Knowledge

Aeroacoustics

Source 📝

17: 303: 2068: 1776: 125: 1132: 812: 1311:
In aeroacoustic studies, both theoretical and computational efforts are made to solve for the acoustic source terms in Lighthill's equation in order to make statements regarding the relevant aerodynamic noise generation mechanisms present. Finally, it is important to realize that Lighthill's equation
116:. This is often called "Lighthill's analogy" because it presents a model for the acoustic field that is not, strictly speaking, based on the physics of flow-induced/generated noise, but rather on the analogy of how they might be represented through the governing equations of a compressible fluid. 1847: 1562: 298:{\displaystyle {\begin{aligned}{\frac {\partial \rho }{\partial t}}+\nabla \cdot \left(\rho \mathbf {v} \right)&=0,\\{\frac {\partial }{\partial t}}\left(\rho \mathbf {v} \right)+\nabla \cdot (\rho \mathbf {v} \mathbf {v} )&=-\nabla p+\nabla \cdot {\boldsymbol {\tau }},\end{aligned}}} 887: 644: 2063:{\displaystyle {\frac {1}{c_{0}^{2}}}{\frac {\partial ^{2}p}{\partial t^{2}}}-\nabla ^{2}p=\rho _{0}{\frac {\partial ^{2}{\hat {T}}_{ij}}{\partial x_{i}\partial x_{j}}},\quad {\text{where}}\quad {\hat {T}}_{ij}=v_{i}v_{j}.} 1771:{\displaystyle {\frac {1}{c_{0}^{2}}}{\frac {\partial ^{2}p}{\partial t^{2}}}-\nabla ^{2}p={\frac {\partial ^{2}{\tilde {T}}_{ij}}{\partial x_{i}\partial x_{j}}},\quad {\text{where}}\quad {\tilde {T}}_{ij}=\rho v_{i}v_{j}.} 553: 1127:{\displaystyle {\frac {\partial ^{2}\rho }{\partial t^{2}}}-c_{0}^{2}\nabla ^{2}\rho ={\frac {\partial ^{2}T_{ij}}{\partial x_{i}\partial x_{j}}},\quad T_{ij}=\rho v_{i}v_{j}+(p-c_{0}^{2}\rho )\delta _{ij}-\tau _{ij}.} 807:{\displaystyle {\frac {\partial ^{2}\rho }{\partial t^{2}}}-c_{0}^{2}\nabla ^{2}\rho =\nabla \nabla :\mathbf {T} ,\quad \mathbf {T} =\rho \mathbf {v} \mathbf {v} +(p-c_{0}^{2}\rho )\mathbf {I} -{\boldsymbol {\tau }},} 130: 2219: 1473: 1269: 2143: 601: 417: 390: 2252: 1812: 1205: 838: 71:
The modern discipline of aeroacoustics can be said to have originated with the first publication of Lighthill in the early 1950s, when noise generation associated with the
45:
Although no complete scientific theory of the generation of noise by aerodynamic flows has been established, most practical aeroacoustic analysis relies upon the so-called
864: 348: 2285: 1299: 1839: 1500: 1165: 2337: 2098: 1554: 1529:
are the (characteristic) density and pressure of the fluid in its equilibrium state. Then, upon substitution the assumed relation between pressure and density into
1527: 1389: 628: 326: 2317: 1369: 368: 1308:
on the fluid as it effects are small in turbulent noise generation problems such as the jet noise. Lighthill provides an in-depth discussion of this matter.
38:
forces interacting with surfaces. Noise generation can also be associated with periodically varying flows. A notable example of this phenomenon is the
437: 102: 2292: 2617: 2605: 63:
of "classical" (i.e. linear) acoustics in the left-hand side with the remaining terms as sources in the right-hand side.
2151: 1405: 868: 2582: 2563: 2544: 1214: 2353:
However, even after the above deliberations, it is still not clear whether one is justified in using an inherently
1167:, may play a significant role in the generation of noise depending upon flow conditions considered. The first term 2103: 634:
in the medium in its equilibrium (or quiescent) state, from both sides of the last equation results in celebrated
561: 395: 1398:
If one is to allow for approximations to be made, a simpler way (without necessarily assuming the fluid is
373: 2384: 84: 2224: 1784: 1170: 1336:
derive an aeroacoustic equation analogous to Lighthill's (i.e., an equation for sound generated by "
820: 59:. whereby the governing equations of motion of the fluid are coerced into a form reminiscent of the 56: 847: 331: 2651: 2257: 2221:. The answer is affirmative, if the flow satisfies certain basic assumptions. In particular, if 1274: 2296: 1817: 1478: 2365:
as the textbooks on the subject show: e.g., Naugolnykh and Ostrovsky and Hamilton and Morfey.
