Knowledge

Plasma actuator

Source đź“ť

184:
reduces limiting the thrust increase, and the actuator is said to have “saturated,” limiting the actuator’s performance. The onset of saturation can visually be correlated by the inception of filamentary discharge events. The saturation effect can be manipulated by changing the local surface temperature of the dielectric. Also, when dealing with real-life aircraft equipped with plasma actuators, it is important to consider the effect of temperature. The temperature variations encountered during a flight envelope may have adverse effects in actuator performance. It is found that for a constant peak-to-peak voltage the maximum velocity produced by the actuator depends directly on the dielectric surface temperature. The findings suggest that by changing the actuator temperature the performance can be maintained or even altered at different environmental conditions. Increasing dielectric surface temperature can increase the plasma actuator performance by increasing the momentum flux whilst consuming slightly higher energy.
349:
contact with the hot device. A net heat transfer occurs between the hotter electronics and cooler air, lowering the mean temperature of the electronics. In plasma-actuated heat transfer, EFA plasma actuators generate a secondary flow to the bulk flow, cause local fluid acceleration near the plasma actuator, and ultimately may thin the thermal and velocity boundary layer near the electronics. The result is that the cooler air is brought closer to the hot electronics, improving the forced air cooling. Plasma-actuated heat transfer may be used as a thermal management solution for mobile devices, notebooks, ultra-mobile computers, and other electronics or in other applications which use similar forced air cooling configurations.
20: 223: 382:. Since the secondary fluid is injected onto the surface at discrete holes on the surface, a portion of the secondary fluid is blown off the surface (especially at high momentum ratios of injected air to cross flow), decreasing the effectiveness of the film cooling process. In plasma-actuated heat transfer, EFA plasma actuators are used to control the secondary fluid via a dynamic force which promotes attachment of the secondary fluid to the hot surface and improves the effectiveness of the film cooling. 163: 155: 91: 147: 127: 289: 358: 74: 202:
discharges. The present research of plasma actuators is mainly focused on three directions: (1) various designs of plasma actuators; (2) flow control applications; and (3) control-oriented modeling of flow applications under plasma actuation. In addition, new experimental and numerical methods are being developed to provide physical insights.
193:
water adhesion, and even icing. A recent publication has simulated light rain by directly spraying water droplets on to a working plasma actuator and showed its effect on thrust recovery as the performance metric. It was shown that wet actuators quickly recover plasma glow, and gradually regain thrust comparable to the dry actuator.
192:
Although plasma actuators have been extensively characterized for their performance as flow control devices, the notion that they might fail under adverse conditions such as dew, drizzle or dust makes them less popular in practical applications. Earlier publications have shown the effect of moisture,
348:
All electronic devices generate excess heat which must be removed to prevent premature failure of the device. Since heating occurs at the device, a common method of thermal management for electronics is to generate a bulk flow (for example by external fans) which brings the cooler, ambient air into
280:
Plasma actuators could be mounted on the airfoil to control flight attitude and thereafter flight trajectory. The cumbersome design and maintenance efforts of mechanical and hydraulic transmission systems in a classical rudder can thus be saved. The price to pay is that one should design a suitable
238:
normally denotes noise cancellation, that is, a noise-cancellation speaker emits a sound wave with the same amplitude but with inverted phase (also known as antiphase) to the original sound. However, active noise control with plasma adopts different strategies. The first one uses the discovery that
427:
The most important potential of plasma actuators is its ability to bridge fluids and electricity. A modern closed-loop control system and the following information theoretical methods can be applied to the relatively classical aerodynamic sciences. A control-oriented model for plasma actuation in
183:
The surface temperature plays an important role in limiting the usefulness of a dielectric barrier discharge plasma actuator. The thrust produced by an actuator in quiescent air increases with a power law of the applied voltage. For voltages greater than a threshold, the exponent of the power-law
86:
Plasma actuators operating at the atmospheric conditions are promising for flow control, mainly for their physical properties, such as the induced body force by a strong electric field and the generation of heat during an electric arc, and the simplicity of their constructions and placements. In
170:
Manipulation of the encapsulated electrode and distributing the encapsulated electrode throughout the dielectric layer has been shown to alter the performance of the dielectric barrier discharge (DBD) plasma actuator. Locating the initial encapsulated electrode closer to the dielectric surface
174:
No matter how much funding has been invested and the number of various private claims of a high induced speed, the maximum, average speed induced by plasma actuators on an atmospheric pressure conviction, without any assistant of mechanical amplifier (chamber, cavity etc.), is still less than
201:
Some recent applications of plasma actuation include high-speed flow control using localized arc filament plasma actuators, and low-speed flow control using dielectric barrier discharges for flow separation, replacing mechanical high-lift devices, 3D wake control, sound control, andsliding
259:
Plasma has been introduced to hypersonic flow control. Firstly, plasma could be much easier generated for hypersonic vehicle at high altitude with quite low atmospheric pressure and high surface temperature. Secondly, the classical aerodynamic surface has little actuation for the case.
