Knowledge

Bioelectrochemical reactor

Source đź“ť

174:, these inefficiencies can be addressed. While processing wastewater using this reactor, nitrification, denitrification, and organic matter removal all take place simultaneously in both aerobic and anaerobic conditions using multiple different microbes located on the anode of the system. Though the processing parameters of the reactor affect the overall composition of each microbe, genus 114:
change (ΔG) for microorganisms relates directly to the potential difference between the electron acceptor and the donor. However, inefficiencies like internal resistance will decrease this free energy change. The advantage of these devices is their high selectivity in high speed processes limited by kinetic factors.
113:
are reduced. Often soluble electron acceptors are depleted in the microbial environment. The microorganism can also maximize their energy by selecting a good electron donor that can be easily metabolized. These processes are done by extracellular electron transfer (EET). The theoretical free energy
144:
In 1911 M. Potter described how microbial conversions could create reducing power, and thus electric current. Twenty years later Cohen (1931) investigated the capacity of bacteria to produce an electrical flow and he noted that the main limitation is the small capacity of current generation in
152:
Currently, the investigation of bioelectrochemical reactors is increasing. These devices have real applications in fields like water treatment, energy production and storage, resources production, recycling and recovery.
104:
from an electron donor (lower potential species) to an electron acceptor (higher potential species). If the electron acceptor is an external ion or molecule, the process is called respiration. If the process is internal,
807:
Watanabe T, Jin HW, Cho KJ, Kuroda M (2004). "Application of a bio-electrochemical reactor process to direct treatment of metal pickling wastewater containing heavy metals and high strength nitrate".
109:
is called fermentation. The microorganism attempts to maximize their energy gain by selecting the electron acceptor with the highest potential available. In nature, mainly minerals containing iron or
736:
Sasaki K, Morita M, Sasaki D, Hirano S, Matsumoto N, Ohmura N, Igarashi Y (January 2011). "Methanogenic communities on the electrodes of bioelectrochemical reactors without membranes".
689:
Liang Q, Yamashita T, Koike K, Matsuura N, Honda R, Hara-Yamamura H, et al. (November 2020). "A bioelectrochemical-system-based trickling filter reactor for wastewater treatment".
643:
Liang Q, Yamashita T, Koike K, Matsuura N, Honda R, Hara-Yamamura H, et al. (November 2020). "A bioelectrochemical-system-based trickling filter reactor for wastewater treatment".
534:
Liang Q, Yamashita T, Koike K, Matsuura N, Honda R, Hara-Yamamura H, et al. (November 2020). "A bioelectrochemical-system-based trickling filter reactor for wastewater treatment".
136:
were able to transfer electrical charge by allowing bacteria to touch a metal or mineral surface. The research shows that it is possible to 'tether' bacteria directly to electrodes.
170:
processes are energy- and cost-inefficient due to sludge maintenance, aeration needs, and energy needs. By using a bioelectrochemical reactor that utilizes the concept of
404:
Kuntke P, Smiech KM, Bruning H, Zeeman G, Saakes M, Sleutels TH, et al. (May 2012). "Ammonium recovery and energy production from urine by a microbial fuel cell".
765:
Ghafari S, Hasan M, Aroua MK (2009). "Nitrate remediation in a novel upflow bio-electrochemical reactor (UBER) using palm shell activated carbon as cathode material".
110: 499:
Krieg T, Sydow A, Schröder U, Schrader J, Holtmann D (December 2014). "Reactor concepts for bioelectrochemical syntheses and energy conversion".
344:
Krieg T, Sydow A, Schröder U, Schrader J, Holtmann D (December 2014). "Reactor concepts for bioelectrochemical syntheses and energy conversion".
245: 52:
are passed to and from microbes to power reduction of protons, breakdown of organic waste, or other desired processes. They are used in
786:
Goel RK, Flora JR (2005). "Sequential Nitrification and Denitrification in a Divided Cell Attached Growth Bioelectrochemical Reactor".