2646: 2558:, Cambridge Texts in Applied Mathematics vol. 9, Cambridge University Press (1998) chap. 1. 2521:
M. J. Lighthill, "On Sound Generated Aerodynamically. II. Turbulence as a Source of Sound,"
2446:
M. J. Lighthill, "On Sound Generated Aerodynamically. II. Turbulence as a Source of Sound,"
1140: 16: 2482:, Cambridge Texts in Applied Mathematics vol. 9, Cambridge University Press (1998) chap. 1. 2340: 2322: 2076: 1532: 1505: 1374: 606: 311: 47: 1391:
of the fluid. Furthermore, unlike Lighthill's equation, Landau and Lifshitz's equation is
8: 2362: 1341: 2614: 2641: 2302: 1841:) everywhere, then we obtain exactly the equation given in Landau and Lifshitz, namely 1354: 635: 353: 427:). Differentiating the conservation of mass equation with respect to time, taking the 2578: 2559: 2540: 2347: 878: 2586: 2567: 2592: 1208: 1316:
in the sense that no approximations of any kind have been made in its derivation.
2621: 2609: 2597: 2374: 1333: 1325: 109: 52: 548:{\displaystyle {\frac {\partial ^{2}\rho }{\partial t^{2}}}=\nabla \cdot \left.} 2656: 2548: 1399: 841: 631: 424: 88: 2602: 2539:
2ed., Course of Theoretical Physics vol. 6, Butterworth-Heinemann (1987) §75.
431:
of the last equation and subtracting the latter from the former, we arrive at
2635: 2469:
2ed., Course of Theoretical Physics vol. 6, Butterworth-Heinemann (1987) §75.
1271:
describes non-linear acoustic generation processes and finally the last term
874: 105: 60: 39: 2577:, eds. M. F. Hamilton and D. T. Blackstock, Academic Press (1998) chap. 3. 2379: 92: 2507:
M. J. Lighthill, "On Sound Generated Aerodynamically. I. General Theory,"
2495:, eds. M. F. Hamilton and D. T. Blackstock, Academic Press (1998) chap. 3. 2427:
M. J. Lighthill, "On Sound Generated Aerodynamically. I. General Theory,"
1207:
describes inertial effect of the flow (or Reynolds' Stress, developed by
35: 2344: 1402:) to obtain an approximation to Lighthill's equation is to assume that 1329: 428: 72: 2148:
Of course, one might wonder whether we are justified in assuming that
2529: 2515: 2402:
Williams, J. E. Ffowcs, "The Acoustic Analogy—Thirty Years On"
1337: 1305: 113: 31: 27: 1348:
fluid. The inhomogeneous wave equation that they obtain is for the
1345: 1301:
corresponds to sound generation/attenuation due to viscous forces.
2626: 95: 1781:
And for the case when the fluid is indeed incompressible, i.e.
420: 2361:
wave equation. Nevertheless, it is a very common practice in
98: 1319: 1304:
In practice, it is customary to neglect the effects of
119:
The continuity and the momentum equations are given by
2287:, then the assumed relation follows directly from the 1556:
we obtain the equation (for an inviscid fluid, σ = 0)
75:
was beginning to be placed under scientific scrutiny.
