Knowledge

Electrohydrodynamics

Source đź“ť

314: 81: 628:. Pressure would then be released on demand, for the fluid to flow through micro-channels. When water travels, or streams over a surface, the ions in the water "rub" against the solid, leaving the surface slightly charged. Kinetic energy from the moving ions would thus be converted to electrical energy. Although the power generated from a single channel is extremely small, millions of parallel micro-channels can be used to increase the power output. This 302: 95: 683:
or can cause undesirable dispersion in sample injection, separation and stacking. These instabilities are caused by a coupling of electric fields and ionic conductivity gradients that results in an electric body force. This coupling results in an electric body force in the bulk liquid, outside the
297:{\displaystyle F_{e}=\rho _{e}{\overrightarrow {E}}-{1 \over 2}\varepsilon _{0}{\overrightarrow {E}}^{2}\triangledown \varepsilon _{r}+{1 \over 2}\varepsilon _{0}\triangledown {\Bigl (}{\overrightarrow {E}}^{2}\rho _{f}\left({\frac {\partial \varepsilon _{r}}{\partial \rho _{f}}}\right){\Bigr )}} 624:, by pumping fluid through tiny micro-channels with a pressure difference. This technology could lead to a practical and clean energy storage device, replacing batteries for devices such as mobile phones or calculators which would be charged up by simply compressing water to high 89:
The electric forces acting on particles consist of electrostatic (Coulomb) and electrophoresis force (first term in the following equation)., dielectrophoretic force (second term in the following equation), and electrostrictive force (third term in the following equation):
61:. EHD, in its simplest form, involves the application of an electric field to a fluid medium, resulting in fluid flow, form, or properties manipulation. These mechanisms arise from the interaction between the 603:
has also been observed in biology, where it was found to cause physical damage to neurons by inciting movement in their membranes. It is discussed in R. J. Elul's "Fixed charge in the cell membrane" (1967).
597:
If the electrodes are free to move within the fluid, while keeping their distance fixed from each other, then such a force will actually propel the electrodes with respect to the fluid.
504: 999:
Yang, Jun; Lu, Fuzhi; Kostiuk, Larry W.; Kwok, Daniel Y. (1 January 2003). "Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena".
411:
In the second instance, the converse takes place. A powered flow of medium within a shaped electrostatic field adds energy to the system which is picked up as a
592: 572: 548: 524: 441:
transport produced by an electric field acting on a fluid having a net mobile charge. (See -kinesis for explanation and further uses of the -kinesis suffix.)
672:
instabilities. The particular case of a flat plane geometry with homogeneous ions injection in the bottom side leads to a mathematical frame identical to the
1057:
Ferraro, P.; Coppola, S.; Grilli, S.; Paturzo, M.; Vespini, V. (2010). "Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting".
660:. Conductivity gradients are prevalent in on-chip electrokinetic processes such as preconcentration methods (e.g. field amplified sample stacking and 688:, that can generate temporal, convective, and absolute flow instabilities. Electrokinetic flows with conductivity gradients become unstable when the 1103: 457:, although he seems to have misidentified it as an electric field acting on gravity. The flow rate in such a mechanism is linear in the 834:
Wall, Staffan. "The history of electrokinetic phenomena." Current Opinion in Colloid & Interface Science 15.3 (2010): 119-124.
695:
Since these flows are characterized by low velocities and small length scales, the Reynolds number is below 0.01 and the flow is
