 2119: 1977: 1969: 1920: 1910: 1871: 1798: 1763: 1728: 1693: 1643: 1606: 1596: 1557: 1530: 1502: 1458: 1448: 1367: 1357: 1280: 1272: 1214: 1199: 1150: 1096: 537: 481: 331: 246: 100: 2572: 2157:. Advances in Chemistry. Vol. 37. American Chemical Society. pp. 19–36. 1170: 957:) includes the formation of a covalent acyl-enzyme intermediate. The second step ( 3686: 3670: 3583: 3512: 3400: 3380: 3354: 3091:"The heat released during catalytic turnover enhances the diffusion of an enzyme" 1453: 1204: 1189: 1177: 1088: 1072: 574: 437: 433: 133: 2967:
Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology
3724: 3665: 2876:
Proceedings of the National Academy of Sciences of the United States of America
2260: 2162: 1895:
Proceedings of the National Academy of Sciences of the United States of America
1581:
Proceedings of the National Academy of Sciences of the United States of America
1342:
Proceedings of the National Academy of Sciences of the United States of America
1154: 91: 34: 2676: 1647: 3823: 3629: 3588: 3395: 2207: 1833: 1092: 874:
We present the experimental results for this reaction as two chemical steps:
569: 547: 501: 497: 44: 2620: 2472: 2380: 1973: 1915: 694: 446: 3578: 3517: 3390: 3333: 3244: 3188: 3153:
Rahman SA, Cuesta SM, Furnham N, Holliday GL, Thornton JM (February 2014).
3132: 3068: 2848: 2770: 2684: 2607: 2564: 2480: 2434: 2388: 1991: 1705: 1655: 1601: 1472: 1381: 1294: 1219: 1194: 1166: 589:, where an acyl-enzyme intermediate is formed. An alternative mechanism is 582: 343: 129: 87: 2986: 2951: 2915: 2896: 2805: 2727: 2634: 2246: 2131: 1810: 1775: 1740: 1620: 276:
Similar reactions will occur far faster if the reaction is intramolecular.
3802: 3737: 3573: 2313: 2267:. McGraw-Hill series in advanced chemistry (reprint ed.). New York: 1934: 1362: 753:
We can present the whole enzymatic reaction as a two coupling reactions:
671: 590: 525: 473: 421: 339: 264: 242: 144: 60: 56: 3114: 2840: 2797: 2199: 1802: 1767: 1732: 1114: 1068: 3385: 3170: 3155:"EC-BLAST: a tool to automatically search and compare enzyme reactions" 2719: 2647: 1276: 1035: 719: 606: 485: 149: 3050: 3033:
Muddana HS, Sengupta S, Mallouk TE, Sen A, Butler PJ (February 2010).
2943: 2762: 2599: 2515: 2426: 1875: 1697: 1561: 1534: 1506: 649:
changes in pH. Metal ions can also act to ionize water by acting as a
176: 170: 3776: 3750: 3018: 3001: 2123: 352: 161: 106: 83: 2555: 2530: 2222: 1338:"Application of a Theory of Enzyme Specificity to Protein Synthesis" 2450: 1107: 1084: 684: 602: 578: 493: 863:) shows incomplete conversion of the substrate because its group X 683:
Substrate, bound substrate, and transition state conformations of
241:
These conformational changes also bring catalytic residues in the
3228:"Quantum catalysis in enzymes—beyond the transition state theory" 1076: 1061: 586: 348: 293: 258: 48: 3789: 3559: 3271: 1080: 1043: 1039: 598: 489: 157: 152:
has a large induced fit motion that closes over the substrates
67: 52: 2358: 1718: 1492: 568:
Covalent catalysis involves the substrate forming a transient
236: 3763: 1223: 1222:, whose ubiquity despite their catalytic inactivity suggests 594: 338:
Often general acid or base catalysis is employed to activate
653:. Metal ions may also be agents of oxidation and reduction. 3152: 3088: 2101: 2015:"Micronutrient Information Center, Oregon State University" 1130: 509: 477: 327: 3528: 3312: 1157:, resulting in a "recoil effect that propels the enzyme". 3032: 2336:
Fundamentals of Biochemistry: Life at the Molecular Level
2869: 1149:. Subsequent observations suggest that this increase in 2870:
Siemankowski RF, Wiseman MO, White HD (February 1985).