2325: 2305: 2260: 2227: 2154: 2106: 2079: 1850: 1820: 1787: 1565: 1535: 1508: 1481: 1408: 1377: 1357: 1277: 1217: 1173: 1143: 890: 850: 823: 647: 609: 564: 440: 398: 376: 356: 334: 314: 128: 2573:
M. F. Hamilton and C. L. Morfey, "Model Equations,"
2491:
M. F. Hamilton and C. L. Morfey, "Model Equations,"
2073:
A similar approximation [in the context of equation
2331: 2311: 2279: 2246: 2214:{\displaystyle p-p_{0}=c_{0}^{2}(\rho -\rho _{0})} 2213: 2137: 2092: 2062: 1833: 1806: 1770: 1548: 1521: 1494: 1468:{\displaystyle p-p_{0}=c_{0}^{2}(\rho -\rho _{0})} 1467: 1383: 1363: 1293: 1263: 1199: 1159: 1126: 858: 832: 806: 622: 595: 547: 411: 384: 362: 342: 320: 297: 1137:Each of the acoustic source terms, i.e. terms in 2633: 2593:Aeroacoustics at the University of Mississippi 1264:{\displaystyle (p-c_{0}^{2}\rho )\delta _{ij}} 2442: 2440: 2423: 2421: 2419: 2417: 2415: 2299:). In fact, the approximate relation between 42:produced by wind blowing over fixed objects. 2138:{\displaystyle T\approx \rho _{0}{\hat {T}}} 873:. The Lighthill equation is an inhomogenous 2437: 2412: 2598:Aeroacoustics at the University of Leuven 2396: 2089: 1545: 881:, Lighthill’s equation can be written as 596:{\displaystyle c_{0}^{2}\nabla ^{2}\rho } 30:that studies noise generation via either 412:{\displaystyle \mathbf {v} \mathbf {v} } 392:is the viscous stress tensor. Note that 15: 797: 533: 378: 284: 78: 2634: 2603:International Journal of Aeroacoustics 2461: 2459: 2291:theory of sound waves (see, e.g., the 108:, thereby making a connection between 2556:Nonlinear Wave Processes in Acoustics 2480:Nonlinear Wave Processes in Acoustics 1320:Landau–Lifshitz aeroacoustic equation 385:{\displaystyle {\boldsymbol {\tau }}} 2615:Examples in Aeroacoustics from NASA 2456: 13: 2247:{\displaystyle \rho \ll \rho _{0}} 1986: 1973: 1940: 1911: 1891: 1877: 1691: 1678: 1645: 1626: 1606: 1592: 1000: 987: 963: 944: 909: 895: 869:Lighthill turbulence stress tensor 827: 824: 719: 716: 701: 666: 652: 581: 526: 517: 489: 478: 459: 445: 277: 268: 233: 203: 199: 156: 144: 136: 14: 2668: 2535:L. D. Landau and E. M. Lifshitz, 2501: 2465:L. D. Landau and E. M. Lifshitz, 2554:K. Naugolnykh and L. Ostrovsky, 2478:K. Naugolnykh and L. Ostrovsky, 852: 789: 751: 746: 735: 726: 507: 502: 405: 400: 336: 251: 246: 221: 171: 2011: 2005: 1807:{\displaystyle \rho =\rho _{0}} 1716: 1710: 1395:exact; it is an approximation. 1200:{\displaystyle \rho v_{i}v_{j}} 1019: 733: 2485: 2472: 2208: 2189: 2145:, is suggested by Lighthill . 2129: 2086: 2080: 2019: 1956: 1724: 1661: 1542: 1536: 1462: 1443: 1245: 1218: 1089: 1062: 833:{\displaystyle \nabla \nabla } 785: 758: 511: 495: 255: 239: 1: 2390: 1340:" fluid motion), but for the 1814:(for some positive constant 1371:rather than for the density 859:{\displaystyle \mathbf {T} } 343:{\displaystyle \mathbf {v} } 7: 2385:Computational aeroacoustics 2368: 1324:In their classical text on 10: 2673: 2514:(1952) pp. 564–587. 