685: 898: 751: 465:, because it offers a way to manipulate and convey fluids in microsystems using only electric fields, with no moving parts. 664:), multidimensional assays, and systems with poorly specified sample chemistry. The dynamics and periodic morphology of 726: 471: 960: 888: 673: 692:
stretching and folding of conductivity interfaces grows faster than the dissipative effect of molecular diffusion.
669: 57:
fluids. Electrohydrodynamics (EHD) is a joint domain of electrodynamics and fluid dynamics mainly focused on the
17: 405: 307: 652:
of order unity or smaller). However, heterogeneous ionic conductivity fields in the presence of applied
1136: 870: 746: 716: 428: 77:
in a fluid subjected to an electric field are the underlying physics of all EHD-based technologies.
1131: 771: 736: 454: 1141: 1109: 933: 845: 689: 699:. The onset of instability in these flows is best described as an electric "Rayleigh number". 810: 633: 613: 450: 1066: 1008: 797: 721: 661: 416: 412: 369: 54: 50: 8: 741: 629: 365: 1070: 1012: 1024: 612:
In October 2003, Dr. Daniel Kwok, Dr. Larry Kostiuk and two graduate students from the
577: 557: 533: 509: 1082: 1028: 1020: 981: 956: 894: 648:
and nanofluidic devices are often stable and strongly damped by viscous forces (with
617: 350: 338: 1115: 798:"Electrohydrodynamics and its applications: Recent advances and future perspectives" 1074: 1016: 815: 805: 680: 373: 396:, generally to move the electrodes. In such case, the moving structure acts as an 649: 620:
by exploiting the natural electrokinetic properties of a liquid such as ordinary
446: 346: 342: 330: 322: 318: 427:"Electrokinesis" redirects here. For the ability to manipulate electricity, see 952: 850: 820: 653: 458: 397: 381: 354: 334: 594:
is the ion mobility coefficient of the dielectric fluid, measured in m/(V·s).
449:
of clay particles The effect was also noticed and publicized in the 1920s by
1125: 527: 462: 313: 1086: 731: 645: 329:
EHD covers the following types of particle and fluid transport mechanisms:
80: 1078: 985: 27:
Study of electrically conducting fluids in the presence of electric fields
401: 904: 656:
can, under certain conditions, generate an unstable flow field owing to
890:
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
621: 393: 632:, water-flow phenomenon was discovered in 1859 by German physicist 625: 445:
was first observed by Ferdinand Frederic Reuss during 1808, in the
84:
Electrohydrodynamics employed for drying applications (EHD Drying).
551: 385: 349:. In general, the phenomena relate to the direct conversion of 438: 392:, no flow is produced. Such flow can be directed against the 389: 377: 574:
is the distance between electrodes, measured in metres, and
461:. Electrokinesis is of considerable practical importance in 1056: 946: 867:
Electrokinetically Driven Microfluidics and Nanofluidics
468:
The force acting on the fluid, is given by the equation
415:
by electrodes. In such case, the structure acts as an
580: 560: 536: 512: 474: 400:. Practical fields of interest of EHD are the common 98: 864: 586: 566: 542: 518: 498: 296: 998: 795: 707:Liquids can be printed at nanoscale by pyro-EHD. 289: 213: 73:within the fluid. The generation and movement of 1123: 802:International Journal of Heat and Mass Transfer 770: 639: 1001:Journal of Micromechanics and Microengineering 616:discussed a method to convert hydrodynamic to 1041: 947:Patterson, Michael; Kesner, Raymond (1981). 886: 796:Iranshahi, Kamran; Defraeye, Thijs (2024). 949:Electrical Stimulation Research Techniques 764: 306:This electrical force is then inserted in 1110:Science-daily article about the discovery 927: 819: 809: 843: 811:10.1016/j.ijheatmasstransfer.2024.125895 607: 312: 79: 940: 923: 921: 882: 880: 310:equation, as a body (volumetric) force. 