Knowledge

Earth's internal heat budget

Source 📝

265:. Earth's internal heat flow to the surface is thought to be 80% due to mantle convection, with the remaining heat mostly originating in the Earth's crust, with about 1% due to volcanic activity, earthquakes, and mountain building. Thus, about 99% of Earth's internal heat loss at the surface is by conduction through the crust, and mantle convection is the dominant control on heat transport from deep within the Earth. Most of the heat flow from the thicker continental crust is attributed to internal radiogenic sources; in contrast the thinner oceanic crust has only 2% internal radiogenic heat. The remaining heat flow at the surface would be due to basal heating of the crust from mantle convection. Heat fluxes are negatively correlated with rock age, with the highest heat fluxes from the youngest rock at 287: 178: 625: 22: 735: 165:. As pointed out by John Perry in 1895 a variable conductivity in the Earth's interior could expand the computed age of the Earth to billions of years, as later confirmed by radiometric dating. Contrary to the usual representation of Thomson's argument, the observed thermal gradient of the Earth's crust would not be explained by the addition of radioactivity as a heat source. More significantly, 612:
Primordial heat is the heat lost by the Earth as it continues to cool from its original formation, and this is in contrast to its still actively-produced radiogenic heat. The Earth core's heat flow—heat leaving the core and flowing into the overlying mantle—is thought to be due to primordial heat,
192:
While the total internal Earth heat flow to the surface is well constrained, the relative contribution of the two main sources of Earth's heat, radiogenic and primordial heat, are highly uncertain because their direct measurement is difficult. Chemical and physical models give estimated ranges of
342:, a topic of much debate, and it is thought that the mantle may either have a layered structure with a higher concentration of radioactive heat-producing elements in the lower mantle, or small reservoirs enriched in radioactive elements dispersed throughout the whole mantle. 591:
Geoneutrino detectors can detect the decay of U and Th and thus allow estimation of their contribution to the present radiogenic heat budget, while U and K are not thus detectable. Regardless, K is estimated to contribute 4 TW of heating. However, due to the short
613:
and is estimated at 5–15 TW. Estimates of mantle primordial heat loss range between 7 and 15 TW, which is calculated as the remainder of heat after removal of core heat flow and bulk-Earth radiogenic heat production from the observed surface heat flow.
616:
The early formation of the Earth's dense core could have caused superheating and rapid heat loss, and the heat loss rate would slow once the mantle solidified. Heat flow from the core is necessary for maintaining the convecting outer core and the geodynamo and
337:
studies indicate that it is unlikely to be a significant source of radiogenic heat due to an expected low concentration of radioactive elements partitioning into iron. Radiogenic heat production in the mantle is linked to the structure of
189:). One recent estimate is 47 TW, equivalent to an average heat flux of 91.6 mW/m, and is based on more than 38,000 measurements. The respective mean heat flows of continental and oceanic crust are 70.9 and 105.4 mW/m. 314:. About 50% of the Earth's internal heat originates from radioactive decay. Four radioactive isotopes are responsible for the majority of radiogenic heat because of their enrichment relative to other radioactive isotopes: 656:
Controversy over the exact nature of mantle convection makes the linked evolution of Earth's heat budget and the dynamics and structure of the mantle difficult to unravel. There is evidence that the processes of
241:
in response to heat escaping from Earth's interior, with hotter and more buoyant mantle rising and cooler, and therefore denser, mantle sinking. This convective flow of the mantle drives the movement of Earth's
1321:
Pease, V., Percival, J., Smithies, H., Stevens, G., & Van Kranendonk, M. (2008). When did plate tectonics begin? Evidence from the orogenic record. When did plate tectonics begin on planet Earth, 199–208.
236:
of a material is proportional to temperature; thus, the solid mantle can still flow on long time scales, as a function of its temperature and therefore as a function of the flow of Earth's internal heat. The
142: 1167:Šrámek, Ondřej; McDonough, William F.; Kite, Edwin S.; Lekić, Vedran; Dye, Stephen T.; Zhong, Shijie (1 January 2013). "Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle". 596:
the decay of U and K contributed a large fraction of radiogenic heat flux to the early Earth, which was also much hotter than at present. Initial results from measuring the geoneutrino products of
181:
Cross section of the Earth showing its main divisions and their approximate contributions to Earth's total internal heat flow to the surface, and the dominant heat transport mechanisms within Earth
1330:
Stern, R. J. (2008). Modern-style plate tectonics began in Neoproterozoic time: An alternative interpretation of Earth’s tectonic history. When did plate tectonics begin on planet Earth, 265–280.