2339:that we assumed is just a 2293:linearized Euler equations 2280:{\displaystyle p\ll p_{0}} 1294:{\displaystyle \tau _{ij}} 1211:) whereas the second term 370:is the fluid pressure and 66: 55:in the 1950s while at the 1834:{\displaystyle \rho _{0}} 1495:{\displaystyle \rho _{0}} 83:Lighthill rearranged the 57:University of Manchester 2357:relation to simplify a 350:is the velocity field, 85:Navier–Stokes equations 2528:(1954) pp. 1–32. 2333: 2313: 2297:acoustic wave equation 2281: 2248: 2215: 2139: 2094: 2064: 1835: 1808: 1772: 1550: 1523: 1496: 1469: 1385: 1365: 1295: 1265: 1201: 1161: 1160:{\displaystyle T_{ij}} 1128: 871:for the acoustic field 860: 834: 808: 624: 597: 549: 413: 386: 364: 344: 328:is the fluid density, 322: 299: 20: 2530:This article on JSTOR 2523:Proc. R. Soc. Lond. A 2516:This article on JSTOR 2509:Proc. R. Soc. Lond. A 2448:Proc. R. Soc. Lond. A 2429:Proc. R. Soc. Lond. A 2334: 2332:{\displaystyle \rho } 2314: 2282: 2249: 2216: 2140: 2095: 2093:{\displaystyle (*)\,} 2065: 1836: 1809: 1773: 1551: 1549:{\displaystyle (*)\,} 1524: 1522:{\displaystyle p_{0}} 1497: 1470: 1386: 1384:{\displaystyle \rho } 1366: 1296: 1266: 1202: 1162: 1129: 861: 835: 809: 625: 623:{\displaystyle c_{0}} 598: 550: 414: 387: 365: 345: 323: 321:{\displaystyle \rho } 300: 19: 2434:(1952) pp. 564-587. 2409:(1984) pp. 113-124. 2341:linear approximation 2323: 2303: 2258: 2225: 2152: 2104: 2077: 1848: 1818: 1785: 1563: 1533: 1506: 1479: 1406: 1375: 1355: 1275: 1215: 1171: 1141: 888: 848: 821: 645: 607: 562: 438: 396: 374: 354: 332: 312: 126: 79:Lighthill's equation 48:aeroacoustic analogy 2587:Preview from Google 2575:Nonlinear Acoustics 2568:Preview from Google 2549:Preview from Amazon 2493:Nonlinear Acoustics 2363:nonlinear acoustics 2188: 1870: 1585: 1442: 1342:incompressible flow 1241: 1085: 942: 781: 699: 579: 87:, which govern the 2627:Aeroacoustics.info 2620:2016-03-04 at the 2608:2005-10-30 at the 2404:IMA J. Appl. Math. 2329: 2309: 2277: 2244: 2211: 2174: 2135: 2090: 2060: 1856: 1831: 1804: 1768: 1571: 1546: 1519: 1492: 1465: 1428: 1381: 1361: 1291: 1261: 1227: 1197: 1157: 1124: 1071: 928: 856: 830: 804: 767: 685: 638:of aeroacoustics, 636:Lighthill equation 620: 593: 565: 545: 409: 382: 360: 340: 318: 295: 293: 51:, proposed by Sir 21: 2348:equation of state 2312:{\displaystyle p} 2132: 2022: 2009: 2000: 1959: 1905: 1871: 1727: 1714: 1705: 1664: 1620: 1586: 1364:{\displaystyle p} 1014: 923: 879:Einstein notation 866:is the so-called 680: 473: 363:{\displaystyle p} 210: 151: 2664: 2496: 2489: 2483: 2476: 2470: 2463: 2454: 2453:(1954) pp. 1-32. 2444: 2435: 2425: 2410: 2400: 2338: 2336: 2335: 2330: 2318: 2316: 2315: 2310: 2286: 2284: 2283: 2278: 2276: 2275: 2253: 2251: 2250: 2245: 2243: 2242: 2220: 2218: 2217: 2212: 2207: 2206: 2187: 2182: 2170: 2169: 2144: 2142: 2141: 2136: 2134: 2133: 2125: 2122: 2121: 2099: 2097: 2096: 2091: 2069: 2067: 2066: 2061: 2056: 2055: 2046: 2045: 2033: 2032: 2024: 2023: 2015: 2010: 2007: 2001: 1999: 1998: 1997: 1985: 1984: 1971: 1970: 1969: 1961: 1960: 1952: 1948: 1947: 1937: 1935: 1934: 1919: 1918: 1906: 1904: 1903: 1902: 1889: 1885: 1884: 1874: 1872: 1869: 1864: 1852: 1840: 1838: 1837: 1832: 