64:
In DBDs, the emitter electrode is connected to a high-voltage source and exposed to the surrounding air, while the collector electrode is grounded and encapsulated within the dielectric material (see figure). When activated, they form a low-temperature plasma between the
49:. Plasma flow control has drawn considerable attention and been used in boundary layer acceleration, airfoil separation control, forebody separation control, turbine blade separation control, axial compressor stability extension, heat transfer and high-speed jet control. 377:
where a secondary fluid such as air or another coolant is introduced to a surface in a high temperature environment. The secondary fluid provides a cooler, insulating layer (or film) along the surface that acts as a heat sink, lowering the mean temperature in the
281:
high voltage/power electric system satisfying EMC rule. Hence, in addition to flow control, plasma actuators hold potential in top-level flight control, in particular for UAV and extraterrestrial planet (with suitable atmospheric conditions) investigations.
214:. The difference between this and traditional vortex generation is that there are no mechanical moving parts or any drilling holes on aerodynamic surfaces, demonstrating an important benefit of plasma actuators. Three dimensional actuators such as 296:
It can be seen that plasma actuators deployed on the both sides of an airfoil. The roll control can be controlled by activating plasma actuators according to the roll angle feedback. After studying various feedback control methodologies, the
301:
method was chosen to design the roll control system based on plasma actuators. The reason is that bang-bang control is time optimal and insensitive to plasma actuations, which quickly vary in difference atmospheric and electric conditions.
305:
Another study for rolling moment control using three-dimensional actuation has also been reported for an aircraft wing where actuators were employed as the leading-edge slat, spoiler, flap, and leading-edge aileron. Results show that the
134:
The driving waveforms can be optimized to achieve a better actuation (induced flow speed). However, a sinusoidal waveform may be preferable for the simplicity in power supply construction. The additional benefit is the relatively less
87:
particular, the recent invention of glow discharge plasma actuators by Roth (2003) that can produce sufficient quantities of glow discharge plasma in the atmosphere pressure air helps to yield an increase in flow control performance.
864:
Ryan Durscher, Scott Stanfield, and Subrata Roy. Characterization and manipulation of the “saturation” effect by changing the surface temperature of a dielectric barrier discharge actuator Appl. Phys. Lett. 101, 252902 (2012); doi:
69:
by application of a high-voltage AC signal across the electrodes. Consequently, air molecules from the air surrounding the emitter electrode are ionized, and are accelerated towards the counter electrode through the electric field.
271:
is examined. A Study shows that not only is the shear layer outside of the shock tube affected by the plasma but the passage of the shock front and high-speed flow behind it also greatly influences the properties of the plasma
171:
results in induced velocities higher than the baseline case for a given voltage. In addition, Actuators with a shallow initial electrode are able to more efficiently impart momentum and mechanical power into the flow.
310:
may be employed as high-lift devices (as DBD slat and DBD spoiler) working at low Reynolds numbers and they can have the same effect of a conventional aileron for normal flight maneuvering, with low power consumption.
284:
On the other hand, the whole flight control strategy should be reconsidered taking account of characteristics of plasma actuators. One preliminary roll control system with DBD plasma actuators is shown in the figure.
218:
generate streamwise oriented vortices, which are useful to control the flow. Recent work showed significant turbulent drag reduction by modifying energetic modes of transitional flow using these actuators.
971:
Benard N, Balcon N and Moreau E, 2009, Electric wind produced by a surface dielectric barrier discharge operating over a wide range of relative humidity AIAA Aerospace Sciences Meeting, paper no. 488
1058:
Liu Y, Kolbakir C, Hu H and Hu H 2018 A comparison study on the thermal effects in DBD plasma actuation and electrical heating for aircraft icing mitigation Int. J. Heat Mass Transfer 124 319–30
390:
Various numerical models have been proposed to simulate plasma actuations in flow control. They are listed below according to the computational cost, from the most expensive to the cheapest.
263:
Interest in plasma actuators as active flow control devices is growing rapidly due to their lack of mechanical parts, light weight and high response frequency. The characteristics of a
1776:
Audier, Pierre; FĂ©not, Matthieu; Benard, Nicolas; Moreau, Eric (24 February 2016). "Film cooling effectiveness enhancement using surface dielectric barrier discharge plasma actuator".
323: 520:
Roth, J. R. (2003). "Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a one-atmosphere uniform glow discharge plasma (OAUGDP)".
115:
plasma actuator is given here as an example. The performance of plasma actuators is determined by dielectric materials and power inputs, later is limited by the qualities of
1219:
Huang, X., Zhang, X., and Li, Y. (2010) Broadband Flow-Induced Sound Control using Plasma Actuators, Journal of Sound and Vibration, Vol 329, No 13, pp. 2477–2489.
1309:
Dasgupta, Arnob, and Subrata Roy. "Three-dimensional plasma actuation for faster transition to turbulence." Journal of Physics D: Applied Physics 50.42 (2017): 425201.
1158:
Iranshahi, Kamran, and Mani, Mahmoud. "Dielectric Barrier Discharge Actuators Employed as Alternative to Conventional High-Lift Devices." Journal of Aircraft (2018):
598:
Chinga, Raul A.; Lin, Jenshan; Roy, Subrata (2014). "Self-Tuning High-Voltage High-Frequency Switching Power Amplifier for Atmospheric-Based Plasma Sterilization".
248: 962:
Anderson R, and Roy S, 2006, Preliminary Experiments of Barrier Discharge Plasma Actuators using Dry and Humid Air, AIAA Aerospace Sciences Meeting, paper no. 369
111:(AC) power supply, or a microwave microdischarge can be used for different configurations of plasma actuators. One schematic of an AC power supply design for a 2002: 210:
A plasma actuator induces a local flow speed perturbation, which will be developed downstream to a vortex sheet. As a result, plasma actuators can behave as
1111:
Samimy, M.; Kim, J. H.; Kastner, J.; Adamovich, I.; Utkin, Y. (2007). "Active control of high-speed and high-Reynolds-number jets using plasma actuators".