246:; thus, an additional reservoir of heat in the lower mantle is critical for the operation of plate tectonics and one possible source is an enrichment of radioactive elements in the lower mantle. 134:, and thus penetrates only a few dozen centimeters on the daily cycle and only a few dozen meters on the annual cycle. This renders solar radiation minimally relevant for processes internal to 330:(K). Due to a lack of rock samples from below 200 km depth, it is difficult to determine precisely the radiogenic heat throughout the whole mantle, although some estimates are available. 1286:
Gando, A., Dwyer, D. A., McKeown, R. D., & Zhang, C. (2011). Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nature Geoscience, 4(9), 647–651.
992: 604:
for radiogenic heat, yielded a new estimate of half of the total Earth internal heat source being radiogenic, and this is consistent with previous estimates.
907:
Glatzmaier, Gary A.; Roberts, Paul H. (1995). "A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle".
198: 739: 1105:
of the silicate Earth: Insights into mantle composition, structure and thermal evolution. Earth and Planetary Science Letters, 278(3), 361–369.
1134:"How much of the heat dissipated into space by Earth is due to radioactive decay of its elements? About half is due to this "radiogenic heat"" 872:
Kageyama, Akira; Sato, Tetsuya; the Complexity Simulation Group (1 January 1995). "Computer simulation of a magnetohydrodynamic dynamo. II".
161:, estimated the age of the Earth at 98 million years, which contrasts with the age of 4.5 billion years obtained in the 20th century by 1141: 1114:
Jaupart, C., & Mareschal, J. C. (2007). Heat flow and thermal structure of the lithosphere. Treatise on Geophysics, 6, 217–251.
661:
were not active in the Earth before 3.2 billion years ago, and that early Earth's internal heat loss could have been dominated by
1025: 951: 832: 25:
Global map of the flux of heat, in mW/m, from Earth's interior to the surface. The largest values of heat flux coincide with
1123:
Korenaga, J. (2003). Energetics of mantle convection and the fate of fossil heat. Geophysical Research Letters, 30(8), 1437.
689:
heat transport via enhanced volcanism, while the active plate tectonics of Earth occur with an intermediate heat flow and a
185:
Estimates of the total heat flow from Earth's interior to surface span a range of 43 to 49 terawatts (TW) (a terawatt is 10
114:. This external energy source powers most of the planet's atmospheric, oceanic, and biologic processes. Nevertheless on 1013: 1253: 154: 153:
Based on calculations of Earth's cooling rate, which assumed constant conductivity in the Earth's interior, in 1862
1298:
Lay, T., Hernlund, J., & Buffett, B. A. (2008). Core–mantle boundary heat flow. Nature Geoscience, 1(1), 25–32.
628:
Earth's tectonic evolution over time from a molten state at 4.5 Ga, to a single-plate lithosphere, to modern
621:; therefore primordial heat from the core enabled Earth's atmosphere and thus helped retain Earth's liquid water. 169:
alters how heat is transported within the Earth, invalidating Thomson's assumption of purely conductive cooling.
1274:
Korenaga, J. (2008). Urey ratio and the structure and evolution of Earth's mantle. Reviews of Geophysics, 46(2).
822: 141:
Global data on heat-flow density are collected and compiled by the International Heat Flow Commission of the
717: 37: 681:
their internal heat through a single lithospheric plate, and higher heat flows, such as on Jupiter's moon
1365: 1086:
Dye, S. T. (2012). Geoneutrinos and the radioactive power of the Earth. Reviews of Geophysics, 50(3).
1157:
Korenaga, J. (2011). Earth's heat budget: Clairvoyant geoneutrinos. Nature Geoscience, 4(9), 581–582.
712: 618: 100: 1043:"John Perry's neglected critique of Kelvin's age for the Earth: A missed opportunity in geodynamics" 286: 1355: 270: 258: 107: 88: 1360: 1190: 1350: 1233: 1186: 1054: 916: 881: 782: 8: 1137: 1133: 707: 64: 1237: 1058: 920: 885: 786: 1312:
Moore, W. B., & Webb, A. A. G. (2013). Heat-pipe Earth. Nature, 501(7468), 501–505.