1830: 1829: 1813: 1811: 1810: 1805: 1803: 1802: 1777: 1775: 1774: 1769: 1764: 1763: 1754: 1753: 1738: 1737: 1729: 1728: 1720: 1715: 1712: 1706: 1704: 1703: 1702: 1690: 1689: 1676: 1675: 1674: 1666: 1665: 1657: 1653: 1652: 1642: 1634: 1633: 1621: 1619: 1618: 1617: 1604: 1600: 1599: 1589: 1587: 1584: 1579: 1567: 1555: 1553: 1552: 1547: 1528: 1526: 1525: 1520: 1518: 1517: 1501: 1499: 1498: 1493: 1491: 1490: 1474: 1472: 1471: 1466: 1461: 1460: 1441: 1436: 1424: 1423: 1390: 1388: 1387: 1382: 1370: 1368: 1367: 1362: 1300: 1298: 1297: 1292: 1290: 1289: 1270: 1268: 1267: 1262: 1260: 1259: 1240: 1235: 1209:Osborne Reynolds 1206: 1204: 1203: 1198: 1196: 1195: 1186: 1185: 1166: 1164: 1163: 1158: 1156: 1155: 1133: 1131: 1130: 1125: 1120: 1119: 1104: 1103: 1084: 1079: 1058: 1057: 1048: 1047: 1032: 1031: 1015: 1013: 1012: 1011: 999: 998: 985: 984: 983: 971: 970: 960: 952: 951: 941: 936: 924: 922: 921: 920: 907: 903: 902: 892: 865: 863: 862: 857: 855: 839: 837: 836: 831: 813: 811: 810: 805: 800: 792: 780: 775: 754: 749: 738: 729: 709: 708: 698: 693: 681: 679: 678: 677: 664: 660: 659: 649: 629: 627: 626: 621: 619: 618: 602: 600: 599: 594: 589: 588: 578: 573: 554: 552: 551: 546: 541: 537: 536: 510: 505: 474: 472: 471: 470: 457: 453: 452: 442: 418: 416: 415: 410: 408: 403: 391: 389: 388: 383: 381: 369: 367: 366: 361: 349: 347: 346: 341: 339: 327: 325: 324: 319: 304: 302: 301: 296: 294: 287: 254: 249: 229: 225: 224: 211: 209: 198: 179: 175: 174: 152: 150: 142: 134: 34:fluid motion or 2672: 2671: 2667: 2666: 2665: 2663: 2662: 2661: 2632: 2631: 2622:Wayback Machine 2610:Wayback Machine 2537:Fluid Mechanics 2504: 2499: 2490: 2486: 2477: 2473: 2467:Fluid Mechanics 2464: 2457: 2445: 2438: 2426: 2413: 2401: 2397: 2393: 2375:Acoustic theory 2371: 2343:to the generic 2324: 2321: 2320: 2304: 2301: 2300: 2271: 2267: 2259: 2256: 2255: 2238: 2234: 2226: 2223: 2222: 2202: 2198: 2183: 2178: 2165: 2161: 2153: 2150: 2149: 2124: 2123: 2117: 2113: 2105: 2102: 2101: 2078: 2075: 2074: 2051: 2047: 2041: 2037: 2025: 2014: 2013: 2012: 2006: 1993: 1989: 1980: 1976: 1972: 1962: 1951: 1950: 1949: 1943: 1939: 1938: 1936: 1930: 1926: 1914: 1910: 1898: 1894: 1890: 1880: 1876: 1875: 1873: 1865: 1860: 1851: 1849: 1846: 1845: 1825: 1821: 1819: 1816: 1815: 1798: 1794: 1786: 1783: 1782: 1759: 1755: 1749: 1745: 1730: 1719: 1718: 1717: 1711: 1698: 1694: 1685: 1681: 1677: 1667: 1656: 1655: 1654: 1648: 1644: 1643: 1641: 1629: 1625: 1613: 1609: 1605: 1595: 1591: 1590: 1588: 1580: 1575: 1566: 1564: 1561: 1560: 1534: 1531: 1530: 1513: 1509: 1507: 1504: 1503: 1486: 1482: 1480: 1477: 1476: 1456: 1452: 1437: 1432: 1419: 1415: 1407: 1404: 1403: 1376: 1373: 1372: 1356: 1353: 1352: 1326:fluid mechanics 1322: 1282: 1278: 1276: 1273: 1272: 1252: 1248: 1236: 1231: 1216: 1213: 1212: 1191: 1187: 1181: 1177: 1172: 1169: 1168: 1148: 1144: 1142: 1139: 1138: 1112: 1108: 1096: 1092: 1080: 1075: 1053: 1049: 1043: 1039: 1024: 1020: 1007: 1003: 994: 990: 986: 976: 972: 966: 962: 961: 959: 947: 943: 937: 932: 916: 912: 908: 898: 894: 893: 891: 889: 886: 885: 851: 849: 846: 845: 822: 