360: 95:
optimal. Important factors in enzyme catalysis include
3035:"Substrate catalysis enhances single-enzyme diffusion" 1683: 1038:) catalyses the reversible interconversion of the two 2412: 2818: 2650:
Konformatsionnie Izmenenia Biopolimerov v Rastvorakh
1788: 1153:
is driven by transient displacement of the enzyme's
296:
in the intramolecular reaction can be estimated as k
2652:. Moscow: Nauka Publishing House. pp. 153–157. 2585: 1015: 355:are very commonly involved, since they both have a 218:(when the system is already in the ES) relative to 363:and can therefore both accept and donate protons. 3444:Ultraviolet–visible spectroscopy of stereoisomers 160:. Binding sites in blue, substrates in black and 3821: 2964: 2928: 1947: 1547: 1401: 1310:Physical Chemistry with Biological Applications 1258: 3225: 1948:Fried SD, Bagchi S, Boxer SG (December 2014). 1427:Savir Y, Tlusty T (May 2007). Scalas E (ed.). 3544: 3298: 2446: 2444: 2333: 2291: 1753: 1633: 1023: 315: 188:The different mechanisms of substrate binding 2501: 2185: 1941: 252: 3026: 2748: 2614: 1519: 1426: 237:Mechanisms of an alternative reaction route 3551: 3537: 3305: 3291: 3082: 2783: 2441: 1679: 1677: 1675: 1673: 1574: 467: 16:Catalysis of chemical reactions by enzymes 3253: 3243: 3178: 3122: 3058: 3017: 2905: 2895: 2554: 1981: 1924: 1914: 1610: 1600: 1462: 1452: 1371: 1361: 1284: 3039:Journal of the American Chemical Society 2415:Journal of the American Chemical Society 2220: 2188:Journal of the American Chemical Society 2070: 2064: 2039: 1823: 1791:Journal of the American Chemical Society 1756:Journal of the American Chemical Society 1332: 1165:Similarity between enzymatic reactions ( 183: 143: 20: 2408: 2406: 2338:(Fourth ed.). Hoboken, NJ: Wiley. 1888: 1670: 1307: 1252: 951:are products. The first chemical step ( 200:in the enzyme that strengthen binding. 3822: 3206: 2999: 2662: 2259: 2152: 2077:. John Wiley & Sons Inc. pp.  2046:. John Wiley & Sons Inc. pp.  2033: 1846: 1160: 1091:to perform covalent catalysis, and an 643: 113:) from the products. The reduction of 3532: 3286: 2705: 2265:Catalysis in Chemistry and Enzymology 1136: 563: 3226:Sutcliffe M, Munro A (August 2006). 3146: 2528: 2403: 909: 876: 800: 755: 709: 612:Some enzymes utilize non-amino acid 2708:Molecular and Cellular Biochemistry 2665:Molecular and Cellular Biochemistry 2531:"Enzymes: by chance, or by design?" 2227:Free Radical Biology & Medicine 1259:Kamerlin SC, Warshel A (May 2010). 1095:to stabilise charge-buildup on the 13: 3199: 2334:Voet D, Voet JG, Pratt CW (2013). 1575:Page MI, Jencks WP (August 1971). 1312:. Benjamin/Cummings. p. 427. 347:amide N groups is often employed. 326:Proton donors and acceptors, i.e. 312:orientation entropy to catalysis. 14: 3846: 3439:NMR spectroscopy of stereoisomers 3264: 1404:Modern Physical Organic Chemistry 394:Adjacent residues of like charge 192:The classic model for the enzyme- 3477:Diastereomeric recrystallization 3270: 3138: 3074: 2319: 2155:Reactions of Coordinated Ligands 1960:(6216). New York, N.Y.: 1510–4. 1891:"Energetics of enzyme catalysis" 1478: 1402:Anslyn EV, Dougherty DA (2006). 1387: 1016:Examples of catalytic mechanisms 736: 693: 546: 445: 282: 2993: 2958: 2922: 2863: 2812: 2777: 2742: 2699: 2656: 2641: 2579: 2522: 2495: 2352: 2327: 2285: 2253: 2214: 2179: 2146: 2095: 2007: 1998: 1882: 1840: 1817: 1782: 1747: 1712: 1636:Quarterly Reviews of Biophysics 1627: 601:residue, as seen in the enzyme 292:The effective concentration of 97:general acid and base catalysis 2221:Stadtman ER (1 January 1990). 1568: 1541: 1513: 1486: 1420: 1395: 1326: 1301: 846:It may be seen from reaction ( 656: 139: 1: 1245: 1240:Time resolved crystallography 1117:) catalyses the breakdown of 628:and the TPP-dependent enzyme 573:mechanism is utilised by the 3472:Chiral column chromatography 3232:Philosophical Transactions B 2979:10.1016/0167-4838(90)90025-b 2306:10.1016/0022-2836(76)90311-9 2294:Journal of Molecular Biology 2239:10.1016/0891-5849(90)90006-5 1454:10.1371/journal.pone.0000468 1406:. University Science Books. 