1210: 1176: 722: 678: 601: 205: 162: 131: 1249: 1245: 1202: 1021: 947: 928: 828: 702: 690: 597: 339: 299: 254: 250: 238: 213: 166: 106:
Despite its geological significance, Earth's interior heat contributes only 0.03% of
68: 49: 1214: 1241: 1194: 1087: 1062: 924: 889: 790: 637: 221: 135: 858: 847:
Buffett, B. A. (2007). Taking Earth's temperature. Science, 315(5820), 1801–1802.
658: 629: 311: 291: 266: 209: 194: 111: 92: 72: 26: 1345: 1198: 645: 177: 624: 302:
of elements in the Earth's mantle and crust results in production of daughter
1339: 1206: 217: 123: 29:, and the smallest values of heat flux occur in stable continental interiors. 871: 641: 327: 143:
International Association of Seismology and Physics of the Earth's Interior
80: 40:. The flow heat from Earth's interior to the surface is estimated at 47±2 1016:. In Martin J. van Kranendonk; Vickie Bennett; Hugh R.H. Smithies (eds.). 982:
IHFC: International Heat Flow Commission – Homepage. Retrieved 18/09/2019.
1067: 1042: 334: 323: 319: 315: 307: 243: 158: 119: 795: 770: 1018:
Earth's Oldest Rocks (Developments in Precambrian Geology Vol 15, 2007)
229: 225: 127: 57: 1102: 893: 686: 682: 666: 662: 593: 262: 233: 96: 84: 1228:
McDonough, W.F. (2003), "Compositional Model for the Earth's Core",
44:(TW) and comes from two main sources in roughly equal amounts: the 41: 1181: 269:
spreading centers (zones of mantle upwelling), as observed in the
110:
at the surface, which is dominated by 173,000 TW of incoming
21: 820: 303: 76: 734: 1101:
Arevalo Jr, R., McDonough, W. F., & Luong, M. (2009). The
346:
An estimate of the present-day major heat-producing isotopes
979: 674: 670: 186: 115: 148: 1166: 669:. Terrestrial bodies with lower heat flows, such as the 1041:
England, Philip; Molnar, Peter; Richter, Frank (2007).
640:
released by collapsing a large amount of matter into a
1007: 1005: 821:
Donald L. Turcotte; Gerald Schubert (25 March 2002).
1040: 1002: 906: 1337: 1270: 1268: 1266: 1264: 1153: 1151: 1014:"Chapter 2: The Formation Of The Earth And Moon" 651: 67:and powers most geological processes. It drives 769:Davies, J.H.; Davies, D.R. (22 February 2010). 997:Transactions of the Royal Society of Edinburgh 1261: 1148: 856: 632:sometime between 3.2  Ga and 1.0 Ga 52:of isotopes in the mantle and crust, and the 909:Physics of the Earth and Planetary Interiors 768: 764: 762: 760: 758: 756: 754: 172: 1232:, vol. 2, Elsevier, pp. 547–568, 1011: 16:Accounting of heat created within the Earth 1097: 1095: 944:Global Warming: Understanding the Forecast 941: 816: 814: 812: 810: 808: 806: 1227: 1180: 1066: 794: 751: 1308: 1306: 1304: 1282: 1280: 623: 285: 176: 20: 1108: 1092: 1012:Ross Taylor, Stuart (26 October 2007). 803: 1338: 1294: 1292: 1082: 1080: 1078: 636:Primordial heat energy comes from the 149:Heat and early estimate of Earth's age 1301: 1277: 193:15–41 TW and 12–30 TW for 63:Earth's internal heat travels along 1289: 1169:Earth and Planetary Science Letters 1075: 993:On the secular cooling of the earth 13: 1144:from the original on 25 June 2017. 607: 281: 276: 14: 1377: 728: 733: 220:, solid but plastically flowing 1324: 1315: 1221: 1160: 1126: 1117: 1034: 985: 857:Morgan Bettex (25 March 2010). 