59:fluid motion induced by electric fields 14: 1124: 1035: 752:List of textbooks in electromagnetism 975: 918: 877: 858: 837: 791: 789: 787: 785: 526:is the resulting force, measured in 384:is produced. If the dielectric is a 24: 727:Electrodynamic droplet deformation 668:are similar to other systems with 658:electrokinetic instabilities (EKI) 317:Electrohydrodynamics employed for 267: 252: 25: 1153: 1097: 978:Fixed charge in the cell membrane 782: 679:EKI's can be leveraged for rapid 499:{\displaystyle F={\frac {Id}{k}}} 422: 208: 172: 1050: 992: 844:Thompson, Clive (August 2003). 969: 893:. Cambridge University Press. 828: 364:In the first instance, shaped 13: 1: 1044:Physicochemical Hydrodynamics 865:Chang, H.C.; Yeo, L. (2009). 846:"The Antigravity Underground" 757: 406:electrohydrodynamic thrusters 666:electrokinetic instabilities 640:Electrokinetic instabilities 550:is the current, measured in 7: 1104:Dr. Larry Kostiuk's website 710: 10: 1158: 1021:10.1088/0960-1317/13/6/320 871:Cambridge University Press 747:Electrostatic precipitator 674:Rayleigh–BĂ©nard convection 426: 1116:BBC article with graphics 930:Theoretical Microfluidics 717:Magnetohydrodynamic drive 429:List of psychic abilities 408:and EHD cooling systems. 737:Electrokinetic phenomena 934:Oxford University Press 702: 588: 568: 544: 520: 500: 376:. When such media are 326: 298: 85: 75:charge carriers (ions) 49:, is the study of the 39:electro-fluid-dynamics 1079:10.1038/nnano.2010.82 1059:Nature Nanotechnology 1042:Levich, V.I. (1962). 686:electric double layer 634:Georg Hermann Quincke 614:University of Alberta 608:Water electrokinetics 589: 569: 545: 521: 501: 451:Thomas Townsend Brown 316: 299: 83: 887:Kirby, B.J. (2010). 776:Electrohydrodynamics 722:Magnetohydrodynamics 662:isoelectric focusing 578: 558: 534: 510: 472: 455:Biefeld–Brown effect 453:which he called the 417:electrical generator 413:potential difference 372:(HSP, or motion) in 370:hydrostatic pressure 366:electrostatic fields 96: 71:polarization effects 55:electrically charged 31:Electrohydrodynamics 1071:2010NatNa...5..429F 1013:2003JMiMi..13..963Y 976:Elul, R.J. (1967). 821:20.500.11850/683872 742:Optoelectrofluidics 644:The fluid flows in 630:streaming potential 437:is the particle or 928:Bruus, H. (2007). 584: 564: 540: 516: 496: 327: 294: 86: 1137:Energy conversion 900:978-0-521-11903-0 618:electrical energy 587:{\displaystyle k} 567:{\displaystyle d} 543:{\displaystyle I} 519:{\displaystyle F} 494: 351:electrical energy 339:dielectrophoresis 281: 227: 196: 164: 143: 130: 67:charged particles 37:), also known as 16:(Redirected from 1149: 1091: 1090: 1054: 1048: 1047: 1039: 1033: 1032: 996: 990: 989: 973: 967: 966: 944: 938: 937: 925: 916: 915: 913: 912: 903:. Archived from 884: 875: 874: 862: 856: 855: 841: 835: 832: 826: 825: 823: 813: 793: 780: 779: 768: 650:Reynolds numbers 593: 591: 590: 585: 573: 571: 570: 565: 549: 547: 546: 541: 525: 523: 522: 517: 505: 503: 502: 497: 495: 490: 482: 374:dielectric media 303: 301: 300: 295: 293: 292: 286: 282: 280: 279: 278: 265: 264: 263: 250: 244: 243: 234: 233: 228: 220: 217: 216: 207: 206: 197: 189: 184: 183: 171: 170: 165: 157: 154: 153: 144: 136: 131: 123: 121: 120: 108: 107: 21: 1157: 1156: 1152: 1151: 1150: 1148: 1147: 1146: 1132:Electrodynamics 1122: 1121: 1100: 1095: 1094: 1055: 1051: 1040: 1036: 997: 993: 974: 970: 963: 945: 941: 926: 919: 910: 908: 901: 885: 878: 863: 859: 842: 838: 833: 829: 794: 783: 772:Castellanos, A. 769: 765: 760: 713: 705: 670:Rayleigh–Taylor 654:electric fields 642: 610: 579: 576: 575: 559: 556: 555: 535: 532: 531: 511: 508: 507: 483: 481: 473: 470: 469: 447:electrophoresis 432: 425: 368:(ESF's) create 347:electrorotation 343:electro-osmosis 331:electrophoresis 323:Electrospinning 319:Airflow control 288: 287: 274: 270: 266: 259: 255: 251: 249: 245: 239: 235: 229: 219: 218: 212: 211: 202: 198: 188: 179: 175: 166: 156: 155: 149: 145: 135: 122: 116: 112: 103: 99: 97: 94: 93: 88: 63:electric fields 47:electrokinetics 28: 23: 22: 15: 12: 11: 5: 1155: 1145: 1144: 1142:Fluid dynamics 1139: 1134: 1120: 1119: 1113: 1107: 1099: 1098:External links 1096: 1093: 1092: 1065:(6): 429–435. 