483: 456: 388: 312: 851: 235: 197: 61: 473: 846: 240: 65: 579:"Enhancing methane oxidation in a bioelectrochemical membrane reactor using a soluble electron mediator" 81: 53: 449:
Bioelectrochemical systems : from extracellular electron transfer to biotechnological application
381:
Bioelectrochemical systems : from extracellular electron transfer to biotechnological application
133: 57: 125: 627: 210:, the player can build a bioreactor that serves the same purpose as a bioelectrochemical reactor. 166:
Bioelectrochemical reactors are finding an application in wastewater treatment settings. Current
628:
Clean Electricity from Bacteria? Researchers Make Breakthrough in Race to Create 'Bio-Batteries'
73: 260: 119: 856: 413: 230: 97: 8: 220: 146: 69: 25: 417: 714: 668: 605: 578: 559: 326: 824: 753: 718: 706: 672: 660: 610: 563: 551: 516: 479: 452: 429: 384: 361: 318: 308: 255: 106: 778: 816: 795: 774: 745: 702: 698: 656: 652: 600: 590: 547: 543: 508: 421: 353: 330: 300: 171: 167: 28:
processes are used to degrade/produce organic materials using microorganisms. This
512: 357: 749: 425: 577:
Zhang X, Rabiee H, Frank J, Cai C, Stark T, Virdis B, et al. (2020-10-16).
285: 595: 225: 182: 840: 265: 799: 828: 757: 710: 664: 614: 555: 520: 433: 365: 322: 250: 77: 820: 304: 206: 85: 29: 21: 176: 37: 471: 475:
Bioprocess technology: fermentation, biocatalysis and bioseparation
101: 49: 41: 145:
microorganisms. Berk and Canfield (1964) didn't build the first
45: 33: 446: 378: 688: 642: 533: 129:. However, more species have been studied in recent years. 498: 343: 478:. New York: JohnWiley & Sons, Inc. pp. 267–291. 447:
Rabaey K, Angenent L, Schroder U, Keller J, eds. (2010).
403: 379:
Rabaey K, Angenent L, Schroder U, Keller J, eds. (2010).
735: 295:. Advances in Biochemical Engineering/Biotechnology. 806: 621: 576: 64:. Examples of bioelectrochemical reactors include 764: 472:Heijnen J.J.; Flickinger M.C.; Drew S.W. (1999). 201:, soldiers use power backpacks based on bacteria. 838: 284:Krieg, Thomas; Madjarov, Joana (13 April 2018). 286:"Reactors for Microbial Electrobiotechnology" 283: 440: 186:are frequently found in these applications. 397: 372: 246:Electrochemical reduction of carbon dioxide 785: 604: 594: 738:Journal of Bioscience and Bioengineering 684: 682: 465: 839: 117:The most commonly studied species are 189: 132:On March 25, 2013, scientists at the 679: 636: 13: 527: 492: 161: 14: 868: 788:Environmental Engineering Science 728: 337: 236:Electrochemical energy conversion 198:Final Fantasy: The Spirits Within 62:electrochemical energy conversion 96:Electron current is inherent to 82:microbial electrosynthesis cells 779:10.1016/j.electacta.2009.02.062 156: 703:10.1016/j.biortech.2020.123798 657:10.1016/j.biortech.2020.123798 570: 548:10.1016/j.biortech.2020.123798 277: 40:reaction takes place; And the 1: 513:10.1016/j.tibtech.2014.10.004 358:10.1016/j.tibtech.2014.10.004 271: 91: 809:Water Science and Technology 750:10.1016/j.jbiosc.2010.08.010 426:10.1016/j.watres.2012.02.025 66:microbial electrolysis cells 7: 852:Electrochemical engineering 241:Electrochemical engineering 214: 10: 873: 596:10.1186/s13068-020-01808-7 583:Biotechnology for Biofuels 451:. London: IWA Publishing. 383:. London: IWA Publishing. 293:Adv Biochem Eng Biotechnol 139: 100:. Microorganisms transfer 54:microbial electrosynthesis 32:has two compartments: The 18:Bioelectrochemical reactor 134:University of East Anglia 58:environmental remediation 126:Geobacter sulfurreducens 48:occurs. At these sites, 800:10.1089/ees.2005.22.440 501:Trends in Biotechnology 346:Trends in Biotechnology 74:enzymatic biofuel cells 691:Bioresource Technology 645:Bioresource Technology 536:Bioresource Technology 149:(MFC) until the 60's. 821:10.2166/wst.2004.0501 261:Electromethanogenesis 120:Shewanella oneidensis 231:Electrochemical cell 98:microbial metabolism 70:microbial fuel cells 847:Bioelectrochemistry 767:Electrochimica Acta 418:2012WatRe..46.2627K 221:Bioelectrochemistry 172:trickling filtering 147:microbial fuel cell 305:10.1007/10_2017_40 190:In popular culture 26:bioelectrochemical 485:978-0-471-13822-8 458:978-1-84339-233-0 390:978-1-84339-233-0 314:978-3-030-03298-2 256:Electrolytic cell 107:electron transfer 864: 832: 803: 782: 761: 723: 722: 686: 677: 676: 640: 634: 633:, March 25, 2013 625: 619: 618: 608: 598: 574: 568: 567: 531: 525: 524: 496: 490: 489: 469: 463: 462: 444: 438: 437: 401: 395: 394: 376: 370: 369: 341: 335: 334: 290: 281: 168:activated sludge 111:manganese oxides 872: 871: 867: 866: 865: 863: 862: 861: 837: 836: 835: 773:(17): 4164–71. 