249:Earth heat transport occurs by 95:is also theorized to sustain a 1246:10.1016/b0-08-043751-6/02015-6 973: 960: 935: 900: 865: 850: 841: 827:. Cambridge University Press. 130:flows inward only by means of 93:high-temperature metallic core 1: 745: 652:Heat flow and tectonic plates 271:global map of Earth heat flow 1020:. Elsevier. pp. 21–30. 929:10.1016/0031-9201(95)03049-3 740:Earth's internal heat budget 718:Thermal history of the Earth 212:that is composed of thicker 126:absorbed from non-reflected 38:thermal history of the Earth 34:Earth's internal heat budget 7: 771:"Earth's surface heat flux" 696: 108:Earth's total energy budget 10: 1384: 1199:10.1016/j.epsl.2012.11.001 991:Thomson, William. (1864). 968:Fundamentals of geophysics 859:"Explained: Dynamo Theory" 970:. Cambridge: CUP, 2nd ed. 713:Planetary differentiation 600:from within the Earth, a 382:Mean mantle concentration 290:The evolution of Earth's 173:Global internal heat flow 1230:Treatise on Geochemistry 1088:doi:10.1029/2012RG000400 89:Convective heat transfer 1191:2013E&PSL.361..356S 259:hydrothermal convection 995:, read 28 April 1862. 633: 619:Earth's magnetic field 333:For the Earth's core, 295: 182: 101:Earth's magnetic field 36:is fundamental to the 30: 742:at Wikimedia Commons 627: 289: 180: 24: 1068:10.1130/GSAT01701A.1 648:of accreted matter. 310:and heat energy, or 91:within the planet's 65:geothermal gradients 1238:2003TrGeo...2..547M 1138:Stanford University 1059:2007GSAT...17R...4E 966:Lowrie, W. (2007). 942:Archer, D. (2012). 921:1995PEPI...91...63G 886:1995PhPl....2.1421K 796:10.5194/se-1-5-2010 787:2010SolE....1....5D 708:Geothermal gradient 347: 244:lithospheric plates 56:left over from the 874:Physics of Plasmas 723:Anthropogenic heat 634: 345: 296: 206:structure of Earth 183: 163:radiometric dating 132:thermal conduction 58:formation of Earth 31: 1366:Geothermal energy 1027:978-0-08-055247-7 980:www.ihfc-iugg.org 953:978-0-470-94341-0 834:978-0-521-66624-4 738:Media related to 703:Geothermal energy 691:convecting mantle 598:radioactive decay 589: 588: 340:mantle convection 300:radioactive decay 255:mantle convection 214:continental crust 208:is a rigid outer 167:mantle convection 81:rock metamorphism 77:mountain building 69:mantle convection 50:radioactive decay 1373: 1331: 1328: 1322: 1319: 1313: 1310: 1299: 1296: 1287: 1284: 1275: 1272: 1259: 1258: 1225: 1219: 1218: 1184: 1164: 1158: 1155: 1146: 1145: 1130: 1124: 1121: 1115: 1112: 1106: 1099: 1090: 1084: 1073: 1072: 1070: 1038: 1032: 1031: 1009: 1000: 989: 983: 977: 971: 964: 958: 957: 939: 933: 932: 904: 898: 897: 894:10.1063/1.871485 880:(5): 1421–1431. 869: 863: 862: 854: 848: 845: 839: 838: 818: 801: 800: 798: 766: 737: 638:potential energy 585: 583: 576: 574: 567: 565: 558: 556: 544: 542: 535: 533: 526: 524: 517: 515: 503: 501: 494: 492: 485: 483: 476: 474: 462: 460: 453: 451: 444: 442: 435: 433: 421: 420: 418: 417: 414: 411: 400: 399: 397: 396: 393: 390: 379: 372: 371: 369: 368: 365: 362: 348: 344: 201:, respectively. 