724:aromatic amine dehydrogenase 701: 692: 681: 554: 545: 535: 453: 444: 431: 290: 281: 274: 7: 3558: 1889:Warshel A (November 1978). 1183: 1102: 992: 986: 968: 959: 953: 929: 900: 859: 848: 836: 791: 231:conformational proofreading 10: 3853: 3434:Chiral derivatizing agents 3315:enantioselective synthesis 3211:. New York: W.H. Freeman. 2163:10.1021/ba-1963-0037.ch002 1127:dihydroxyacetone phosphate 1123:glyceraldehyde 3-phosphate 1056: 1051:glyceraldehyde 3-phosphate 1047:dihydroxyacetone phosphate 1029:Triose phosphate isomerase 1024:Triose phosphate isomerase 405:Salt bridge (and hydrogen 319: 316:Proton donors or acceptors 3715: 3707:Michaelis–Menten kinetics 3679: 3648: 3617: 3566: 3485: 3452: 3421: 3373: 3321: 2677:10.1007/s11010-011-0742-4 2529:Ball P (September 2004). 1828:. John Wiley & Sons. 1648:10.1017/s0033583501003730 1119:fructose 1,6-bisphosphate 593:formation using the free 253:Proximity and orientation 3599:Diffusion-limited enzyme 3360:Supramolecular chirality 2071:Voet D, Voet JG (2004). 2040:Voet D, Voet JG (2004). 1824:Voet D, Voet JG (2011). 383:Hydrophobic environment 322:Protein pKa calculations 2473:10.1126/science.1126002 2381:10.1126/science.1088172 1974:10.1126/science.1259802 1916:10.1073/pnas.75.11.5250 1143:single-molecule studies 468:Electrostatic catalysis 43:is the increase in the 3245:10.1098/rstb.2006.1879 2629:(3). Moscow: 347–353. 1602:10.1073/pnas.68.8.1678 630:pyruvate dehydrogenase 626:aspartate transaminase 622:thiamine pyrophosphate 198:conformational changes 189: 181: 154:adenosine triphosphate 80:adenosine triphosphate 37: 3692:Eadie–Hofstee diagram 3625:Allosteric regulation 3498:Chiral pool synthesis 3412:Diastereomeric excess 2897:10.1073/pnas.82.3.658 484:side chains found on 187: 164:cofactor in yellow. ( 147: 88:biochemical reactions 72:multi-subunit complex 32: 3702:Lineweaver–Burk plot 3508:Asymmetric catalysis 3493:Asymmetric induction 3279:at Wikimedia Commons 1363:10.1073/pnas.44.2.98 966:Thus, the reaction ( 3406:Enantiomeric excess 3238:(1472): 1291–1455. 3115:10.1038/nature14043 3107:2015Natur.517..227R 2938:(39): 11828–11836. 2888:1985PNAS...82..658S 2841:10.1038/nature02005 2833:2003Natur.425..423H 2798:10.1021/bi00801a004 2547:2004Natur.431..396B 2510:(47): 11745–11751. 2465:2006Sci...312..237M 2373:2004Sci...303..186G 2200:10.1021/ja00290a048 2116:1993Natur.361...85P 1966:2014Sci...346.1510F 1907:1978PNAS...75.5250W 1868:1965JChPh..43..679M 1803:10.1021/ja00789a081 1768:10.1021/ja00754a066 1733:10.1021/bi00435a001 1593:1971PNAS...68.1678P 1445:2007PLoSO...2..468S 1354:1958PNAS...44...98K 1308:Laidler KJ (1978). 1235:The Proteolysis Map 1176:30 May 2019 at the 1161:Reaction similarity 943:is a polypeptide, P 644:Metal ion catalysis 618:pyridoxal phosphate 577:of enzymes such as 540:catalytic mechanism 504:or come from metal 57:biological molecule 3661:Enzyme superfamily 3594:Enzyme promiscuity 3503:Chiral auxiliaries 3467:Kinetic resolution 3365:Inherent chirality 3350:-symmetric ligands 3171:10.1038/nmeth.2803 2720:10.1007/bf00241567 2269:Dover Publications 1847:Marcus RA (1965). 1277:10.1002/prot.22654 1230:Quantum tunnelling 1210:Enzyme promiscuity 1137:Enzyme diffusivity 918:+ H−O−H → EH + P 852:) that the group X 564:Covalent catalysis 190: 182: 107:chemical catalysis 38: 3817: 3816: 3526: 3525: 3462:Recrystallization 3454:Chiral resolution 3275:Media related to 3218:978-0-7167-3268-6 3207:Fersht A (1998). 3101:(7533): 227–230. 3051:10.1021/ja908773a 3000:Tirosh R (2006). 2944:10.1021/bi970540h 2827:(6956): 423–427. 2792:(25): 4617–4624. 2763:10.1021/bi030222k 2623:Molecular Biology 2600:10.1021/cr040427e 2541:(7007): 396–397. 2516:10.1021/ja962007f 2459:(5771): 237–241. 2427:10.1021/ja037233l 2367:(5655): 186–195. 2345:978-0-470-54784-7 2278:978-0-486-65460-7 2172:978-0-8412-0038-8 2088:978-0-471-25090-6 2057:978-0-471-25090-6 1901:(11): 5250–5254. 1876:10.1063/1.1696792 1762:(25): 7079–7087. 1698:10.1021/cr0503106 1562:10.1021/ar960131y 1535:10.1021/ja992218v 1529:(11): 2586–2596. 1507:10.1021/ja972723x 1501:(14): 3448–3457. 1413:978-1-891389-31-3 1336:(February 1958). 