365:
with cooling holes for film cooling. Cool air is blown through the holes providing an insulating layer for the blade from the hot external environment.
373:, hot structures must be cooled to mitigate thermal stresses and structural failure. In those applications, one of the most common techniques used is 243:. The second one, and being more widely used, is to actively suppress the flow-field that is responsible to flow-induced noise (also known as 1873:
Cho, Young-Chang; Shyy, Wei (2011). "Adaptive flow control of low-Reynolds number aerodynamics using dielectric barrier discharge actuator".
2049: 334:
plasma actuator. Plasma-actuated heat transfer is one of the proposed applications of DBD plasma actuators, and needle plasma actuator.
1318:
Wang, Jin-Jun, Kwing-So Choi, Li-Hao Feng, Timothy N. Jukes, and Richard D. Whalley. "Recent developments in DBD plasma flow control."
1408:
Bhatia, A.; Roy, S.; Gosse, R. (2014). "Effect of Dielectric Barrier Discharge Plasma Actuators on Non-Equilibrium Hypersonic flows".
343: 55:
plasma actuators are widely utilized in airflow control applications. DBD is a type of electrical discharge commonly used in various
1016:
Cai, J.; Tian, Y.; Meng, X.; Han, X.; Zhang, D.; Hu, H. (2017). "An experimental study of icing control using DBD plasma actuator".
1678:
Hsu, Chih-Peng; Jewell-Larsen, Nels; Krichtafovitch, Igor; Montgomery, Stephen; Dibene, Ted; Mamishev, Alexander (August 2007).
1193: 702: 1492:
Wei, Q. K., Niu, Z. G., Chen, B. and Huang, X.*, "Bang-Bang Control Applied in Airfoil Roll Control with Plasma Actuators",
447: 369:
In engineering applications which experience significantly high temperature environments such as those encountered in gas
981:
Wicks, M; Thomas, F.O. (2015). "Effect of relative humidity on dielectric barrier discharge plasma actuator body force".
442: 215: 1625: 1586: 247:), using plasma actuators. It has been demonstrated that both tonal noise and broadband noise (difference can refer to 1816: 1804: 1725: 1068:
Lilley, A.J.; Roy, S.; Michels, L.; Roy, S. (2022). "Performance recovery of plasma actuators in wet conditions".
1741:
Wang, Chin-Cheng; Roy, Subrata (7 October 2008). "Electrodynamic enhancement of film cooling of turbine blades".
1319: 1229:
Li, Y.; Zhang, X.; Huang, X. (2010). "The Use of Plasma Actuators for Bluff Body Broadband Noise Control".
452: 327: 264: 136: 112: 772:
Multiple Encapsulated Electrode Plasma Actuators to Influence the Induced Velocity: Further Configurations
642:
Huang, X.; Chan, S.; Zhang, X. (2007). "An atmospheric plasma actuator for aeroacoustic applications".
307: 1713: 949: 806: 1275:
Peers, Ed; Huang, Xun; Ma, Zhaokai (2010). "A numerical model of plasma effects in flow control".
911:
The Influence of Electrode Configuration and Dielectric Temperature on Plasma Actuator Performance
685:
Durscher, Ryan; Roy, Subrata (2010). "Novel Multi-Barrier Plasma Actuators for Increased Thrust".
2059: 1445:"Influence of Shock Wave Propagation on Dielectric Barrier Discharge Plasma Actuator Performance" 415: 405: 1655:
Go, David; Maturana, Raul; Mongia, Rajiv; Garimella, Suresh; Fisher, Timothy (9 December 2008).
1373:
Shang, J.S.; et al. (2005). "Mechanisms of plasma actuators for hypersonic flow control".
1174:"MEE-DBD Plasma Actuator Effect on Aerodynamics of a NACA0015 Aerofoil: Separation and 3D Wake" 140: 1641: 934: 791: 495: 478: 298: 2017: 1975: 1960: 1931: 1882: 1845: 1750: 1598: 1557: 1518: 1459: 1417: 1382: 1284: 1238: 1120: 1077: 1025: 990: 839: 742: 651: 607: 564: 529: 411: 235: 57: 38: 8: 1471: 895: 108: 2021: 1979: 1935: 1886: 1849: 1754: 1602: 1561: 1522: 1463: 1421: 1386: 1288: 1242: 1124: 1081: 1029: 994: 843: 746: 655: 611: 568: 533: 2054: 1475: 1355: 1254: 1199: 1136: 1093: 1041: 708: 667: 623: 580: 394: 322:(or plasma-assisted heat transfer) is a method of cooling hot surfaces assisted by an 2003:"Variable structure model for flow-induced tonal noise control with plasma actuators" 1812: 1721: 1359: 1258: 1203: 1189: 1180:. Computational Methods in Applied Sciences. Vol. 52. Springer. pp. 75–92. 1140: 1097: 1045: 712: 698: 584: 576: 211: 1479: 755: 671: 627: 479:"Electrohydrodynamics and its applications: Recent advances and future perspectives" 292:
DBD Plasma actuators deployed on a NACA 0015 airfoil to do rudderless flight control
2025: 1983: 1939: 1898: 1894: 1890: 1853: 1785: 1758: 1691: 1660: 1637: 1606: 1565: 1526: 1467: 1425: 1394: 1390: 1345: 1296: 1292: 1246: 1181: 1128: 1085: 1033: 998: 922: 891: 847: 779: 771: 750: 690: 659: 615: 572: 537: 500: 490: 398: 331: 42: 1679: 1334:"Modification of energetic modes for transitional flow control (Featured Article)" 910: 420: 1509:
Roy, Subrata; Wang, Chin-Cheng (12 June 2008). "Plasma actuated heat transfer".