1049: 1034: 1007:(6): 963–970. 991: 968: 961: 953:Academic Press 939: 917: 899: 876: 857: 851:Wired Magazine 836: 827: 781: 762: 761: 759: 756: 755: 754: 749: 744: 739: 734: 729: 724: 719: 712: 709: 704: 701: 690:electroviscous 641: 638: 609: 606: 601:Electrokinesis 583: 563: 539: 515: 493: 489: 486: 480: 477: 459:electric field 443:Electrokinesis 435:Electrokinesis 424: 423:Electrokinesis 421: 398:electric motor 355:kinetic energy 335:electrokinesis 291: 285: 277: 273: 269: 262: 258: 254: 248: 242: 238: 232: 226: 223: 215: 210: 205: 201: 195: 192: 187: 182: 178: 174: 169: 163: 160: 152: 148: 142: 139: 134: 129: 126: 119: 115: 111: 106: 102: 26: 18:Electrokinesis 9: 6: 4: 3: 2: 1154: 1143: 1140: 1138: 1135: 1133: 1130: 1129: 1127: 1117: 1114: 1111: 1108: 1105: 1102: 1101: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1060: 1053: 1045: 1038: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 995: 987: 983: 979: 972: 964: 962:0-12-547440-7 958: 954: 950: 943: 935: 931: 924: 922: 907:on 2019-04-28 906: 902: 896: 892: 891: 883: 881: 872: 868: 861: 853: 852: 847: 840: 831: 822: 817: 812: 807: 803: 799: 792: 790: 788: 786: 777: 773: 767: 763: 753: 750: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 720: 718: 715: 714: 708: 700: 698: 693: 691: 687: 682: 677: 675: 671: 667: 663: 659: 655: 651: 647: 637: 635: 631: 627: 623: 619: 615: 605: 602: 598: 595: 581: 561: 553: 537: 529: 513: 491: 487: 484: 478: 475: 466: 464: 463:microfluidics 460: 456: 452: 448: 444: 440: 436: 430: 420: 418: 414: 409: 407: 403: 399: 395: 391: 387: 383: 379: 375: 371: 367: 362: 360: 356: 352: 348: 344: 340: 336: 332: 325:applications. 324: 320: 315: 311: 309: 308:Navier-Stokes 304: 283: 275: 271: 260: 256: 246: 240: 236: 230: 224: 221: 203: 199: 193: 190: 185: 180: 176: 167: 161: 158: 150: 146: 140: 137: 132: 127: 124: 117: 113: 109: 104: 100: 91: 82: 78: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 19: 1062: 1058: 1052: 1043: 1037: 1004: 1000: 994: 977: 971: 948: 942: 929: 909:. Retrieved 905:the original 889: 866: 860: 849: 839: 830: 801: 775: 766: 732:Electrospray 706: 696: 694: 678: 665: 657: 646:microfluidic 643: 611: 600: 599: 596: 467: 442: 434: 433: 410: 363: 358: 328: 305: 92: 87: 74: 70: 66: 62: 58: 46: 42: 38: 34: 30: 29: 402:air ioniser 1126:Categories 911:2010-02-13 758:References 394:electrodes 359:vice versa 1029:250922353 622:tap water 272:ρ 268:∂ 257:ε 253:∂ 237:ρ 225:→ 209:▽ 200:ε 177:ε 173:▽ 162:→ 147:ε 133:− 128:→ 114:ρ 1087:20453855 774:(1998). 711:See also 626:pressure 51:dynamics 1067:Bibcode 1009:Bibcode 986:6040152 697:laminar 552:amperes 528:newtons 506:where, 1085:  1027:  984:  959:  897:  681:mixing 386:vacuum 378:fluids 357:, and 345:, and 1025:S2CID 439:fluid 390:solid 388:or a 353:into 45:) or 1083:PMID 982:PMID 957:ISBN 895:ISBN 703:Misc 382:flow 380:, a 321:and 65:and 1075:doi 1017:doi 816:hdl 806:doi 636:. 69:or 53:of 43:EFD 35:EHD 1128:: 1081:. 1073:. 1061:. 1023:. 1015:. 1005:13 1003:. 980:. 955:. 951:. 932:. 920:^ 879:^ 869:. 848:. 814:. 804:. 800:. 784:^ 676:. 554:, 530:, 419:. 404:, 361:. 341:, 337:, 333:, 1118:. 1112:. 1106:. 1089:. 1077:: 1069:: 1063:5 1046:. 1031:. 1019:: 1011:: 988:. 965:. 936:. 914:. 873:. 854:. 824:. 818:: 808:: 778:. 582:k 562:d 538:I 514:F 492:k 488:d 485:I 479:= 476:F 431:. 290:) 284:) 276:f 261:r 247:( 241:f 231:2 222:E 214:( 204:0 194:2 191:1 186:+ 181:r 168:2 159:E 151:0 141:2 138:1 125:E 118:e 110:= 105:e 101:F 41:( 33:( 20:)

Index

Electrokinesis
dynamics
electrically charged

Navier-Stokes

Airflow control
Electrospinning
electrophoresis
electrokinesis
dielectrophoresis
electro-osmosis
electrorotation
electrical energy
kinetic energy
electrostatic fields
hydrostatic pressure
dielectric media
fluids
flow
vacuum
solid
electrodes
electric motor
air ioniser
electrohydrodynamic thrusters
potential difference
electrical generator
List of psychic abilities
fluid

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