Knowledge

Electromethanogenesis

Source đź“ť

190:, membrane, and biocathode. The energy loss reduces efficiency significantly. Another limitation is the biocathode. Because the biocathode is so important in electron exchange and methane formation, its make-up can have a dramatic effect on the efficiency of the reaction. Efforts are being made to improve the biocathodes used in electromethanogenesis through combining new and existing materials, reshaping the materials, or applying different "pre-treatments" to the biocathode surface, thereby increasing biocompatibility. 142: 132:
A biocathode is a cathode used in a microbial electrolysis cell during electromethanogenesis that utilizes microorganisms to catalyze the process of accepting electrons and protons from the anode. A biocathode is usually made of a cheap material, such as carbon or graphite, like the anode in the MEC.
157:
O move across the membrane where they move into the material that makes up the biocathode. The new microbe on the biocathode has the ability to transfer the new electrons from the biocathode material and convert them into protons. These protons are then used in the major pathway that drives methane
38:
Methane producing technologies garnered interest from the scientific community prior to 2000, but electromethanogenesis did not become a significant area of interest until 2008. Publications concerning catalytic methanation have increased from 44 to over 130 since 2008. Electromethanogenesis has
153:
O molecules which are then oxidized after an electrical current is turned on from the power source. Oxygen is released from the anode side. The protons and electrons oxidized from the H
133:
The microbe population that is placed on the biocathode must be able to pick up electrons from the electrode material (carbon or graphite) and convert those electrons to hydrogen.
149:
The mechanism of electromethanogenesis is outlined in Figure 1. Water is introduced into the system with the anode, biocathode, and microbes. At the anode, microbes attract H
74:—or microorganisms. Researchers have found that the biogenic methane production process can be replicated in a laboratory environment through electromethanogenesis. The 352: 464:
Batlle-Vilanova, Pau; Puig, Sebastià; Gonzalez-Olmos, Rafael; Vilajeliu-Pons, Anna; Bañeras, Lluís; Balaguer, M. Dolors; Colprim, Jesús (2014-01-16).
670: 214: 400:
Blasco-GĂłmez, Ramiro; Batlle-Vilanova, Pau; Villano, Marianna; Balaguer, Maria Dolors; Colprim, JesĂşs; Puig, SebastiĂ  (2017-04-20).
39:
drawn more research due to its proposed applications. The production of methane from electrical current may provide an approach to
323: 166:
is brought in on the biocathode side of the system where it is reduced by the protons produced by the microorganisms to yield H
512:
Geppert, Florian; Liu, Dandan; van Eerten-Jansen, Mieke; Weidner, Eckhard; Buisman, Cees; ter Heijne, Annemiek (2016-11-01).
731: 612:
Croese, Elsemiek; Pereira, Maria Alcina; Euverink, Gert-Jan W.; Stams, Alfons J. M.; Geelhoed, Jeanine S. (December 2011).
671:"The Highest Methane Production Rate Ever by Electromethanogenesis Using Intact Anaerobic Granular Sludge as Biocathode" 711: 204: 20: 568:
Hara, Masahiro; Onaka, Yutaka; Kobayashi, Hajime; Fu, Qian; Kawaguchi, Hideo; Vilcaez, Javier; Sato, Kozo (2013).
182:
One limitation is the energy loss in methane-producing bioelectrochemical systems. This occurs as a result of