1185: 825:"Streamwise and Spanwise Plasma Actuators for Flow-Induced Cavity Noise Control" 222: 1834:"Flow actuation using radio frequency in partially-ionized collisional plasmas" 1089: 727: 505: 379: 104: 1987: 1695: 1664: 1250: 1132: 1037: 824: 2043: 1624:
Go, David; Maturana, Raul; Fisher, Timothy; Garimella, Suresh (2 July 2008).
1444: 876: 619: 370: 362: 244: 663: 90: 1811:. Vol. 51. Cambridge, Massachusetts: Academic Press. pp. 91–156. 1720:. Vol. 7. Cambridge, Massachusetts: Academic Press. pp. 321–379. 1659:. 2008 10th Electronics Packaging Technology Conference. pp. 737–742. 437: 374: 240: 1903: 1178:
Advances in Effective Flow Separation Control for Aircraft Drag Reduction
1920:"Force approximation for a plasma actuator operating in atmospheric air" 1677: 1546:"Efficient needle plasma actuators for flow control and surface cooling" 783: 728:"Development of DBD plasma actuators: The double encapsulated electrode" 19: 926: 694: 268: 1944: 1919: 1858: 1833: 1789: 1762: 1610: 1570: 1545: 1530: 1429: 1350: 1333: 1002: 851: 555:
Moreau, E. (2007). "Airflow control by non-thermal plasma actuators".
541: 267:(DBD) plasma actuator when exposed to an unsteady flow generated by a 251:) can be actively attenuated by a carefully designed plasma actuator. 66: 46: 2029: 1159: 162: 154: 143:
can be adopted to instantaneously adjust the strength of actuation.
1959:
Erfani, Rasool; Erfani, Tohid; Kontis, K.; Utyuzhnikov, S. (2013).
1585:
Go, David; Garimella, Suresh; Fisher, Timothy (14 September 2007).
1173: 34: 146: 1961:"Optimisation of multiple encapsulated electrode plasma actuator" 357: 126: 1544:
Zhao, Pengfei; Portugal, Sherlie; Roy, Subrata (20 July 2015).
428:
flow control has been proposed for a cavity flow control case.
116: 877:"Plasma actuator: Influence of dielectric surface temperature" 24:
DBD plasma actuators employed for airflow control applications
2001:
Huang, Xun; Chan, Sammie; Zhang, Xin; Gabriel, Steve (2008).
1958: 726:
Rasool Erfani, Zare-Behtash H.; Hale, C.; Kontis, K. (2015).
73: 239:
sound pressure could be attenuated when it passes through a
1807:. In Sparrow, Ephraim; Abraham, John; Gorman, John (eds.). 477:
Iranshahi, Kamran; Defraeye, Thijs; Rossi, Rene M. (2024).
288: 120: 344:
Thermal management (electronics) § Forced air cooling
1654: 1626:"Enhancement of external forced convection by ionic wind" 1623: 1110: 254: 1775: 725: 1657:
Ionic Winds for Enhanced Cooling in Portable Platforms
476: 2000: 1803:
Acharya, Sumanta; Kanani, Yousef (11 November 2017).