1319:978-0-8053-5680-9 1147:reaction enthalpy 1097:transition states 1087:residues using a 1079:substrates after 937: 936: 908: 907: 844: 843: 799: 798: 716:quantum tunneling 710:Quantum tunneling 707: 706: 677: 561: 560: 531: 461: 460: 427: 417: 416: 359:close to neutral 309: 308: 270: 136:but not another. 115:activation energy 33:Visualization of 30: 3842: 3697:Hanes–Woolf plot 3640:Enzyme activator 3635:Enzyme inhibitor 3609:Enzyme catalysis 3553: 3546: 3539: 3530: 3529: 3429:Optical rotation 3374:Chiral molecules 3339:Planar chirality 3307: 3300: 3293: 3284: 3283: 3277:Enzyme catalysis 3274: 3259: 3257: 3247: 3222: 3193: 3192: 3182: 3150: 3144: 3143: 3142: 3136: 3126: 3086: 3080: 3079: 3078: 3072: 3062: 3045:(7): 2110–2111. 3030: 3024: 3023: 3021: 3019:10.3390/i7090320 3006:Int. J. Mol. Sci 2997: 2991: 2990: 2962: 2956: 2955: 2926: 2920: 2919: 2909: 2899: 2867: 2861: 2860: 2816: 2810: 2809: 2781: 2775: 2774: 2746: 2740: 2739: 2703: 2697: 2696: 2660: 2654: 2653: 2645: 2639: 2638: 2618: 2612: 2611: 2594:(5): 1737–1756. 2588:Chemical Reviews 2583: 2577: 2576: 2558: 2526: 2520: 2519: 2504:J. Am. Chem. Soc 2499: 2493: 2492: 2448: 2439: 2438: 2421:(9): 2820–2828. 2410: 2401: 2400: 2356: 2350: 2349: 2331: 2325: 2324: 2323: 2317: 2289: 2283: 2282: 2257: 2251: 2250: 2218: 2212: 2211: 2194:(4): 1041–1047. 2183: 2177: 2176: 2150: 2144: 2143: 2124:10.1038/361085a0 2099: 2093: 2092: 2068: 2062: 2061: 2037: 2031: 2030: 2028: 2026: 2021:on 21 March 2015 2017:. Archived from 2011: 2005: 2002: 1996: 1995: 1985: 1945: 1939: 1938: 1928: 1918: 1886: 1880: 1879: 1853: 1844: 1838: 1837: 1821: 1815: 1814: 1797:(8): 2734–2735. 1786: 1780: 1779: 1751: 1745: 1744: 1727:(9): 3629–3637. 1716: 1710: 1709: 1692:(8): 3210–3235. 1686:Chemical Reviews 1681: 1668: 1667: 1631: 1625: 1624: 1614: 1604: 1587:(8): 1678–1683. 1572: 1566: 1565: 1545: 1539: 1538: 1523:J. Am. Chem. Soc 1517: 1511: 1510: 1495:J. Am. Chem. Soc 1490: 1484: 1483: 1482: 1476: 1466: 1456: 1424: 1418: 1417: 1399: 1393: 1392: 1391: 1385: 1375: 1365: 1330: 1324: 1323: 1305: 1299: 1298: 1288: 1271:(6): 1339–1375. 1256: 1215:Protein dynamics 1200:Enzyme inhibitor 1121:(F-1,6-BP) into 931: 922: 910: 902: 893: 877: 838: 829: 801: 793: 784: 756: 697: 675: 672: 550: 538:Carboxypeptidase 529: 526: 449: 425: 422: 407:bond) formation 369: 368: 286: 268: 265: 247:transition state 179: 173: 101:protein dynamics 41:Enzyme catalysis 31: 3852: 3851: 3845: 3844: 3843: 3841: 3840: 3839: 3820: 3819: 3818: 3813: 3725:Oxidoreductases 3711: 3687:Enzyme kinetics 3675: 3671:List of enzymes 3644: 3613: 3584:Catalytic triad 3562: 3557: 3527: 3522: 3513:Organocatalysis 3481: 3448: 3417: 3401:Racemic mixture 3369: 3355:Axial chirality 3349: 3322:Chirality types 3317: 3311: 3267: 3262: 3219: 3202: 3200:Further reading 3197: 3196: 3151: 3147: 3137: 3087: 3083: 3073: 3031: 3027: 2998: 2994: 2963: 2959: 2927: 2923: 2868: 2864: 2817: 2813: 2782: 2778: 2747: 2743: 2704: 2700: 2661: 2657: 2646: 2642: 2619: 2615: 2584: 2580: 2556:10.1038/431396a 2527: 2523: 2500: 2496: 2449: 2442: 2411: 2404: 2357: 2353: 2346: 2332: 2328: 2318: 2290: 2286: 2279: 2258: 2254: 2219: 2215: 2184: 2180: 2173: 2151: 2147: 2110:(6407): 85–88. 2100: 2096: 2089: 2069: 2065: 2058: 2038: 2034: 2024: 2022: 2013: 2012: 2008: 2003: 1999: 1946: 1942: 1887: 1883: 1851: 1845: 1841: 1822: 1818: 1787: 1783: 1752: 1748: 1717: 1713: 1682: 1671: 1632: 1628: 1573: 1569: 1546: 1542: 1518: 1514: 1491: 1487: 1477: 1425: 1421: 1414: 1400: 1396: 1386: 1331: 1327: 1320: 1306: 1302: 1257: 1253: 1248: 1205:Enzyme kinetics 1190:Catalytic triad 1186: 1178:Wayback Machine 1163: 1139: 1105: 1089:catalytic triad 1073:serine protease 1059: 1026: 1018: 1010: 1006: 979: 975: 950: 946: 942: 921: 917: 913: 892: 888: 884: 880: 866: 855: 828: 824: 820: 816: 812: 808: 804: 783: 779: 775: 771: 767: 763: 759: 749: 745: 739: 712: 659: 646: 575:catalytic triad 566: 470: 438:serine protease 434:Catalytic triad 406: 324: 318: 304:= 2 x 10 Molar. 