90:(MEC) and with the help of microbes and electrons (Equation 1) or abiotically produced hydrogen (Equation 2). 466:"Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells" 726: 614:"Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell" 51:. It may also be a useful method for the capture of carbon dioxide which may be used for air purification. 62:. Abiogenic methane is produced on a smaller scale and the required chemical reactions do not necessitate 209: 87: 199: 716: 513: 465: 691: 145:
Figure 1: Example of a two-chamber methane-producing system where electromethanogenesis takes place.
402:"On the Edge of Research and Technological Application: A Critical Review of Electromethanogenesis" 67: 70:
natural environments where methane forms as the result of the breakdown of organic materials by
721: 678: 280: 269:"Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis" 47:
may, through electromethanogenesis, be converted into methane which may then be used as a
8: 224: 219: 284: 646: 613: 436: 401: 28: 651: 633: 591: 541: 533: 485: 441: 423: 331: 304: 296: 234: 229: 174:). Methane is produced and can then be released from the biocathode side and stored. 59: 641: 625: 581: 525: 481: 477: 431: 413: 288: 55: 44: 529: 353:"Researchers Show Direct Bacterial Production of Methane from Electricity and CO2" 669:
Zhou, Huihui; Xing, Defeng; Xu, Mingyi; Angelidaki, Irini; Zhang, Yifeng (2019).
586: 569: 570:"Mechanism of Electromethanogenic Reduction of CO2 by a Thermophilic Methanogen" 463: 63: 40: 32: 629: 324:"Aurinkosähkön varastoinnin ongelmat ohi: bakteeri syö sähköä, tekee metaania" 705: 637: 595: 537: 489: 427: 300: 267:
Cheng, Shaoan; Xing, Defeng; Call, Douglas F.; Logan, Bruce E. (2009-05-15).
183: 71: 655: 545: 514:"Bioelectrochemical Power-to-Gas: State of the Art and Future Perspectives" 445: 308: 399: 418: 141: 292: 82:
in electromethanogenesis is facilitated by an electrical current at a
268: 511: 48: 24: 187: 75: 611: 668: 567: 321: 266: 703: 27:is produced by direct biological conversion of 406:International Journal of Molecular Sciences 215:Electrochemical reduction of carbon dioxide 645: 585: 435: 417: 470:International Journal of Hydrogen Energy 345: 140: 704: 618:Applied Microbiology and Biotechnology 273:Environmental Science & Technology 158:production in electromethanogenesis—CO 395: 393: 607: 605: 563: 561: 559: 557: 555: 507: 505: 503: 501: 499: 459: 457: 455: 391: 389: 387: 385: 383: 381: 379: 377: 375: 373: 262: 260: 258: 256: 254: 252: 250: 54:In nature, methane formation occurs 43:. Electrical current produced from 13: 66:. Biogenic methane is produced in 14: 743: 602: 552: 496: 452: 370: 322:Tuomas Kangasniemi (2009-04-07). 315: 247: 205:Electrochemical energy conversion 662: 482:10.1016/j.ijhydene.2013.11.017 177: 1: 530:10.1016/j.tibtech.2016.08.010 240: 127: 587:10.1016/j.egypro.2013.06.637 330:(in Finnish). Archived from 136: 7: 732:Electrochemical engineering 210:Electrochemical engineering 193: 88:microbial electrolysis cell 10: 748: 200:Bioelectrochemical reactor 712:Environmental engineering 630:10.1007/s00253-011-3583-x 45:renewable energy sources 41:renewable energy storage 518:Trends in Biotechnology 686:Cite journal requires 328:Tekniikka & Talous 146: 144: 17:Electromethanogenesis 419:10.3390/ijms18040874 727:Bioelectrochemistry 285:2009EnST...43.3953C 225:Microbial fuel cell 220:Electrohydrogenesis 357:Green Car Congress 147: 29:electrical current 293:10.1021/es803531g 279:(10): 3953–3958. 235:Sabatier reaction 230:Photoelectrolysis 186:occurring at the 170:O and methane (CH 64:organic materials 23:production where 739: 717:Electrochemistry 696: 695: 689: 684: 682: 674: 666: 660: 659: 649: 624:(5): 1083–1093. 609: 600: 599: 589: 565: 550: 549: 509: 494: 493: 476:(3): 1297–1305. 