1680:"Miniaturization of Electrostatic Fluid Accelerators" 98: 909:
Erfani, Rasool; Hale, Craig; Kontis, Konstantinos. "
1443:Rasool Erfani, Zare-Behtash H.; Kontis, K. (2012). 1442: 1171: 1067: 875:Rasool Erfani, Zare-Behtash H.; Kontis, K. (2012). 874: 1707: 1705: 1584: 37:currently being developed for active aerodynamic 2041: 1630:International Journal of Heat and Mass Transfer 1543: 483:International Journal of Heat and Mass Transfer 1702: 1407: 1015: 641: 1802: 1716:. In Irvine, Thomas; Hartnett, James (eds.). 1648: 94:Local flow speed induced by a plasma actuator 1796: 1274: 1228: 1215: 1213: 908: 597: 196: 150:Pulse-width modulation of plasma power input 1769: 1504: 1502: 1331: 980: 818: 816: 684: 178: 130:Driving circuits (E-type) of a power supply 45:actuators impart force in a similar way to 1587:"Ionic winds for locally enhanced cooling" 822: 1943: 1902: 1857: 1734: 1711: 1684:Journal of Microelectromechanical Systems 1569: 1537: 1349: 1210: 754: 635: 504: 494: 1917: 1805:"Advances in Film Cooling Heat Transfer" 1671: 1642:10.1016/j.ijheatmasstransfer.2008.05.012 1499: 1486: 1270: 1268: 813: 496:10.1016/j.ijheatmasstransfer.2024.125895 356: 287: 221: 166:One configuration of DBD plasma actuator 161: 158:One configuration of DBD plasma actuator 153: 145: 125: 89: 72: 18: 1918:Singh, Kunwar P.; Roy, Subrata (2008). 1872: 1740: 1712:Goldstein, Richard (28 February 1971). 1617: 1578: 1508: 230: 2042: 884:Experimental Thermal and Fluid Science 769: 554: 255:Supersonic and hypersonic flow control 1452:Journal of Physics D: Applied Physics 1372: 1265: 1154: 1152: 1150: 1070:Journal of Physics D: Applied Physics 896:10.1016/j.expthermflusci.2012.04.023 519: 472: 470: 468: 448:Wingless Electromagnetic Air Vehicle 187: 1831: 644:IEEE Transactions on Plasma Science 600:IEEE Transactions on Plasma Science 443:Serpentine geometry plasma actuator 216:Serpentine geometry plasma actuator 205: 13: 2050:Plasma technology and applications 1496:, 2012, accepted (arXiv:1204.2491) 1172:Rasool Erfani; Kontis, K. (2020). 1147: 404:Electricity modeling coupled with 99:Power supply and electrode layouts 77:Glow of plasma actuator discharges 53:Dielectric Barrier Discharge (DBD) 26:(Adapted with permission from ). 14: 2071: 1160:https://doi.org/10.2514/1.C034690 465: 337: 275: 1968:Aerospace Science and Technology 314: 1994: 1952: 1911: 1866: 1825: 1436: 1401: 1366: 1325: 1312: 1303: 1222: 1165: 1104: 1061: 1052: 1009: 974: 965: 956: 902: 868: 858: 756:10.1016/j.actaastro.2014.12.016 352: 324:electrostatic fluid accelerator 81: 1895:10.1016/j.paerosci.2011.06.005 1875:Progress in Aerospace Sciences 1472:10.1088/0022-3727/45/22/225201 1395:10.1016/j.paerosci.2005.11.001 1375:Progress in Aerospace Sciences 1320:Progress in Aerospace Sciences 1297:10.1016/j.physleta.2009.08.046 763: 719: 678: 591: 548: 513: 1: 1332:Dasgupta, A; Roy, S. (2022). 823:Huang, X.; Zhang, X. (2008). 458: 423:to simulate plasma actuation. 320:Plasma-actuated heat transfer 453:Dielectric barrier discharge 328:dielectric barrier discharge 265:dielectric barrier discharge 137:electromagnetic interference 113:dielectric barrier discharge 7: 1749:(73305): 073305–073305–10. 1186:10.1007/978-3-030-29688-9_4 431: 385: 308:serpentine plasma actuators 10: 2076: 1924:Journal of Applied Physics 1743:Journal of Applied Physics 1597:(53302): 053302–053302–8. 1591:Journal of Applied Physics 1410:Journal of Applied Physics 1113:Journal of Fluid Mechanics 577:10.1088/0022-3727/40/3/s01 341: 1988:10.1016/j.ast.2012.02.020 1809:Advances in Heat Transfer 1718:Advances in Heat Transfer 1696:10.1109/JMEMS.2007.899336 1665:10.1109/EPTC.2008.4763520 1251:10.1007/s00348-009-0806-3 1133:10.1017/s0022112007004867 1038:10.1007/s00348-017-2378-y 330:(DBD) plasma actuator or 226:Plasma induced flow field 197:Flow control applications 58:Electrohydrodynamic (EHD) 1494:AIAA Journal of Aircraft 1090:10.1088/1361-6463/ac472d 770:Erfani, Rasool (2012). " 620:10.1109/TPS.2014.2328900 179:Influence of temperature 1838:Applied Physics Letters 1778:Applied Physics Letters 1550:Applied Physics Letters 1511:Applied Physics Letters 838:(3): 037101–037101–10. 