303: 299: 255: 239: 224: 217: 175: 165: 142: 123: 21: 17: 12: 11: 5: 3850: 3849: 3838: 3837: 3832: 3815: 3814: 3812: 3811: 3798: 3785: 3772: 3759: 3746: 3733: 3719: 3717: 3713: 3712: 3710: 3709: 3704: 3699: 3694: 3689: 3683: 3681: 3677: 3676: 3674: 3673: 3668: 3663: 3658: 3652: 3650: 3649:Classification 3646: 3645: 3643: 3642: 3637: 3632: 3627: 3621: 3619: 3615: 3614: 3612: 3611: 3606: 3601: 3596: 3591: 3586: 3581: 3576: 3570: 3568: 3564: 3563: 3556: 3555: 3548: 3541: 3533: 3524: 3523: 3521: 3520: 3515: 3510: 3505: 3500: 3495: 3489: 3487: 3483: 3482: 3480: 3479: 3474: 3469: 3464: 3458: 3456: 3450: 3449: 3447: 3446: 3441: 3436: 3431: 3425: 3423: 3419: 3418: 3416: 3415: 3409: 3403: 3398: 3393: 3388: 3383: 3377: 3375: 3371: 3370: 3368: 3367: 3362: 3357: 3352: 3347: 3341: 3336: 3331: 3325: 3323: 3319: 3318: 3310: 3309: 3302: 3295: 3287: 3281: 3280: 3266: 3265:External links 3263: 3261: 3260: 3223: 3217: 3203: 3201: 3198: 3195: 3194: 3165:(2): 171–174. 3159:Nature Methods 3145: 3081: 3025: 3012:(9): 320–345. 2992: 2973:(3): 274–280. 2957: 2921: 2882:(3): 658–662. 2862: 2811: 2776: 2757:(3): 742–747. 2741: 2698: 2671:(1–2): 87–89. 2655: 2640: 2613: 2578: 2521: 2494: 2440: 2402: 2351: 2344: 2326: 2300:(2): 227–249. 2284: 2277: 2252: 2233:(4): 315–325. 2213: 2178: 2171: 2145: 2094: 2087: 2063: 2056: 2032: 2006: 1997: 1940: 1881: 1862:(2): 679–701. 1839: 1816: 1781: 1746: 1711: 1669: 1642:(4): 563–679. 1626: 1567: 1556:(2): 127–136. 1550:Acc. Chem. Res 1540: 1512: 1485: 1419: 1412: 1394: 1325: 1318: 1300: 1250: 1249: 1247: 1244: 1243: 1242: 1237: 1232: 1227: 1217: 1212: 1207: 1202: 1197: 1192: 1185: 1182: 1162: 1159: 1155:center of mass 1141:The advent of 1138: 1135: 1104: 1101: 1058: 1055: 1025: 1022: 1017: 1014: 1008: 1004: 977: 973: 948: 944: 940: 935: 934: 925: 923: 919: 915: 906: 905: 896: 894: 890: 886: 882: 864: 853: 842: 841: 832: 830: 826: 822: 818: 814: 810: 806: 797: 796: 787: 785: 781: 777: 773: 769: 765: 761: 747: 743: 738: 735: 711: 708: 705: 704: 699: 698: 690: 689: 679: 678: 658: 655: 645: 642: 565: 562: 559: 558: 552: 551: 543: 542: 533: 532: 469: 466: 459: 458: 451: 450: 442: 441: 429: 428: 415: 414: 411: 408: 402: 401: 398: 395: 391: 390: 387: 384: 380: 379: 376: 373: 317: 314: 307: 306: 301: 297: 288: 287: 279: 278: 272: 271: 254: 251: 238: 235: 222: 215: 141: 138: 121: 35:ubiquitylation 15: 9: 6: 4: 3: 2: 3848: 3847: 3836: 3833: 3831: 3828: 3827: 3825: 3809: 3805: 3804: 3799: 3796: 3792: 3791: 3786: 3783: 3779: 3778: 3773: 3770: 3766: 3765: 3760: 3757: 3753: 3752: 3747: 3744: 3740: 3739: 3734: 3731: 3727: 3726: 3721: 3720: 3718: 3714: 3708: 3705: 3703: 3700: 3698: 3695: 3693: 3690: 3688: 3685: 3684: 3682: 3678: 3672: 3669: 3667: 3666:Enzyme family 3664: 3662: 3659: 3657: 3654: 3653: 3651: 3647: 3641: 3638: 3636: 3633: 3631: 3630:Cooperativity 3628: 3626: 3623: 3622: 3620: 3616: 3610: 3607: 3605: 3602: 3600: 3597: 3595: 3592: 3590: 3589:Oxyanion hole 3587: 3585: 3582: 3580: 3577: 3575: 3572: 3571: 3569: 3565: 3561: 3554: 3549: 3547: 3542: 3540: 3535: 3534: 3531: 3519: 3516: 3514: 3511: 3509: 3506: 3504: 3501: 3499: 3496: 3494: 3491: 3490: 3488: 3484: 3478: 3475: 3473: 3470: 3468: 3465: 3463: 3460: 3459: 3457: 3455: 3451: 3445: 3442: 3440: 3437: 3435: 3432: 3430: 3427: 3426: 3424: 3420: 3413: 3410: 3407: 3404: 3402: 3399: 3397: 3396:Meso compound 3394: 3392: 3389: 3387: 3384: 3382: 3379: 3378: 3376: 3372: 3366: 3363: 3361: 3358: 3356: 3353: 3351: 3346: 3342: 3340: 3337: 3335: 3332: 3330: 3327: 3326: 3324: 3320: 3316: 3308: 3303: 3301: 3296: 3294: 3289: 3288: 3285: 3278: 3273: 3269: 3268: 3256: 3251: 3246: 3241: 3237: 3233: 3229: 3224: 3220: 3214: 3210: 3205: 3204: 3190: 3186: 3181: 3176: 3172: 3168: 3164: 3160: 3156: 3149: 3141: 3134: 3130: 3125: 3120: 3116: 3112: 3108: 3104: 3100: 3096: 3092: 3085: 3077: 3070: 3066: 3061: 3056: 3052: 3048: 3044: 3040: 3036: 3029: 3020: 3015: 3011: 3007: 3003: 2996: 2988: 2984: 2980: 2976: 2972: 2968: 2961: 2953: 2949: 2945: 2941: 2937: 2933: 2925: 2917: 2913: 2908: 2903: 2898: 2893: 2889: 2885: 2881: 2877: 2873: 2866: 2858: 2854: 2850: 2846: 2842: 2838: 2834: 2830: 2826: 2822: 2815: 2807: 2803: 2799: 2795: 2791: 2787: 2780: 2772: 2768: 2764: 2760: 2756: 2752: 2745: 2737: 2733: 2729: 2725: 2721: 2717: 2713: 2709: 2702: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2666: 2659: 2651: 2644: 2636: 2632: 2628: 2624: 2617: 2609: 2605: 2601: 2597: 2593: 2589: 