819: 818: 796: 788: 776: 771: 750: 745: 734: 725: 704: 700: 694: 689: 673: 669: 665: 655: 651: 650: 648: 646: 643: 642: 614: 610: 608: 605: 604: 584: 580: 574: 569: 563: 560: 559: 532: 506: 501: 488: 484: 466: 462: 458: 448: 444: 443: 441: 439: 436: 435: 404: 399: 397: 394: 393: 377: 375: 372: 371: 355: 352: 351: 335: 333: 330: 329: 313: 310: 309: 292: 291: 283: 258: 250: 245: 220: 216: 212: 202: 197: 194: 193: 180: 170: 166: 162: 143: 135: 133: 129: 127: 124: 123: 110:fluid mechanics 81: 69: 53:James Lighthill 26:is a branch of 12: 11: 5: 2670: 2660: 2659: 2654: 2652:Fluid dynamics 2649: 2644: 2630: 2629: 2624: 2612: 2600: 2595: 2590: 2571: 2552: 2533: 2519: 2503: 2502:External links 2500: 2498: 2497: 2484: 2471: 2455: 2436: 2411: 2394: 2392: 2389: 2388: 2387: 2382: 2377: 2370: 2367: 2350:of the fluid. 2328: 2308: 2274: 2270: 2266: 2263: 2241: 2237: 2233: 2230: 2210: 2205: 2201: 2197: 2194: 2191: 2186: 2181: 2177: 2173: 2168: 2164: 2160: 2157: 2131: 2128: 2120: 2116: 2112: 2109: 2088: 2085: 2082: 2071: 2070: 2059: 2054: 2050: 2044: 2040: 2036: 2031: 2028: 2021: 2018: 2004: 1996: 1992: 1988: 1983: 1979: 1975: 1968: 1965: 1958: 1955: 1946: 1942: 1933: 1929: 1925: 1922: 1917: 1913: 1909: 1901: 1897: 1893: 1888: 1883: 1879: 1868: 1863: 1859: 1855: 1828: 1824: 1801: 1797: 1793: 1790: 1779: 1778: 1767: 1762: 1758: 1752: 1748: 1744: 1741: 1736: 1733: 1726: 1723: 1709: 1701: 1697: 1693: 1688: 1684: 1680: 1673: 1670: 1663: 1660: 1651: 1647: 1640: 1637: 1632: 1628: 1624: 1616: 1612: 1608: 1603: 1598: 1594: 1583: 1578: 1574: 1570: 1544: 1541: 1538: 1516: 1512: 1489: 1485: 1464: 1459: 1455: 1451: 1448: 1445: 1440: 1435: 1431: 1427: 1422: 1418: 1414: 1411: 1400:incompressible 1380: 1360: 1321: 1318: 1288: 1285: 1281: 1258: 1255: 1251: 1247: 1244: 1239: 1234: 1230: 1226: 1223: 1220: 1194: 1190: 1184: 1180: 1176: 1154: 1151: 1147: 1135: 1134: 1123: 1118: 1115: 1111: 1107: 1102: 1099: 1095: 1091: 1088: 1083: 1078: 1074: 1070: 1067: 1064: 1061: 1056: 1052: 1046: 1042: 1038: 1035: 1030: 1027: 1023: 1018: 1010: 1006: 1002: 997: 993: 989: 982: 979: 975: 969: 965: 958: 955: 950: 946: 940: 935: 931: 927: 919: 915: 911: 906: 901: 897: 854: 829: 826: 815: 814: 803: 799: 795: 791: 787: 784: 779: 774: 770: 766: 763: 760: 757: 753: 748: 744: 741: 737: 732: 728: 724: 721: 718: 715: 712: 707: 703: 697: 692: 688: 684: 676: 672: 668: 663: 658: 654: 632:speed of sound 617: 613: 592: 587: 583: 577: 572: 568: 556: 555: 544: 540: 535: 531: 528: 525: 522: 519: 516: 513: 509: 504: 500: 497: 494: 491: 487: 483: 480: 477: 469: 465: 461: 456: 451: 447: 425:tensor product 407: 402: 380: 359: 338: 317: 306: 305: 290: 286: 282: 279: 276: 273: 270: 267: 264: 261: 259: 257: 253: 248: 244: 241: 238: 235: 232: 228: 223: 219: 215: 208: 205: 201: 196: 195: 192: 189: 186: 183: 181: 178: 173: 169: 165: 161: 158: 155: 149: 146: 141: 138: 132: 131: 80: 77: 68: 65: 9: 6: 4: 3: 2: 2669: 2658: 2655: 2653: 2650: 2648: 2645: 2643: 2640: 2639: 2637: 2628: 2625: 2623: 2619: 2616: 2613: 2611: 2607: 2604: 2601: 2599: 2596: 2594: 2591: 2588: 2584: 2583:0-12-321860-8 2580: 