461: 450: 449: 439: 421: 397: 368: 367: 365: 364: 349: 343: 342: 340: 339: 319: 313: 312: 264: 747: 746: 742: 741: 740: 738: 737: 736: 702: 701: 700: 699: 687: 685: 676: 675: 667: 663: 610: 603: 574:Energy Procedia 566: 553: 524:(11): 879–894. 510: 497: 462: 453: 398: 371: 362: 360: 359:. 30 March 2009 351: 350: 346: 337: 335: 320: 316: 265: 248: 243: 196: 180: 173: 169: 165: 161: 156: 152: 139: 130: 123: 119: 115: 111: 104: 100: 96: 81: 12: 11: 5: 745: 735: 734: 729: 724: 719: 714: 698: 697: 688:|journal= 661: 601: 551: 495: 451: 369: 344: 314: 245: 244: 242: 239: 238: 237: 232: 227: 222: 217: 212: 207: 202: 195: 192: 184:overpotentials 179: 176: 171: 167: 163: 159: 154: 150: 138: 135: 129: 126: 121: 117: 113: 109: 102: 98: 97:+ 8H + 8e ↔ CH 94: 79: 33:carbon dioxide 9: 6: 4: 3: 2: 744: 733: 730: 728: 725: 723: 722:Biotechnology 720: 718: 715: 713: 710: 709: 707: 693: 680: 672: 665: 657: 653: 648: 643: 639: 635: 631: 627: 623: 619: 615: 608: 606: 597: 593: 588: 583: 580:: 7021–7028. 579: 575: 571: 564: 562: 560: 558: 556: 547: 543: 539: 535: 531: 527: 523: 519: 515: 508: 506: 504: 502: 500: 491: 487: 483: 479: 475: 471: 467: 460: 458: 456: 447: 443: 438: 433: 429: 425: 420: 415: 411: 407: 403: 396: 394: 392: 390: 388: 386: 384: 382: 380: 378: 376: 374: 358: 354: 348: 334:on 2011-07-17 333: 329: 325: 318: 310: 306: 302: 298: 294: 290: 286: 282: 278: 274: 270: 263: 261: 259: 257: 255: 253: 251: 246: 236: 233: 231: 228: 226: 223: 221: 218: 216: 213: 211: 208: 206: 203: 201: 198: 197: 191: 189: 185: 175: 162:reduction. CO 143: 134: 125: 106: 91: 89: 85: 77: 73: 69: 65: 61: 57: 52: 50: 46: 42: 36: 34: 30: 26: 22: 19:is a form of 18: 679:cite journal 664: 621: 617: 577: 573: 521: 517: 473: 469: 409: 405: 361:. Retrieved 356: 347: 336:. Retrieved 332:the original 327: 317: 276: 272: 181: 148: 131: 107: 92: 83: 53: 37: 16: 15: 178:Limitations 60:abiotically 21:electrofuel 706:Categories 412:(4): 874. 363:2009-04-09 338:2009-04-07 241:References 128:Biocathode 84:biocathode 56:biotically 638:0175-7598 596:1876-6102 538:0167-7799 490:0360-3199 428:1422-0067 301:0013-936X 137:Mechanism 76:reduction 68:anaerobic 656:21983651 546:27666730 446:28425974 309:19544913 194:See also 72:microbes 647:3210952 437:5412455 281:Bibcode 49:biofuel 25:methane 654:  644:  636:  594:  544:  536:  488:  444:  434:  426:  307:  299:  108:(2) CO 93:(1) CO 188:anode 86:in a 78:of CO 692:help 652:PMID 634:ISSN 592:ISSN 542:PMID 534:ISSN 486:ISSN 442:PMID 424:ISSN 305:PMID 297:ISSN 120:+ 2H 116:↔ CH 112:+ 4H 101:+ 2H 58:and 31:and 642:PMC 626:doi 582:doi 526:doi 478:doi 432:PMC 414:doi 289:doi 708:: 683:: 681:}} 677:{{ 650:. 640:. 632:. 622:92 620:. 616:. 604:^ 590:. 578:37 576:. 572:. 554:^ 540:. 532:. 522:34 520:. 516:. 498:^ 484:. 474:39 472:. 468:. 454:^ 440:. 430:. 422:. 410:18 408:. 404:. 372:^ 355:. 326:. 303:. 295:. 287:. 277:43 275:. 271:. 249:^ 124:O 105:O 35:. 694:) 690:( 673:. 658:. 628:: 598:. 584:: 548:. 528:: 492:. 480:: 448:. 416:: 366:. 341:. 311:. 291:: 283:: 172:4 168:2 164:2 160:2 155:2 151:2 122:2 118:4 114:2 110:2 103:2 99:4 95:2 80:2

Index

electrofuel
methane
electrical current
carbon dioxide
renewable energy storage
renewable energy sources
biofuel
biotically
abiotically
organic materials
anaerobic
microbes
reduction
microbial electrolysis cell

overpotentials
anode
Bioelectrochemical reactor
Electrochemical energy conversion
Electrochemical engineering
Electrochemical reduction of carbon dioxide
Electrohydrogenesis
Microbial fuel cell
Photoelectrolysis
Sabatier reaction




Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