99:which generates 48:produced by the 27:mid-ocean ridges 1383: 1382: 1376: 1375: 1374: 1372: 1371: 1370: 1356:Plate tectonics 1336: 1335: 1334: 1329: 1325: 1320: 1316: 1311: 1302: 1297: 1290: 1285: 1278: 1273: 1262: 1256: 1226: 1222: 1165: 1161: 1156: 1149: 1132: 1131: 1127: 1122: 1118: 1113: 1109: 1100: 1093: 1085: 1076: 1039: 1035: 1028: 1010: 1003: 990: 986: 978: 974: 965: 961: 954: 940: 936: 905: 901: 870: 866: 855: 851: 846: 842: 835: 819: 804: 767: 752: 748: 731: 699: 659:plate tectonics 654: 630:plate tectonics 610: 608:Primordial heat 581: 579: 572: 570: 563: 561: 554: 552: 540: 538: 531: 529: 522: 520: 513: 511: 499: 497: 490: 488: 481: 479: 472: 470: 458: 456: 449: 447: 440: 438: 431: 429: 415: 412: 409: 408: 406: 405: 404: 394: 391: 388: 387: 385: 384: 383: 377: 376: 366: 363: 360: 359: 357: 356: 355: 312:radiogenic heat 306:and release of 292:radiogenic heat 284: 282:Radiogenic heat 279: 277:Sources of heat 267:mid-ocean ridge 261:, and volcanic 239:mantle convects 199:primordial heat 195:radiogenic heat 175: 155:William Thomson 151: 112:solar radiation 73:plate tectonics 54:primordial heat 46:radiogenic heat 17: 12: 11: 5: 1381: 1380: 1369: 1368: 1363: 1358: 1353: 1348: 1333: 1332: 1323: 1314: 1300: 1288: 1276: 1260: 1254: 1220: 1159: 1147: 1125: 1116: 1107: 1091: 1074: 1033: 1026: 1001: 999:, 23, 157–170. 984: 972: 959: 952: 934: 915:(1–3): 63–75. 899: 864: 849: 840: 833: 802: 749: 747: 744: 730: 729:External links 727: 726: 725: 720: 715: 710: 705: 698: 695: 665:via heat-pipe 653: 650: 646:kinetic energy 609: 606: 587: 586: 577: 568: 559: 550: 546: 545: 536: 527: 518: 509: 505: 504: 495: 486: 477: 468: 464: 463: 454: 445: 436: 427: 423: 422: 401: 380: 373: 352: 294:flow over time 283: 280: 278: 275: 228:, and a solid 174: 171: 150: 147: 15: 9: 6: 4: 3: 2: 1379: 1378: 1367: 1364: 1362: 1361:Heat transfer 1359: 1357: 1354: 1352: 1349: 1347: 1344: 1343: 1341: 1327: 1318: 1309: 1307: 1305: 1295: 1293: 1283: 1281: 1271: 1269: 1267: 1265: 1257: 1255:9780080437514 1251: 1247: 1243: 1239: 1235: 1231: 1224: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1183: 1178: 1174: 1170: 1163: 1154: 1152: 1143: 1139: 1135: 1129: 1120: 1111: 1104: 1098: 1096: 1089: 1083: 1081: 1079: 1069: 1064: 1060: 1056: 1052: 1048: 1044: 1037: 1029: 1023: 1019: 1015: 1008: 1006: 998: 994: 988: 981: 976: 969: 963: 955: 949: 945: 938: 930: 926: 922: 918: 914: 910: 903: 895: 891: 887: 883: 879: 875: 868: 860: 853: 844: 836: 830: 826: 825: 817: 815: 813: 811: 809: 807: 797: 792: 788: 784: 780: 776: 772: 765: 763: 761: 759: 757: 755: 750: 743: 741: 736: 724: 721: 719: 716: 714: 711: 709: 706: 704: 701: 700: 694: 692: 688: 684: 680: 676: 672: 668: 664: 660: 649: 647: 643: 639: 631: 626: 622: 620: 614: 605: 603: 599: 595: 578: 569: 560: 551: 548: 547: 537: 528: 519: 510: 507: 506: 496: 487: 478: 469: 466: 465: 455: 446: 437: 428: 425: 424: 402: 381: 374: 353: 350: 349: 343: 341: 336: 331: 329: 325: 321: 317: 313: 309: 305: 301: 293: 288: 274: 272: 268: 264: 260: 256: 252: 247: 245: 240: 235: 231: 227: 223: 219: 218:oceanic crust 215: 211: 207: 202: 200: 196: 190: 188: 179: 170: 168: 164: 160: 156: 146: 144: 139: 137: 136:Earth's crust 133: 129: 125: 124:sensible