664:10.1109/tps.2007.896781 416:Navier-Stokes equations 406:Navier-Stokes equations 1930:(1): 013305–013305–6. 557:J. Phys. D: Appl. Phys 366: 293: 249:tonal versus broadband 227: 167: 159: 151: 141:Pulse-width modulation 131: 95: 78: 27: 1832:Roy, Subrata (2005). 1231:Experiments in Fluids 1018:Experiments in Fluids 360: 291: 225: 165: 157: 149: 129: 93: 76: 22: 1636:(25–26): 6047–6053. 1283:(13–14): 1501–1504. 412:Lumped element model 236:Active noise control 231:Active noise control 2022:2008AIAAJ..46..241H 1980:2013AeST...26..120E 1936:2008JAP...103a3305S 1887:2011PrAeS..47..495C 1850:2005ApPhL..86j1502R 1755:2008JAP...104g3305W 1603:2007JAP...102e3302G 1562:2015ApPhL.107c3501Z 1523:2008ApPhL..92w1501R 1464:2012JPhD...45v5201E 1422:2014JAP...116p4904B 1387:2005PrAeS..41..642S 1289:2010PhLA..374.1501P 1243:2010ExFl...49..367L 1125:2007JFM...578..305S 1082:2022JPhD...55o5201L 1030:2017ExFl...58..102C 995:2015AIAAJ..53.2801W 844:2008PhFl...20c7101H 784:10.2514/6.2010-5106 747:2015AcAau.109..132E 656:2007ITPS...35..693H 612:2014ITPS...42.1861C 569:2007JPhD...40..605M 534:2003PhPl...10.2117R 506:20.500.11850/683872 109:alternating current 1517:(231501): 231501. 927:10.2514/6.2011-955 695:10.2514/6.2010-965 522:Physics of Plasmas 395:Monte carlo method 367: 294: 228: 168: 160: 152: 132: 96: 79: 28: 1945:10.1063/1.2827484 1859:10.1063/1.1879097 1790:10.1063/1.4942606 1763:10.1063/1.2990074 1611:10.1063/1.2776164 1571:10.1063/1.4927051 1556:(33501): 033501. 1531:10.1063/1.2938886 1430:10.1063/1.4898862 1351:10.1063/5.0078083 1322:62 (2013): 52-78. 1277:Physics Letters A 1195:978-3-030-29688-9 1003:10.2514/1.J053810 942:External link in 865:10.1063/1.4772004 852:10.1063/1.2890448 832:Physics of Fluids 799:External link in 735:Acta Astronautica 704:978-1-60086-959-4 542:10.1063/1.1564823 299:bang–bang control 212:vortex generators 188:Influence of rain 2067: 2034: 2033: 2007: 1998: 1992: 1991: 1965: 1956: 1950: 1949: 1947: 1915: 1909: 1908: 1906: 1870: 1864: 1863: 1861: 1829: 1823: 1822: 1800: 1794: 1793: 1773: 1767: 1766: 1738: 1732: 1731: 1709: 1700: 1699: 1675: 1669: 1668: 1652: 1646: 1645: 1621: 1615: 1614: 1582: 1576: 1575: 1573: 1541: 1535: 1534: 1506: 1497: 1490: 1484: 1483: 1449: 1440: 1434: 1433: 1405: 1399: 1398: 1370: 1364: 1363: 1353: 1329: 1323: 1316: 1310: 1307: 1301: 1300: 1272: 1263: 1262: 1226: 1220: 1217: 1208: 1207: 1169: 1163: 1156: 1145: 1144: 1108: 1102: 1101: 1065: 1059: 1056: 1050: 1049: 1013: 1007: 1006: 989:(9): 2801–2805. 978: 972: 969: 963: 960: 954: 953: 947: 946: 940: 938: 930: 906: 900: 899: 881: 872: 866: 862: 856: 855: 829: 820: 811: 810: 804: 803: 797: 795: 787: 767: 761: 760: 758: 732: 723: 717: 716: 682: 676: 675: 639: 633: 631: 606:(7): 1861–1869. 595: 589: 588: 552: 546: 545: 528:(5): 1166–1172. 517: 511: 510: 508: 498: 474: 399:particle-in-cell 332:corona discharge 326:(EFA) such as a 206:Vortex generator 31:Plasma actuators 16:Type of actuator 2075: 2074: 2070: 2069: 2068: 2066: 2065: 2064: 2040: 2039: 2038: 2037: 2030:10.2514/1.30852 2005: 1999: 1995: 1963: 1957: 1953: 1916: 1912: 1871: 1867: 1830: 1826: 1819: 1801: 1797: 1774: 1770: 1739: 1735: 1728: 1710: 1703: 1676: 1672: 1653: 1649: 1622: 1618: 1583: 1579: 1542: 1538: 1507: 1500: 1491: 1487: 1447: 1441: 1437: 1406: 1402: 1371: 1367: 1330: 1326: 1317: 1313: 1308: 1304: 1273: 1266: 1227: 1223: 1218: 1211: 1196: 1170: 1166: 1157: 1148: 1109: 1105: 1066: 1062: 1057: 1053: 1014: 1010: 979: 975: 970: 966: 961: 957: 944: 943: 941: 932: 931: 907: 903: 879: 873: 869: 863: 859: 827: 821: 814: 801: 800: 798: 789: 788: 768: 764: 730: 724: 720: 705: 683: 679: 640: 636: 596: 592: 553: 549: 518: 514: 475: 466: 461: 434: 421:Surrogate model 388: 361:Rendering of a 355: 346: 340: 317: 278: 257: 233: 208: 199: 190: 181: 101: 84: 17: 12: 11: 5: 2073: 2063: 2062: 2060:Electrostatics 2057: 2052: 2036: 2035: 2016:(1): 241–250. 