2576: 2572: 2569: 2565: 2564:0-521-39984-X 2561: 2557: 2553: 2550: 2546: 2545:0-7506-2767-0 2542: 2538: 2534: 2531: 2527: 2524: 2520: 2517: 2513: 2510: 2506: 2505: 2494: 2488: 2481: 2475: 2468: 2462: 2460: 2452: 2449: 2443: 2441: 2433: 2430: 2424: 2422: 2420: 2418: 2416: 2408: 2405: 2399: 2395: 2386: 2383: 2381: 2378: 2376: 2373: 2372: 2366: 2364: 2360: 2356: 2351: 2349: 2346: 2342: 2326: 2306: 2298: 2294: 2290: 2272: 2268: 2264: 2261: 2239: 2235: 2231: 2228: 2203: 2199: 2195: 2192: 2184: 2179: 2175: 2171: 2166: 2162: 2158: 2155: 2146: 2126: 2118: 2114: 2110: 2107: 2083: 2057: 2052: 2048: 2042: 2038: 2034: 2029: 2026: 2016: 2002: 1994: 1990: 1981: 1977: 1966: 1963: 1953: 1944: 1931: 1927: 1923: 1920: 1915: 1907: 1899: 1895: 1886: 1881: 1866: 1861: 1857: 1853: 1844: 1843: 1842: 1826: 1822: 1799: 1795: 1791: 1788: 1765: 1760: 1756: 1750: 1746: 1742: 1739: 1734: 1731: 1721: 1707: 1699: 1695: 1686: 1682: 1671: 1668: 1658: 1649: 1638: 1635: 1630: 1622: 1614: 1610: 1601: 1596: 1581: 1576: 1572: 1568: 1559: 1558: 1557: 1539: 1514: 1510: 1487: 1483: 1457: 1453: 1449: 1446: 1438: 1433: 1429: 1425: 1420: 1416: 1412: 1409: 1401: 1396: 1394: 1378: 1358: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1317: 1315: 1309: 1307: 1302: 1286: 1283: 1279: 1256: 1253: 1249: 1242: 1237: 1232: 1228: 1224: 1221: 1210: 1192: 1188: 1182: 1178: 1174: 1152: 1149: 1145: 1121: 1116: 1113: 1109: 1105: 1100: 1097: 1093: 1086: 1081: 1076: 1072: 1068: 1065: 1059: 1054: 1050: 1044: 1040: 1036: 1033: 1028: 1025: 1021: 1016: 1008: 1004: 995: 991: 980: 977: 973: 967: 956: 953: 948: 938: 933: 929: 925: 917: 913: 904: 899: 884: 883: 882: 880: 876: 875:wave equation 872: 870: 843: 801: 793: 782: 777: 772: 768: 764: 761: 755: 742: 739: 730: 722: 713: 710: 705: 695: 690: 686: 682: 674: 670: 661: 656: 641: 640: 639: 637: 633: 615: 611: 590: 585: 575: 570: 566: 542: 538: 529: 523: 520: 514: 498: 492: 485: 481: 475: 467: 463: 454: 449: 434: 433: 432: 430: 426: 422: 357: 315: 288: 280: 274: 271: 265: 262: 260: 242: 236: 230: 226: 217: 213: 206: 190: 187: 184: 182: 176: 167: 163: 159: 153: 147: 139: 122: 121: 120: 117: 115: 111: 107: 106:wave equation 104: 103:inhomogeneous 100: 97: 94: 90: 86: 76: 74: 64: 62: 61:wave equation 58: 54: 50: 49: 43: 41: 40:Aeolian tones 37: 33: 29: 25: 24:Aeroacoustics 18: 2647:Aerodynamics 2574: 2555: 2536: 2525: 2522: 2511: 2508: 2492: 2487: 2479: 2474: 2466: 2450: 2447: 2431: 2428: 2406: 2403: 2398: 2380:Aeolian harp 2358: 2354: 2352: 2288: 2147: 2072: 1780: 1397: 1392: 1349: 1323: 1313: 1310: 1303: 1136: 867: 816: 558:Subtracting 557: 307: 118: 93:compressible 82: 70: 46: 44: 23: 22: 36:aerodynamic 2636:Categories 2391:References 2345:barotropic 2100:], namely 429:divergence 423:(see also 101:, into an 73:jet engine 2642:Acoustics 2359:nonlinear 2327:ρ 2265:≪ 2236:ρ 2232:≪ 2229:ρ 2200:ρ 2196:− 2193:ρ 2159:− 2130:^ 2115:ρ 2111:≈ 2084:∗ 2020:^ 1987:∂ 1974:∂ 1957:^ 1941:∂ 1928:ρ 1912:∇ 1908:− 1892:∂ 1878:∂ 1823:ρ 1796:ρ 1789:ρ 1743:ρ 1725:~ 1692:∂ 1679:∂ 1662:~ 1646:∂ 1627:∇ 1623:− 1607:∂ 1593:∂ 1540:∗ 1484:ρ 1454:ρ 