2582: 2574: 2570: 2566: 2562: 2557: 2552: 2548: 2544: 2540: 2536: 2532: 2525: 2517: 2513: 2509: 2505: 2498: 2490: 2486: 2482: 2478: 2474: 2470: 2466: 2462: 2458: 2454: 2447: 2445: 2436: 2432: 2428: 2424: 2420: 2416: 2409: 2407: 2398: 2394: 2390: 2386: 2382: 2378: 2374: 2370: 2366: 2362: 2355: 2347: 2341: 2337: 2330: 2322: 2315: 2311: 2307: 2303: 2299: 2295: 2288: 2280: 2274: 2270: 2266: 2262: 2256: 2248: 2244: 2240: 2236: 2232: 2228: 2224: 2217: 2209: 2205: 2201: 2197: 2193: 2189: 2182: 2174: 2168: 2164: 2160: 2156: 2149: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2105: 2098: 2090: 2084: 2080: 2076: 2075: 2067: 2059: 2053: 2049: 2045: 2044: 2036: 2020: 2016: 2010: 2001: 1993: 1989: 1984: 1979: 1975: 1971: 1967: 1963: 1959: 1955: 1951: 1944: 1936: 1932: 1927: 1922: 1917: 1912: 1908: 1904: 1900: 1896: 1892: 1885: 1877: 1873: 1869: 1865: 1861: 1857: 1856:J. Chem. Phys 1850: 1843: 1835: 1831: 1827: 1820: 1812: 1808: 1804: 1800: 1796: 1792: 1785: 1777: 1773: 1769: 1765: 1761: 1757: 1750: 1742: 1738: 1734: 1730: 1726: 1722: 1715: 1707: 1703: 1699: 1695: 1691: 1687: 1680: 1678: 1676: 1674: 1665: 1661: 1657: 1653: 1649: 1645: 1641: 1637: 1630: 1622: 1618: 1613: 1608: 1603: 1598: 1594: 1590: 1586: 1582: 1578: 1571: 1563: 1559: 1555: 1551: 1544: 1536: 1532: 1528: 1524: 1516: 1508: 1504: 1500: 1496: 1489: 1481: 1474: 1470: 1465: 1460: 1455: 1450: 1446: 1442: 1438: 1434: 1430: 1423: 1415: 1409: 1405: 1398: 1390: 1383: 1379: 1374: 1369: 1364: 1359: 1355: 1351: 1348:(2): 98–104. 1347: 1343: 1339: 1335: 1329: 1321: 1315: 1311: 1304: 1296: 1292: 1287: 1282: 1278: 1274: 1270: 1266: 1262: 1255: 1251: 1241: 1238: 1236: 1233: 1231: 1228: 1225: 1221: 1220:Pseudoenzymes 1218: 1216: 1213: 1211: 1208: 1206: 1203: 1201: 1198: 1196: 1193: 1191: 1188: 1187: 1181: 1179: 1175: 1172: 1168: 1158: 1156: 1152: 1148: 1144: 1134: 1132: 1128: 1124: 1120: 1116: 1113: 1109: 1100: 1098: 1094: 1093:oxyanion hole 1090: 1086: 1082: 1078: 1075:that cleaves 1074: 1070: 1067: 1063: 1054: 1052: 1048: 1045: 1041: 1037: 1034: 1030: 1021: 1013: 1001: 997: 995: 994: 989: 988: 981: 971: 970: 964: 962: 961: 956: 955: 933: 926: 924: 912: 911: 904: 897: 895: 879: 878: 875: 872: 868: 862: 861: 851: 850: 840: 833: 831: 803: 802: 795: 788: 786: 758: 757: 754: 751: 737:Active enzyme 734: 731: 727: 725: 722:oxidation by 721: 717: 700: 696: 691: 688: 686: 680: 674: 673: 670: 667: 663: 654: 652: 641: 638: 633: 631: 627: 623: 619: 615: 610: 608: 604: 600: 596: 592: 588: 584: 580: 576: 571: 570:covalent bond 557: 553: 549: 544: 541: 539: 534: 528: 527: 524: 520: 517: 513: 511: 507: 503: 502:glutamic acid 499: 498:aspartic acid 495: 491: 487: 483: 479: 475: 465: 457: 452: 448: 443: 440: 439: 435: 430: 424: 423: 420: 413:Increase pKa 412: 410:Decrease pKa 409: 404: 403: 400:Decrease pKa 399: 397:Increase pKa 396: 393: 392: 389:Decrease pKa 388: 386:Increase pKa 385: 382: 381: 377: 374: 371: 370: 367: 364: 362: 358: 354: 350: 345: 341: 336: 333: 329: 323: 313: 305: 295: 289: 285: 280: 277: 273: 267: 266: 263: 260: 250: 248: 244: 234: 232: 227: 221: 214: 209: 205: 201: 199: 195: 186: 178: 172: 168: 163: 159: 155: 151: 146: 137: 135: 131: 125: 120: 116: 112: 108: 103: 102: 98: 93: 89: 85: 81: 77: 73: 69: 64: 62: 58: 54: 50: 46: 42: 36: 19: 3803:Translocases 3800: 3787: 3774: 3761: 3748: 3738:Transferases 3735: 3722: 3608: 3579:Binding site 3518:Biocatalysis 3391:Diastereomer 3381:Stereoisomer 3344: 3334:Stereocenter 3313:Concepts in 3235: 3231: 3208: 3162: 3158: 3148: 3098: 3094: 3084: 3042: 3038: 3028: 3009: 3005: 2995: 2970: 2966: 2960: 2935: 2932:Biochemistry 2931: 2924: 2879: 2875: 2865: 2824: 2820: 2814: 2789: 2786:Biochemistry 2785: 2779: 2754: 2751:Biochemistry 2750: 2744: 2714:(1): 59–64. 