1993: 1974:(1): 120–127. 1951: 1910: 1881:(7): 495–521. 1865: 1844:(10): 101502. 1824: 1817: 1795: 1768: 1733: 1726: 1714:"Film Cooling" 1701: 1690:(4): 809–815. 1670: 1647: 1616: 1577: 1536: 1498: 1485: 1458:(22): 225201. 1435: 1416:(16): 164904. 1400: 1381:(8): 642–668. 1365: 1324: 1311: 1302: 1264: 1237:(2): 367–377. 1221: 1209: 1194: 1164: 1146: 1103: 1076:(15): 155201. 1060: 1051: 1008: 973: 964: 955: 901: 867: 857: 812: 762: 718: 703: 677: 650:(3): 693–695. 634: 590: 563:(3): 605–636. 547: 512: 463: 462: 460: 457: 456: 455: 450: 445: 440: 433: 430: 425: 424: 418: 409: 402: 387: 384: 380:boundary layer 371:turbine blades 354: 351: 339: 338:Forced cooling 336: 316: 313: 277: 276:Flight control 274: 256: 253: 232: 229: 207: 204: 198: 195: 189: 186: 180: 177: 105:direct current 100: 97: 83: 80: 61:applications. 33:are a type of 15: 9: 6: 4: 3: 2: 2072: 2061: 2058: 2056: 2053: 2051: 2048: 2047: 2045: 2031: 2027: 2023: 2019: 2015: 2011: 2004: 1997: 1989: 1985: 1981: 1977: 1973: 1969: 1962: 1955: 1946: 1941: 1937: 1933: 1929: 1925: 1921: 1914: 1905: 1904:2027.42/77022 1900: 1896: 1892: 1888: 1884: 1880: 1876: 1869: 1860: 1855: 1851: 1847: 1843: 1839: 1835: 1828: 1820: 1818:9780128124116 1814: 1810: 1806: 1799: 1791: 1787: 1783: 1779: 1772: 1764: 1760: 1756: 1752: 1748: 1744: 1737: 1729: 1727:9780080575612 1723: 1719: 1715: 1708: 1706: 1697: 1693: 1689: 1685: 1681: 1674: 1666: 1662: 1658: 1651: 1643: 1639: 1635: 1631: 1627: 1620: 1612: 1608: 1604: 1600: 1596: 1592: 1588: 1581: 1572: 1567: 1563: 1559: 1555: 1551: 1547: 1540: 1532: 1528: 1524: 1520: 1516: 1512: 1505: 1503: 1495: 1489: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1446: 1439: 1431: 1427: 1423: 1419: 1415: 1411: 1404: 1396: 1392: 1388: 1384: 1380: 1376: 1369: 1361: 1357: 1352: 1347: 1343: 1339: 1335: 1328: 1321: 1315: 1306: 1298: 1294: 1290: 1286: 1282: 1278: 1271: 1269: 1260: 1256: 1252: 1248: 1244: 1240: 1236: 1232: 1225: 1216: 1214: 1205: 1201: 1197: 1191: 1187: 1183: 1179: 1175: 1168: 1161: 1155: 1153: 1151: 1142: 1138: 1134: 1130: 1126: 1122: 1118: 1114: 1107: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1064: 1055: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1012: 1004: 1000: 996: 992: 988: 984: 977: 968: 959: 951: 936: 928: 924: 920: 916: 912: 905: 897: 893: 889: 885: 878: 871: 861: 853: 849: 845: 841: 837: 833: 826: 819: 817: 808: 793: 785: 781: 778:: 2010–5106. 777: 773: 766: 757: 752: 748: 744: 740: 736: 729: 722: 714: 710: 706: 700: 696: 692: 688: 687:AIAA-2010-965 681: 673: 669: 665: 661: 657: 653: 649: 645: 638: 629: 625: 621: 617: 613: 609: 605: 601: 594: 586: 582: 578: 574: 570: 566: 562: 558: 551: 543: 539: 535: 531: 527: 523: 516: 507: 502: 497: 492: 488: 484: 480: 473: 471: 469: 464: 454: 451: 449: 446: 444: 441: 439: 436: 435: 429: 422: 419: 417: 414:coupled with 413: 410: 407: 403: 400: 396: 393: 392: 391: 383: 381: 376: 372: 364: 363:turbine blade 359: 350: 345: 335: 333: 329: 325: 321: 315:Heat transfer 312: 309: 303: 300: 290: 286: 282: 273: 270: 266: 261: 252: 250: 246: 245:aeroacoustics 242: 237: 224: 220: 217: 213: 203: 194: 185: 176: 175:10 m/s. 172: 164: 156: 148: 144: 142: 138: 128: 124: 122: 118: 114: 110: 106: 92: 88: 75: 71: 68: 62: 60: 59: 54: 50: 48: 44: 40: 36: 32: 25: 21: 2013: 2010:AIAA Journal 2009: 1996: 1971: 1967: 1954: 1927: 1923: 1913: 1878: 1874: 1868: 1841: 1837: 1827: 1808: 1798: 1781: 1777: 1771: 1746: 1742: 1736: 1717: 1687: 1683: 1673: 1656: 1650: 1633: 1629: 1619: 1594: 1590: 1580: 1553: 1549: 1539: 1514: 1510: 1493: 1488: 1455: 1451: 1438: 1413: 1409: 1403: 1378: 1374: 1368: 1341: 1338:AIP Advances 1337: 1327: 1314: 1305: 1280: 1276: 1234: 1230: 1224: 1177: 1167: 1116: 1112: 1106: 1073: 1069: 1063: 1054: 1024:(102): 102. 1021: 1017: 1011: 986: 983:AIAA Journal 982: 976: 967: 958: 945:|title= 935:cite journal 921:: 2011–955. 