1450:− 1447:ρ 1413:− 1379:ρ 1338:turbulent 1306:viscosity 1280:τ 1250:δ 1243:ρ 1225:− 1175:ρ 1110:τ 1106:− 1094:δ 1087:ρ 1069:− 1037:ρ 1001:∂ 988:∂ 964:∂ 954:ρ 945:∇ 926:− 910:∂ 905:ρ 896:∂ 828:∇ 825:∇ 798:τ 794:− 783:ρ 765:− 743:ρ 720:∇ 717:∇ 711:ρ 702:∇ 683:− 667:∂ 662:ρ 653:∂ 591:ρ 582:∇ 534:τ 530:⋅ 527:∇ 524:− 518:∇ 499:ρ 493:⋅ 490:∇ 482:⋅ 479:∇ 460:∂ 455:ρ 446:∂ 379:τ 316:ρ 285:τ 281:⋅ 278:∇ 269:∇ 266:− 243:ρ 237:⋅ 234:∇ 218:ρ 204:∂ 200:∂ 168:ρ 160:⋅ 157:∇ 145:∂ 140:ρ 137:∂ 114:acoustics 32:turbulent 28:acoustics 2618:Archived 2606:Archived 2369:See also 2295:and the 1475:, where 1350:pressure 1346:inviscid 1334:Lifshitz 877:. Using 603:, where 842:Hessian 840:is the 630:is the 96:viscous 67:History 2581:  2562:  2543:  2355:linear 2289:linear 1344:of an 1330:Landau 817:where 421:tensor 308:where 2657:Sound 2008:where 1713:where 1314:exact 419:is a 99:fluid 91:of a 2579:ISBN 2560:ISBN 2541:ISBN 2319:and 2254:and 1502:and 1332:and 844:and 112:and 89:flow 2526:222 2512:211 2451:222 2432:211 1393:not 1312:is 2638:: 2585:, 2566:, 2547:, 2458:^ 2439:^ 2414:^ 2407:32 1328:, 2589:. 2570:. 2551:. 2532:. 2518:. 2307:p 2273:0 2269:p 2262:p 2240:0 2209:) 2204:0 2190:( 2185:2 2180:0 2176:c 2172:= 2167:0 2163:p 2156:p 2127:T 2119:0 2108:T 2087:) 2081:( 2058:. 2053:j 2049:v 2043:i 2039:v 2035:= 2030:j 2027:i 2017:T 2003:, 1995:j 1991:x 1982:i 1978:x 1967:j 1964:i 1954:T 1945:2 1932:0 1924:= 1921:p 1916:2 1900:2 1896:t 1887:p 1882:2 1867:2 1862:0 1858:c 1854:1 1827:0 1800:0 1792:= 1766:. 1761:j 1757:v 1751:i 1747:v 1740:= 1735:j 1732:i 1722:T 1708:, 1700:j 1696:x 1687:i 1683:x 1672:j 1669:i 1659:T 1650:2 1639:= 1636:p 1631:2 1615:2 1611:t 1602:p 1597:2 1582:2 1577:0 1573:c 1569:1 1543:) 1537:( 1515:0 1511:p 1488:0 1463:) 1458:0 1444:( 1439:2 1434:0 1430:c 1426:= 1421:0 1417:p 1410:p 1359:p 1287:j 1284:i 1257:j 1254:i 1246:) 1238:2 1233:0 1229:c 1222:p 1219:( 1193:j 1189:v 1183:i 1179:v 1153:j 1150:i 1146:T 1122:. 1117:j 1114:i 1101:j 1098:i 1090:) 1082:2 1077:0 1073:c 1066:p 1063:( 1060:+ 1055:j 1051:v 1045:i 1041:v 1034:= 1029:j 1026:i 1022:T 1017:, 1009:j 1005:x 996:i 992:x 981:j 978:i 974:T 968:2 957:= 949:2 939:2 934:0 930:c 918:2 914:t 900:2 853:T 802:, 790:I 786:) 778:2 773:0 769:c 762:p 759:( 756:+ 752:v 747:v 740:= 736:T 731:, 727:T 723:: 714:= 706:2 696:2 691:0 687:c 675:2 671:t 657:2 616:0 612:c 586:2 576:2 571:0 567:c 543:. 539:] 521:p 515:+ 512:) 508:v 503:v 496:( 486:[ 476:= 468:2 464:t 450:2 406:v 401:v 358:p 337:v 289:, 275:+ 272:p 263:= 256:) 252:v 247:v 240:( 231:+ 227:) 222:v 214:( 207:t 191:, 188:0 185:= 177:) 172:v 164:( 154:+ 148:t

Index


acoustics
turbulent
aerodynamic
Aeolian tones
aeroacoustic analogy
James Lighthill
University of Manchester
wave equation
jet engine
Navier–Stokes equations
flow
compressible
viscous
fluid
inhomogeneous
wave equation
fluid mechanics
acoustics
tensor
tensor product
divergence
speed of sound
Lighthill equation
Hessian
Lighthill turbulence stress tensor
wave equation
Einstein notation
Osborne Reynolds
viscosity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