2711: 2707: 2701: 2668: 2664: 2658: 2649: 2643: 2626: 2622: 2616: 2591: 2587: 2581: 2538: 2534: 2524: 2507: 2503: 2497: 2456: 2452: 2418: 2414: 2364: 2360: 2354: 2335: 2329: 2297: 2293: 2287: 2264: 2255: 2230: 2226: 2216: 2191: 2187: 2181: 2154: 2148: 2107: 2103: 2097: 2074:Biochemistry 2073: 2066: 2043:Biochemistry 2042: 2035: 2025:30 September 2023:. Retrieved 2019:the original 2009: 2000: 1957: 1953: 1943: 1898: 1894: 1884: 1859: 1855: 1842: 1826:Biochemistry 1825: 1819: 1794: 1790: 1784: 1759: 1755: 1749: 1724: 1721:Biochemistry 1720: 1714: 1689: 1685: 1639: 1635: 1629: 1584: 1580: 1570: 1553: 1549: 1543: 1526: 1522: 1515: 1498: 1494: 1488: 1436: 1432: 1422: 1403: 1397: 1345: 1341: 1328: 1309: 1303: 1268: 1264: 1254: 1226:implications 1195:Enzyme assay 1164: 1140: 1106: 1060: 1027: 1019: 1002: 998: 991: 985: 982: 967: 965: 958: 952: 938: 927: 898: 873: 869: 858: 847: 845: 834: 789: 752: 740: 732: 728: 713: 682: 676:For example: 668: 664: 660: 647: 634: 611: 583:chymotrypsin 567: 555: 536: 530:For example: 521: 518: 514: 471: 462: 454: 432: 426:For example: 418: 365: 344:electrophile 337: 325: 310: 291: 275: 269:For example: 256: 240: 228: 219: 212: 210: 206: 202: 191: 134:stereoisomer 130:peptide bond 126: 118: 104: 65: 40: 39: 18: 3574:Active site 1439:(5): e468. 1334:Koshland DE 1151:diffusivity 1042:phosphates 657:Bond strain 591:schiff base 486:amino acids 474:ionic bonds 372:Conditions 340:nucleophile 243:active site 233:mechanism. 140:Induced fit 61:active site 3824:Categories 3777:Isomerases 3751:Hydrolases 3618:Regulation 3386:Enantiomer 1246:References 885:+ EH → P 720:tryptamine 651:Lewis acid 607:glycolysis 320:See also: 150:Hexokinase 111:substrates 3835:Catalysis 3656:EC number 3486:Reactions 3329:Chirality 2263:(1987) . 2261:Jencks WP 2208:0002-7863 1834:808679090 620:(PLP) or 614:cofactors 579:proteases 506:cofactors 353:Histidine 194:substrate 174:​, 84:Catalysis 3680:Kinetics 3604:Cofactor 3567:Activity 3422:Analysis 3189:24412978 3133:25487146 3069:20108965 2849:14508495 2771:14730979 2736:21790380 2693:11133081 2685:21318350 2608:16683752 2565:15385982 2489:27201250 2481:16614214 2435:14995199 2397:17498715 2389:14716003 1992:25525245 1706:16895325 1664:28961992 1656:11852595 1473:17520027 1433:PLOS ONE 1382:16590179 1295:20099310 1265:Proteins 1184:See also 1174:Archived 1171:EC-BLAST 1115:4.1.2.13 1108:Aldolase 1103:Aldolase 1085:arginine 1069:3.4.21.4 685:lysozyme 616:such as 603:aldolase 508:such as 494:arginine 488:such as 180:​) 76:cofactor 3830:Enzymes 3790:Ligases 3560:Enzymes 3255:1647302 3180:4122987 3124:4363105 3103:Bibcode 3060:2832858 2987:2178685 2952:9305974 2916:3871943 2884:Bibcode 2857:2686184 2829:Bibcode 2806:4258719 2728:7132966 2635:4645409 2543:Bibcode 2461:Bibcode 2453:Science 2369:Bibcode 2361:Science 2247:2283087 2140:4326584 2132:8421499 2112:Bibcode 2079:604–606 2048:986–989 1983:4668018 1962:Bibcode 1954:Science 1903:Bibcode 1864:Bibcode 1811:4694533 1776:5133099 1741:2665806 1621:5288752 1589:Bibcode 1464:1868595 1441:Bibcode 1350:Bibcode 1286:2841229 1077:protein 1071:) is a 1062:Trypsin 1057:Trypsin 1044:isomers 1036:5.3.1.1 990:) and ( 939:where S 637:pathway 605:during 597:from a 587:trypsin 349:Cystine 342:and/or 294:acetate 259:entropy 90:in the 68:enzymes 51:by an " 49:process 3764:Lyases 3252:  3215:  3187:  3177:  3131:  3121:  3095:Nature 3067:  3057:  2985:  2950:  2914:  2907:397104 2904:  2855:  2847:  2821:Nature 2804:  2769:  2734:  2726:  2691:  2683:  2633:  2606:  2573:228263 2571:  2563:  2535:Nature 2487:  2479:  2433:  2395:  2387:  2342:  2314:985660 2312:  2275:  2245:  2206:  2169:  2138:  2130:  2104:Nature 2085:  2054:  1990:  1980:  1935:281676 1933:  1926:392938 1923:  1832:  1809:  1774:  1739:  1704:  1662:  1654:  1619:  1612:389269 1609:  1471:  1461:  1410:  1380:  1373:335371 1370:  1316:  1293:  1283:  1081:lysine 1049:and D- 1040:triose 599:lysine 490:lysine 478:acidic 378:Bases 375:Acids 158:xylose 78:(e.g. 53:enzyme 3716:Types 2853:S2CID 2732:S2CID 2689:S2CID 2569:S2CID 2485:S2CID 2393:S2CID 2136:S2CID 1852:(PDF) 1660:S2CID 976:and P 947:and P 595:amine 581:like 482:basic 436:of a 328:acids 66:Most 55:", a 47:of a 3808:list 3801:EC7 3795:list 3788:EC6 3782:list 3775:EC5 3769:list 3762:EC4 3756:list 3749:EC3 3743:list 3736:EC2 3730:list 3723:EC1 3414:(de) 3408:(ee) 3213:ISBN 3185:PMID 3129:PMID 3065:PMID 2983:PMID 2971:1037 2948:PMID 2912:PMID 2845:PMID 2802:PMID 2767:PMID 2724:PMID 2681:PMID 2631:PMID 2604:PMID 2561:PMID 2477:PMID 2431:PMID 2385:PMID 2340:ISBN 2310:PMID 2273:ISBN 