heat 121: 117: 113: 109: 104: 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 61: 59: 55: 51: 47: 43: 39: 35: 28: 23: 19: 1326: 1317: 1229: 1223: 1172: 1168: 1162: 1128: 1119: 1110: 1050: 1046: 1036: 1017: 996: 987: 975: 967: 962: 943: 937: 912: 908: 902: 877: 873: 867: 852: 843: 823: 778: 774: 732: 685:, result in 655: 642:gravity well 635: 615: 611: 590: 403:Heat release 354:Heat release 332: 328:potassium-40 308:geoneutrinos 297: 248: 216:and thinner 203: 191: 184: 152: 140: 105: 62: 53: 45: 33: 32: 18: 1351:Geodynamics 1175:: 356–366. 861:. MIT News. 824:Geodynamics 781:(1): 5–24. 775:Solid Earth 335:geochemical 324:thorium-232 320:uranium-235 316:uranium-238 224:, a liquid 159:Lord Kelvin 120:ocean floor 118:and at the 1340:Categories 1053:(1): 4–9. 746:References 644:, and the 594:half-lives 389:kg isotope 367:kg isotope 326:(Th), and 251:conduction 230:inner core 226:outer core 128:insolation 1207:0012-821X 1182:1207.0853 1103:K/U ratio 1047:GSA Today 687:advective 667:volcanism 663:advection 416:kg mantle 395:kg mantle 375:Half-life 263:advection 97:geodynamo 85:volcanism 42:terawatts 1215:15284566 1142:Archived 1140:. 2015. 697:See also 351:Isotope 304:isotopes 234:fluidity 157:, later 1234:Bibcode 1187:Bibcode 1055:Bibcode 917:Bibcode 882:Bibcode 783:Bibcode 679:conduct 419:⁠ 407:⁠ 398:⁠ 386:⁠ 370:⁠ 358:⁠ 1252:  1213:  1205:  1024:  950:  831:  232:. The 222:mantle 122:, the 83:, and 1346:Earth 1211:S2CID 1177:arXiv 602:proxy 580:0.125 562:0.704 378:years 322:(U), 318:(U), 210:crust 187:watts 1250:ISBN 1203:ISSN 1022:ISBN 948:ISBN 829:ISBN 675:Mars 673:and 671:Moon 571:0.22 539:1.08 530:36.9 521:1.25 512:29.2 498:2.91 489:30.8 480:4.47 471:94.6 457:3.27 439:14.0 430:26.4 298:The 204:The 197:and 116:land 1242:doi 1195:doi 1173:361 1063:doi 925:doi 890:doi 791:doi 553:569 448:124 426:Th 87:. 1342:: 1303:^ 1291:^ 1279:^ 1263:^ 1248:, 1240:, 1209:. 1201:. 1193:. 1185:. 1171:. 1150:^ 1136:. 1094:^ 1077:^ 1061:. 1051:17 1049:. 1045:. 1004:^ 946:. 923:. 913:91 911:. 888:. 876:. 805:^ 789:. 777:. 773:. 753:^ 693:. 683:Io 677:, 584:10 575:10 566:10 557:10 549:U 543:10 534:10 525:10 516:10 508:K 502:10 493:10 484:10 475:10 467:U 461:10 452:10 443:10 434:10 273:. 257:, 253:, 145:. 138:. 103:. 79:, 75:, 71:, 60:. 1244:: 1236:: 1217:. 1197:: 1189:: 1179:: 1071:. 1065:: 1057:: 1030:. 956:. 931:. 927:: 919:: 896:. 892:: 884:: 878:2 837:. 799:. 793:: 785:: 779:1 582:× 573:× 564:× 555:× 541:× 532:× 523:× 514:× 500:× 491:× 482:× 473:× 459:× 450:× 441:× 432:× 413:/ 410:W 392:/ 364:/ 361:W

Index


mid-ocean ridges
thermal history of the Earth
terawatts
radioactive decay
formation of Earth
geothermal gradients
mantle convection
plate tectonics
mountain building
rock metamorphism
volcanism
Convective heat transfer
high-temperature metallic core
geodynamo
Earth's magnetic field
Earth's total energy budget
solar radiation
land
ocean floor
sensible heat
insolation
thermal conduction
Earth's crust
International Association of Seismology and Physics of the Earth's Interior
William Thomson
Lord Kelvin
radiometric dating
mantle convection

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.