731: 726: 687: 680: 641: 637: 626: 622: 575: 571: 532: 528: 497: 493: 486: 470: 466: 459: 445: 441: 402: 398: 391: 377: 373: 342: 338: 315: 288: 282: 278: 274: 217: 192: 164: 162:Water Treatment 159: 142: 94: 12: 11: 5: 870: 860: 859: 854: 849: 834: 833: 804: 783: 762: 732: 730: 729:External links 727: 725: 724: 678: 635: 620: 569: 526: 507:(12): 645–55. 491: 484: 464: 457: 439: 412:(8): 2627–36. 406:Water Research 396: 389: 371: 352:(12): 645–55. 336: 313: 275: 273: 270: 269: 268: 263: 258: 253: 248: 243: 238: 233: 228: 226:Bioelectronics 223: 216: 213: 212: 211: 202: 191: 188: 183:Desulfuromonas 163: 160: 158: 155: 141: 138: 93: 90: 9: 6: 4: 3: 2: 869: 858: 855: 853: 850: 848: 845: 844: 842: 830: 826: 822: 818: 814: 810: 805: 801: 797: 793: 789: 784: 780: 776: 772: 768: 763: 759: 755: 751: 747: 743: 739: 734: 733: 720: 716: 712: 708: 704: 700: 696: 692: 685: 683: 674: 670: 666: 662: 658: 654: 650: 646: 639: 632: 629: 624: 616: 612: 607: 602: 597: 592: 588: 584: 580: 573: 565: 561: 557: 553: 549: 545: 541: 537: 530: 522: 518: 514: 510: 506: 502: 495: 487: 481: 477: 476: 468: 460: 454: 450: 443: 435: 431: 427: 423: 419: 415: 411: 407: 400: 392: 386: 382: 375: 367: 363: 359: 355: 351: 347: 340: 332: 328: 324: 320: 316: 310: 306: 302: 298: 294: 287: 280: 276: 267: 266:Galvanic cell 264: 262: 259: 257: 254: 252: 249: 247: 244: 242: 239: 237: 234: 232: 229: 227: 224: 222: 219: 218: 209: 208: 203: 200: 199: 194: 193: 187: 185: 184: 179: 178: 173: 169: 154: 150: 148: 137: 135: 130: 128: 127: 122: 121: 115: 112: 108: 103: 99: 89: 87: 83: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 35: 31: 27: 23: 20:is a type of 19: 815:(8): 111–8. 812: 808: 794:(4): 440–9. 791: 787: 770: 766: 741: 737: 694: 690: 648: 644: 638: 631:Sciencedaily 630: 623: 586: 582: 572: 539: 535: 529: 504: 500: 494: 474: 467: 448: 442: 409: 405: 399: 380: 374: 349: 345: 339: 296: 292: 279: 251:Electrofuels 205: 196: 181: 175: 165: 157:Applications 151: 143: 131: 124: 118: 116: 95: 86:biobatteries 78:electrolysis 44:, where the 36:, where the 17: 15: 857:Bioreactors 744:(1): 47–9. 299:: 231–272. 841:Categories 697:: 123798. 651:: 123798. 589:(1): 173. 542:: 123798. 272:References 207:Subnautica 180:and genus 92:Principles 30:bioreactor 22:bioreactor 719:225536351 673:225536351 564:225536351 177:Geobacter 102:electrons 50:electrons 46:reduction 38:oxidation 829:15566194 758:20840887 711:32707501 665:32707501 615:33088343 556:32707501 521:25457389 434:22406284 366:25457389 323:29651504 215:See also 606:7568384 414:Bibcode 331:4797483 140:History 80:cells, 42:cathode 827:  756:  717:  709:  671:  663:  613:  603:  562:  554:  519:  482:  455:  432:  387:  364:  329:  321:  311:  84:, and 60:, and 24:where 715:S2CID 669:S2CID 560:S2CID 327:S2CID 289:(PDF) 34:anode 825:PMID 754:PMID 707:PMID 661:PMID 611:PMID 552:PMID 517:PMID 480:ISBN 453:ISBN 430:PMID 385:ISBN 362:PMID 319:PMID 309:ISBN 123:and 817:doi 796:doi 775:doi 746:doi 742:111 699:doi 695:315 653:doi 649:315 601:PMC 591:doi 544:doi 540:315 509:doi 422:doi 354:doi 301:doi 297:167 204:In 195:In 843:: 823:. 813:50 811:. 792:22 790:. 771:54 769:. 752:. 740:. 713:. 705:. 693:. 681:^ 667:. 659:. 647:. 609:. 599:. 587:13 585:. 581:. 558:. 550:. 538:. 515:. 505:32 503:. 428:. 420:. 410:46 408:. 360:. 350:32 348:. 325:. 317:. 307:. 291:. 88:. 76:, 72:, 68:, 56:, 16:A 831:. 819:: 802:. 798:: 781:. 777:: 760:. 748:: 721:. 701:: 675:. 655:: 617:. 593:: 566:. 546:: 523:. 511:: 488:. 461:. 436:. 424:: 416:: 393:. 368:. 356:: 333:. 303::

Index

bioreactor
bioelectrochemical
bioreactor
anode
oxidation
cathode
reduction
electrons
microbial electrosynthesis
environmental remediation
electrochemical energy conversion
microbial electrolysis cells
microbial fuel cells
enzymatic biofuel cells
electrolysis
microbial electrosynthesis cells
biobatteries
microbial metabolism
electrons
electron transfer
manganese oxides
Shewanella oneidensis
Geobacter sulfurreducens
University of East Anglia
microbial fuel cell
activated sludge
trickling filtering
Geobacter
Desulfuromonas
Final Fantasy: The Spirits Within

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