2243:PMID 2204:ISSN 2167:ISBN 2128:PMID 2083:ISBN 2052:ISBN 2027:2009 1988:PMID 1931:PMID 1830:OCLC 1807:PMID 1772:PMID 1737:PMID 1702:PMID 1652:PMID 1617:PMID 1469:PMID 1408:ISBN 1378:PMID 1314:ISBN 1291:PMID 1224:omic 1131:DHAP 1125:and 889:+ EP 825:+ EX 821:→ P 813:→ S 809:+ EP 780:+ EP 776:→ P 768:→ S 764:+ EX 585:and 510:zinc 351:and 332:base 330:and 177:2E2Q 171:2E2N 156:and 92:cell 45:rate 3250:PMC 3240:doi 3236:361 3175:PMC 3167:doi 3119:PMC 3111:doi 3099:517 3055:PMC 3047:doi 3043:132 3014:doi 2975:doi 2940:doi 2902:PMC 2892:doi 2837:doi 2825:425 2794:doi 2759:doi 2716:doi 2673:doi 2669:352 2596:doi 2592:106 2551:doi 2539:431 2512:doi 2508:118 2469:doi 2457:312 2423:doi 2419:126 2377:doi 2365:303 2302:doi 2298:103 2235:doi 2196:doi 2192:107 2159:doi 2120:doi 2108:361 1978:PMC 1970:doi 1958:346 1921:PMC 1911:doi 1872:doi 1799:doi 1764:doi 1729:doi 1694:doi 1690:106 1644:doi 1607:PMC 1597:doi 1558:doi 1531:doi 1527:122 1503:doi 1499:120 1459:PMC 1449:doi 1368:PMC 1358:doi 1281:PMC 1273:doi 1180:). 1133:). 1083:or 500:or 480:or 357:pKa 167:PDB 86:of 3826:: 3248:. 3234:. 3230:. 3183:. 3173:. 3163:11 3161:. 3157:. 3127:. 3117:. 3109:. 3097:. 3093:. 3063:. 3053:. 3041:. 3037:. 3008:. 3004:. 2981:. 2969:. 2946:. 2936:36 2934:. 2910:. 2900:. 2890:. 2880:82 2878:. 2874:. 2851:. 2843:. 2835:. 2823:. 2800:. 2790:10 2788:. 2765:. 2755:43 2753:. 2730:. 2722:. 2712:47 2710:. 2687:. 2679:. 2667:. 2625:. 2602:. 2590:. 2567:. 2559:. 2549:. 2537:. 2533:. 2506:. 2483:. 2475:. 2467:. 2455:. 2443:^ 2429:. 2417:. 2405:^ 2391:. 2383:. 2375:. 2363:. 2308:. 2296:. 2271:. 2241:. 2229:. 2225:. 2202:. 2190:. 2165:. 2134:. 2126:. 2118:. 2106:. 2081:. 2050:. 1986:. 1976:. 1968:. 1956:. 1952:. 1929:. 1919:. 1909:. 1899:75 1897:. 1893:. 1870:. 1860:43 1858:. 1854:. 1805:. 1795:95 1793:. 1770:. 1760:93 1758:. 1735:. 1725:28 1723:. 1700:. 1688:. 1672:^ 1658:. 1650:. 1640:34 1638:. 1615:. 1605:. 1595:. 1585:68 1583:. 1579:. 1554:32 1552:. 1525:. 1497:. 1467:. 1457:. 1447:. 1435:. 1431:. 1376:. 1366:. 1356:. 1346:44 1344:. 1340:. 1289:. 1279:. 1269:78 1267:. 1263:. 1167:EC 1112:EC 1099:. 1066:EC 1053:. 1033:EC 1007:PO 914:EP 817:EP 772:EX 726:. 632:. 609:. 496:, 492:, 361:pH 300:/k 169:: 162:Mg 63:. 3810:) 3806:( 3797:) 3793:( 3784:) 3780:( 3771:) 3767:( 3758:) 3754:( 3745:) 3741:( 3732:) 3728:( 3552:e 3545:t 3538:v 3348:2 3345:C 3306:e 3299:t 3292:v 3258:. 3242:: 3221:. 3191:. 3169:: 3135:. 3113:: 3105:: 3071:. 3049:: 3022:. 3016:: 3010:7 2989:. 2977:: 2954:. 2942:: 2918:. 2894:: 2886:: 2859:. 2839:: 2831:: 2808:. 2796:: 2773:. 2761:: 2738:. 2718:: 2695:. 2675:: 2637:. 2627:6 2610:. 2598:: 2575:. 2553:: 2545:: 2518:. 2514:: 2491:. 2471:: 2463:: 2437:. 2425:: 2399:. 2379:: 2371:: 2348:. 2316:. 2304:: 2281:. 2249:. 2237:: 2231:9 2210:. 2198:: 2175:. 2161:: 2142:. 2122:: 2114:: 2091:. 2060:. 2029:. 1994:. 1972:: 1964:: 1937:. 1913:: 1905:: 1878:. 1874:: 1866:: 1836:. 1813:. 1801:: 1778:. 1766:: 1743:. 1731:: 1708:. 1696:: 1666:. 1646:: 1623:. 1599:: 1591:: 1564:. 1560:: 1537:. 1533:: 1509:. 1505:: 1475:. 1451:: 1443:: 1437:2 1416:. 1384:. 1360:: 1352:: 1322:. 1297:. 1275:: 1129:( 1110:( 1064:( 1031:( 1009:4 1005:2 993:2 987:1 984:( 978:2 974:1 969:3 960:4 954:3 949:2 945:1 941:1 932:) 930:4 928:( 920:2 916:2 903:) 901:3 899:( 891:2 887:1 883:1 881:S 865:2 860:2 857:( 854:1 849:1 839:) 837:2 835:( 827:2 823:2 819:2 815:2 811:2 807:2 805:S 794:) 792:1 790:( 782:2 778:1 774:1 770:1 766:1 762:1 760:S 748:2 744:1 742:X 687:. 302:1 298:2 223:a 220:E 216:a 213:E 122:a 119:E 117:(

Index

ubiquitylation
rate
process
enzyme
biological molecule
active site
enzymes
multi-subunit complex
cofactor
adenosine triphosphate
Catalysis
biochemical reactions
cell
general acid and base catalysis
protein dynamics
chemical catalysis
substrates
activation energy
peptide bond
stereoisomer
Hexokinase displayed as an opaque surface with a pronounced open binding cleft next to unbound substrate (top) and the same enzyme with more closed cleft that surrounds the bound substrate (bottom)
Hexokinase
adenosine triphosphate
xylose
Mg
PDB
2E2N
2E2Q

substrate

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.