918: 914: 904: 887: 883: 870: 860: 835: 831: 802:|title= 792:cite journal 775: 765: 738: 734: 721: 686: 680: 647: 643: 637: 603: 599: 593: 560: 556: 550: 525: 521: 515: 486: 482: 438:Ion thruster 426: 389: 375:film cooling 368: 353:Film cooling 347: 319: 318: 304: 295: 283: 279: 262: 258: 241:plasma sheet 234: 209: 200: 191: 182: 173: 169: 133: 102: 85: 82:Introduction 63: 56: 52: 51: 39:flow control 30: 29: 23: 1119:: 305–330. 890:: 258–264. 741:: 132–143. 2044:Categories 1344:: 035149. 459:References 342:See also: 269:shock tube 67:electrodes 2055:Actuators 1784:(84103). 1360:247643333 1259:111154403 1204:210802539 1141:113467162 1098:245605031 1046:253846598 713:110805983 585:122231006 107:(DC), an 103:Either a 47:ionocraft 1480:55296513 672:25715165 628:19794626 432:See also 386:Modeling 35:actuator 2018:Bibcode 1976:Bibcode 1932:Bibcode 1883:Bibcode 1846:Bibcode 1751:Bibcode 1599:Bibcode 1558:Bibcode 1519:Bibcode 1460:Bibcode 1418:Bibcode 1383:Bibcode 1285:Bibcode 1239:Bibcode 1121:Bibcode 1078:Bibcode 1026:Bibcode 991:Bibcode 840:Bibcode 743:Bibcode 652:Bibcode 608:Bibcode 565:Bibcode 530:Bibcode 1815:  1724:  1478:  1358:  1257:  1202:  1192:  1139:  1096:  1044:  711:  701:  670:  626:  583:  117:MOSFET 43:Plasma 2006:(PDF) 1964:(PDF) 1476:S2CID 1448:(PDF) 1356:S2CID 1255:S2CID 1200:S2CID 1137:S2CID 1094:S2CID 1042:S2CID 880:(PDF) 828:(PDF) 731:(PDF) 709:S2CID 668:S2CID 624:S2CID 581:S2CID 397:plus 1813:ISBN 1722:ISBN 1190:ISBN 950:help 919:2012 915:AIAA 807:help 776:AIAA 699:ISBN 121:IGBT 2026:doi 1984:doi 1940:doi 1928:103 1899:hdl 1891:doi 1854:doi 1786:doi 1782:108 1759:doi 1747:104 1692:doi 1661:doi 1638:doi 1607:doi 1595:102 1566:doi 1554:107 1527:doi 1468:doi 1426:doi 1414:116 1391:doi 1346:doi 1293:doi 1281:374 1247:doi 1182:doi 1129:doi 1117:578 1086:doi 1034:doi 999:doi 923:doi 913:". 892:doi 848:doi 780:doi 774:". 751:doi 739:109 691:doi 660:doi 616:doi 573:doi 538:doi 501:hdl 491:doi 487:232 119:or 2046:: 2024:. 2014:46 2012:. 2008:. 1982:. 1972:26 1970:. 1966:. 1938:. 1926:. 1922:. 1897:. 1889:. 1879:47 1877:. 1852:. 1842:86 1840:. 1836:. 1780:. 1757:. 1745:. 1704:^ 1688:16 1686:. 1682:. 1634:51 1632:. 1628:. 1605:. 1593:. 1589:. 1564:. 1552:. 1548:. 1525:. 1515:92 1513:. 1501:^ 1474:. 1466:. 1456:45 1454:. 1450:. 1424:. 1412:. 1389:. 1379:41 1377:. 1354:. 1342:12 1340:. 1336:. 1291:. 1279:. 1267:^ 1253:. 1245:. 1235:49 1233:. 1212:^ 1198:. 1188:. 1176:. 1162:. 1149:^ 1135:. 1127:. 1115:. 1092:. 1084:. 1074:55 1072:. 1040:. 1032:. 1022:58 1020:. 997:. 987:53 985:. 939:: 937:}} 933:{{ 917:. 888:42 886:. 882:. 846:. 836:20 834:. 830:. 815:^ 796:: 794:}} 790:{{ 749:. 737:. 733:. 707:. 697:. 689:. 666:. 658:. 648:35 646:. 622:. 614:. 604:42 602:. 579:. 571:. 561:40 559:. 536:. 526:10 524:. 499:. 489:. 485:. 481:. 467:^ 139:. 123:. 41:. 2032:. 2028:: 2020:: 1990:. 1986:: 1978:: 1948:. 1942:: 1934:: 1907:. 1901:: 1893:: 1885:: 1862:. 1856:: 1848:: 1821:. 1792:. 1788:: 1765:. 1761:: 1753:: 1730:. 1698:. 1694:: 1667:. 1663:: 1644:. 1640:: 1613:. 1609:: 1601:: 1574:. 1568:: 1560:: 1533:. 1529:: 1521:: 1482:. 1470:: 1462:: 1432:. 1428:: 1420:: 1397:. 1393:: 1385:: 1362:. 1348:: 1299:. 1295:: 1287:: 1261:. 1249:: 1241:: 1206:. 1184:: 1143:. 1131:: 1123:: 1100:. 1088:: 1080:: 1048:. 1036:: 1028:: 1005:. 1001:: 993:: 952:) 948:( 929:. 925:: 898:. 894:: 854:. 850:: 842:: 809:) 805:( 786:. 782:: 759:. 753:: 745:: 715:. 693:: 674:. 662:: 654:: 632:. 630:. 618:: 610:: 587:. 575:: 567:: 544:. 540:: 532:: 509:. 503:: 493:: 408:; 401:;

Index


actuator
flow control
Plasma
ionocraft
Electrohydrodynamic (EHD)
electrodes


direct current
alternating current
dielectric barrier discharge
MOSFET
IGBT

electromagnetic interference
Pulse-width modulation



vortex generators
Serpentine geometry plasma actuator

Active noise control
plasma sheet
aeroacoustics
tonal versus broadband
dielectric barrier discharge
shock tube

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